2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
11 #include <linux/sched.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex
);
22 static DEFINE_SPINLOCK(kernfs_rename_lock
); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf
[PATH_MAX
]; /* protected by rename_lock */
24 static DEFINE_SPINLOCK(kernfs_idr_lock
); /* root->ino_idr */
26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
28 static bool kernfs_active(struct kernfs_node
*kn
)
30 lockdep_assert_held(&kernfs_mutex
);
31 return atomic_read(&kn
->active
) >= 0;
34 static bool kernfs_lockdep(struct kernfs_node
*kn
)
36 #ifdef CONFIG_DEBUG_LOCK_ALLOC
37 return kn
->flags
& KERNFS_LOCKDEP
;
43 static int kernfs_name_locked(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
46 return strlcpy(buf
, "(null)", buflen
);
48 return strlcpy(buf
, kn
->parent
? kn
->name
: "/", buflen
);
51 /* kernfs_node_depth - compute depth from @from to @to */
52 static size_t kernfs_depth(struct kernfs_node
*from
, struct kernfs_node
*to
)
56 while (to
->parent
&& to
!= from
) {
63 static struct kernfs_node
*kernfs_common_ancestor(struct kernfs_node
*a
,
64 struct kernfs_node
*b
)
67 struct kernfs_root
*ra
= kernfs_root(a
), *rb
= kernfs_root(b
);
72 da
= kernfs_depth(ra
->kn
, a
);
73 db
= kernfs_depth(rb
->kn
, b
);
84 /* worst case b and a will be the same at root */
94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95 * where kn_from is treated as root of the path.
96 * @kn_from: kernfs node which should be treated as root for the path
97 * @kn_to: kernfs node to which path is needed
98 * @buf: buffer to copy the path into
99 * @buflen: size of @buf
101 * We need to handle couple of scenarios here:
102 * [1] when @kn_from is an ancestor of @kn_to at some level
104 * kn_to: /n1/n2/n3/n4/n5
107 * [2] when @kn_from is on a different hierarchy and we need to find common
108 * ancestor between @kn_from and @kn_to.
109 * kn_from: /n1/n2/n3/n4
113 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
114 * kn_to: /n1/n2/n3 [depth=3]
117 * [3] when @kn_to is NULL result will be "(null)"
119 * Returns the length of the full path. If the full length is equal to or
120 * greater than @buflen, @buf contains the truncated path with the trailing
121 * '\0'. On error, -errno is returned.
123 static int kernfs_path_from_node_locked(struct kernfs_node
*kn_to
,
124 struct kernfs_node
*kn_from
,
125 char *buf
, size_t buflen
)
127 struct kernfs_node
*kn
, *common
;
128 const char parent_str
[] = "/..";
129 size_t depth_from
, depth_to
, len
= 0;
133 return strlcpy(buf
, "(null)", buflen
);
136 kn_from
= kernfs_root(kn_to
)->kn
;
138 if (kn_from
== kn_to
)
139 return strlcpy(buf
, "/", buflen
);
141 common
= kernfs_common_ancestor(kn_from
, kn_to
);
142 if (WARN_ON(!common
))
145 depth_to
= kernfs_depth(common
, kn_to
);
146 depth_from
= kernfs_depth(common
, kn_from
);
151 for (i
= 0; i
< depth_from
; i
++)
152 len
+= strlcpy(buf
+ len
, parent_str
,
153 len
< buflen
? buflen
- len
: 0);
155 /* Calculate how many bytes we need for the rest */
156 for (i
= depth_to
- 1; i
>= 0; i
--) {
157 for (kn
= kn_to
, j
= 0; j
< i
; j
++)
159 len
+= strlcpy(buf
+ len
, "/",
160 len
< buflen
? buflen
- len
: 0);
161 len
+= strlcpy(buf
+ len
, kn
->name
,
162 len
< buflen
? buflen
- len
: 0);
169 * kernfs_name - obtain the name of a given node
170 * @kn: kernfs_node of interest
171 * @buf: buffer to copy @kn's name into
172 * @buflen: size of @buf
174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
175 * similar to strlcpy(). It returns the length of @kn's name and if @buf
176 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 * Fills buffer with "(null)" if @kn is NULL.
180 * This function can be called from any context.
182 int kernfs_name(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
187 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
188 ret
= kernfs_name_locked(kn
, buf
, buflen
);
189 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
194 * kernfs_path_from_node - build path of node @to relative to @from.
195 * @from: parent kernfs_node relative to which we need to build the path
196 * @to: kernfs_node of interest
197 * @buf: buffer to copy @to's path into
198 * @buflen: size of @buf
200 * Builds @to's path relative to @from in @buf. @from and @to must
201 * be on the same kernfs-root. If @from is not parent of @to, then a relative
202 * path (which includes '..'s) as needed to reach from @from to @to is
205 * Returns the length of the full path. If the full length is equal to or
206 * greater than @buflen, @buf contains the truncated path with the trailing
207 * '\0'. On error, -errno is returned.
209 int kernfs_path_from_node(struct kernfs_node
*to
, struct kernfs_node
*from
,
210 char *buf
, size_t buflen
)
215 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
216 ret
= kernfs_path_from_node_locked(to
, from
, buf
, buflen
);
217 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
220 EXPORT_SYMBOL_GPL(kernfs_path_from_node
);
223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224 * @kn: kernfs_node of interest
226 * This function can be called from any context.
228 void pr_cont_kernfs_name(struct kernfs_node
*kn
)
232 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
234 kernfs_name_locked(kn
, kernfs_pr_cont_buf
, sizeof(kernfs_pr_cont_buf
));
235 pr_cont("%s", kernfs_pr_cont_buf
);
237 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242 * @kn: kernfs_node of interest
244 * This function can be called from any context.
246 void pr_cont_kernfs_path(struct kernfs_node
*kn
)
251 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
253 sz
= kernfs_path_from_node_locked(kn
, NULL
, kernfs_pr_cont_buf
,
254 sizeof(kernfs_pr_cont_buf
));
260 if (sz
>= sizeof(kernfs_pr_cont_buf
)) {
261 pr_cont("(name too long)");
265 pr_cont("%s", kernfs_pr_cont_buf
);
268 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
272 * kernfs_get_parent - determine the parent node and pin it
273 * @kn: kernfs_node of interest
275 * Determines @kn's parent, pins and returns it. This function can be
276 * called from any context.
278 struct kernfs_node
*kernfs_get_parent(struct kernfs_node
*kn
)
280 struct kernfs_node
*parent
;
283 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
286 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
293 * @name: Null terminated string to hash
294 * @ns: Namespace tag to hash
296 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 static unsigned int kernfs_name_hash(const char *name
, const void *ns
)
300 unsigned long hash
= init_name_hash(ns
);
301 unsigned int len
= strlen(name
);
303 hash
= partial_name_hash(*name
++, hash
);
304 hash
= end_name_hash(hash
);
306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
314 static int kernfs_name_compare(unsigned int hash
, const char *name
,
315 const void *ns
, const struct kernfs_node
*kn
)
325 return strcmp(name
, kn
->name
);
328 static int kernfs_sd_compare(const struct kernfs_node
*left
,
329 const struct kernfs_node
*right
)
331 return kernfs_name_compare(left
->hash
, left
->name
, left
->ns
, right
);
335 * kernfs_link_sibling - link kernfs_node into sibling rbtree
336 * @kn: kernfs_node of interest
338 * Link @kn into its sibling rbtree which starts from
339 * @kn->parent->dir.children.
342 * mutex_lock(kernfs_mutex)
345 * 0 on susccess -EEXIST on failure.
347 static int kernfs_link_sibling(struct kernfs_node
*kn
)
349 struct rb_node
**node
= &kn
->parent
->dir
.children
.rb_node
;
350 struct rb_node
*parent
= NULL
;
353 struct kernfs_node
*pos
;
356 pos
= rb_to_kn(*node
);
358 result
= kernfs_sd_compare(kn
, pos
);
360 node
= &pos
->rb
.rb_left
;
362 node
= &pos
->rb
.rb_right
;
367 /* add new node and rebalance the tree */
368 rb_link_node(&kn
->rb
, parent
, node
);
369 rb_insert_color(&kn
->rb
, &kn
->parent
->dir
.children
);
371 /* successfully added, account subdir number */
372 if (kernfs_type(kn
) == KERNFS_DIR
)
373 kn
->parent
->dir
.subdirs
++;
379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380 * @kn: kernfs_node of interest
382 * Try to unlink @kn from its sibling rbtree which starts from
383 * kn->parent->dir.children. Returns %true if @kn was actually
384 * removed, %false if @kn wasn't on the rbtree.
387 * mutex_lock(kernfs_mutex)
389 static bool kernfs_unlink_sibling(struct kernfs_node
*kn
)
391 if (RB_EMPTY_NODE(&kn
->rb
))
394 if (kernfs_type(kn
) == KERNFS_DIR
)
395 kn
->parent
->dir
.subdirs
--;
397 rb_erase(&kn
->rb
, &kn
->parent
->dir
.children
);
398 RB_CLEAR_NODE(&kn
->rb
);
403 * kernfs_get_active - get an active reference to kernfs_node
404 * @kn: kernfs_node to get an active reference to
406 * Get an active reference of @kn. This function is noop if @kn
410 * Pointer to @kn on success, NULL on failure.
412 struct kernfs_node
*kernfs_get_active(struct kernfs_node
*kn
)
417 if (!atomic_inc_unless_negative(&kn
->active
))
420 if (kernfs_lockdep(kn
))
421 rwsem_acquire_read(&kn
->dep_map
, 0, 1, _RET_IP_
);
426 * kernfs_put_active - put an active reference to kernfs_node
427 * @kn: kernfs_node to put an active reference to
429 * Put an active reference to @kn. This function is noop if @kn
432 void kernfs_put_active(struct kernfs_node
*kn
)
434 struct kernfs_root
*root
= kernfs_root(kn
);
440 if (kernfs_lockdep(kn
))
441 rwsem_release(&kn
->dep_map
, 1, _RET_IP_
);
442 v
= atomic_dec_return(&kn
->active
);
443 if (likely(v
!= KN_DEACTIVATED_BIAS
))
446 wake_up_all(&root
->deactivate_waitq
);
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
457 static void kernfs_drain(struct kernfs_node
*kn
)
458 __releases(&kernfs_mutex
) __acquires(&kernfs_mutex
)
460 struct kernfs_root
*root
= kernfs_root(kn
);
462 lockdep_assert_held(&kernfs_mutex
);
463 WARN_ON_ONCE(kernfs_active(kn
));
465 mutex_unlock(&kernfs_mutex
);
467 if (kernfs_lockdep(kn
)) {
468 rwsem_acquire(&kn
->dep_map
, 0, 0, _RET_IP_
);
469 if (atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
)
470 lock_contended(&kn
->dep_map
, _RET_IP_
);
473 /* but everyone should wait for draining */
474 wait_event(root
->deactivate_waitq
,
475 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
);
477 if (kernfs_lockdep(kn
)) {
478 lock_acquired(&kn
->dep_map
, _RET_IP_
);
479 rwsem_release(&kn
->dep_map
, 1, _RET_IP_
);
482 kernfs_drain_open_files(kn
);
484 mutex_lock(&kernfs_mutex
);
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
491 void kernfs_get(struct kernfs_node
*kn
)
494 WARN_ON(!atomic_read(&kn
->count
));
495 atomic_inc(&kn
->count
);
498 EXPORT_SYMBOL_GPL(kernfs_get
);
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
504 * Put a reference count of @kn and destroy it if it reached zero.
506 void kernfs_put(struct kernfs_node
*kn
)
508 struct kernfs_node
*parent
;
509 struct kernfs_root
*root
;
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
515 if (!kn
|| !atomic_dec_and_test(&kn
->count
))
517 root
= kernfs_root(kn
);
520 * Moving/renaming is always done while holding reference.
521 * kn->parent won't change beneath us.
525 WARN_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent
? parent
->name
: "", kn
->name
, atomic_read(&kn
->active
));
529 if (kernfs_type(kn
) == KERNFS_LINK
)
530 kernfs_put(kn
->symlink
.target_kn
);
532 kfree_const(kn
->name
);
535 if (kn
->iattr
->ia_secdata
)
536 security_release_secctx(kn
->iattr
->ia_secdata
,
537 kn
->iattr
->ia_secdata_len
);
538 simple_xattrs_free(&kn
->iattr
->xattrs
);
541 spin_lock(&kernfs_idr_lock
);
542 idr_remove(&root
->ino_idr
, kn
->id
.ino
);
543 spin_unlock(&kernfs_idr_lock
);
544 kmem_cache_free(kernfs_node_cache
, kn
);
548 if (atomic_dec_and_test(&kn
->count
))
551 /* just released the root kn, free @root too */
552 idr_destroy(&root
->ino_idr
);
556 EXPORT_SYMBOL_GPL(kernfs_put
);
558 static int kernfs_dop_revalidate(struct dentry
*dentry
, unsigned int flags
)
560 struct kernfs_node
*kn
;
562 if (flags
& LOOKUP_RCU
)
565 /* Always perform fresh lookup for negatives */
566 if (d_really_is_negative(dentry
))
567 goto out_bad_unlocked
;
569 kn
= kernfs_dentry_node(dentry
);
570 mutex_lock(&kernfs_mutex
);
572 /* The kernfs node has been deactivated */
573 if (!kernfs_active(kn
))
576 /* The kernfs node has been moved? */
577 if (kernfs_dentry_node(dentry
->d_parent
) != kn
->parent
)
580 /* The kernfs node has been renamed */
581 if (strcmp(dentry
->d_name
.name
, kn
->name
) != 0)
584 /* The kernfs node has been moved to a different namespace */
585 if (kn
->parent
&& kernfs_ns_enabled(kn
->parent
) &&
586 kernfs_info(dentry
->d_sb
)->ns
!= kn
->ns
)
589 mutex_unlock(&kernfs_mutex
);
592 mutex_unlock(&kernfs_mutex
);
597 const struct dentry_operations kernfs_dops
= {
598 .d_revalidate
= kernfs_dop_revalidate
,
602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603 * @dentry: the dentry in question
605 * Return the kernfs_node associated with @dentry. If @dentry is not a
606 * kernfs one, %NULL is returned.
608 * While the returned kernfs_node will stay accessible as long as @dentry
609 * is accessible, the returned node can be in any state and the caller is
610 * fully responsible for determining what's accessible.
612 struct kernfs_node
*kernfs_node_from_dentry(struct dentry
*dentry
)
614 if (dentry
->d_sb
->s_op
== &kernfs_sops
&&
615 !d_really_is_negative(dentry
))
616 return kernfs_dentry_node(dentry
);
620 static struct kernfs_node
*__kernfs_new_node(struct kernfs_root
*root
,
621 const char *name
, umode_t mode
,
622 kuid_t uid
, kgid_t gid
,
625 struct kernfs_node
*kn
;
630 name
= kstrdup_const(name
, GFP_KERNEL
);
634 kn
= kmem_cache_zalloc(kernfs_node_cache
, GFP_KERNEL
);
638 idr_preload(GFP_KERNEL
);
639 spin_lock(&kernfs_idr_lock
);
640 cursor
= idr_get_cursor(&root
->ino_idr
);
641 ret
= idr_alloc_cyclic(&root
->ino_idr
, kn
, 1, 0, GFP_ATOMIC
);
642 if (ret
>= 0 && ret
< cursor
)
643 root
->next_generation
++;
644 gen
= root
->next_generation
;
645 spin_unlock(&kernfs_idr_lock
);
650 kn
->id
.generation
= gen
;
653 * set ino first. This barrier is paired with atomic_inc_not_zero in
654 * kernfs_find_and_get_node_by_ino
656 smp_mb__before_atomic();
657 atomic_set(&kn
->count
, 1);
658 atomic_set(&kn
->active
, KN_DEACTIVATED_BIAS
);
659 RB_CLEAR_NODE(&kn
->rb
);
665 if (!uid_eq(uid
, GLOBAL_ROOT_UID
) || !gid_eq(gid
, GLOBAL_ROOT_GID
)) {
666 struct iattr iattr
= {
667 .ia_valid
= ATTR_UID
| ATTR_GID
,
672 ret
= __kernfs_setattr(kn
, &iattr
);
680 idr_remove(&root
->ino_idr
, kn
->id
.ino
);
682 kmem_cache_free(kernfs_node_cache
, kn
);
688 struct kernfs_node
*kernfs_new_node(struct kernfs_node
*parent
,
689 const char *name
, umode_t mode
,
690 kuid_t uid
, kgid_t gid
,
693 struct kernfs_node
*kn
;
695 kn
= __kernfs_new_node(kernfs_root(parent
),
696 name
, mode
, uid
, gid
, flags
);
705 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
706 * @root: the kernfs root
710 * NULL on failure. Return a kernfs node with reference counter incremented
712 struct kernfs_node
*kernfs_find_and_get_node_by_ino(struct kernfs_root
*root
,
715 struct kernfs_node
*kn
;
718 kn
= idr_find(&root
->ino_idr
, ino
);
723 * Since kernfs_node is freed in RCU, it's possible an old node for ino
724 * is freed, but reused before RCU grace period. But a freed node (see
725 * kernfs_put) or an incompletedly initialized node (see
726 * __kernfs_new_node) should have 'count' 0. We can use this fact to
727 * filter out such node.
729 if (!atomic_inc_not_zero(&kn
->count
)) {
735 * The node could be a new node or a reused node. If it's a new node,
736 * we are ok. If it's reused because of RCU (because of
737 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
738 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
739 * hence we can use 'ino' to filter stale node.
741 if (kn
->id
.ino
!= ino
)
753 * kernfs_add_one - add kernfs_node to parent without warning
754 * @kn: kernfs_node to be added
756 * The caller must already have initialized @kn->parent. This
757 * function increments nlink of the parent's inode if @kn is a
758 * directory and link into the children list of the parent.
761 * 0 on success, -EEXIST if entry with the given name already
764 int kernfs_add_one(struct kernfs_node
*kn
)
766 struct kernfs_node
*parent
= kn
->parent
;
767 struct kernfs_iattrs
*ps_iattr
;
771 mutex_lock(&kernfs_mutex
);
774 has_ns
= kernfs_ns_enabled(parent
);
775 if (WARN(has_ns
!= (bool)kn
->ns
, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
776 has_ns
? "required" : "invalid", parent
->name
, kn
->name
))
779 if (kernfs_type(parent
) != KERNFS_DIR
)
783 if (parent
->flags
& KERNFS_EMPTY_DIR
)
786 if ((parent
->flags
& KERNFS_ACTIVATED
) && !kernfs_active(parent
))
789 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
791 ret
= kernfs_link_sibling(kn
);
795 /* Update timestamps on the parent */
796 ps_iattr
= parent
->iattr
;
798 struct iattr
*ps_iattrs
= &ps_iattr
->ia_iattr
;
799 ktime_get_real_ts64(&ps_iattrs
->ia_ctime
);
800 ps_iattrs
->ia_mtime
= ps_iattrs
->ia_ctime
;
803 mutex_unlock(&kernfs_mutex
);
806 * Activate the new node unless CREATE_DEACTIVATED is requested.
807 * If not activated here, the kernfs user is responsible for
808 * activating the node with kernfs_activate(). A node which hasn't
809 * been activated is not visible to userland and its removal won't
810 * trigger deactivation.
812 if (!(kernfs_root(kn
)->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
817 mutex_unlock(&kernfs_mutex
);
822 * kernfs_find_ns - find kernfs_node with the given name
823 * @parent: kernfs_node to search under
824 * @name: name to look for
825 * @ns: the namespace tag to use
827 * Look for kernfs_node with name @name under @parent. Returns pointer to
828 * the found kernfs_node on success, %NULL on failure.
830 static struct kernfs_node
*kernfs_find_ns(struct kernfs_node
*parent
,
831 const unsigned char *name
,
834 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
835 bool has_ns
= kernfs_ns_enabled(parent
);
838 lockdep_assert_held(&kernfs_mutex
);
840 if (has_ns
!= (bool)ns
) {
841 WARN(1, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
842 has_ns
? "required" : "invalid", parent
->name
, name
);
846 hash
= kernfs_name_hash(name
, ns
);
848 struct kernfs_node
*kn
;
852 result
= kernfs_name_compare(hash
, name
, ns
, kn
);
854 node
= node
->rb_left
;
856 node
= node
->rb_right
;
863 static struct kernfs_node
*kernfs_walk_ns(struct kernfs_node
*parent
,
864 const unsigned char *path
,
870 lockdep_assert_held(&kernfs_mutex
);
872 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
873 spin_lock_irq(&kernfs_rename_lock
);
875 len
= strlcpy(kernfs_pr_cont_buf
, path
, sizeof(kernfs_pr_cont_buf
));
877 if (len
>= sizeof(kernfs_pr_cont_buf
)) {
878 spin_unlock_irq(&kernfs_rename_lock
);
882 p
= kernfs_pr_cont_buf
;
884 while ((name
= strsep(&p
, "/")) && parent
) {
887 parent
= kernfs_find_ns(parent
, name
, ns
);
890 spin_unlock_irq(&kernfs_rename_lock
);
896 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
897 * @parent: kernfs_node to search under
898 * @name: name to look for
899 * @ns: the namespace tag to use
901 * Look for kernfs_node with name @name under @parent and get a reference
902 * if found. This function may sleep and returns pointer to the found
903 * kernfs_node on success, %NULL on failure.
905 struct kernfs_node
*kernfs_find_and_get_ns(struct kernfs_node
*parent
,
906 const char *name
, const void *ns
)
908 struct kernfs_node
*kn
;
910 mutex_lock(&kernfs_mutex
);
911 kn
= kernfs_find_ns(parent
, name
, ns
);
913 mutex_unlock(&kernfs_mutex
);
917 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns
);
920 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
921 * @parent: kernfs_node to search under
922 * @path: path to look for
923 * @ns: the namespace tag to use
925 * Look for kernfs_node with path @path under @parent and get a reference
926 * if found. This function may sleep and returns pointer to the found
927 * kernfs_node on success, %NULL on failure.
929 struct kernfs_node
*kernfs_walk_and_get_ns(struct kernfs_node
*parent
,
930 const char *path
, const void *ns
)
932 struct kernfs_node
*kn
;
934 mutex_lock(&kernfs_mutex
);
935 kn
= kernfs_walk_ns(parent
, path
, ns
);
937 mutex_unlock(&kernfs_mutex
);
943 * kernfs_create_root - create a new kernfs hierarchy
944 * @scops: optional syscall operations for the hierarchy
945 * @flags: KERNFS_ROOT_* flags
946 * @priv: opaque data associated with the new directory
948 * Returns the root of the new hierarchy on success, ERR_PTR() value on
951 struct kernfs_root
*kernfs_create_root(struct kernfs_syscall_ops
*scops
,
952 unsigned int flags
, void *priv
)
954 struct kernfs_root
*root
;
955 struct kernfs_node
*kn
;
957 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
959 return ERR_PTR(-ENOMEM
);
961 idr_init(&root
->ino_idr
);
962 INIT_LIST_HEAD(&root
->supers
);
963 root
->next_generation
= 1;
965 kn
= __kernfs_new_node(root
, "", S_IFDIR
| S_IRUGO
| S_IXUGO
,
966 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
969 idr_destroy(&root
->ino_idr
);
971 return ERR_PTR(-ENOMEM
);
977 root
->syscall_ops
= scops
;
980 init_waitqueue_head(&root
->deactivate_waitq
);
982 if (!(root
->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
989 * kernfs_destroy_root - destroy a kernfs hierarchy
990 * @root: root of the hierarchy to destroy
992 * Destroy the hierarchy anchored at @root by removing all existing
993 * directories and destroying @root.
995 void kernfs_destroy_root(struct kernfs_root
*root
)
997 kernfs_remove(root
->kn
); /* will also free @root */
1001 * kernfs_create_dir_ns - create a directory
1002 * @parent: parent in which to create a new directory
1003 * @name: name of the new directory
1004 * @mode: mode of the new directory
1005 * @uid: uid of the new directory
1006 * @gid: gid of the new directory
1007 * @priv: opaque data associated with the new directory
1008 * @ns: optional namespace tag of the directory
1010 * Returns the created node on success, ERR_PTR() value on failure.
1012 struct kernfs_node
*kernfs_create_dir_ns(struct kernfs_node
*parent
,
1013 const char *name
, umode_t mode
,
1014 kuid_t uid
, kgid_t gid
,
1015 void *priv
, const void *ns
)
1017 struct kernfs_node
*kn
;
1021 kn
= kernfs_new_node(parent
, name
, mode
| S_IFDIR
,
1022 uid
, gid
, KERNFS_DIR
);
1024 return ERR_PTR(-ENOMEM
);
1026 kn
->dir
.root
= parent
->dir
.root
;
1031 rc
= kernfs_add_one(kn
);
1040 * kernfs_create_empty_dir - create an always empty directory
1041 * @parent: parent in which to create a new directory
1042 * @name: name of the new directory
1044 * Returns the created node on success, ERR_PTR() value on failure.
1046 struct kernfs_node
*kernfs_create_empty_dir(struct kernfs_node
*parent
,
1049 struct kernfs_node
*kn
;
1053 kn
= kernfs_new_node(parent
, name
, S_IRUGO
|S_IXUGO
|S_IFDIR
,
1054 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
, KERNFS_DIR
);
1056 return ERR_PTR(-ENOMEM
);
1058 kn
->flags
|= KERNFS_EMPTY_DIR
;
1059 kn
->dir
.root
= parent
->dir
.root
;
1064 rc
= kernfs_add_one(kn
);
1072 static struct dentry
*kernfs_iop_lookup(struct inode
*dir
,
1073 struct dentry
*dentry
,
1077 struct kernfs_node
*parent
= dir
->i_private
;
1078 struct kernfs_node
*kn
;
1079 struct inode
*inode
;
1080 const void *ns
= NULL
;
1082 mutex_lock(&kernfs_mutex
);
1084 if (kernfs_ns_enabled(parent
))
1085 ns
= kernfs_info(dir
->i_sb
)->ns
;
1087 kn
= kernfs_find_ns(parent
, dentry
->d_name
.name
, ns
);
1090 if (!kn
|| !kernfs_active(kn
)) {
1095 /* attach dentry and inode */
1096 inode
= kernfs_get_inode(dir
->i_sb
, kn
);
1098 ret
= ERR_PTR(-ENOMEM
);
1102 /* instantiate and hash dentry */
1103 ret
= d_splice_alias(inode
, dentry
);
1105 mutex_unlock(&kernfs_mutex
);
1109 static int kernfs_iop_mkdir(struct inode
*dir
, struct dentry
*dentry
,
1112 struct kernfs_node
*parent
= dir
->i_private
;
1113 struct kernfs_syscall_ops
*scops
= kernfs_root(parent
)->syscall_ops
;
1116 if (!scops
|| !scops
->mkdir
)
1119 if (!kernfs_get_active(parent
))
1122 ret
= scops
->mkdir(parent
, dentry
->d_name
.name
, mode
);
1124 kernfs_put_active(parent
);
1128 static int kernfs_iop_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1130 struct kernfs_node
*kn
= kernfs_dentry_node(dentry
);
1131 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1134 if (!scops
|| !scops
->rmdir
)
1137 if (!kernfs_get_active(kn
))
1140 ret
= scops
->rmdir(kn
);
1142 kernfs_put_active(kn
);
1146 static int kernfs_iop_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1147 struct inode
*new_dir
, struct dentry
*new_dentry
,
1150 struct kernfs_node
*kn
= kernfs_dentry_node(old_dentry
);
1151 struct kernfs_node
*new_parent
= new_dir
->i_private
;
1152 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1158 if (!scops
|| !scops
->rename
)
1161 if (!kernfs_get_active(kn
))
1164 if (!kernfs_get_active(new_parent
)) {
1165 kernfs_put_active(kn
);
1169 ret
= scops
->rename(kn
, new_parent
, new_dentry
->d_name
.name
);
1171 kernfs_put_active(new_parent
);
1172 kernfs_put_active(kn
);
1176 const struct inode_operations kernfs_dir_iops
= {
1177 .lookup
= kernfs_iop_lookup
,
1178 .permission
= kernfs_iop_permission
,
1179 .setattr
= kernfs_iop_setattr
,
1180 .getattr
= kernfs_iop_getattr
,
1181 .listxattr
= kernfs_iop_listxattr
,
1183 .mkdir
= kernfs_iop_mkdir
,
1184 .rmdir
= kernfs_iop_rmdir
,
1185 .rename
= kernfs_iop_rename
,
1188 static struct kernfs_node
*kernfs_leftmost_descendant(struct kernfs_node
*pos
)
1190 struct kernfs_node
*last
;
1193 struct rb_node
*rbn
;
1197 if (kernfs_type(pos
) != KERNFS_DIR
)
1200 rbn
= rb_first(&pos
->dir
.children
);
1204 pos
= rb_to_kn(rbn
);
1211 * kernfs_next_descendant_post - find the next descendant for post-order walk
1212 * @pos: the current position (%NULL to initiate traversal)
1213 * @root: kernfs_node whose descendants to walk
1215 * Find the next descendant to visit for post-order traversal of @root's
1216 * descendants. @root is included in the iteration and the last node to be
1219 static struct kernfs_node
*kernfs_next_descendant_post(struct kernfs_node
*pos
,
1220 struct kernfs_node
*root
)
1222 struct rb_node
*rbn
;
1224 lockdep_assert_held(&kernfs_mutex
);
1226 /* if first iteration, visit leftmost descendant which may be root */
1228 return kernfs_leftmost_descendant(root
);
1230 /* if we visited @root, we're done */
1234 /* if there's an unvisited sibling, visit its leftmost descendant */
1235 rbn
= rb_next(&pos
->rb
);
1237 return kernfs_leftmost_descendant(rb_to_kn(rbn
));
1239 /* no sibling left, visit parent */
1244 * kernfs_activate - activate a node which started deactivated
1245 * @kn: kernfs_node whose subtree is to be activated
1247 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1248 * needs to be explicitly activated. A node which hasn't been activated
1249 * isn't visible to userland and deactivation is skipped during its
1250 * removal. This is useful to construct atomic init sequences where
1251 * creation of multiple nodes should either succeed or fail atomically.
1253 * The caller is responsible for ensuring that this function is not called
1254 * after kernfs_remove*() is invoked on @kn.
1256 void kernfs_activate(struct kernfs_node
*kn
)
1258 struct kernfs_node
*pos
;
1260 mutex_lock(&kernfs_mutex
);
1263 while ((pos
= kernfs_next_descendant_post(pos
, kn
))) {
1264 if (!pos
|| (pos
->flags
& KERNFS_ACTIVATED
))
1267 WARN_ON_ONCE(pos
->parent
&& RB_EMPTY_NODE(&pos
->rb
));
1268 WARN_ON_ONCE(atomic_read(&pos
->active
) != KN_DEACTIVATED_BIAS
);
1270 atomic_sub(KN_DEACTIVATED_BIAS
, &pos
->active
);
1271 pos
->flags
|= KERNFS_ACTIVATED
;
1274 mutex_unlock(&kernfs_mutex
);
1277 static void __kernfs_remove(struct kernfs_node
*kn
)
1279 struct kernfs_node
*pos
;
1281 lockdep_assert_held(&kernfs_mutex
);
1284 * Short-circuit if non-root @kn has already finished removal.
1285 * This is for kernfs_remove_self() which plays with active ref
1288 if (!kn
|| (kn
->parent
&& RB_EMPTY_NODE(&kn
->rb
)))
1291 pr_debug("kernfs %s: removing\n", kn
->name
);
1293 /* prevent any new usage under @kn by deactivating all nodes */
1295 while ((pos
= kernfs_next_descendant_post(pos
, kn
)))
1296 if (kernfs_active(pos
))
1297 atomic_add(KN_DEACTIVATED_BIAS
, &pos
->active
);
1299 /* deactivate and unlink the subtree node-by-node */
1301 pos
= kernfs_leftmost_descendant(kn
);
1304 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1305 * base ref could have been put by someone else by the time
1306 * the function returns. Make sure it doesn't go away
1312 * Drain iff @kn was activated. This avoids draining and
1313 * its lockdep annotations for nodes which have never been
1314 * activated and allows embedding kernfs_remove() in create
1315 * error paths without worrying about draining.
1317 if (kn
->flags
& KERNFS_ACTIVATED
)
1320 WARN_ON_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
);
1323 * kernfs_unlink_sibling() succeeds once per node. Use it
1324 * to decide who's responsible for cleanups.
1326 if (!pos
->parent
|| kernfs_unlink_sibling(pos
)) {
1327 struct kernfs_iattrs
*ps_iattr
=
1328 pos
->parent
? pos
->parent
->iattr
: NULL
;
1330 /* update timestamps on the parent */
1332 ktime_get_real_ts64(&ps_iattr
->ia_iattr
.ia_ctime
);
1333 ps_iattr
->ia_iattr
.ia_mtime
=
1334 ps_iattr
->ia_iattr
.ia_ctime
;
1341 } while (pos
!= kn
);
1345 * kernfs_remove - remove a kernfs_node recursively
1346 * @kn: the kernfs_node to remove
1348 * Remove @kn along with all its subdirectories and files.
1350 void kernfs_remove(struct kernfs_node
*kn
)
1352 mutex_lock(&kernfs_mutex
);
1353 __kernfs_remove(kn
);
1354 mutex_unlock(&kernfs_mutex
);
1358 * kernfs_break_active_protection - break out of active protection
1359 * @kn: the self kernfs_node
1361 * The caller must be running off of a kernfs operation which is invoked
1362 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1363 * this function must also be matched with an invocation of
1364 * kernfs_unbreak_active_protection().
1366 * This function releases the active reference of @kn the caller is
1367 * holding. Once this function is called, @kn may be removed at any point
1368 * and the caller is solely responsible for ensuring that the objects it
1369 * dereferences are accessible.
1371 void kernfs_break_active_protection(struct kernfs_node
*kn
)
1374 * Take out ourself out of the active ref dependency chain. If
1375 * we're called without an active ref, lockdep will complain.
1377 kernfs_put_active(kn
);
1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382 * @kn: the self kernfs_node
1384 * If kernfs_break_active_protection() was called, this function must be
1385 * invoked before finishing the kernfs operation. Note that while this
1386 * function restores the active reference, it doesn't and can't actually
1387 * restore the active protection - @kn may already or be in the process of
1388 * being removed. Once kernfs_break_active_protection() is invoked, that
1389 * protection is irreversibly gone for the kernfs operation instance.
1391 * While this function may be called at any point after
1392 * kernfs_break_active_protection() is invoked, its most useful location
1393 * would be right before the enclosing kernfs operation returns.
1395 void kernfs_unbreak_active_protection(struct kernfs_node
*kn
)
1398 * @kn->active could be in any state; however, the increment we do
1399 * here will be undone as soon as the enclosing kernfs operation
1400 * finishes and this temporary bump can't break anything. If @kn
1401 * is alive, nothing changes. If @kn is being deactivated, the
1402 * soon-to-follow put will either finish deactivation or restore
1403 * deactivated state. If @kn is already removed, the temporary
1404 * bump is guaranteed to be gone before @kn is released.
1406 atomic_inc(&kn
->active
);
1407 if (kernfs_lockdep(kn
))
1408 rwsem_acquire(&kn
->dep_map
, 0, 1, _RET_IP_
);
1412 * kernfs_remove_self - remove a kernfs_node from its own method
1413 * @kn: the self kernfs_node to remove
1415 * The caller must be running off of a kernfs operation which is invoked
1416 * with an active reference - e.g. one of kernfs_ops. This can be used to
1417 * implement a file operation which deletes itself.
1419 * For example, the "delete" file for a sysfs device directory can be
1420 * implemented by invoking kernfs_remove_self() on the "delete" file
1421 * itself. This function breaks the circular dependency of trying to
1422 * deactivate self while holding an active ref itself. It isn't necessary
1423 * to modify the usual removal path to use kernfs_remove_self(). The
1424 * "delete" implementation can simply invoke kernfs_remove_self() on self
1425 * before proceeding with the usual removal path. kernfs will ignore later
1426 * kernfs_remove() on self.
1428 * kernfs_remove_self() can be called multiple times concurrently on the
1429 * same kernfs_node. Only the first one actually performs removal and
1430 * returns %true. All others will wait until the kernfs operation which
1431 * won self-removal finishes and return %false. Note that the losers wait
1432 * for the completion of not only the winning kernfs_remove_self() but also
1433 * the whole kernfs_ops which won the arbitration. This can be used to
1434 * guarantee, for example, all concurrent writes to a "delete" file to
1435 * finish only after the whole operation is complete.
1437 bool kernfs_remove_self(struct kernfs_node
*kn
)
1441 mutex_lock(&kernfs_mutex
);
1442 kernfs_break_active_protection(kn
);
1445 * SUICIDAL is used to arbitrate among competing invocations. Only
1446 * the first one will actually perform removal. When the removal
1447 * is complete, SUICIDED is set and the active ref is restored
1448 * while holding kernfs_mutex. The ones which lost arbitration
1449 * waits for SUICDED && drained which can happen only after the
1450 * enclosing kernfs operation which executed the winning instance
1451 * of kernfs_remove_self() finished.
1453 if (!(kn
->flags
& KERNFS_SUICIDAL
)) {
1454 kn
->flags
|= KERNFS_SUICIDAL
;
1455 __kernfs_remove(kn
);
1456 kn
->flags
|= KERNFS_SUICIDED
;
1459 wait_queue_head_t
*waitq
= &kernfs_root(kn
)->deactivate_waitq
;
1463 prepare_to_wait(waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
1465 if ((kn
->flags
& KERNFS_SUICIDED
) &&
1466 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
)
1469 mutex_unlock(&kernfs_mutex
);
1471 mutex_lock(&kernfs_mutex
);
1473 finish_wait(waitq
, &wait
);
1474 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn
->rb
));
1479 * This must be done while holding kernfs_mutex; otherwise, waiting
1480 * for SUICIDED && deactivated could finish prematurely.
1482 kernfs_unbreak_active_protection(kn
);
1484 mutex_unlock(&kernfs_mutex
);
1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490 * @parent: parent of the target
1491 * @name: name of the kernfs_node to remove
1492 * @ns: namespace tag of the kernfs_node to remove
1494 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1497 int kernfs_remove_by_name_ns(struct kernfs_node
*parent
, const char *name
,
1500 struct kernfs_node
*kn
;
1503 WARN(1, KERN_WARNING
"kernfs: can not remove '%s', no directory\n",
1508 mutex_lock(&kernfs_mutex
);
1510 kn
= kernfs_find_ns(parent
, name
, ns
);
1512 __kernfs_remove(kn
);
1514 mutex_unlock(&kernfs_mutex
);
1523 * kernfs_rename_ns - move and rename a kernfs_node
1525 * @new_parent: new parent to put @sd under
1526 * @new_name: new name
1527 * @new_ns: new namespace tag
1529 int kernfs_rename_ns(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
1530 const char *new_name
, const void *new_ns
)
1532 struct kernfs_node
*old_parent
;
1533 const char *old_name
= NULL
;
1536 /* can't move or rename root */
1540 mutex_lock(&kernfs_mutex
);
1543 if (!kernfs_active(kn
) || !kernfs_active(new_parent
) ||
1544 (new_parent
->flags
& KERNFS_EMPTY_DIR
))
1548 if ((kn
->parent
== new_parent
) && (kn
->ns
== new_ns
) &&
1549 (strcmp(kn
->name
, new_name
) == 0))
1550 goto out
; /* nothing to rename */
1553 if (kernfs_find_ns(new_parent
, new_name
, new_ns
))
1556 /* rename kernfs_node */
1557 if (strcmp(kn
->name
, new_name
) != 0) {
1559 new_name
= kstrdup_const(new_name
, GFP_KERNEL
);
1567 * Move to the appropriate place in the appropriate directories rbtree.
1569 kernfs_unlink_sibling(kn
);
1570 kernfs_get(new_parent
);
1572 /* rename_lock protects ->parent and ->name accessors */
1573 spin_lock_irq(&kernfs_rename_lock
);
1575 old_parent
= kn
->parent
;
1576 kn
->parent
= new_parent
;
1580 old_name
= kn
->name
;
1581 kn
->name
= new_name
;
1584 spin_unlock_irq(&kernfs_rename_lock
);
1586 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
1587 kernfs_link_sibling(kn
);
1589 kernfs_put(old_parent
);
1590 kfree_const(old_name
);
1594 mutex_unlock(&kernfs_mutex
);
1598 /* Relationship between s_mode and the DT_xxx types */
1599 static inline unsigned char dt_type(struct kernfs_node
*kn
)
1601 return (kn
->mode
>> 12) & 15;
1604 static int kernfs_dir_fop_release(struct inode
*inode
, struct file
*filp
)
1606 kernfs_put(filp
->private_data
);
1610 static struct kernfs_node
*kernfs_dir_pos(const void *ns
,
1611 struct kernfs_node
*parent
, loff_t hash
, struct kernfs_node
*pos
)
1614 int valid
= kernfs_active(pos
) &&
1615 pos
->parent
== parent
&& hash
== pos
->hash
;
1620 if (!pos
&& (hash
> 1) && (hash
< INT_MAX
)) {
1621 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
1623 pos
= rb_to_kn(node
);
1625 if (hash
< pos
->hash
)
1626 node
= node
->rb_left
;
1627 else if (hash
> pos
->hash
)
1628 node
= node
->rb_right
;
1633 /* Skip over entries which are dying/dead or in the wrong namespace */
1634 while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
)) {
1635 struct rb_node
*node
= rb_next(&pos
->rb
);
1639 pos
= rb_to_kn(node
);
1644 static struct kernfs_node
*kernfs_dir_next_pos(const void *ns
,
1645 struct kernfs_node
*parent
, ino_t ino
, struct kernfs_node
*pos
)
1647 pos
= kernfs_dir_pos(ns
, parent
, ino
, pos
);
1650 struct rb_node
*node
= rb_next(&pos
->rb
);
1654 pos
= rb_to_kn(node
);
1655 } while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
));
1660 static int kernfs_fop_readdir(struct file
*file
, struct dir_context
*ctx
)
1662 struct dentry
*dentry
= file
->f_path
.dentry
;
1663 struct kernfs_node
*parent
= kernfs_dentry_node(dentry
);
1664 struct kernfs_node
*pos
= file
->private_data
;
1665 const void *ns
= NULL
;
1667 if (!dir_emit_dots(file
, ctx
))
1669 mutex_lock(&kernfs_mutex
);
1671 if (kernfs_ns_enabled(parent
))
1672 ns
= kernfs_info(dentry
->d_sb
)->ns
;
1674 for (pos
= kernfs_dir_pos(ns
, parent
, ctx
->pos
, pos
);
1676 pos
= kernfs_dir_next_pos(ns
, parent
, ctx
->pos
, pos
)) {
1677 const char *name
= pos
->name
;
1678 unsigned int type
= dt_type(pos
);
1679 int len
= strlen(name
);
1680 ino_t ino
= pos
->id
.ino
;
1682 ctx
->pos
= pos
->hash
;
1683 file
->private_data
= pos
;
1686 mutex_unlock(&kernfs_mutex
);
1687 if (!dir_emit(ctx
, name
, len
, ino
, type
))
1689 mutex_lock(&kernfs_mutex
);
1691 mutex_unlock(&kernfs_mutex
);
1692 file
->private_data
= NULL
;
1697 const struct file_operations kernfs_dir_fops
= {
1698 .read
= generic_read_dir
,
1699 .iterate_shared
= kernfs_fop_readdir
,
1700 .release
= kernfs_dir_fop_release
,
1701 .llseek
= generic_file_llseek
,