atm: idt77252: fix dev refcnt leak
[linux/fpc-iii.git] / kernel / sched_fair.c
blob5b9e456ea98ceb189a22b4af94c222ddcb133b44
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency = 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
92 #ifdef CONFIG_CFS_BANDWIDTH
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
101 * default: 5 msec, units: microseconds
103 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104 #endif
106 static const struct sched_class fair_sched_class;
108 /**************************************************************
109 * CFS operations on generic schedulable entities:
112 #ifdef CONFIG_FAIR_GROUP_SCHED
114 /* cpu runqueue to which this cfs_rq is attached */
115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
117 return cfs_rq->rq;
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
123 static inline struct task_struct *task_of(struct sched_entity *se)
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127 #endif
128 return container_of(se, struct task_struct, se);
131 /* Walk up scheduling entities hierarchy */
132 #define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
135 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
137 return p->se.cfs_rq;
140 /* runqueue on which this entity is (to be) queued */
141 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
143 return se->cfs_rq;
146 /* runqueue "owned" by this group */
147 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
149 return grp->my_q;
152 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154 if (!cfs_rq->on_list) {
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
170 cfs_rq->on_list = 1;
174 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
182 /* Iterate thr' all leaf cfs_rq's on a runqueue */
183 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186 /* Do the two (enqueued) entities belong to the same group ? */
187 static inline int
188 is_same_group(struct sched_entity *se, struct sched_entity *pse)
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
193 return 0;
196 static inline struct sched_entity *parent_entity(struct sched_entity *se)
198 return se->parent;
201 /* return depth at which a sched entity is present in the hierarchy */
202 static inline int depth_se(struct sched_entity *se)
204 int depth = 0;
206 for_each_sched_entity(se)
207 depth++;
209 return depth;
212 static void
213 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215 int se_depth, pse_depth;
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
244 #else /* !CONFIG_FAIR_GROUP_SCHED */
246 static inline struct task_struct *task_of(struct sched_entity *se)
248 return container_of(se, struct task_struct, se);
251 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 return container_of(cfs_rq, struct rq, cfs);
256 #define entity_is_task(se) 1
258 #define for_each_sched_entity(se) \
259 for (; se; se = NULL)
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263 return &task_rq(p)->cfs;
266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
271 return &rq->cfs;
274 /* runqueue "owned" by this group */
275 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277 return NULL;
280 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
291 static inline int
292 is_same_group(struct sched_entity *se, struct sched_entity *pse)
294 return 1;
297 static inline struct sched_entity *parent_entity(struct sched_entity *se)
299 return NULL;
302 static inline void
303 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
312 /**************************************************************
313 * Scheduling class tree data structure manipulation methods:
316 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
320 min_vruntime = vruntime;
322 return min_vruntime;
325 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
331 return min_vruntime;
334 static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
337 return (s64)(a->vruntime - b->vruntime) < 0;
340 static void update_min_vruntime(struct cfs_rq *cfs_rq)
342 u64 vruntime = cfs_rq->min_vruntime;
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
352 if (!cfs_rq->curr)
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
359 #ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362 #endif
366 * Enqueue an entity into the rb-tree:
368 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
373 int leftmost = 1;
376 * Find the right place in the rbtree:
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
385 if (entity_before(se, entry)) {
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
397 if (leftmost)
398 cfs_rq->rb_leftmost = &se->run_node;
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
404 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
416 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
418 struct rb_node *left = cfs_rq->rb_leftmost;
420 if (!left)
421 return NULL;
423 return rb_entry(left, struct sched_entity, run_node);
426 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
428 struct rb_node *next = rb_next(&se->run_node);
430 if (!next)
431 return NULL;
433 return rb_entry(next, struct sched_entity, run_node);
436 #ifdef CONFIG_SCHED_DEBUG
437 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
441 if (!last)
442 return NULL;
444 return rb_entry(last, struct sched_entity, run_node);
447 /**************************************************************
448 * Scheduling class statistics methods:
451 int sched_proc_update_handler(struct ctl_table *table, int write,
452 void __user *buffer, size_t *lenp,
453 loff_t *ppos)
455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
456 int factor = get_update_sysctl_factor();
458 if (ret || !write)
459 return ret;
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
464 #define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
469 #undef WRT_SYSCTL
471 return 0;
473 #endif
476 * delta /= w
478 static inline unsigned long
479 calc_delta_fair(unsigned long delta, struct sched_entity *se)
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
484 return delta;
488 * The idea is to set a period in which each task runs once.
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
493 * p = (nr <= nl) ? l : l*nr/nl
495 static u64 __sched_period(unsigned long nr_running)
497 u64 period = sysctl_sched_latency;
498 unsigned long nr_latency = sched_nr_latency;
500 if (unlikely(nr_running > nr_latency)) {
501 period = sysctl_sched_min_granularity;
502 period *= nr_running;
505 return period;
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
512 * s = p*P[w/rw]
514 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
518 for_each_sched_entity(se) {
519 struct load_weight *load;
520 struct load_weight lw;
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
525 if (unlikely(!se->on_rq)) {
526 lw = cfs_rq->load;
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
531 slice = calc_delta_mine(slice, se->load.weight, load);
533 return slice;
537 * We calculate the vruntime slice of a to be inserted task
539 * vs = s/w
541 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
546 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
547 static void update_cfs_shares(struct cfs_rq *cfs_rq);
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
553 static inline void
554 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
557 unsigned long delta_exec_weighted;
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
562 curr->sum_exec_runtime += delta_exec;
563 schedstat_add(cfs_rq, exec_clock, delta_exec);
564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
566 curr->vruntime += delta_exec_weighted;
567 update_min_vruntime(cfs_rq);
569 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 cfs_rq->load_unacc_exec_time += delta_exec;
571 #endif
574 static void update_curr(struct cfs_rq *cfs_rq)
576 struct sched_entity *curr = cfs_rq->curr;
577 u64 now = rq_of(cfs_rq)->clock_task;
578 unsigned long delta_exec;
580 if (unlikely(!curr))
581 return;
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
588 delta_exec = (unsigned long)(now - curr->exec_start);
589 if (!delta_exec)
590 return;
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
599 cpuacct_charge(curtask, delta_exec);
600 account_group_exec_runtime(curtask, delta_exec);
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
606 static inline void
607 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
613 * Task is being enqueued - update stats:
615 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
621 if (se != cfs_rq->curr)
622 update_stats_wait_start(cfs_rq, se);
625 static void
626 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
633 #ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
638 #endif
639 schedstat_set(se->statistics.wait_start, 0);
642 static inline void
643 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
649 if (se != cfs_rq->curr)
650 update_stats_wait_end(cfs_rq, se);
654 * We are picking a new current task - update its stats:
656 static inline void
657 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 * We are starting a new run period:
662 se->exec_start = rq_of(cfs_rq)->clock_task;
665 /**************************************************
666 * Scheduling class queueing methods:
669 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670 static void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
673 cfs_rq->task_weight += weight;
675 #else
676 static inline void
677 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
680 #endif
682 static void
683 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 update_load_add(&cfs_rq->load, se->load.weight);
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
688 if (entity_is_task(se)) {
689 add_cfs_task_weight(cfs_rq, se->load.weight);
690 list_add(&se->group_node, &cfs_rq->tasks);
692 cfs_rq->nr_running++;
695 static void
696 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
698 update_load_sub(&cfs_rq->load, se->load.weight);
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
701 if (entity_is_task(se)) {
702 add_cfs_task_weight(cfs_rq, -se->load.weight);
703 list_del_init(&se->group_node);
705 cfs_rq->nr_running--;
708 #ifdef CONFIG_FAIR_GROUP_SCHED
709 /* we need this in update_cfs_load and load-balance functions below */
710 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
711 # ifdef CONFIG_SMP
712 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
713 int global_update)
715 struct task_group *tg = cfs_rq->tg;
716 long load_avg;
718 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
719 load_avg -= cfs_rq->load_contribution;
721 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
722 atomic_add(load_avg, &tg->load_weight);
723 cfs_rq->load_contribution += load_avg;
727 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
729 u64 period = sysctl_sched_shares_window;
730 u64 now, delta;
731 unsigned long load = cfs_rq->load.weight;
733 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
734 return;
736 now = rq_of(cfs_rq)->clock_task;
737 delta = now - cfs_rq->load_stamp;
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq->load_stamp > cfs_rq->load_last &&
741 now - cfs_rq->load_last > 4 * period) {
742 cfs_rq->load_period = 0;
743 cfs_rq->load_avg = 0;
744 delta = period - 1;
747 cfs_rq->load_stamp = now;
748 cfs_rq->load_unacc_exec_time = 0;
749 cfs_rq->load_period += delta;
750 if (load) {
751 cfs_rq->load_last = now;
752 cfs_rq->load_avg += delta * load;
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update || cfs_rq->load_period > period
757 || !cfs_rq->load_period)
758 update_cfs_rq_load_contribution(cfs_rq, global_update);
760 while (cfs_rq->load_period > period) {
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
766 asm("" : "+rm" (cfs_rq->load_period));
767 cfs_rq->load_period /= 2;
768 cfs_rq->load_avg /= 2;
771 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
772 list_del_leaf_cfs_rq(cfs_rq);
775 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
777 long tg_weight;
780 * Use this CPU's actual weight instead of the last load_contribution
781 * to gain a more accurate current total weight. See
782 * update_cfs_rq_load_contribution().
784 tg_weight = atomic_read(&tg->load_weight);
785 tg_weight -= cfs_rq->load_contribution;
786 tg_weight += cfs_rq->load.weight;
788 return tg_weight;
791 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
793 long tg_weight, load, shares;
795 tg_weight = calc_tg_weight(tg, cfs_rq);
796 load = cfs_rq->load.weight;
798 shares = (tg->shares * load);
799 if (tg_weight)
800 shares /= tg_weight;
802 if (shares < MIN_SHARES)
803 shares = MIN_SHARES;
804 if (shares > tg->shares)
805 shares = tg->shares;
807 return shares;
810 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
812 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
813 update_cfs_load(cfs_rq, 0);
814 update_cfs_shares(cfs_rq);
817 # else /* CONFIG_SMP */
818 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
822 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
824 return tg->shares;
827 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
830 # endif /* CONFIG_SMP */
831 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
832 unsigned long weight)
834 if (se->on_rq) {
835 /* commit outstanding execution time */
836 if (cfs_rq->curr == se)
837 update_curr(cfs_rq);
838 account_entity_dequeue(cfs_rq, se);
841 update_load_set(&se->load, weight);
843 if (se->on_rq)
844 account_entity_enqueue(cfs_rq, se);
847 static void update_cfs_shares(struct cfs_rq *cfs_rq)
849 struct task_group *tg;
850 struct sched_entity *se;
851 long shares;
853 tg = cfs_rq->tg;
854 se = tg->se[cpu_of(rq_of(cfs_rq))];
855 if (!se || throttled_hierarchy(cfs_rq))
856 return;
857 #ifndef CONFIG_SMP
858 if (likely(se->load.weight == tg->shares))
859 return;
860 #endif
861 shares = calc_cfs_shares(cfs_rq, tg);
863 reweight_entity(cfs_rq_of(se), se, shares);
865 #else /* CONFIG_FAIR_GROUP_SCHED */
866 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
870 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
874 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
877 #endif /* CONFIG_FAIR_GROUP_SCHED */
879 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 #ifdef CONFIG_SCHEDSTATS
882 struct task_struct *tsk = NULL;
884 if (entity_is_task(se))
885 tsk = task_of(se);
887 if (se->statistics.sleep_start) {
888 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
890 if ((s64)delta < 0)
891 delta = 0;
893 if (unlikely(delta > se->statistics.sleep_max))
894 se->statistics.sleep_max = delta;
896 se->statistics.sleep_start = 0;
897 se->statistics.sum_sleep_runtime += delta;
899 if (tsk) {
900 account_scheduler_latency(tsk, delta >> 10, 1);
901 trace_sched_stat_sleep(tsk, delta);
904 if (se->statistics.block_start) {
905 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
907 if ((s64)delta < 0)
908 delta = 0;
910 if (unlikely(delta > se->statistics.block_max))
911 se->statistics.block_max = delta;
913 se->statistics.block_start = 0;
914 se->statistics.sum_sleep_runtime += delta;
916 if (tsk) {
917 if (tsk->in_iowait) {
918 se->statistics.iowait_sum += delta;
919 se->statistics.iowait_count++;
920 trace_sched_stat_iowait(tsk, delta);
924 * Blocking time is in units of nanosecs, so shift by
925 * 20 to get a milliseconds-range estimation of the
926 * amount of time that the task spent sleeping:
928 if (unlikely(prof_on == SLEEP_PROFILING)) {
929 profile_hits(SLEEP_PROFILING,
930 (void *)get_wchan(tsk),
931 delta >> 20);
933 account_scheduler_latency(tsk, delta >> 10, 0);
936 #endif
939 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
941 #ifdef CONFIG_SCHED_DEBUG
942 s64 d = se->vruntime - cfs_rq->min_vruntime;
944 if (d < 0)
945 d = -d;
947 if (d > 3*sysctl_sched_latency)
948 schedstat_inc(cfs_rq, nr_spread_over);
949 #endif
952 static void
953 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
955 u64 vruntime = cfs_rq->min_vruntime;
958 * The 'current' period is already promised to the current tasks,
959 * however the extra weight of the new task will slow them down a
960 * little, place the new task so that it fits in the slot that
961 * stays open at the end.
963 if (initial && sched_feat(START_DEBIT))
964 vruntime += sched_vslice(cfs_rq, se);
966 /* sleeps up to a single latency don't count. */
967 if (!initial) {
968 unsigned long thresh = sysctl_sched_latency;
971 * Halve their sleep time's effect, to allow
972 * for a gentler effect of sleepers:
974 if (sched_feat(GENTLE_FAIR_SLEEPERS))
975 thresh >>= 1;
977 vruntime -= thresh;
980 /* ensure we never gain time by being placed backwards. */
981 vruntime = max_vruntime(se->vruntime, vruntime);
983 se->vruntime = vruntime;
986 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
988 static void
989 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
992 * Update the normalized vruntime before updating min_vruntime
993 * through callig update_curr().
995 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
996 se->vruntime += cfs_rq->min_vruntime;
999 * Update run-time statistics of the 'current'.
1001 update_curr(cfs_rq);
1002 update_cfs_load(cfs_rq, 0);
1003 account_entity_enqueue(cfs_rq, se);
1004 update_cfs_shares(cfs_rq);
1006 if (flags & ENQUEUE_WAKEUP) {
1007 place_entity(cfs_rq, se, 0);
1008 enqueue_sleeper(cfs_rq, se);
1011 update_stats_enqueue(cfs_rq, se);
1012 check_spread(cfs_rq, se);
1013 if (se != cfs_rq->curr)
1014 __enqueue_entity(cfs_rq, se);
1015 se->on_rq = 1;
1017 if (cfs_rq->nr_running == 1) {
1018 list_add_leaf_cfs_rq(cfs_rq);
1019 check_enqueue_throttle(cfs_rq);
1023 static void __clear_buddies_last(struct sched_entity *se)
1025 for_each_sched_entity(se) {
1026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1027 if (cfs_rq->last == se)
1028 cfs_rq->last = NULL;
1029 else
1030 break;
1034 static void __clear_buddies_next(struct sched_entity *se)
1036 for_each_sched_entity(se) {
1037 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1038 if (cfs_rq->next == se)
1039 cfs_rq->next = NULL;
1040 else
1041 break;
1045 static void __clear_buddies_skip(struct sched_entity *se)
1047 for_each_sched_entity(se) {
1048 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1049 if (cfs_rq->skip == se)
1050 cfs_rq->skip = NULL;
1051 else
1052 break;
1056 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058 if (cfs_rq->last == se)
1059 __clear_buddies_last(se);
1061 if (cfs_rq->next == se)
1062 __clear_buddies_next(se);
1064 if (cfs_rq->skip == se)
1065 __clear_buddies_skip(se);
1068 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1070 static void
1071 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1074 * Update run-time statistics of the 'current'.
1076 update_curr(cfs_rq);
1078 update_stats_dequeue(cfs_rq, se);
1079 if (flags & DEQUEUE_SLEEP) {
1080 #ifdef CONFIG_SCHEDSTATS
1081 if (entity_is_task(se)) {
1082 struct task_struct *tsk = task_of(se);
1084 if (tsk->state & TASK_INTERRUPTIBLE)
1085 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1086 if (tsk->state & TASK_UNINTERRUPTIBLE)
1087 se->statistics.block_start = rq_of(cfs_rq)->clock;
1089 #endif
1092 clear_buddies(cfs_rq, se);
1094 if (se != cfs_rq->curr)
1095 __dequeue_entity(cfs_rq, se);
1096 se->on_rq = 0;
1097 update_cfs_load(cfs_rq, 0);
1098 account_entity_dequeue(cfs_rq, se);
1101 * Normalize the entity after updating the min_vruntime because the
1102 * update can refer to the ->curr item and we need to reflect this
1103 * movement in our normalized position.
1105 if (!(flags & DEQUEUE_SLEEP))
1106 se->vruntime -= cfs_rq->min_vruntime;
1108 /* return excess runtime on last dequeue */
1109 return_cfs_rq_runtime(cfs_rq);
1111 update_min_vruntime(cfs_rq);
1112 update_cfs_shares(cfs_rq);
1116 * Preempt the current task with a newly woken task if needed:
1118 static void
1119 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1121 unsigned long ideal_runtime, delta_exec;
1122 struct sched_entity *se;
1123 s64 delta;
1125 ideal_runtime = sched_slice(cfs_rq, curr);
1126 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1127 if (delta_exec > ideal_runtime) {
1128 resched_task(rq_of(cfs_rq)->curr);
1130 * The current task ran long enough, ensure it doesn't get
1131 * re-elected due to buddy favours.
1133 clear_buddies(cfs_rq, curr);
1134 return;
1138 * Ensure that a task that missed wakeup preemption by a
1139 * narrow margin doesn't have to wait for a full slice.
1140 * This also mitigates buddy induced latencies under load.
1142 if (delta_exec < sysctl_sched_min_granularity)
1143 return;
1145 se = __pick_first_entity(cfs_rq);
1146 delta = curr->vruntime - se->vruntime;
1148 if (delta < 0)
1149 return;
1151 if (delta > ideal_runtime)
1152 resched_task(rq_of(cfs_rq)->curr);
1155 static void
1156 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1158 /* 'current' is not kept within the tree. */
1159 if (se->on_rq) {
1161 * Any task has to be enqueued before it get to execute on
1162 * a CPU. So account for the time it spent waiting on the
1163 * runqueue.
1165 update_stats_wait_end(cfs_rq, se);
1166 __dequeue_entity(cfs_rq, se);
1169 update_stats_curr_start(cfs_rq, se);
1170 cfs_rq->curr = se;
1171 #ifdef CONFIG_SCHEDSTATS
1173 * Track our maximum slice length, if the CPU's load is at
1174 * least twice that of our own weight (i.e. dont track it
1175 * when there are only lesser-weight tasks around):
1177 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1178 se->statistics.slice_max = max(se->statistics.slice_max,
1179 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1181 #endif
1182 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1185 static int
1186 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1189 * Pick the next process, keeping these things in mind, in this order:
1190 * 1) keep things fair between processes/task groups
1191 * 2) pick the "next" process, since someone really wants that to run
1192 * 3) pick the "last" process, for cache locality
1193 * 4) do not run the "skip" process, if something else is available
1195 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1197 struct sched_entity *se = __pick_first_entity(cfs_rq);
1198 struct sched_entity *left = se;
1201 * Avoid running the skip buddy, if running something else can
1202 * be done without getting too unfair.
1204 if (cfs_rq->skip == se) {
1205 struct sched_entity *second = __pick_next_entity(se);
1206 if (second && wakeup_preempt_entity(second, left) < 1)
1207 se = second;
1211 * Prefer last buddy, try to return the CPU to a preempted task.
1213 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1214 se = cfs_rq->last;
1217 * Someone really wants this to run. If it's not unfair, run it.
1219 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1220 se = cfs_rq->next;
1222 clear_buddies(cfs_rq, se);
1224 return se;
1227 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1229 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1232 * If still on the runqueue then deactivate_task()
1233 * was not called and update_curr() has to be done:
1235 if (prev->on_rq)
1236 update_curr(cfs_rq);
1238 /* throttle cfs_rqs exceeding runtime */
1239 check_cfs_rq_runtime(cfs_rq);
1241 check_spread(cfs_rq, prev);
1242 if (prev->on_rq) {
1243 update_stats_wait_start(cfs_rq, prev);
1244 /* Put 'current' back into the tree. */
1245 __enqueue_entity(cfs_rq, prev);
1247 cfs_rq->curr = NULL;
1250 static void
1251 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1254 * Update run-time statistics of the 'current'.
1256 update_curr(cfs_rq);
1259 * Update share accounting for long-running entities.
1261 update_entity_shares_tick(cfs_rq);
1263 #ifdef CONFIG_SCHED_HRTICK
1265 * queued ticks are scheduled to match the slice, so don't bother
1266 * validating it and just reschedule.
1268 if (queued) {
1269 resched_task(rq_of(cfs_rq)->curr);
1270 return;
1273 * don't let the period tick interfere with the hrtick preemption
1275 if (!sched_feat(DOUBLE_TICK) &&
1276 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1277 return;
1278 #endif
1280 if (cfs_rq->nr_running > 1)
1281 check_preempt_tick(cfs_rq, curr);
1285 /**************************************************
1286 * CFS bandwidth control machinery
1289 #ifdef CONFIG_CFS_BANDWIDTH
1291 * default period for cfs group bandwidth.
1292 * default: 0.1s, units: nanoseconds
1294 static inline u64 default_cfs_period(void)
1296 return 100000000ULL;
1299 static inline u64 sched_cfs_bandwidth_slice(void)
1301 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1305 * Replenish runtime according to assigned quota and update expiration time.
1306 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1307 * additional synchronization around rq->lock.
1309 * requires cfs_b->lock
1311 static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1313 u64 now;
1315 if (cfs_b->quota == RUNTIME_INF)
1316 return;
1318 now = sched_clock_cpu(smp_processor_id());
1319 cfs_b->runtime = cfs_b->quota;
1320 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1323 /* returns 0 on failure to allocate runtime */
1324 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1326 struct task_group *tg = cfs_rq->tg;
1327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1328 u64 amount = 0, min_amount, expires;
1330 /* note: this is a positive sum as runtime_remaining <= 0 */
1331 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1333 raw_spin_lock(&cfs_b->lock);
1334 if (cfs_b->quota == RUNTIME_INF)
1335 amount = min_amount;
1336 else {
1338 * If the bandwidth pool has become inactive, then at least one
1339 * period must have elapsed since the last consumption.
1340 * Refresh the global state and ensure bandwidth timer becomes
1341 * active.
1343 if (!cfs_b->timer_active) {
1344 __refill_cfs_bandwidth_runtime(cfs_b);
1345 __start_cfs_bandwidth(cfs_b);
1348 if (cfs_b->runtime > 0) {
1349 amount = min(cfs_b->runtime, min_amount);
1350 cfs_b->runtime -= amount;
1351 cfs_b->idle = 0;
1354 expires = cfs_b->runtime_expires;
1355 raw_spin_unlock(&cfs_b->lock);
1357 cfs_rq->runtime_remaining += amount;
1359 * we may have advanced our local expiration to account for allowed
1360 * spread between our sched_clock and the one on which runtime was
1361 * issued.
1363 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1364 cfs_rq->runtime_expires = expires;
1366 return cfs_rq->runtime_remaining > 0;
1370 * Note: This depends on the synchronization provided by sched_clock and the
1371 * fact that rq->clock snapshots this value.
1373 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1375 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1376 struct rq *rq = rq_of(cfs_rq);
1378 /* if the deadline is ahead of our clock, nothing to do */
1379 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1380 return;
1382 if (cfs_rq->runtime_remaining < 0)
1383 return;
1386 * If the local deadline has passed we have to consider the
1387 * possibility that our sched_clock is 'fast' and the global deadline
1388 * has not truly expired.
1390 * Fortunately we can check determine whether this the case by checking
1391 * whether the global deadline has advanced.
1394 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1395 /* extend local deadline, drift is bounded above by 2 ticks */
1396 cfs_rq->runtime_expires += TICK_NSEC;
1397 } else {
1398 /* global deadline is ahead, expiration has passed */
1399 cfs_rq->runtime_remaining = 0;
1403 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1404 unsigned long delta_exec)
1406 /* dock delta_exec before expiring quota (as it could span periods) */
1407 cfs_rq->runtime_remaining -= delta_exec;
1408 expire_cfs_rq_runtime(cfs_rq);
1410 if (likely(cfs_rq->runtime_remaining > 0))
1411 return;
1414 * if we're unable to extend our runtime we resched so that the active
1415 * hierarchy can be throttled
1417 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1418 resched_task(rq_of(cfs_rq)->curr);
1421 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1422 unsigned long delta_exec)
1424 if (!cfs_rq->runtime_enabled)
1425 return;
1427 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1430 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1432 return cfs_rq->throttled;
1435 /* check whether cfs_rq, or any parent, is throttled */
1436 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1438 return cfs_rq->throttle_count;
1442 * Ensure that neither of the group entities corresponding to src_cpu or
1443 * dest_cpu are members of a throttled hierarchy when performing group
1444 * load-balance operations.
1446 static inline int throttled_lb_pair(struct task_group *tg,
1447 int src_cpu, int dest_cpu)
1449 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1451 src_cfs_rq = tg->cfs_rq[src_cpu];
1452 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1454 return throttled_hierarchy(src_cfs_rq) ||
1455 throttled_hierarchy(dest_cfs_rq);
1458 /* updated child weight may affect parent so we have to do this bottom up */
1459 static int tg_unthrottle_up(struct task_group *tg, void *data)
1461 struct rq *rq = data;
1462 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1464 cfs_rq->throttle_count--;
1465 #ifdef CONFIG_SMP
1466 if (!cfs_rq->throttle_count) {
1467 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1469 /* leaving throttled state, advance shares averaging windows */
1470 cfs_rq->load_stamp += delta;
1471 cfs_rq->load_last += delta;
1473 /* update entity weight now that we are on_rq again */
1474 update_cfs_shares(cfs_rq);
1476 #endif
1478 return 0;
1481 static int tg_throttle_down(struct task_group *tg, void *data)
1483 struct rq *rq = data;
1484 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1486 /* group is entering throttled state, record last load */
1487 if (!cfs_rq->throttle_count)
1488 update_cfs_load(cfs_rq, 0);
1489 cfs_rq->throttle_count++;
1491 return 0;
1494 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1496 struct rq *rq = rq_of(cfs_rq);
1497 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1498 struct sched_entity *se;
1499 long task_delta, dequeue = 1;
1501 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1503 /* account load preceding throttle */
1504 rcu_read_lock();
1505 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1506 rcu_read_unlock();
1508 task_delta = cfs_rq->h_nr_running;
1509 for_each_sched_entity(se) {
1510 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1511 /* throttled entity or throttle-on-deactivate */
1512 if (!se->on_rq)
1513 break;
1515 if (dequeue)
1516 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1517 qcfs_rq->h_nr_running -= task_delta;
1519 if (qcfs_rq->load.weight)
1520 dequeue = 0;
1523 if (!se)
1524 rq->nr_running -= task_delta;
1526 cfs_rq->throttled = 1;
1527 cfs_rq->throttled_timestamp = rq->clock;
1528 raw_spin_lock(&cfs_b->lock);
1529 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1530 if (!cfs_b->timer_active)
1531 __start_cfs_bandwidth(cfs_b);
1532 raw_spin_unlock(&cfs_b->lock);
1535 static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1537 struct rq *rq = rq_of(cfs_rq);
1538 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1539 struct sched_entity *se;
1540 int enqueue = 1;
1541 long task_delta;
1543 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1545 cfs_rq->throttled = 0;
1546 raw_spin_lock(&cfs_b->lock);
1547 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1548 list_del_rcu(&cfs_rq->throttled_list);
1549 raw_spin_unlock(&cfs_b->lock);
1550 cfs_rq->throttled_timestamp = 0;
1552 update_rq_clock(rq);
1553 /* update hierarchical throttle state */
1554 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1556 if (!cfs_rq->load.weight)
1557 return;
1559 task_delta = cfs_rq->h_nr_running;
1560 for_each_sched_entity(se) {
1561 if (se->on_rq)
1562 enqueue = 0;
1564 cfs_rq = cfs_rq_of(se);
1565 if (enqueue)
1566 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1567 cfs_rq->h_nr_running += task_delta;
1569 if (cfs_rq_throttled(cfs_rq))
1570 break;
1573 if (!se)
1574 rq->nr_running += task_delta;
1576 /* determine whether we need to wake up potentially idle cpu */
1577 if (rq->curr == rq->idle && rq->cfs.nr_running)
1578 resched_task(rq->curr);
1581 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1582 u64 remaining, u64 expires)
1584 struct cfs_rq *cfs_rq;
1585 u64 runtime = remaining;
1587 rcu_read_lock();
1588 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1589 throttled_list) {
1590 struct rq *rq = rq_of(cfs_rq);
1592 raw_spin_lock(&rq->lock);
1593 if (!cfs_rq_throttled(cfs_rq))
1594 goto next;
1596 runtime = -cfs_rq->runtime_remaining + 1;
1597 if (runtime > remaining)
1598 runtime = remaining;
1599 remaining -= runtime;
1601 cfs_rq->runtime_remaining += runtime;
1602 cfs_rq->runtime_expires = expires;
1604 /* we check whether we're throttled above */
1605 if (cfs_rq->runtime_remaining > 0)
1606 unthrottle_cfs_rq(cfs_rq);
1608 next:
1609 raw_spin_unlock(&rq->lock);
1611 if (!remaining)
1612 break;
1614 rcu_read_unlock();
1616 return remaining;
1620 * Responsible for refilling a task_group's bandwidth and unthrottling its
1621 * cfs_rqs as appropriate. If there has been no activity within the last
1622 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1623 * used to track this state.
1625 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1627 u64 runtime, runtime_expires;
1628 int idle = 1, throttled;
1630 raw_spin_lock(&cfs_b->lock);
1631 /* no need to continue the timer with no bandwidth constraint */
1632 if (cfs_b->quota == RUNTIME_INF)
1633 goto out_unlock;
1635 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1636 /* idle depends on !throttled (for the case of a large deficit) */
1637 idle = cfs_b->idle && !throttled;
1638 cfs_b->nr_periods += overrun;
1640 /* if we're going inactive then everything else can be deferred */
1641 if (idle)
1642 goto out_unlock;
1644 __refill_cfs_bandwidth_runtime(cfs_b);
1646 if (!throttled) {
1647 /* mark as potentially idle for the upcoming period */
1648 cfs_b->idle = 1;
1649 goto out_unlock;
1652 /* account preceding periods in which throttling occurred */
1653 cfs_b->nr_throttled += overrun;
1656 * There are throttled entities so we must first use the new bandwidth
1657 * to unthrottle them before making it generally available. This
1658 * ensures that all existing debts will be paid before a new cfs_rq is
1659 * allowed to run.
1661 runtime = cfs_b->runtime;
1662 runtime_expires = cfs_b->runtime_expires;
1663 cfs_b->runtime = 0;
1666 * This check is repeated as we are holding onto the new bandwidth
1667 * while we unthrottle. This can potentially race with an unthrottled
1668 * group trying to acquire new bandwidth from the global pool.
1670 while (throttled && runtime > 0) {
1671 raw_spin_unlock(&cfs_b->lock);
1672 /* we can't nest cfs_b->lock while distributing bandwidth */
1673 runtime = distribute_cfs_runtime(cfs_b, runtime,
1674 runtime_expires);
1675 raw_spin_lock(&cfs_b->lock);
1677 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1680 /* return (any) remaining runtime */
1681 cfs_b->runtime = runtime;
1683 * While we are ensured activity in the period following an
1684 * unthrottle, this also covers the case in which the new bandwidth is
1685 * insufficient to cover the existing bandwidth deficit. (Forcing the
1686 * timer to remain active while there are any throttled entities.)
1688 cfs_b->idle = 0;
1689 out_unlock:
1690 if (idle)
1691 cfs_b->timer_active = 0;
1692 raw_spin_unlock(&cfs_b->lock);
1694 return idle;
1697 /* a cfs_rq won't donate quota below this amount */
1698 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1699 /* minimum remaining period time to redistribute slack quota */
1700 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1701 /* how long we wait to gather additional slack before distributing */
1702 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1704 /* are we near the end of the current quota period? */
1705 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1707 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1708 u64 remaining;
1710 /* if the call-back is running a quota refresh is already occurring */
1711 if (hrtimer_callback_running(refresh_timer))
1712 return 1;
1714 /* is a quota refresh about to occur? */
1715 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1716 if (remaining < min_expire)
1717 return 1;
1719 return 0;
1722 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1724 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1726 /* if there's a quota refresh soon don't bother with slack */
1727 if (runtime_refresh_within(cfs_b, min_left))
1728 return;
1730 start_bandwidth_timer(&cfs_b->slack_timer,
1731 ns_to_ktime(cfs_bandwidth_slack_period));
1734 /* we know any runtime found here is valid as update_curr() precedes return */
1735 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1737 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1738 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1740 if (slack_runtime <= 0)
1741 return;
1743 raw_spin_lock(&cfs_b->lock);
1744 if (cfs_b->quota != RUNTIME_INF &&
1745 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1746 cfs_b->runtime += slack_runtime;
1748 /* we are under rq->lock, defer unthrottling using a timer */
1749 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1750 !list_empty(&cfs_b->throttled_cfs_rq))
1751 start_cfs_slack_bandwidth(cfs_b);
1753 raw_spin_unlock(&cfs_b->lock);
1755 /* even if it's not valid for return we don't want to try again */
1756 cfs_rq->runtime_remaining -= slack_runtime;
1759 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1761 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1762 return;
1764 __return_cfs_rq_runtime(cfs_rq);
1768 * This is done with a timer (instead of inline with bandwidth return) since
1769 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1771 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1773 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1774 u64 expires;
1776 /* confirm we're still not at a refresh boundary */
1777 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1778 return;
1780 raw_spin_lock(&cfs_b->lock);
1781 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1782 runtime = cfs_b->runtime;
1783 cfs_b->runtime = 0;
1785 expires = cfs_b->runtime_expires;
1786 raw_spin_unlock(&cfs_b->lock);
1788 if (!runtime)
1789 return;
1791 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1793 raw_spin_lock(&cfs_b->lock);
1794 if (expires == cfs_b->runtime_expires)
1795 cfs_b->runtime = runtime;
1796 raw_spin_unlock(&cfs_b->lock);
1800 * When a group wakes up we want to make sure that its quota is not already
1801 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1802 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1804 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1806 /* an active group must be handled by the update_curr()->put() path */
1807 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1808 return;
1810 /* ensure the group is not already throttled */
1811 if (cfs_rq_throttled(cfs_rq))
1812 return;
1814 /* update runtime allocation */
1815 account_cfs_rq_runtime(cfs_rq, 0);
1816 if (cfs_rq->runtime_remaining <= 0)
1817 throttle_cfs_rq(cfs_rq);
1820 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1821 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1823 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1824 return;
1827 * it's possible for a throttled entity to be forced into a running
1828 * state (e.g. set_curr_task), in this case we're finished.
1830 if (cfs_rq_throttled(cfs_rq))
1831 return;
1833 throttle_cfs_rq(cfs_rq);
1835 #else
1836 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1837 unsigned long delta_exec) {}
1838 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1839 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
1840 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1842 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1844 return 0;
1847 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1849 return 0;
1852 static inline int throttled_lb_pair(struct task_group *tg,
1853 int src_cpu, int dest_cpu)
1855 return 0;
1857 #endif
1859 /**************************************************
1860 * CFS operations on tasks:
1863 #ifdef CONFIG_SCHED_HRTICK
1864 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1866 struct sched_entity *se = &p->se;
1867 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1869 WARN_ON(task_rq(p) != rq);
1871 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1872 u64 slice = sched_slice(cfs_rq, se);
1873 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1874 s64 delta = slice - ran;
1876 if (delta < 0) {
1877 if (rq->curr == p)
1878 resched_task(p);
1879 return;
1883 * Don't schedule slices shorter than 10000ns, that just
1884 * doesn't make sense. Rely on vruntime for fairness.
1886 if (rq->curr != p)
1887 delta = max_t(s64, 10000LL, delta);
1889 hrtick_start(rq, delta);
1894 * called from enqueue/dequeue and updates the hrtick when the
1895 * current task is from our class and nr_running is low enough
1896 * to matter.
1898 static void hrtick_update(struct rq *rq)
1900 struct task_struct *curr = rq->curr;
1902 if (curr->sched_class != &fair_sched_class)
1903 return;
1905 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1906 hrtick_start_fair(rq, curr);
1908 #else /* !CONFIG_SCHED_HRTICK */
1909 static inline void
1910 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1914 static inline void hrtick_update(struct rq *rq)
1917 #endif
1920 * The enqueue_task method is called before nr_running is
1921 * increased. Here we update the fair scheduling stats and
1922 * then put the task into the rbtree:
1924 static void
1925 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1927 struct cfs_rq *cfs_rq;
1928 struct sched_entity *se = &p->se;
1930 for_each_sched_entity(se) {
1931 if (se->on_rq)
1932 break;
1933 cfs_rq = cfs_rq_of(se);
1934 enqueue_entity(cfs_rq, se, flags);
1937 * end evaluation on encountering a throttled cfs_rq
1939 * note: in the case of encountering a throttled cfs_rq we will
1940 * post the final h_nr_running increment below.
1942 if (cfs_rq_throttled(cfs_rq))
1943 break;
1944 cfs_rq->h_nr_running++;
1946 flags = ENQUEUE_WAKEUP;
1949 for_each_sched_entity(se) {
1950 cfs_rq = cfs_rq_of(se);
1951 cfs_rq->h_nr_running++;
1953 if (cfs_rq_throttled(cfs_rq))
1954 break;
1956 update_cfs_load(cfs_rq, 0);
1957 update_cfs_shares(cfs_rq);
1960 if (!se)
1961 inc_nr_running(rq);
1962 hrtick_update(rq);
1965 static void set_next_buddy(struct sched_entity *se);
1968 * The dequeue_task method is called before nr_running is
1969 * decreased. We remove the task from the rbtree and
1970 * update the fair scheduling stats:
1972 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1974 struct cfs_rq *cfs_rq;
1975 struct sched_entity *se = &p->se;
1976 int task_sleep = flags & DEQUEUE_SLEEP;
1978 for_each_sched_entity(se) {
1979 cfs_rq = cfs_rq_of(se);
1980 dequeue_entity(cfs_rq, se, flags);
1983 * end evaluation on encountering a throttled cfs_rq
1985 * note: in the case of encountering a throttled cfs_rq we will
1986 * post the final h_nr_running decrement below.
1988 if (cfs_rq_throttled(cfs_rq))
1989 break;
1990 cfs_rq->h_nr_running--;
1992 /* Don't dequeue parent if it has other entities besides us */
1993 if (cfs_rq->load.weight) {
1995 * Bias pick_next to pick a task from this cfs_rq, as
1996 * p is sleeping when it is within its sched_slice.
1998 if (task_sleep && parent_entity(se))
1999 set_next_buddy(parent_entity(se));
2001 /* avoid re-evaluating load for this entity */
2002 se = parent_entity(se);
2003 break;
2005 flags |= DEQUEUE_SLEEP;
2008 for_each_sched_entity(se) {
2009 cfs_rq = cfs_rq_of(se);
2010 cfs_rq->h_nr_running--;
2012 if (cfs_rq_throttled(cfs_rq))
2013 break;
2015 update_cfs_load(cfs_rq, 0);
2016 update_cfs_shares(cfs_rq);
2019 if (!se)
2020 dec_nr_running(rq);
2021 hrtick_update(rq);
2024 #ifdef CONFIG_SMP
2026 static void task_waking_fair(struct task_struct *p)
2028 struct sched_entity *se = &p->se;
2029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2030 u64 min_vruntime;
2032 #ifndef CONFIG_64BIT
2033 u64 min_vruntime_copy;
2035 do {
2036 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2037 smp_rmb();
2038 min_vruntime = cfs_rq->min_vruntime;
2039 } while (min_vruntime != min_vruntime_copy);
2040 #else
2041 min_vruntime = cfs_rq->min_vruntime;
2042 #endif
2044 se->vruntime -= min_vruntime;
2047 #ifdef CONFIG_FAIR_GROUP_SCHED
2049 * effective_load() calculates the load change as seen from the root_task_group
2051 * Adding load to a group doesn't make a group heavier, but can cause movement
2052 * of group shares between cpus. Assuming the shares were perfectly aligned one
2053 * can calculate the shift in shares.
2055 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2056 * on this @cpu and results in a total addition (subtraction) of @wg to the
2057 * total group weight.
2059 * Given a runqueue weight distribution (rw_i) we can compute a shares
2060 * distribution (s_i) using:
2062 * s_i = rw_i / \Sum rw_j (1)
2064 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2065 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2066 * shares distribution (s_i):
2068 * rw_i = { 2, 4, 1, 0 }
2069 * s_i = { 2/7, 4/7, 1/7, 0 }
2071 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2072 * task used to run on and the CPU the waker is running on), we need to
2073 * compute the effect of waking a task on either CPU and, in case of a sync
2074 * wakeup, compute the effect of the current task going to sleep.
2076 * So for a change of @wl to the local @cpu with an overall group weight change
2077 * of @wl we can compute the new shares distribution (s'_i) using:
2079 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2081 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2082 * differences in waking a task to CPU 0. The additional task changes the
2083 * weight and shares distributions like:
2085 * rw'_i = { 3, 4, 1, 0 }
2086 * s'_i = { 3/8, 4/8, 1/8, 0 }
2088 * We can then compute the difference in effective weight by using:
2090 * dw_i = S * (s'_i - s_i) (3)
2092 * Where 'S' is the group weight as seen by its parent.
2094 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2095 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2096 * 4/7) times the weight of the group.
2098 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2100 struct sched_entity *se = tg->se[cpu];
2102 if (!tg->parent) /* the trivial, non-cgroup case */
2103 return wl;
2105 for_each_sched_entity(se) {
2106 long w, W;
2108 tg = se->my_q->tg;
2111 * W = @wg + \Sum rw_j
2113 W = wg + calc_tg_weight(tg, se->my_q);
2116 * w = rw_i + @wl
2118 w = se->my_q->load.weight + wl;
2121 * wl = S * s'_i; see (2)
2123 if (W > 0 && w < W)
2124 wl = (w * tg->shares) / W;
2125 else
2126 wl = tg->shares;
2129 * Per the above, wl is the new se->load.weight value; since
2130 * those are clipped to [MIN_SHARES, ...) do so now. See
2131 * calc_cfs_shares().
2133 if (wl < MIN_SHARES)
2134 wl = MIN_SHARES;
2137 * wl = dw_i = S * (s'_i - s_i); see (3)
2139 wl -= se->load.weight;
2142 * Recursively apply this logic to all parent groups to compute
2143 * the final effective load change on the root group. Since
2144 * only the @tg group gets extra weight, all parent groups can
2145 * only redistribute existing shares. @wl is the shift in shares
2146 * resulting from this level per the above.
2148 wg = 0;
2151 return wl;
2153 #else
2155 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2156 unsigned long wl, unsigned long wg)
2158 return wl;
2161 #endif
2163 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2165 s64 this_load, load;
2166 int idx, this_cpu, prev_cpu;
2167 unsigned long tl_per_task;
2168 struct task_group *tg;
2169 unsigned long weight;
2170 int balanced;
2172 idx = sd->wake_idx;
2173 this_cpu = smp_processor_id();
2174 prev_cpu = task_cpu(p);
2175 load = source_load(prev_cpu, idx);
2176 this_load = target_load(this_cpu, idx);
2179 * If sync wakeup then subtract the (maximum possible)
2180 * effect of the currently running task from the load
2181 * of the current CPU:
2183 if (sync) {
2184 tg = task_group(current);
2185 weight = current->se.load.weight;
2187 this_load += effective_load(tg, this_cpu, -weight, -weight);
2188 load += effective_load(tg, prev_cpu, 0, -weight);
2191 tg = task_group(p);
2192 weight = p->se.load.weight;
2195 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2196 * due to the sync cause above having dropped this_load to 0, we'll
2197 * always have an imbalance, but there's really nothing you can do
2198 * about that, so that's good too.
2200 * Otherwise check if either cpus are near enough in load to allow this
2201 * task to be woken on this_cpu.
2203 if (this_load > 0) {
2204 s64 this_eff_load, prev_eff_load;
2206 this_eff_load = 100;
2207 this_eff_load *= power_of(prev_cpu);
2208 this_eff_load *= this_load +
2209 effective_load(tg, this_cpu, weight, weight);
2211 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2212 prev_eff_load *= power_of(this_cpu);
2213 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2215 balanced = this_eff_load <= prev_eff_load;
2216 } else
2217 balanced = true;
2220 * If the currently running task will sleep within
2221 * a reasonable amount of time then attract this newly
2222 * woken task:
2224 if (sync && balanced)
2225 return 1;
2227 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2228 tl_per_task = cpu_avg_load_per_task(this_cpu);
2230 if (balanced ||
2231 (this_load <= load &&
2232 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2234 * This domain has SD_WAKE_AFFINE and
2235 * p is cache cold in this domain, and
2236 * there is no bad imbalance.
2238 schedstat_inc(sd, ttwu_move_affine);
2239 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2241 return 1;
2243 return 0;
2247 * find_idlest_group finds and returns the least busy CPU group within the
2248 * domain.
2250 static struct sched_group *
2251 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2252 int this_cpu, int load_idx)
2254 struct sched_group *idlest = NULL, *group = sd->groups;
2255 unsigned long min_load = ULONG_MAX, this_load = 0;
2256 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2258 do {
2259 unsigned long load, avg_load;
2260 int local_group;
2261 int i;
2263 /* Skip over this group if it has no CPUs allowed */
2264 if (!cpumask_intersects(sched_group_cpus(group),
2265 tsk_cpus_allowed(p)))
2266 continue;
2268 local_group = cpumask_test_cpu(this_cpu,
2269 sched_group_cpus(group));
2271 /* Tally up the load of all CPUs in the group */
2272 avg_load = 0;
2274 for_each_cpu(i, sched_group_cpus(group)) {
2275 /* Bias balancing toward cpus of our domain */
2276 if (local_group)
2277 load = source_load(i, load_idx);
2278 else
2279 load = target_load(i, load_idx);
2281 avg_load += load;
2284 /* Adjust by relative CPU power of the group */
2285 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2287 if (local_group) {
2288 this_load = avg_load;
2289 } else if (avg_load < min_load) {
2290 min_load = avg_load;
2291 idlest = group;
2293 } while (group = group->next, group != sd->groups);
2295 if (!idlest || 100*this_load < imbalance*min_load)
2296 return NULL;
2297 return idlest;
2301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2303 static int
2304 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2306 unsigned long load, min_load = ULONG_MAX;
2307 int idlest = -1;
2308 int i;
2310 /* Traverse only the allowed CPUs */
2311 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2312 load = weighted_cpuload(i);
2314 if (load < min_load || (load == min_load && i == this_cpu)) {
2315 min_load = load;
2316 idlest = i;
2320 return idlest;
2324 * Try and locate an idle CPU in the sched_domain.
2326 static int select_idle_sibling(struct task_struct *p, int target)
2328 int cpu = smp_processor_id();
2329 int prev_cpu = task_cpu(p);
2330 struct sched_domain *sd;
2331 struct sched_group *sg;
2332 int i, smt = 0;
2335 * If the task is going to be woken-up on this cpu and if it is
2336 * already idle, then it is the right target.
2338 if (target == cpu && idle_cpu(cpu))
2339 return cpu;
2342 * If the task is going to be woken-up on the cpu where it previously
2343 * ran and if it is currently idle, then it the right target.
2345 if (target == prev_cpu && idle_cpu(prev_cpu))
2346 return prev_cpu;
2349 * Otherwise, iterate the domains and find an elegible idle cpu.
2351 rcu_read_lock();
2352 again:
2353 for_each_domain(target, sd) {
2354 if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
2355 continue;
2357 if (smt && !(sd->flags & SD_SHARE_CPUPOWER))
2358 break;
2360 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
2361 break;
2363 sg = sd->groups;
2364 do {
2365 if (!cpumask_intersects(sched_group_cpus(sg),
2366 tsk_cpus_allowed(p)))
2367 goto next;
2369 for_each_cpu(i, sched_group_cpus(sg)) {
2370 if (!idle_cpu(i))
2371 goto next;
2374 target = cpumask_first_and(sched_group_cpus(sg),
2375 tsk_cpus_allowed(p));
2376 goto done;
2377 next:
2378 sg = sg->next;
2379 } while (sg != sd->groups);
2381 if (!smt) {
2382 smt = 1;
2383 goto again;
2385 done:
2386 rcu_read_unlock();
2388 return target;
2392 * sched_balance_self: balance the current task (running on cpu) in domains
2393 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2394 * SD_BALANCE_EXEC.
2396 * Balance, ie. select the least loaded group.
2398 * Returns the target CPU number, or the same CPU if no balancing is needed.
2400 * preempt must be disabled.
2402 static int
2403 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2405 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2406 int cpu = smp_processor_id();
2407 int prev_cpu = task_cpu(p);
2408 int new_cpu = cpu;
2409 int want_affine = 0;
2410 int want_sd = 1;
2411 int sync = wake_flags & WF_SYNC;
2413 if (sd_flag & SD_BALANCE_WAKE) {
2414 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2415 want_affine = 1;
2416 new_cpu = prev_cpu;
2419 rcu_read_lock();
2420 for_each_domain(cpu, tmp) {
2421 if (!(tmp->flags & SD_LOAD_BALANCE))
2422 continue;
2425 * If power savings logic is enabled for a domain, see if we
2426 * are not overloaded, if so, don't balance wider.
2428 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2429 unsigned long power = 0;
2430 unsigned long nr_running = 0;
2431 unsigned long capacity;
2432 int i;
2434 for_each_cpu(i, sched_domain_span(tmp)) {
2435 power += power_of(i);
2436 nr_running += cpu_rq(i)->cfs.nr_running;
2439 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2441 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2442 nr_running /= 2;
2444 if (nr_running < capacity)
2445 want_sd = 0;
2449 * If both cpu and prev_cpu are part of this domain,
2450 * cpu is a valid SD_WAKE_AFFINE target.
2452 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2453 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2454 affine_sd = tmp;
2455 want_affine = 0;
2458 if (!want_sd && !want_affine)
2459 break;
2461 if (!(tmp->flags & sd_flag))
2462 continue;
2464 if (want_sd)
2465 sd = tmp;
2468 if (affine_sd) {
2469 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2470 prev_cpu = cpu;
2472 new_cpu = select_idle_sibling(p, prev_cpu);
2473 goto unlock;
2476 while (sd) {
2477 int load_idx = sd->forkexec_idx;
2478 struct sched_group *group;
2479 int weight;
2481 if (!(sd->flags & sd_flag)) {
2482 sd = sd->child;
2483 continue;
2486 if (sd_flag & SD_BALANCE_WAKE)
2487 load_idx = sd->wake_idx;
2489 group = find_idlest_group(sd, p, cpu, load_idx);
2490 if (!group) {
2491 sd = sd->child;
2492 continue;
2495 new_cpu = find_idlest_cpu(group, p, cpu);
2496 if (new_cpu == -1 || new_cpu == cpu) {
2497 /* Now try balancing at a lower domain level of cpu */
2498 sd = sd->child;
2499 continue;
2502 /* Now try balancing at a lower domain level of new_cpu */
2503 cpu = new_cpu;
2504 weight = sd->span_weight;
2505 sd = NULL;
2506 for_each_domain(cpu, tmp) {
2507 if (weight <= tmp->span_weight)
2508 break;
2509 if (tmp->flags & sd_flag)
2510 sd = tmp;
2512 /* while loop will break here if sd == NULL */
2514 unlock:
2515 rcu_read_unlock();
2517 return new_cpu;
2519 #endif /* CONFIG_SMP */
2521 static unsigned long
2522 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2524 unsigned long gran = sysctl_sched_wakeup_granularity;
2527 * Since its curr running now, convert the gran from real-time
2528 * to virtual-time in his units.
2530 * By using 'se' instead of 'curr' we penalize light tasks, so
2531 * they get preempted easier. That is, if 'se' < 'curr' then
2532 * the resulting gran will be larger, therefore penalizing the
2533 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2534 * be smaller, again penalizing the lighter task.
2536 * This is especially important for buddies when the leftmost
2537 * task is higher priority than the buddy.
2539 return calc_delta_fair(gran, se);
2543 * Should 'se' preempt 'curr'.
2545 * |s1
2546 * |s2
2547 * |s3
2549 * |<--->|c
2551 * w(c, s1) = -1
2552 * w(c, s2) = 0
2553 * w(c, s3) = 1
2556 static int
2557 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2559 s64 gran, vdiff = curr->vruntime - se->vruntime;
2561 if (vdiff <= 0)
2562 return -1;
2564 gran = wakeup_gran(curr, se);
2565 if (vdiff > gran)
2566 return 1;
2568 return 0;
2571 static void set_last_buddy(struct sched_entity *se)
2573 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2574 return;
2576 for_each_sched_entity(se)
2577 cfs_rq_of(se)->last = se;
2580 static void set_next_buddy(struct sched_entity *se)
2582 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2583 return;
2585 for_each_sched_entity(se)
2586 cfs_rq_of(se)->next = se;
2589 static void set_skip_buddy(struct sched_entity *se)
2591 for_each_sched_entity(se)
2592 cfs_rq_of(se)->skip = se;
2596 * Preempt the current task with a newly woken task if needed:
2598 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2600 struct task_struct *curr = rq->curr;
2601 struct sched_entity *se = &curr->se, *pse = &p->se;
2602 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2603 int scale = cfs_rq->nr_running >= sched_nr_latency;
2604 int next_buddy_marked = 0;
2606 if (unlikely(se == pse))
2607 return;
2610 * This is possible from callers such as pull_task(), in which we
2611 * unconditionally check_prempt_curr() after an enqueue (which may have
2612 * lead to a throttle). This both saves work and prevents false
2613 * next-buddy nomination below.
2615 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2616 return;
2618 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2619 set_next_buddy(pse);
2620 next_buddy_marked = 1;
2624 * We can come here with TIF_NEED_RESCHED already set from new task
2625 * wake up path.
2627 * Note: this also catches the edge-case of curr being in a throttled
2628 * group (e.g. via set_curr_task), since update_curr() (in the
2629 * enqueue of curr) will have resulted in resched being set. This
2630 * prevents us from potentially nominating it as a false LAST_BUDDY
2631 * below.
2633 if (test_tsk_need_resched(curr))
2634 return;
2636 /* Idle tasks are by definition preempted by non-idle tasks. */
2637 if (unlikely(curr->policy == SCHED_IDLE) &&
2638 likely(p->policy != SCHED_IDLE))
2639 goto preempt;
2642 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2643 * is driven by the tick):
2645 if (unlikely(p->policy != SCHED_NORMAL))
2646 return;
2648 find_matching_se(&se, &pse);
2649 update_curr(cfs_rq_of(se));
2650 BUG_ON(!pse);
2651 if (wakeup_preempt_entity(se, pse) == 1) {
2653 * Bias pick_next to pick the sched entity that is
2654 * triggering this preemption.
2656 if (!next_buddy_marked)
2657 set_next_buddy(pse);
2658 goto preempt;
2661 return;
2663 preempt:
2664 resched_task(curr);
2666 * Only set the backward buddy when the current task is still
2667 * on the rq. This can happen when a wakeup gets interleaved
2668 * with schedule on the ->pre_schedule() or idle_balance()
2669 * point, either of which can * drop the rq lock.
2671 * Also, during early boot the idle thread is in the fair class,
2672 * for obvious reasons its a bad idea to schedule back to it.
2674 if (unlikely(!se->on_rq || curr == rq->idle))
2675 return;
2677 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2678 set_last_buddy(se);
2681 static struct task_struct *pick_next_task_fair(struct rq *rq)
2683 struct task_struct *p;
2684 struct cfs_rq *cfs_rq = &rq->cfs;
2685 struct sched_entity *se;
2687 if (!cfs_rq->nr_running)
2688 return NULL;
2690 do {
2691 se = pick_next_entity(cfs_rq);
2692 set_next_entity(cfs_rq, se);
2693 cfs_rq = group_cfs_rq(se);
2694 } while (cfs_rq);
2696 p = task_of(se);
2697 hrtick_start_fair(rq, p);
2699 return p;
2703 * Account for a descheduled task:
2705 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2707 struct sched_entity *se = &prev->se;
2708 struct cfs_rq *cfs_rq;
2710 for_each_sched_entity(se) {
2711 cfs_rq = cfs_rq_of(se);
2712 put_prev_entity(cfs_rq, se);
2717 * sched_yield() is very simple
2719 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2721 static void yield_task_fair(struct rq *rq)
2723 struct task_struct *curr = rq->curr;
2724 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2725 struct sched_entity *se = &curr->se;
2728 * Are we the only task in the tree?
2730 if (unlikely(rq->nr_running == 1))
2731 return;
2733 clear_buddies(cfs_rq, se);
2735 if (curr->policy != SCHED_BATCH) {
2736 update_rq_clock(rq);
2738 * Update run-time statistics of the 'current'.
2740 update_curr(cfs_rq);
2743 set_skip_buddy(se);
2746 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2748 struct sched_entity *se = &p->se;
2750 /* throttled hierarchies are not runnable */
2751 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
2752 return false;
2754 /* Tell the scheduler that we'd really like pse to run next. */
2755 set_next_buddy(se);
2757 yield_task_fair(rq);
2759 return true;
2762 #ifdef CONFIG_SMP
2763 /**************************************************
2764 * Fair scheduling class load-balancing methods:
2768 * pull_task - move a task from a remote runqueue to the local runqueue.
2769 * Both runqueues must be locked.
2771 static void pull_task(struct rq *src_rq, struct task_struct *p,
2772 struct rq *this_rq, int this_cpu)
2774 deactivate_task(src_rq, p, 0);
2775 set_task_cpu(p, this_cpu);
2776 activate_task(this_rq, p, 0);
2777 check_preempt_curr(this_rq, p, 0);
2781 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2783 static
2784 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2785 struct sched_domain *sd, enum cpu_idle_type idle,
2786 int *all_pinned)
2788 int tsk_cache_hot = 0;
2790 * We do not migrate tasks that are:
2791 * 1) running (obviously), or
2792 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2793 * 3) are cache-hot on their current CPU.
2795 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
2796 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2797 return 0;
2799 *all_pinned = 0;
2801 if (task_running(rq, p)) {
2802 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2803 return 0;
2807 * Aggressive migration if:
2808 * 1) task is cache cold, or
2809 * 2) too many balance attempts have failed.
2812 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2813 if (!tsk_cache_hot ||
2814 sd->nr_balance_failed > sd->cache_nice_tries) {
2815 #ifdef CONFIG_SCHEDSTATS
2816 if (tsk_cache_hot) {
2817 schedstat_inc(sd, lb_hot_gained[idle]);
2818 schedstat_inc(p, se.statistics.nr_forced_migrations);
2820 #endif
2821 return 1;
2824 if (tsk_cache_hot) {
2825 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2826 return 0;
2828 return 1;
2832 * move_one_task tries to move exactly one task from busiest to this_rq, as
2833 * part of active balancing operations within "domain".
2834 * Returns 1 if successful and 0 otherwise.
2836 * Called with both runqueues locked.
2838 static int
2839 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2840 struct sched_domain *sd, enum cpu_idle_type idle)
2842 struct task_struct *p, *n;
2843 struct cfs_rq *cfs_rq;
2844 int pinned = 0;
2846 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2847 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2848 if (throttled_lb_pair(task_group(p),
2849 busiest->cpu, this_cpu))
2850 break;
2852 if (!can_migrate_task(p, busiest, this_cpu,
2853 sd, idle, &pinned))
2854 continue;
2856 pull_task(busiest, p, this_rq, this_cpu);
2858 * Right now, this is only the second place pull_task()
2859 * is called, so we can safely collect pull_task()
2860 * stats here rather than inside pull_task().
2862 schedstat_inc(sd, lb_gained[idle]);
2863 return 1;
2867 return 0;
2870 static unsigned long
2871 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2872 unsigned long max_load_move, struct sched_domain *sd,
2873 enum cpu_idle_type idle, int *all_pinned,
2874 struct cfs_rq *busiest_cfs_rq)
2876 int loops = 0, pulled = 0;
2877 long rem_load_move = max_load_move;
2878 struct task_struct *p, *n;
2880 if (max_load_move == 0)
2881 goto out;
2883 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2884 if (loops++ > sysctl_sched_nr_migrate)
2885 break;
2887 if ((p->se.load.weight >> 1) > rem_load_move ||
2888 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2889 all_pinned))
2890 continue;
2892 pull_task(busiest, p, this_rq, this_cpu);
2893 pulled++;
2894 rem_load_move -= p->se.load.weight;
2896 #ifdef CONFIG_PREEMPT
2898 * NEWIDLE balancing is a source of latency, so preemptible
2899 * kernels will stop after the first task is pulled to minimize
2900 * the critical section.
2902 if (idle == CPU_NEWLY_IDLE)
2903 break;
2904 #endif
2907 * We only want to steal up to the prescribed amount of
2908 * weighted load.
2910 if (rem_load_move <= 0)
2911 break;
2913 out:
2915 * Right now, this is one of only two places pull_task() is called,
2916 * so we can safely collect pull_task() stats here rather than
2917 * inside pull_task().
2919 schedstat_add(sd, lb_gained[idle], pulled);
2921 return max_load_move - rem_load_move;
2924 #ifdef CONFIG_FAIR_GROUP_SCHED
2926 * update tg->load_weight by folding this cpu's load_avg
2928 static int update_shares_cpu(struct task_group *tg, int cpu)
2930 struct cfs_rq *cfs_rq;
2931 unsigned long flags;
2932 struct rq *rq;
2934 if (!tg->se[cpu])
2935 return 0;
2937 rq = cpu_rq(cpu);
2938 cfs_rq = tg->cfs_rq[cpu];
2940 raw_spin_lock_irqsave(&rq->lock, flags);
2942 update_rq_clock(rq);
2943 update_cfs_load(cfs_rq, 1);
2946 * We need to update shares after updating tg->load_weight in
2947 * order to adjust the weight of groups with long running tasks.
2949 update_cfs_shares(cfs_rq);
2951 raw_spin_unlock_irqrestore(&rq->lock, flags);
2953 return 0;
2956 static void update_shares(int cpu)
2958 struct cfs_rq *cfs_rq;
2959 struct rq *rq = cpu_rq(cpu);
2961 rcu_read_lock();
2963 * Iterates the task_group tree in a bottom up fashion, see
2964 * list_add_leaf_cfs_rq() for details.
2966 for_each_leaf_cfs_rq(rq, cfs_rq) {
2967 /* throttled entities do not contribute to load */
2968 if (throttled_hierarchy(cfs_rq))
2969 continue;
2971 update_shares_cpu(cfs_rq->tg, cpu);
2973 rcu_read_unlock();
2977 * Compute the cpu's hierarchical load factor for each task group.
2978 * This needs to be done in a top-down fashion because the load of a child
2979 * group is a fraction of its parents load.
2981 static int tg_load_down(struct task_group *tg, void *data)
2983 unsigned long load;
2984 long cpu = (long)data;
2986 if (!tg->parent) {
2987 load = cpu_rq(cpu)->load.weight;
2988 } else {
2989 load = tg->parent->cfs_rq[cpu]->h_load;
2990 load *= tg->se[cpu]->load.weight;
2991 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2994 tg->cfs_rq[cpu]->h_load = load;
2996 return 0;
2999 static void update_h_load(long cpu)
3001 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3004 static unsigned long
3005 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3006 unsigned long max_load_move,
3007 struct sched_domain *sd, enum cpu_idle_type idle,
3008 int *all_pinned)
3010 long rem_load_move = max_load_move;
3011 struct cfs_rq *busiest_cfs_rq;
3013 rcu_read_lock();
3014 update_h_load(cpu_of(busiest));
3016 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
3017 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3018 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3019 u64 rem_load, moved_load;
3022 * empty group or part of a throttled hierarchy
3024 if (!busiest_cfs_rq->task_weight ||
3025 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
3026 continue;
3028 rem_load = (u64)rem_load_move * busiest_weight;
3029 rem_load = div_u64(rem_load, busiest_h_load + 1);
3031 moved_load = balance_tasks(this_rq, this_cpu, busiest,
3032 rem_load, sd, idle, all_pinned,
3033 busiest_cfs_rq);
3035 if (!moved_load)
3036 continue;
3038 moved_load *= busiest_h_load;
3039 moved_load = div_u64(moved_load, busiest_weight + 1);
3041 rem_load_move -= moved_load;
3042 if (rem_load_move < 0)
3043 break;
3045 rcu_read_unlock();
3047 return max_load_move - rem_load_move;
3049 #else
3050 static inline void update_shares(int cpu)
3054 static unsigned long
3055 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 unsigned long max_load_move,
3057 struct sched_domain *sd, enum cpu_idle_type idle,
3058 int *all_pinned)
3060 return balance_tasks(this_rq, this_cpu, busiest,
3061 max_load_move, sd, idle, all_pinned,
3062 &busiest->cfs);
3064 #endif
3067 * move_tasks tries to move up to max_load_move weighted load from busiest to
3068 * this_rq, as part of a balancing operation within domain "sd".
3069 * Returns 1 if successful and 0 otherwise.
3071 * Called with both runqueues locked.
3073 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3074 unsigned long max_load_move,
3075 struct sched_domain *sd, enum cpu_idle_type idle,
3076 int *all_pinned)
3078 unsigned long total_load_moved = 0, load_moved;
3080 do {
3081 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
3082 max_load_move - total_load_moved,
3083 sd, idle, all_pinned);
3085 total_load_moved += load_moved;
3087 #ifdef CONFIG_PREEMPT
3089 * NEWIDLE balancing is a source of latency, so preemptible
3090 * kernels will stop after the first task is pulled to minimize
3091 * the critical section.
3093 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3094 break;
3096 if (raw_spin_is_contended(&this_rq->lock) ||
3097 raw_spin_is_contended(&busiest->lock))
3098 break;
3099 #endif
3100 } while (load_moved && max_load_move > total_load_moved);
3102 return total_load_moved > 0;
3105 /********** Helpers for find_busiest_group ************************/
3107 * sd_lb_stats - Structure to store the statistics of a sched_domain
3108 * during load balancing.
3110 struct sd_lb_stats {
3111 struct sched_group *busiest; /* Busiest group in this sd */
3112 struct sched_group *this; /* Local group in this sd */
3113 unsigned long total_load; /* Total load of all groups in sd */
3114 unsigned long total_pwr; /* Total power of all groups in sd */
3115 unsigned long avg_load; /* Average load across all groups in sd */
3117 /** Statistics of this group */
3118 unsigned long this_load;
3119 unsigned long this_load_per_task;
3120 unsigned long this_nr_running;
3121 unsigned long this_has_capacity;
3122 unsigned int this_idle_cpus;
3124 /* Statistics of the busiest group */
3125 unsigned int busiest_idle_cpus;
3126 unsigned long max_load;
3127 unsigned long busiest_load_per_task;
3128 unsigned long busiest_nr_running;
3129 unsigned long busiest_group_capacity;
3130 unsigned long busiest_has_capacity;
3131 unsigned int busiest_group_weight;
3133 int group_imb; /* Is there imbalance in this sd */
3134 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3135 int power_savings_balance; /* Is powersave balance needed for this sd */
3136 struct sched_group *group_min; /* Least loaded group in sd */
3137 struct sched_group *group_leader; /* Group which relieves group_min */
3138 unsigned long min_load_per_task; /* load_per_task in group_min */
3139 unsigned long leader_nr_running; /* Nr running of group_leader */
3140 unsigned long min_nr_running; /* Nr running of group_min */
3141 #endif
3145 * sg_lb_stats - stats of a sched_group required for load_balancing
3147 struct sg_lb_stats {
3148 unsigned long avg_load; /*Avg load across the CPUs of the group */
3149 unsigned long group_load; /* Total load over the CPUs of the group */
3150 unsigned long sum_nr_running; /* Nr tasks running in the group */
3151 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3152 unsigned long group_capacity;
3153 unsigned long idle_cpus;
3154 unsigned long group_weight;
3155 int group_imb; /* Is there an imbalance in the group ? */
3156 int group_has_capacity; /* Is there extra capacity in the group? */
3160 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3161 * @group: The group whose first cpu is to be returned.
3163 static inline unsigned int group_first_cpu(struct sched_group *group)
3165 return cpumask_first(sched_group_cpus(group));
3169 * get_sd_load_idx - Obtain the load index for a given sched domain.
3170 * @sd: The sched_domain whose load_idx is to be obtained.
3171 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3173 static inline int get_sd_load_idx(struct sched_domain *sd,
3174 enum cpu_idle_type idle)
3176 int load_idx;
3178 switch (idle) {
3179 case CPU_NOT_IDLE:
3180 load_idx = sd->busy_idx;
3181 break;
3183 case CPU_NEWLY_IDLE:
3184 load_idx = sd->newidle_idx;
3185 break;
3186 default:
3187 load_idx = sd->idle_idx;
3188 break;
3191 return load_idx;
3195 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3197 * init_sd_power_savings_stats - Initialize power savings statistics for
3198 * the given sched_domain, during load balancing.
3200 * @sd: Sched domain whose power-savings statistics are to be initialized.
3201 * @sds: Variable containing the statistics for sd.
3202 * @idle: Idle status of the CPU at which we're performing load-balancing.
3204 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3205 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3208 * Busy processors will not participate in power savings
3209 * balance.
3211 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3212 sds->power_savings_balance = 0;
3213 else {
3214 sds->power_savings_balance = 1;
3215 sds->min_nr_running = ULONG_MAX;
3216 sds->leader_nr_running = 0;
3221 * update_sd_power_savings_stats - Update the power saving stats for a
3222 * sched_domain while performing load balancing.
3224 * @group: sched_group belonging to the sched_domain under consideration.
3225 * @sds: Variable containing the statistics of the sched_domain
3226 * @local_group: Does group contain the CPU for which we're performing
3227 * load balancing ?
3228 * @sgs: Variable containing the statistics of the group.
3230 static inline void update_sd_power_savings_stats(struct sched_group *group,
3231 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3234 if (!sds->power_savings_balance)
3235 return;
3238 * If the local group is idle or completely loaded
3239 * no need to do power savings balance at this domain
3241 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3242 !sds->this_nr_running))
3243 sds->power_savings_balance = 0;
3246 * If a group is already running at full capacity or idle,
3247 * don't include that group in power savings calculations
3249 if (!sds->power_savings_balance ||
3250 sgs->sum_nr_running >= sgs->group_capacity ||
3251 !sgs->sum_nr_running)
3252 return;
3255 * Calculate the group which has the least non-idle load.
3256 * This is the group from where we need to pick up the load
3257 * for saving power
3259 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3260 (sgs->sum_nr_running == sds->min_nr_running &&
3261 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3262 sds->group_min = group;
3263 sds->min_nr_running = sgs->sum_nr_running;
3264 sds->min_load_per_task = sgs->sum_weighted_load /
3265 sgs->sum_nr_running;
3269 * Calculate the group which is almost near its
3270 * capacity but still has some space to pick up some load
3271 * from other group and save more power
3273 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3274 return;
3276 if (sgs->sum_nr_running > sds->leader_nr_running ||
3277 (sgs->sum_nr_running == sds->leader_nr_running &&
3278 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3279 sds->group_leader = group;
3280 sds->leader_nr_running = sgs->sum_nr_running;
3285 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3286 * @sds: Variable containing the statistics of the sched_domain
3287 * under consideration.
3288 * @this_cpu: Cpu at which we're currently performing load-balancing.
3289 * @imbalance: Variable to store the imbalance.
3291 * Description:
3292 * Check if we have potential to perform some power-savings balance.
3293 * If yes, set the busiest group to be the least loaded group in the
3294 * sched_domain, so that it's CPUs can be put to idle.
3296 * Returns 1 if there is potential to perform power-savings balance.
3297 * Else returns 0.
3299 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3300 int this_cpu, unsigned long *imbalance)
3302 if (!sds->power_savings_balance)
3303 return 0;
3305 if (sds->this != sds->group_leader ||
3306 sds->group_leader == sds->group_min)
3307 return 0;
3309 *imbalance = sds->min_load_per_task;
3310 sds->busiest = sds->group_min;
3312 return 1;
3315 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3316 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3317 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3319 return;
3322 static inline void update_sd_power_savings_stats(struct sched_group *group,
3323 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3325 return;
3328 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3329 int this_cpu, unsigned long *imbalance)
3331 return 0;
3333 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3336 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3338 return SCHED_POWER_SCALE;
3341 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3343 return default_scale_freq_power(sd, cpu);
3346 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3348 unsigned long weight = sd->span_weight;
3349 unsigned long smt_gain = sd->smt_gain;
3351 smt_gain /= weight;
3353 return smt_gain;
3356 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3358 return default_scale_smt_power(sd, cpu);
3361 unsigned long scale_rt_power(int cpu)
3363 struct rq *rq = cpu_rq(cpu);
3364 u64 total, available;
3366 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3368 if (unlikely(total < rq->rt_avg)) {
3369 /* Ensures that power won't end up being negative */
3370 available = 0;
3371 } else {
3372 available = total - rq->rt_avg;
3375 if (unlikely((s64)total < SCHED_POWER_SCALE))
3376 total = SCHED_POWER_SCALE;
3378 total >>= SCHED_POWER_SHIFT;
3380 return div_u64(available, total);
3383 static void update_cpu_power(struct sched_domain *sd, int cpu)
3385 unsigned long weight = sd->span_weight;
3386 unsigned long power = SCHED_POWER_SCALE;
3387 struct sched_group *sdg = sd->groups;
3389 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3390 if (sched_feat(ARCH_POWER))
3391 power *= arch_scale_smt_power(sd, cpu);
3392 else
3393 power *= default_scale_smt_power(sd, cpu);
3395 power >>= SCHED_POWER_SHIFT;
3398 sdg->sgp->power_orig = power;
3400 if (sched_feat(ARCH_POWER))
3401 power *= arch_scale_freq_power(sd, cpu);
3402 else
3403 power *= default_scale_freq_power(sd, cpu);
3405 power >>= SCHED_POWER_SHIFT;
3407 power *= scale_rt_power(cpu);
3408 power >>= SCHED_POWER_SHIFT;
3410 if (!power)
3411 power = 1;
3413 cpu_rq(cpu)->cpu_power = power;
3414 sdg->sgp->power = power;
3417 static void update_group_power(struct sched_domain *sd, int cpu)
3419 struct sched_domain *child = sd->child;
3420 struct sched_group *group, *sdg = sd->groups;
3421 unsigned long power;
3423 if (!child) {
3424 update_cpu_power(sd, cpu);
3425 return;
3428 power = 0;
3430 group = child->groups;
3431 do {
3432 power += group->sgp->power;
3433 group = group->next;
3434 } while (group != child->groups);
3436 sdg->sgp->power = power;
3440 * Try and fix up capacity for tiny siblings, this is needed when
3441 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3442 * which on its own isn't powerful enough.
3444 * See update_sd_pick_busiest() and check_asym_packing().
3446 static inline int
3447 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3450 * Only siblings can have significantly less than SCHED_POWER_SCALE
3452 if (!(sd->flags & SD_SHARE_CPUPOWER))
3453 return 0;
3456 * If ~90% of the cpu_power is still there, we're good.
3458 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3459 return 1;
3461 return 0;
3465 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3466 * @sd: The sched_domain whose statistics are to be updated.
3467 * @group: sched_group whose statistics are to be updated.
3468 * @this_cpu: Cpu for which load balance is currently performed.
3469 * @idle: Idle status of this_cpu
3470 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3471 * @local_group: Does group contain this_cpu.
3472 * @cpus: Set of cpus considered for load balancing.
3473 * @balance: Should we balance.
3474 * @sgs: variable to hold the statistics for this group.
3476 static inline void update_sg_lb_stats(struct sched_domain *sd,
3477 struct sched_group *group, int this_cpu,
3478 enum cpu_idle_type idle, int load_idx,
3479 int local_group, const struct cpumask *cpus,
3480 int *balance, struct sg_lb_stats *sgs)
3482 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3483 int i;
3484 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3485 unsigned long avg_load_per_task = 0;
3487 if (local_group)
3488 balance_cpu = group_first_cpu(group);
3490 /* Tally up the load of all CPUs in the group */
3491 max_cpu_load = 0;
3492 min_cpu_load = ~0UL;
3493 max_nr_running = 0;
3495 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3496 struct rq *rq = cpu_rq(i);
3498 /* Bias balancing toward cpus of our domain */
3499 if (local_group) {
3500 if (idle_cpu(i) && !first_idle_cpu) {
3501 first_idle_cpu = 1;
3502 balance_cpu = i;
3505 load = target_load(i, load_idx);
3506 } else {
3507 load = source_load(i, load_idx);
3508 if (load > max_cpu_load) {
3509 max_cpu_load = load;
3510 max_nr_running = rq->nr_running;
3512 if (min_cpu_load > load)
3513 min_cpu_load = load;
3516 sgs->group_load += load;
3517 sgs->sum_nr_running += rq->nr_running;
3518 sgs->sum_weighted_load += weighted_cpuload(i);
3519 if (idle_cpu(i))
3520 sgs->idle_cpus++;
3524 * First idle cpu or the first cpu(busiest) in this sched group
3525 * is eligible for doing load balancing at this and above
3526 * domains. In the newly idle case, we will allow all the cpu's
3527 * to do the newly idle load balance.
3529 if (idle != CPU_NEWLY_IDLE && local_group) {
3530 if (balance_cpu != this_cpu) {
3531 *balance = 0;
3532 return;
3534 update_group_power(sd, this_cpu);
3537 /* Adjust by relative CPU power of the group */
3538 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3541 * Consider the group unbalanced when the imbalance is larger
3542 * than the average weight of a task.
3544 * APZ: with cgroup the avg task weight can vary wildly and
3545 * might not be a suitable number - should we keep a
3546 * normalized nr_running number somewhere that negates
3547 * the hierarchy?
3549 if (sgs->sum_nr_running)
3550 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3552 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3553 sgs->group_imb = 1;
3555 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3556 SCHED_POWER_SCALE);
3557 if (!sgs->group_capacity)
3558 sgs->group_capacity = fix_small_capacity(sd, group);
3559 sgs->group_weight = group->group_weight;
3561 if (sgs->group_capacity > sgs->sum_nr_running)
3562 sgs->group_has_capacity = 1;
3566 * update_sd_pick_busiest - return 1 on busiest group
3567 * @sd: sched_domain whose statistics are to be checked
3568 * @sds: sched_domain statistics
3569 * @sg: sched_group candidate to be checked for being the busiest
3570 * @sgs: sched_group statistics
3571 * @this_cpu: the current cpu
3573 * Determine if @sg is a busier group than the previously selected
3574 * busiest group.
3576 static bool update_sd_pick_busiest(struct sched_domain *sd,
3577 struct sd_lb_stats *sds,
3578 struct sched_group *sg,
3579 struct sg_lb_stats *sgs,
3580 int this_cpu)
3582 if (sgs->avg_load <= sds->max_load)
3583 return false;
3585 if (sgs->sum_nr_running > sgs->group_capacity)
3586 return true;
3588 if (sgs->group_imb)
3589 return true;
3592 * ASYM_PACKING needs to move all the work to the lowest
3593 * numbered CPUs in the group, therefore mark all groups
3594 * higher than ourself as busy.
3596 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3597 this_cpu < group_first_cpu(sg)) {
3598 if (!sds->busiest)
3599 return true;
3601 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3602 return true;
3605 return false;
3609 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3610 * @sd: sched_domain whose statistics are to be updated.
3611 * @this_cpu: Cpu for which load balance is currently performed.
3612 * @idle: Idle status of this_cpu
3613 * @cpus: Set of cpus considered for load balancing.
3614 * @balance: Should we balance.
3615 * @sds: variable to hold the statistics for this sched_domain.
3617 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3618 enum cpu_idle_type idle, const struct cpumask *cpus,
3619 int *balance, struct sd_lb_stats *sds)
3621 struct sched_domain *child = sd->child;
3622 struct sched_group *sg = sd->groups;
3623 struct sg_lb_stats sgs;
3624 int load_idx, prefer_sibling = 0;
3626 if (child && child->flags & SD_PREFER_SIBLING)
3627 prefer_sibling = 1;
3629 init_sd_power_savings_stats(sd, sds, idle);
3630 load_idx = get_sd_load_idx(sd, idle);
3632 do {
3633 int local_group;
3635 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3636 memset(&sgs, 0, sizeof(sgs));
3637 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3638 local_group, cpus, balance, &sgs);
3640 if (local_group && !(*balance))
3641 return;
3643 sds->total_load += sgs.group_load;
3644 sds->total_pwr += sg->sgp->power;
3647 * In case the child domain prefers tasks go to siblings
3648 * first, lower the sg capacity to one so that we'll try
3649 * and move all the excess tasks away. We lower the capacity
3650 * of a group only if the local group has the capacity to fit
3651 * these excess tasks, i.e. nr_running < group_capacity. The
3652 * extra check prevents the case where you always pull from the
3653 * heaviest group when it is already under-utilized (possible
3654 * with a large weight task outweighs the tasks on the system).
3656 if (prefer_sibling && !local_group && sds->this_has_capacity)
3657 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3659 if (local_group) {
3660 sds->this_load = sgs.avg_load;
3661 sds->this = sg;
3662 sds->this_nr_running = sgs.sum_nr_running;
3663 sds->this_load_per_task = sgs.sum_weighted_load;
3664 sds->this_has_capacity = sgs.group_has_capacity;
3665 sds->this_idle_cpus = sgs.idle_cpus;
3666 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3667 sds->max_load = sgs.avg_load;
3668 sds->busiest = sg;
3669 sds->busiest_nr_running = sgs.sum_nr_running;
3670 sds->busiest_idle_cpus = sgs.idle_cpus;
3671 sds->busiest_group_capacity = sgs.group_capacity;
3672 sds->busiest_load_per_task = sgs.sum_weighted_load;
3673 sds->busiest_has_capacity = sgs.group_has_capacity;
3674 sds->busiest_group_weight = sgs.group_weight;
3675 sds->group_imb = sgs.group_imb;
3678 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3679 sg = sg->next;
3680 } while (sg != sd->groups);
3683 int __weak arch_sd_sibling_asym_packing(void)
3685 return 0*SD_ASYM_PACKING;
3689 * check_asym_packing - Check to see if the group is packed into the
3690 * sched doman.
3692 * This is primarily intended to used at the sibling level. Some
3693 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3694 * case of POWER7, it can move to lower SMT modes only when higher
3695 * threads are idle. When in lower SMT modes, the threads will
3696 * perform better since they share less core resources. Hence when we
3697 * have idle threads, we want them to be the higher ones.
3699 * This packing function is run on idle threads. It checks to see if
3700 * the busiest CPU in this domain (core in the P7 case) has a higher
3701 * CPU number than the packing function is being run on. Here we are
3702 * assuming lower CPU number will be equivalent to lower a SMT thread
3703 * number.
3705 * Returns 1 when packing is required and a task should be moved to
3706 * this CPU. The amount of the imbalance is returned in *imbalance.
3708 * @sd: The sched_domain whose packing is to be checked.
3709 * @sds: Statistics of the sched_domain which is to be packed
3710 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3711 * @imbalance: returns amount of imbalanced due to packing.
3713 static int check_asym_packing(struct sched_domain *sd,
3714 struct sd_lb_stats *sds,
3715 int this_cpu, unsigned long *imbalance)
3717 int busiest_cpu;
3719 if (!(sd->flags & SD_ASYM_PACKING))
3720 return 0;
3722 if (!sds->busiest)
3723 return 0;
3725 busiest_cpu = group_first_cpu(sds->busiest);
3726 if (this_cpu > busiest_cpu)
3727 return 0;
3729 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
3730 SCHED_POWER_SCALE);
3731 return 1;
3735 * fix_small_imbalance - Calculate the minor imbalance that exists
3736 * amongst the groups of a sched_domain, during
3737 * load balancing.
3738 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3739 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3740 * @imbalance: Variable to store the imbalance.
3742 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3743 int this_cpu, unsigned long *imbalance)
3745 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3746 unsigned int imbn = 2;
3747 unsigned long scaled_busy_load_per_task;
3749 if (sds->this_nr_running) {
3750 sds->this_load_per_task /= sds->this_nr_running;
3751 if (sds->busiest_load_per_task >
3752 sds->this_load_per_task)
3753 imbn = 1;
3754 } else
3755 sds->this_load_per_task =
3756 cpu_avg_load_per_task(this_cpu);
3758 scaled_busy_load_per_task = sds->busiest_load_per_task
3759 * SCHED_POWER_SCALE;
3760 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3762 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3763 (scaled_busy_load_per_task * imbn)) {
3764 *imbalance = sds->busiest_load_per_task;
3765 return;
3769 * OK, we don't have enough imbalance to justify moving tasks,
3770 * however we may be able to increase total CPU power used by
3771 * moving them.
3774 pwr_now += sds->busiest->sgp->power *
3775 min(sds->busiest_load_per_task, sds->max_load);
3776 pwr_now += sds->this->sgp->power *
3777 min(sds->this_load_per_task, sds->this_load);
3778 pwr_now /= SCHED_POWER_SCALE;
3780 /* Amount of load we'd subtract */
3781 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3782 sds->busiest->sgp->power;
3783 if (sds->max_load > tmp)
3784 pwr_move += sds->busiest->sgp->power *
3785 min(sds->busiest_load_per_task, sds->max_load - tmp);
3787 /* Amount of load we'd add */
3788 if (sds->max_load * sds->busiest->sgp->power <
3789 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3790 tmp = (sds->max_load * sds->busiest->sgp->power) /
3791 sds->this->sgp->power;
3792 else
3793 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3794 sds->this->sgp->power;
3795 pwr_move += sds->this->sgp->power *
3796 min(sds->this_load_per_task, sds->this_load + tmp);
3797 pwr_move /= SCHED_POWER_SCALE;
3799 /* Move if we gain throughput */
3800 if (pwr_move > pwr_now)
3801 *imbalance = sds->busiest_load_per_task;
3805 * calculate_imbalance - Calculate the amount of imbalance present within the
3806 * groups of a given sched_domain during load balance.
3807 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3808 * @this_cpu: Cpu for which currently load balance is being performed.
3809 * @imbalance: The variable to store the imbalance.
3811 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3812 unsigned long *imbalance)
3814 unsigned long max_pull, load_above_capacity = ~0UL;
3816 sds->busiest_load_per_task /= sds->busiest_nr_running;
3817 if (sds->group_imb) {
3818 sds->busiest_load_per_task =
3819 min(sds->busiest_load_per_task, sds->avg_load);
3823 * In the presence of smp nice balancing, certain scenarios can have
3824 * max load less than avg load(as we skip the groups at or below
3825 * its cpu_power, while calculating max_load..)
3827 if (sds->max_load < sds->avg_load) {
3828 *imbalance = 0;
3829 return fix_small_imbalance(sds, this_cpu, imbalance);
3832 if (!sds->group_imb) {
3834 * Don't want to pull so many tasks that a group would go idle.
3836 load_above_capacity = (sds->busiest_nr_running -
3837 sds->busiest_group_capacity);
3839 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3841 load_above_capacity /= sds->busiest->sgp->power;
3845 * We're trying to get all the cpus to the average_load, so we don't
3846 * want to push ourselves above the average load, nor do we wish to
3847 * reduce the max loaded cpu below the average load. At the same time,
3848 * we also don't want to reduce the group load below the group capacity
3849 * (so that we can implement power-savings policies etc). Thus we look
3850 * for the minimum possible imbalance.
3851 * Be careful of negative numbers as they'll appear as very large values
3852 * with unsigned longs.
3854 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3856 /* How much load to actually move to equalise the imbalance */
3857 *imbalance = min(max_pull * sds->busiest->sgp->power,
3858 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3859 / SCHED_POWER_SCALE;
3862 * if *imbalance is less than the average load per runnable task
3863 * there is no guarantee that any tasks will be moved so we'll have
3864 * a think about bumping its value to force at least one task to be
3865 * moved
3867 if (*imbalance < sds->busiest_load_per_task)
3868 return fix_small_imbalance(sds, this_cpu, imbalance);
3872 /******* find_busiest_group() helpers end here *********************/
3875 * find_busiest_group - Returns the busiest group within the sched_domain
3876 * if there is an imbalance. If there isn't an imbalance, and
3877 * the user has opted for power-savings, it returns a group whose
3878 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3879 * such a group exists.
3881 * Also calculates the amount of weighted load which should be moved
3882 * to restore balance.
3884 * @sd: The sched_domain whose busiest group is to be returned.
3885 * @this_cpu: The cpu for which load balancing is currently being performed.
3886 * @imbalance: Variable which stores amount of weighted load which should
3887 * be moved to restore balance/put a group to idle.
3888 * @idle: The idle status of this_cpu.
3889 * @cpus: The set of CPUs under consideration for load-balancing.
3890 * @balance: Pointer to a variable indicating if this_cpu
3891 * is the appropriate cpu to perform load balancing at this_level.
3893 * Returns: - the busiest group if imbalance exists.
3894 * - If no imbalance and user has opted for power-savings balance,
3895 * return the least loaded group whose CPUs can be
3896 * put to idle by rebalancing its tasks onto our group.
3898 static struct sched_group *
3899 find_busiest_group(struct sched_domain *sd, int this_cpu,
3900 unsigned long *imbalance, enum cpu_idle_type idle,
3901 const struct cpumask *cpus, int *balance)
3903 struct sd_lb_stats sds;
3905 memset(&sds, 0, sizeof(sds));
3908 * Compute the various statistics relavent for load balancing at
3909 * this level.
3911 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3914 * this_cpu is not the appropriate cpu to perform load balancing at
3915 * this level.
3917 if (!(*balance))
3918 goto ret;
3920 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3921 check_asym_packing(sd, &sds, this_cpu, imbalance))
3922 return sds.busiest;
3924 /* There is no busy sibling group to pull tasks from */
3925 if (!sds.busiest || sds.busiest_nr_running == 0)
3926 goto out_balanced;
3928 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3931 * If the busiest group is imbalanced the below checks don't
3932 * work because they assumes all things are equal, which typically
3933 * isn't true due to cpus_allowed constraints and the like.
3935 if (sds.group_imb)
3936 goto force_balance;
3938 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3939 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3940 !sds.busiest_has_capacity)
3941 goto force_balance;
3944 * If the local group is more busy than the selected busiest group
3945 * don't try and pull any tasks.
3947 if (sds.this_load >= sds.max_load)
3948 goto out_balanced;
3951 * Don't pull any tasks if this group is already above the domain
3952 * average load.
3954 if (sds.this_load >= sds.avg_load)
3955 goto out_balanced;
3957 if (idle == CPU_IDLE) {
3959 * This cpu is idle. If the busiest group load doesn't
3960 * have more tasks than the number of available cpu's and
3961 * there is no imbalance between this and busiest group
3962 * wrt to idle cpu's, it is balanced.
3964 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3965 sds.busiest_nr_running <= sds.busiest_group_weight)
3966 goto out_balanced;
3967 } else {
3969 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3970 * imbalance_pct to be conservative.
3972 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3973 goto out_balanced;
3976 force_balance:
3977 /* Looks like there is an imbalance. Compute it */
3978 calculate_imbalance(&sds, this_cpu, imbalance);
3979 return sds.busiest;
3981 out_balanced:
3983 * There is no obvious imbalance. But check if we can do some balancing
3984 * to save power.
3986 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3987 return sds.busiest;
3988 ret:
3989 *imbalance = 0;
3990 return NULL;
3994 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3996 static struct rq *
3997 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3998 enum cpu_idle_type idle, unsigned long imbalance,
3999 const struct cpumask *cpus)
4001 struct rq *busiest = NULL, *rq;
4002 unsigned long max_load = 0;
4003 int i;
4005 for_each_cpu(i, sched_group_cpus(group)) {
4006 unsigned long power = power_of(i);
4007 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4008 SCHED_POWER_SCALE);
4009 unsigned long wl;
4011 if (!capacity)
4012 capacity = fix_small_capacity(sd, group);
4014 if (!cpumask_test_cpu(i, cpus))
4015 continue;
4017 rq = cpu_rq(i);
4018 wl = weighted_cpuload(i);
4021 * When comparing with imbalance, use weighted_cpuload()
4022 * which is not scaled with the cpu power.
4024 if (capacity && rq->nr_running == 1 && wl > imbalance)
4025 continue;
4028 * For the load comparisons with the other cpu's, consider
4029 * the weighted_cpuload() scaled with the cpu power, so that
4030 * the load can be moved away from the cpu that is potentially
4031 * running at a lower capacity.
4033 wl = (wl * SCHED_POWER_SCALE) / power;
4035 if (wl > max_load) {
4036 max_load = wl;
4037 busiest = rq;
4041 return busiest;
4045 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4046 * so long as it is large enough.
4048 #define MAX_PINNED_INTERVAL 512
4050 /* Working cpumask for load_balance and load_balance_newidle. */
4051 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4053 static int need_active_balance(struct sched_domain *sd, int idle,
4054 int busiest_cpu, int this_cpu)
4056 if (idle == CPU_NEWLY_IDLE) {
4059 * ASYM_PACKING needs to force migrate tasks from busy but
4060 * higher numbered CPUs in order to pack all tasks in the
4061 * lowest numbered CPUs.
4063 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4064 return 1;
4067 * The only task running in a non-idle cpu can be moved to this
4068 * cpu in an attempt to completely freeup the other CPU
4069 * package.
4071 * The package power saving logic comes from
4072 * find_busiest_group(). If there are no imbalance, then
4073 * f_b_g() will return NULL. However when sched_mc={1,2} then
4074 * f_b_g() will select a group from which a running task may be
4075 * pulled to this cpu in order to make the other package idle.
4076 * If there is no opportunity to make a package idle and if
4077 * there are no imbalance, then f_b_g() will return NULL and no
4078 * action will be taken in load_balance_newidle().
4080 * Under normal task pull operation due to imbalance, there
4081 * will be more than one task in the source run queue and
4082 * move_tasks() will succeed. ld_moved will be true and this
4083 * active balance code will not be triggered.
4085 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4086 return 0;
4089 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4092 static int active_load_balance_cpu_stop(void *data);
4095 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4096 * tasks if there is an imbalance.
4098 static int load_balance(int this_cpu, struct rq *this_rq,
4099 struct sched_domain *sd, enum cpu_idle_type idle,
4100 int *balance)
4102 int ld_moved, all_pinned = 0, active_balance = 0;
4103 struct sched_group *group;
4104 unsigned long imbalance;
4105 struct rq *busiest;
4106 unsigned long flags;
4107 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4109 cpumask_copy(cpus, cpu_active_mask);
4111 schedstat_inc(sd, lb_count[idle]);
4113 redo:
4114 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4115 cpus, balance);
4117 if (*balance == 0)
4118 goto out_balanced;
4120 if (!group) {
4121 schedstat_inc(sd, lb_nobusyg[idle]);
4122 goto out_balanced;
4125 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4126 if (!busiest) {
4127 schedstat_inc(sd, lb_nobusyq[idle]);
4128 goto out_balanced;
4131 BUG_ON(busiest == this_rq);
4133 schedstat_add(sd, lb_imbalance[idle], imbalance);
4135 ld_moved = 0;
4136 if (busiest->nr_running > 1) {
4138 * Attempt to move tasks. If find_busiest_group has found
4139 * an imbalance but busiest->nr_running <= 1, the group is
4140 * still unbalanced. ld_moved simply stays zero, so it is
4141 * correctly treated as an imbalance.
4143 all_pinned = 1;
4144 local_irq_save(flags);
4145 double_rq_lock(this_rq, busiest);
4146 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4147 imbalance, sd, idle, &all_pinned);
4148 double_rq_unlock(this_rq, busiest);
4149 local_irq_restore(flags);
4152 * some other cpu did the load balance for us.
4154 if (ld_moved && this_cpu != smp_processor_id())
4155 resched_cpu(this_cpu);
4157 /* All tasks on this runqueue were pinned by CPU affinity */
4158 if (unlikely(all_pinned)) {
4159 cpumask_clear_cpu(cpu_of(busiest), cpus);
4160 if (!cpumask_empty(cpus))
4161 goto redo;
4162 goto out_balanced;
4166 if (!ld_moved) {
4167 schedstat_inc(sd, lb_failed[idle]);
4169 * Increment the failure counter only on periodic balance.
4170 * We do not want newidle balance, which can be very
4171 * frequent, pollute the failure counter causing
4172 * excessive cache_hot migrations and active balances.
4174 if (idle != CPU_NEWLY_IDLE)
4175 sd->nr_balance_failed++;
4177 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4178 raw_spin_lock_irqsave(&busiest->lock, flags);
4180 /* don't kick the active_load_balance_cpu_stop,
4181 * if the curr task on busiest cpu can't be
4182 * moved to this_cpu
4184 if (!cpumask_test_cpu(this_cpu,
4185 tsk_cpus_allowed(busiest->curr))) {
4186 raw_spin_unlock_irqrestore(&busiest->lock,
4187 flags);
4188 all_pinned = 1;
4189 goto out_one_pinned;
4193 * ->active_balance synchronizes accesses to
4194 * ->active_balance_work. Once set, it's cleared
4195 * only after active load balance is finished.
4197 if (!busiest->active_balance) {
4198 busiest->active_balance = 1;
4199 busiest->push_cpu = this_cpu;
4200 active_balance = 1;
4202 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4204 if (active_balance)
4205 stop_one_cpu_nowait(cpu_of(busiest),
4206 active_load_balance_cpu_stop, busiest,
4207 &busiest->active_balance_work);
4210 * We've kicked active balancing, reset the failure
4211 * counter.
4213 sd->nr_balance_failed = sd->cache_nice_tries+1;
4215 } else
4216 sd->nr_balance_failed = 0;
4218 if (likely(!active_balance)) {
4219 /* We were unbalanced, so reset the balancing interval */
4220 sd->balance_interval = sd->min_interval;
4221 } else {
4223 * If we've begun active balancing, start to back off. This
4224 * case may not be covered by the all_pinned logic if there
4225 * is only 1 task on the busy runqueue (because we don't call
4226 * move_tasks).
4228 if (sd->balance_interval < sd->max_interval)
4229 sd->balance_interval *= 2;
4232 goto out;
4234 out_balanced:
4235 schedstat_inc(sd, lb_balanced[idle]);
4237 sd->nr_balance_failed = 0;
4239 out_one_pinned:
4240 /* tune up the balancing interval */
4241 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4242 (sd->balance_interval < sd->max_interval))
4243 sd->balance_interval *= 2;
4245 ld_moved = 0;
4246 out:
4247 return ld_moved;
4251 * idle_balance is called by schedule() if this_cpu is about to become
4252 * idle. Attempts to pull tasks from other CPUs.
4254 static void idle_balance(int this_cpu, struct rq *this_rq)
4256 struct sched_domain *sd;
4257 int pulled_task = 0;
4258 unsigned long next_balance = jiffies + HZ;
4260 this_rq->idle_stamp = this_rq->clock;
4262 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4263 return;
4266 * Drop the rq->lock, but keep IRQ/preempt disabled.
4268 raw_spin_unlock(&this_rq->lock);
4270 update_shares(this_cpu);
4271 rcu_read_lock();
4272 for_each_domain(this_cpu, sd) {
4273 unsigned long interval;
4274 int balance = 1;
4276 if (!(sd->flags & SD_LOAD_BALANCE))
4277 continue;
4279 if (sd->flags & SD_BALANCE_NEWIDLE) {
4280 /* If we've pulled tasks over stop searching: */
4281 pulled_task = load_balance(this_cpu, this_rq,
4282 sd, CPU_NEWLY_IDLE, &balance);
4285 interval = msecs_to_jiffies(sd->balance_interval);
4286 if (time_after(next_balance, sd->last_balance + interval))
4287 next_balance = sd->last_balance + interval;
4288 if (pulled_task) {
4289 this_rq->idle_stamp = 0;
4290 break;
4293 rcu_read_unlock();
4295 raw_spin_lock(&this_rq->lock);
4297 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4299 * We are going idle. next_balance may be set based on
4300 * a busy processor. So reset next_balance.
4302 this_rq->next_balance = next_balance;
4307 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4308 * running tasks off the busiest CPU onto idle CPUs. It requires at
4309 * least 1 task to be running on each physical CPU where possible, and
4310 * avoids physical / logical imbalances.
4312 static int active_load_balance_cpu_stop(void *data)
4314 struct rq *busiest_rq = data;
4315 int busiest_cpu = cpu_of(busiest_rq);
4316 int target_cpu = busiest_rq->push_cpu;
4317 struct rq *target_rq = cpu_rq(target_cpu);
4318 struct sched_domain *sd;
4320 raw_spin_lock_irq(&busiest_rq->lock);
4322 /* make sure the requested cpu hasn't gone down in the meantime */
4323 if (unlikely(busiest_cpu != smp_processor_id() ||
4324 !busiest_rq->active_balance))
4325 goto out_unlock;
4327 /* Is there any task to move? */
4328 if (busiest_rq->nr_running <= 1)
4329 goto out_unlock;
4332 * This condition is "impossible", if it occurs
4333 * we need to fix it. Originally reported by
4334 * Bjorn Helgaas on a 128-cpu setup.
4336 BUG_ON(busiest_rq == target_rq);
4338 /* move a task from busiest_rq to target_rq */
4339 double_lock_balance(busiest_rq, target_rq);
4341 /* Search for an sd spanning us and the target CPU. */
4342 rcu_read_lock();
4343 for_each_domain(target_cpu, sd) {
4344 if ((sd->flags & SD_LOAD_BALANCE) &&
4345 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4346 break;
4349 if (likely(sd)) {
4350 schedstat_inc(sd, alb_count);
4352 if (move_one_task(target_rq, target_cpu, busiest_rq,
4353 sd, CPU_IDLE))
4354 schedstat_inc(sd, alb_pushed);
4355 else
4356 schedstat_inc(sd, alb_failed);
4358 rcu_read_unlock();
4359 double_unlock_balance(busiest_rq, target_rq);
4360 out_unlock:
4361 busiest_rq->active_balance = 0;
4362 raw_spin_unlock_irq(&busiest_rq->lock);
4363 return 0;
4366 #ifdef CONFIG_NO_HZ
4368 * idle load balancing details
4369 * - One of the idle CPUs nominates itself as idle load_balancer, while
4370 * entering idle.
4371 * - This idle load balancer CPU will also go into tickless mode when
4372 * it is idle, just like all other idle CPUs
4373 * - When one of the busy CPUs notice that there may be an idle rebalancing
4374 * needed, they will kick the idle load balancer, which then does idle
4375 * load balancing for all the idle CPUs.
4377 static struct {
4378 atomic_t load_balancer;
4379 atomic_t first_pick_cpu;
4380 atomic_t second_pick_cpu;
4381 cpumask_var_t idle_cpus_mask;
4382 cpumask_var_t grp_idle_mask;
4383 unsigned long next_balance; /* in jiffy units */
4384 } nohz ____cacheline_aligned;
4386 int get_nohz_load_balancer(void)
4388 return atomic_read(&nohz.load_balancer);
4391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4393 * lowest_flag_domain - Return lowest sched_domain containing flag.
4394 * @cpu: The cpu whose lowest level of sched domain is to
4395 * be returned.
4396 * @flag: The flag to check for the lowest sched_domain
4397 * for the given cpu.
4399 * Returns the lowest sched_domain of a cpu which contains the given flag.
4401 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4403 struct sched_domain *sd;
4405 for_each_domain(cpu, sd)
4406 if (sd->flags & flag)
4407 break;
4409 return sd;
4413 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4414 * @cpu: The cpu whose domains we're iterating over.
4415 * @sd: variable holding the value of the power_savings_sd
4416 * for cpu.
4417 * @flag: The flag to filter the sched_domains to be iterated.
4419 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4420 * set, starting from the lowest sched_domain to the highest.
4422 #define for_each_flag_domain(cpu, sd, flag) \
4423 for (sd = lowest_flag_domain(cpu, flag); \
4424 (sd && (sd->flags & flag)); sd = sd->parent)
4427 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4428 * @ilb_group: group to be checked for semi-idleness
4430 * Returns: 1 if the group is semi-idle. 0 otherwise.
4432 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4433 * and atleast one non-idle CPU. This helper function checks if the given
4434 * sched_group is semi-idle or not.
4436 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4438 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
4439 sched_group_cpus(ilb_group));
4442 * A sched_group is semi-idle when it has atleast one busy cpu
4443 * and atleast one idle cpu.
4445 if (cpumask_empty(nohz.grp_idle_mask))
4446 return 0;
4448 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
4449 return 0;
4451 return 1;
4454 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4455 * @cpu: The cpu which is nominating a new idle_load_balancer.
4457 * Returns: Returns the id of the idle load balancer if it exists,
4458 * Else, returns >= nr_cpu_ids.
4460 * This algorithm picks the idle load balancer such that it belongs to a
4461 * semi-idle powersavings sched_domain. The idea is to try and avoid
4462 * completely idle packages/cores just for the purpose of idle load balancing
4463 * when there are other idle cpu's which are better suited for that job.
4465 static int find_new_ilb(int cpu)
4467 struct sched_domain *sd;
4468 struct sched_group *ilb_group;
4469 int ilb = nr_cpu_ids;
4472 * Have idle load balancer selection from semi-idle packages only
4473 * when power-aware load balancing is enabled
4475 if (!(sched_smt_power_savings || sched_mc_power_savings))
4476 goto out_done;
4479 * Optimize for the case when we have no idle CPUs or only one
4480 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4482 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4483 goto out_done;
4485 rcu_read_lock();
4486 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4487 ilb_group = sd->groups;
4489 do {
4490 if (is_semi_idle_group(ilb_group)) {
4491 ilb = cpumask_first(nohz.grp_idle_mask);
4492 goto unlock;
4495 ilb_group = ilb_group->next;
4497 } while (ilb_group != sd->groups);
4499 unlock:
4500 rcu_read_unlock();
4502 out_done:
4503 return ilb;
4505 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4506 static inline int find_new_ilb(int call_cpu)
4508 return nr_cpu_ids;
4510 #endif
4513 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4514 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4515 * CPU (if there is one).
4517 static void nohz_balancer_kick(int cpu)
4519 int ilb_cpu;
4521 nohz.next_balance++;
4523 ilb_cpu = get_nohz_load_balancer();
4525 if (ilb_cpu >= nr_cpu_ids) {
4526 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4527 if (ilb_cpu >= nr_cpu_ids)
4528 return;
4531 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4532 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4534 smp_mb();
4536 * Use smp_send_reschedule() instead of resched_cpu().
4537 * This way we generate a sched IPI on the target cpu which
4538 * is idle. And the softirq performing nohz idle load balance
4539 * will be run before returning from the IPI.
4541 smp_send_reschedule(ilb_cpu);
4543 return;
4547 * This routine will try to nominate the ilb (idle load balancing)
4548 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4549 * load balancing on behalf of all those cpus.
4551 * When the ilb owner becomes busy, we will not have new ilb owner until some
4552 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4553 * idle load balancing by kicking one of the idle CPUs.
4555 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4556 * ilb owner CPU in future (when there is a need for idle load balancing on
4557 * behalf of all idle CPUs).
4559 void select_nohz_load_balancer(int stop_tick)
4561 int cpu = smp_processor_id();
4563 if (stop_tick) {
4564 if (!cpu_active(cpu)) {
4565 if (atomic_read(&nohz.load_balancer) != cpu)
4566 return;
4569 * If we are going offline and still the leader,
4570 * give up!
4572 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4573 nr_cpu_ids) != cpu)
4574 BUG();
4576 return;
4579 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4581 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4582 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4583 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4584 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4586 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
4587 int new_ilb;
4589 /* make me the ilb owner */
4590 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4591 cpu) != nr_cpu_ids)
4592 return;
4595 * Check to see if there is a more power-efficient
4596 * ilb.
4598 new_ilb = find_new_ilb(cpu);
4599 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4600 atomic_set(&nohz.load_balancer, nr_cpu_ids);
4601 resched_cpu(new_ilb);
4602 return;
4604 return;
4606 } else {
4607 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4608 return;
4610 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4612 if (atomic_read(&nohz.load_balancer) == cpu)
4613 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4614 nr_cpu_ids) != cpu)
4615 BUG();
4617 return;
4619 #endif
4621 static DEFINE_SPINLOCK(balancing);
4623 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4626 * Scale the max load_balance interval with the number of CPUs in the system.
4627 * This trades load-balance latency on larger machines for less cross talk.
4629 static void update_max_interval(void)
4631 max_load_balance_interval = HZ*num_online_cpus()/10;
4635 * It checks each scheduling domain to see if it is due to be balanced,
4636 * and initiates a balancing operation if so.
4638 * Balancing parameters are set up in arch_init_sched_domains.
4640 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4642 int balance = 1;
4643 struct rq *rq = cpu_rq(cpu);
4644 unsigned long interval;
4645 struct sched_domain *sd;
4646 /* Earliest time when we have to do rebalance again */
4647 unsigned long next_balance = jiffies + 60*HZ;
4648 int update_next_balance = 0;
4649 int need_serialize;
4651 update_shares(cpu);
4653 rcu_read_lock();
4654 for_each_domain(cpu, sd) {
4655 if (!(sd->flags & SD_LOAD_BALANCE))
4656 continue;
4658 interval = sd->balance_interval;
4659 if (idle != CPU_IDLE)
4660 interval *= sd->busy_factor;
4662 /* scale ms to jiffies */
4663 interval = msecs_to_jiffies(interval);
4664 interval = clamp(interval, 1UL, max_load_balance_interval);
4666 need_serialize = sd->flags & SD_SERIALIZE;
4668 if (need_serialize) {
4669 if (!spin_trylock(&balancing))
4670 goto out;
4673 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4674 if (load_balance(cpu, rq, sd, idle, &balance)) {
4676 * We've pulled tasks over so either we're no
4677 * longer idle.
4679 idle = CPU_NOT_IDLE;
4681 sd->last_balance = jiffies;
4683 if (need_serialize)
4684 spin_unlock(&balancing);
4685 out:
4686 if (time_after(next_balance, sd->last_balance + interval)) {
4687 next_balance = sd->last_balance + interval;
4688 update_next_balance = 1;
4692 * Stop the load balance at this level. There is another
4693 * CPU in our sched group which is doing load balancing more
4694 * actively.
4696 if (!balance)
4697 break;
4699 rcu_read_unlock();
4702 * next_balance will be updated only when there is a need.
4703 * When the cpu is attached to null domain for ex, it will not be
4704 * updated.
4706 if (likely(update_next_balance))
4707 rq->next_balance = next_balance;
4710 #ifdef CONFIG_NO_HZ
4712 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4713 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4715 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4717 struct rq *this_rq = cpu_rq(this_cpu);
4718 struct rq *rq;
4719 int balance_cpu;
4721 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4722 return;
4724 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4725 if (balance_cpu == this_cpu)
4726 continue;
4729 * If this cpu gets work to do, stop the load balancing
4730 * work being done for other cpus. Next load
4731 * balancing owner will pick it up.
4733 if (need_resched()) {
4734 this_rq->nohz_balance_kick = 0;
4735 break;
4738 raw_spin_lock_irq(&this_rq->lock);
4739 update_rq_clock(this_rq);
4740 update_idle_cpu_load(this_rq);
4741 raw_spin_unlock_irq(&this_rq->lock);
4743 rebalance_domains(balance_cpu, CPU_IDLE);
4745 rq = cpu_rq(balance_cpu);
4746 if (time_after(this_rq->next_balance, rq->next_balance))
4747 this_rq->next_balance = rq->next_balance;
4749 nohz.next_balance = this_rq->next_balance;
4750 this_rq->nohz_balance_kick = 0;
4754 * Current heuristic for kicking the idle load balancer
4755 * - first_pick_cpu is the one of the busy CPUs. It will kick
4756 * idle load balancer when it has more than one process active. This
4757 * eliminates the need for idle load balancing altogether when we have
4758 * only one running process in the system (common case).
4759 * - If there are more than one busy CPU, idle load balancer may have
4760 * to run for active_load_balance to happen (i.e., two busy CPUs are
4761 * SMT or core siblings and can run better if they move to different
4762 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4763 * which will kick idle load balancer as soon as it has any load.
4765 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4767 unsigned long now = jiffies;
4768 int ret;
4769 int first_pick_cpu, second_pick_cpu;
4771 if (time_before(now, nohz.next_balance))
4772 return 0;
4774 if (idle_cpu(cpu))
4775 return 0;
4777 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4778 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4780 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4781 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4782 return 0;
4784 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4785 if (ret == nr_cpu_ids || ret == cpu) {
4786 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4787 if (rq->nr_running > 1)
4788 return 1;
4789 } else {
4790 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4791 if (ret == nr_cpu_ids || ret == cpu) {
4792 if (rq->nr_running)
4793 return 1;
4796 return 0;
4798 #else
4799 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4800 #endif
4803 * run_rebalance_domains is triggered when needed from the scheduler tick.
4804 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4806 static void run_rebalance_domains(struct softirq_action *h)
4808 int this_cpu = smp_processor_id();
4809 struct rq *this_rq = cpu_rq(this_cpu);
4810 enum cpu_idle_type idle = this_rq->idle_balance ?
4811 CPU_IDLE : CPU_NOT_IDLE;
4813 rebalance_domains(this_cpu, idle);
4816 * If this cpu has a pending nohz_balance_kick, then do the
4817 * balancing on behalf of the other idle cpus whose ticks are
4818 * stopped.
4820 nohz_idle_balance(this_cpu, idle);
4823 static inline int on_null_domain(int cpu)
4825 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4829 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4831 static inline void trigger_load_balance(struct rq *rq, int cpu)
4833 /* Don't need to rebalance while attached to NULL domain */
4834 if (time_after_eq(jiffies, rq->next_balance) &&
4835 likely(!on_null_domain(cpu)))
4836 raise_softirq(SCHED_SOFTIRQ);
4837 #ifdef CONFIG_NO_HZ
4838 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4839 nohz_balancer_kick(cpu);
4840 #endif
4843 static void rq_online_fair(struct rq *rq)
4845 update_sysctl();
4848 static void rq_offline_fair(struct rq *rq)
4850 update_sysctl();
4853 #else /* CONFIG_SMP */
4856 * on UP we do not need to balance between CPUs:
4858 static inline void idle_balance(int cpu, struct rq *rq)
4862 #endif /* CONFIG_SMP */
4865 * scheduler tick hitting a task of our scheduling class:
4867 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4869 struct cfs_rq *cfs_rq;
4870 struct sched_entity *se = &curr->se;
4872 for_each_sched_entity(se) {
4873 cfs_rq = cfs_rq_of(se);
4874 entity_tick(cfs_rq, se, queued);
4879 * called on fork with the child task as argument from the parent's context
4880 * - child not yet on the tasklist
4881 * - preemption disabled
4883 static void task_fork_fair(struct task_struct *p)
4885 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4886 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4887 int this_cpu = smp_processor_id();
4888 struct rq *rq = this_rq();
4889 unsigned long flags;
4891 raw_spin_lock_irqsave(&rq->lock, flags);
4893 update_rq_clock(rq);
4896 * Not only the cpu but also the task_group of the parent might have
4897 * been changed after parent->se.parent,cfs_rq were copied to
4898 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
4899 * of child point to valid ones.
4901 rcu_read_lock();
4902 __set_task_cpu(p, this_cpu);
4903 rcu_read_unlock();
4905 update_curr(cfs_rq);
4907 if (curr)
4908 se->vruntime = curr->vruntime;
4909 place_entity(cfs_rq, se, 1);
4911 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4913 * Upon rescheduling, sched_class::put_prev_task() will place
4914 * 'current' within the tree based on its new key value.
4916 swap(curr->vruntime, se->vruntime);
4917 resched_task(rq->curr);
4920 se->vruntime -= cfs_rq->min_vruntime;
4922 raw_spin_unlock_irqrestore(&rq->lock, flags);
4926 * Priority of the task has changed. Check to see if we preempt
4927 * the current task.
4929 static void
4930 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4932 if (!p->se.on_rq)
4933 return;
4936 * Reschedule if we are currently running on this runqueue and
4937 * our priority decreased, or if we are not currently running on
4938 * this runqueue and our priority is higher than the current's
4940 if (rq->curr == p) {
4941 if (p->prio > oldprio)
4942 resched_task(rq->curr);
4943 } else
4944 check_preempt_curr(rq, p, 0);
4947 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4949 struct sched_entity *se = &p->se;
4950 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4953 * Ensure the task's vruntime is normalized, so that when its
4954 * switched back to the fair class the enqueue_entity(.flags=0) will
4955 * do the right thing.
4957 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4958 * have normalized the vruntime, if it was !on_rq, then only when
4959 * the task is sleeping will it still have non-normalized vruntime.
4961 if (!se->on_rq && p->state != TASK_RUNNING) {
4963 * Fix up our vruntime so that the current sleep doesn't
4964 * cause 'unlimited' sleep bonus.
4966 place_entity(cfs_rq, se, 0);
4967 se->vruntime -= cfs_rq->min_vruntime;
4972 * We switched to the sched_fair class.
4974 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4976 if (!p->se.on_rq)
4977 return;
4980 * We were most likely switched from sched_rt, so
4981 * kick off the schedule if running, otherwise just see
4982 * if we can still preempt the current task.
4984 if (rq->curr == p)
4985 resched_task(rq->curr);
4986 else
4987 check_preempt_curr(rq, p, 0);
4990 /* Account for a task changing its policy or group.
4992 * This routine is mostly called to set cfs_rq->curr field when a task
4993 * migrates between groups/classes.
4995 static void set_curr_task_fair(struct rq *rq)
4997 struct sched_entity *se = &rq->curr->se;
4999 for_each_sched_entity(se) {
5000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5002 set_next_entity(cfs_rq, se);
5003 /* ensure bandwidth has been allocated on our new cfs_rq */
5004 account_cfs_rq_runtime(cfs_rq, 0);
5008 #ifdef CONFIG_FAIR_GROUP_SCHED
5009 static void task_move_group_fair(struct task_struct *p, int on_rq)
5012 * If the task was not on the rq at the time of this cgroup movement
5013 * it must have been asleep, sleeping tasks keep their ->vruntime
5014 * absolute on their old rq until wakeup (needed for the fair sleeper
5015 * bonus in place_entity()).
5017 * If it was on the rq, we've just 'preempted' it, which does convert
5018 * ->vruntime to a relative base.
5020 * Make sure both cases convert their relative position when migrating
5021 * to another cgroup's rq. This does somewhat interfere with the
5022 * fair sleeper stuff for the first placement, but who cares.
5024 if (!on_rq)
5025 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5026 set_task_rq(p, task_cpu(p));
5027 if (!on_rq)
5028 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5030 #endif
5032 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5034 struct sched_entity *se = &task->se;
5035 unsigned int rr_interval = 0;
5038 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5039 * idle runqueue:
5041 if (rq->cfs.load.weight)
5042 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
5044 return rr_interval;
5048 * All the scheduling class methods:
5050 static const struct sched_class fair_sched_class = {
5051 .next = &idle_sched_class,
5052 .enqueue_task = enqueue_task_fair,
5053 .dequeue_task = dequeue_task_fair,
5054 .yield_task = yield_task_fair,
5055 .yield_to_task = yield_to_task_fair,
5057 .check_preempt_curr = check_preempt_wakeup,
5059 .pick_next_task = pick_next_task_fair,
5060 .put_prev_task = put_prev_task_fair,
5062 #ifdef CONFIG_SMP
5063 .select_task_rq = select_task_rq_fair,
5065 .rq_online = rq_online_fair,
5066 .rq_offline = rq_offline_fair,
5068 .task_waking = task_waking_fair,
5069 #endif
5071 .set_curr_task = set_curr_task_fair,
5072 .task_tick = task_tick_fair,
5073 .task_fork = task_fork_fair,
5075 .prio_changed = prio_changed_fair,
5076 .switched_from = switched_from_fair,
5077 .switched_to = switched_to_fair,
5079 .get_rr_interval = get_rr_interval_fair,
5081 #ifdef CONFIG_FAIR_GROUP_SCHED
5082 .task_move_group = task_move_group_fair,
5083 #endif
5086 #ifdef CONFIG_SCHED_DEBUG
5087 static void print_cfs_stats(struct seq_file *m, int cpu)
5089 struct cfs_rq *cfs_rq;
5091 rcu_read_lock();
5092 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5093 print_cfs_rq(m, cpu, cfs_rq);
5094 rcu_read_unlock();
5096 #endif