2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS
= 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS
= 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED
= 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING
= 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING
= 1 << 4, /* highpri works on queue */
56 WORKER_STARTED
= 1 << 0, /* started */
57 WORKER_DIE
= 1 << 1, /* die die die */
58 WORKER_IDLE
= 1 << 2, /* is idle */
59 WORKER_PREP
= 1 << 3, /* preparing to run works */
60 WORKER_ROGUE
= 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND
= 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE
= 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND
= 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING
= WORKER_PREP
| WORKER_ROGUE
| WORKER_REBIND
|
66 WORKER_CPU_INTENSIVE
| WORKER_UNBOUND
,
68 /* gcwq->trustee_state */
69 TRUSTEE_START
= 0, /* start */
70 TRUSTEE_IN_CHARGE
= 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER
= 2, /* butcher workers */
72 TRUSTEE_RELEASE
= 3, /* release workers */
73 TRUSTEE_DONE
= 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER
= 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE
= 1 << BUSY_WORKER_HASH_ORDER
,
77 BUSY_WORKER_HASH_MASK
= BUSY_WORKER_HASH_SIZE
- 1,
79 MAX_IDLE_WORKERS_RATIO
= 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT
= 300 * HZ
, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT
= HZ
/ 100 >= 2 ? HZ
/ 100 : 2,
83 /* call for help after 10ms
85 MAYDAY_INTERVAL
= HZ
/ 10, /* and then every 100ms */
86 CREATE_COOLDOWN
= HZ
, /* time to breath after fail */
87 TRUSTEE_COOLDOWN
= HZ
/ 10, /* for trustee draining */
90 * Rescue workers are used only on emergencies and shared by
93 RESCUER_NICE_LEVEL
= -20,
97 * Structure fields follow one of the following exclusion rules.
99 * I: Modifiable by initialization/destruction paths and read-only for
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
105 * L: gcwq->lock protected. Access with gcwq->lock held.
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
112 * F: wq->flush_mutex protected.
114 * W: workqueue_lock protected.
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
124 /* on idle list while idle, on busy hash table while busy */
126 struct list_head entry
; /* L: while idle */
127 struct hlist_node hentry
; /* L: while busy */
130 struct work_struct
*current_work
; /* L: work being processed */
131 work_func_t current_func
; /* L: current_work's fn */
132 struct cpu_workqueue_struct
*current_cwq
; /* L: current_work's cwq */
133 struct list_head scheduled
; /* L: scheduled works */
134 struct task_struct
*task
; /* I: worker task */
135 struct global_cwq
*gcwq
; /* I: the associated gcwq */
136 /* 64 bytes boundary on 64bit, 32 on 32bit */
137 unsigned long last_active
; /* L: last active timestamp */
138 unsigned int flags
; /* X: flags */
139 int id
; /* I: worker id */
140 struct work_struct rebind_work
; /* L: rebind worker to cpu */
144 * Global per-cpu workqueue. There's one and only one for each cpu
145 * and all works are queued and processed here regardless of their
149 spinlock_t lock
; /* the gcwq lock */
150 struct list_head worklist
; /* L: list of pending works */
151 unsigned int cpu
; /* I: the associated cpu */
152 unsigned int flags
; /* L: GCWQ_* flags */
154 int nr_workers
; /* L: total number of workers */
155 int nr_idle
; /* L: currently idle ones */
157 /* workers are chained either in the idle_list or busy_hash */
158 struct list_head idle_list
; /* X: list of idle workers */
159 struct hlist_head busy_hash
[BUSY_WORKER_HASH_SIZE
];
160 /* L: hash of busy workers */
162 struct timer_list idle_timer
; /* L: worker idle timeout */
163 struct timer_list mayday_timer
; /* L: SOS timer for dworkers */
165 struct ida worker_ida
; /* L: for worker IDs */
167 struct task_struct
*trustee
; /* L: for gcwq shutdown */
168 unsigned int trustee_state
; /* L: trustee state */
169 wait_queue_head_t trustee_wait
; /* trustee wait */
170 struct worker
*first_idle
; /* L: first idle worker */
171 } ____cacheline_aligned_in_smp
;
174 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
175 * work_struct->data are used for flags and thus cwqs need to be
176 * aligned at two's power of the number of flag bits.
178 struct cpu_workqueue_struct
{
179 struct global_cwq
*gcwq
; /* I: the associated gcwq */
180 struct workqueue_struct
*wq
; /* I: the owning workqueue */
181 int work_color
; /* L: current color */
182 int flush_color
; /* L: flushing color */
183 int nr_in_flight
[WORK_NR_COLORS
];
184 /* L: nr of in_flight works */
185 int nr_active
; /* L: nr of active works */
186 int max_active
; /* L: max active works */
187 struct list_head delayed_works
; /* L: delayed works */
191 * Structure used to wait for workqueue flush.
194 struct list_head list
; /* F: list of flushers */
195 int flush_color
; /* F: flush color waiting for */
196 struct completion done
; /* flush completion */
200 * All cpumasks are assumed to be always set on UP and thus can't be
201 * used to determine whether there's something to be done.
204 typedef cpumask_var_t mayday_mask_t
;
205 #define mayday_test_and_set_cpu(cpu, mask) \
206 cpumask_test_and_set_cpu((cpu), (mask))
207 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
208 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
209 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
210 #define free_mayday_mask(mask) free_cpumask_var((mask))
212 typedef unsigned long mayday_mask_t
;
213 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
214 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
215 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
216 #define alloc_mayday_mask(maskp, gfp) true
217 #define free_mayday_mask(mask) do { } while (0)
221 * The externally visible workqueue abstraction is an array of
222 * per-CPU workqueues:
224 struct workqueue_struct
{
225 unsigned int flags
; /* W: WQ_* flags */
227 struct cpu_workqueue_struct __percpu
*pcpu
;
228 struct cpu_workqueue_struct
*single
;
230 } cpu_wq
; /* I: cwq's */
231 struct list_head list
; /* W: list of all workqueues */
233 struct mutex flush_mutex
; /* protects wq flushing */
234 int work_color
; /* F: current work color */
235 int flush_color
; /* F: current flush color */
236 atomic_t nr_cwqs_to_flush
; /* flush in progress */
237 struct wq_flusher
*first_flusher
; /* F: first flusher */
238 struct list_head flusher_queue
; /* F: flush waiters */
239 struct list_head flusher_overflow
; /* F: flush overflow list */
241 mayday_mask_t mayday_mask
; /* cpus requesting rescue */
242 struct worker
*rescuer
; /* I: rescue worker */
244 int nr_drainers
; /* W: drain in progress */
245 int saved_max_active
; /* W: saved cwq max_active */
246 const char *name
; /* I: workqueue name */
247 #ifdef CONFIG_LOCKDEP
248 struct lockdep_map lockdep_map
;
252 struct workqueue_struct
*system_wq __read_mostly
;
253 struct workqueue_struct
*system_long_wq __read_mostly
;
254 struct workqueue_struct
*system_nrt_wq __read_mostly
;
255 struct workqueue_struct
*system_unbound_wq __read_mostly
;
256 struct workqueue_struct
*system_freezable_wq __read_mostly
;
257 struct workqueue_struct
*system_nrt_freezable_wq __read_mostly
;
258 EXPORT_SYMBOL_GPL(system_wq
);
259 EXPORT_SYMBOL_GPL(system_long_wq
);
260 EXPORT_SYMBOL_GPL(system_nrt_wq
);
261 EXPORT_SYMBOL_GPL(system_unbound_wq
);
262 EXPORT_SYMBOL_GPL(system_freezable_wq
);
263 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq
);
265 #define CREATE_TRACE_POINTS
266 #include <trace/events/workqueue.h>
268 #define for_each_busy_worker(worker, i, pos, gcwq) \
269 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
270 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
272 static inline int __next_gcwq_cpu(int cpu
, const struct cpumask
*mask
,
275 if (cpu
< nr_cpu_ids
) {
277 cpu
= cpumask_next(cpu
, mask
);
278 if (cpu
< nr_cpu_ids
)
282 return WORK_CPU_UNBOUND
;
284 return WORK_CPU_NONE
;
287 static inline int __next_wq_cpu(int cpu
, const struct cpumask
*mask
,
288 struct workqueue_struct
*wq
)
290 return __next_gcwq_cpu(cpu
, mask
, !(wq
->flags
& WQ_UNBOUND
) ? 1 : 2);
296 * An extra gcwq is defined for an invalid cpu number
297 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
298 * specific CPU. The following iterators are similar to
299 * for_each_*_cpu() iterators but also considers the unbound gcwq.
301 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
302 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
303 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
304 * WORK_CPU_UNBOUND for unbound workqueues
306 #define for_each_gcwq_cpu(cpu) \
307 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
308 (cpu) < WORK_CPU_NONE; \
309 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
311 #define for_each_online_gcwq_cpu(cpu) \
312 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
313 (cpu) < WORK_CPU_NONE; \
314 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
316 #define for_each_cwq_cpu(cpu, wq) \
317 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
318 (cpu) < WORK_CPU_NONE; \
319 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
321 #ifdef CONFIG_DEBUG_OBJECTS_WORK
323 static struct debug_obj_descr work_debug_descr
;
325 static void *work_debug_hint(void *addr
)
327 return ((struct work_struct
*) addr
)->func
;
331 * fixup_init is called when:
332 * - an active object is initialized
334 static int work_fixup_init(void *addr
, enum debug_obj_state state
)
336 struct work_struct
*work
= addr
;
339 case ODEBUG_STATE_ACTIVE
:
340 cancel_work_sync(work
);
341 debug_object_init(work
, &work_debug_descr
);
349 * fixup_activate is called when:
350 * - an active object is activated
351 * - an unknown object is activated (might be a statically initialized object)
353 static int work_fixup_activate(void *addr
, enum debug_obj_state state
)
355 struct work_struct
*work
= addr
;
359 case ODEBUG_STATE_NOTAVAILABLE
:
361 * This is not really a fixup. The work struct was
362 * statically initialized. We just make sure that it
363 * is tracked in the object tracker.
365 if (test_bit(WORK_STRUCT_STATIC_BIT
, work_data_bits(work
))) {
366 debug_object_init(work
, &work_debug_descr
);
367 debug_object_activate(work
, &work_debug_descr
);
373 case ODEBUG_STATE_ACTIVE
:
382 * fixup_free is called when:
383 * - an active object is freed
385 static int work_fixup_free(void *addr
, enum debug_obj_state state
)
387 struct work_struct
*work
= addr
;
390 case ODEBUG_STATE_ACTIVE
:
391 cancel_work_sync(work
);
392 debug_object_free(work
, &work_debug_descr
);
399 static struct debug_obj_descr work_debug_descr
= {
400 .name
= "work_struct",
401 .debug_hint
= work_debug_hint
,
402 .fixup_init
= work_fixup_init
,
403 .fixup_activate
= work_fixup_activate
,
404 .fixup_free
= work_fixup_free
,
407 static inline void debug_work_activate(struct work_struct
*work
)
409 debug_object_activate(work
, &work_debug_descr
);
412 static inline void debug_work_deactivate(struct work_struct
*work
)
414 debug_object_deactivate(work
, &work_debug_descr
);
417 void __init_work(struct work_struct
*work
, int onstack
)
420 debug_object_init_on_stack(work
, &work_debug_descr
);
422 debug_object_init(work
, &work_debug_descr
);
424 EXPORT_SYMBOL_GPL(__init_work
);
426 void destroy_work_on_stack(struct work_struct
*work
)
428 debug_object_free(work
, &work_debug_descr
);
430 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
433 static inline void debug_work_activate(struct work_struct
*work
) { }
434 static inline void debug_work_deactivate(struct work_struct
*work
) { }
437 /* Serializes the accesses to the list of workqueues. */
438 static DEFINE_SPINLOCK(workqueue_lock
);
439 static LIST_HEAD(workqueues
);
440 static bool workqueue_freezing
; /* W: have wqs started freezing? */
443 * The almighty global cpu workqueues. nr_running is the only field
444 * which is expected to be used frequently by other cpus via
445 * try_to_wake_up(). Put it in a separate cacheline.
447 static DEFINE_PER_CPU(struct global_cwq
, global_cwq
);
448 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t
, gcwq_nr_running
);
451 * Global cpu workqueue and nr_running counter for unbound gcwq. The
452 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
453 * workers have WORKER_UNBOUND set.
455 static struct global_cwq unbound_global_cwq
;
456 static atomic_t unbound_gcwq_nr_running
= ATOMIC_INIT(0); /* always 0 */
458 static int worker_thread(void *__worker
);
460 static struct global_cwq
*get_gcwq(unsigned int cpu
)
462 if (cpu
!= WORK_CPU_UNBOUND
)
463 return &per_cpu(global_cwq
, cpu
);
465 return &unbound_global_cwq
;
468 static atomic_t
*get_gcwq_nr_running(unsigned int cpu
)
470 if (cpu
!= WORK_CPU_UNBOUND
)
471 return &per_cpu(gcwq_nr_running
, cpu
);
473 return &unbound_gcwq_nr_running
;
476 static struct cpu_workqueue_struct
*get_cwq(unsigned int cpu
,
477 struct workqueue_struct
*wq
)
479 if (!(wq
->flags
& WQ_UNBOUND
)) {
480 if (likely(cpu
< nr_cpu_ids
)) {
482 return per_cpu_ptr(wq
->cpu_wq
.pcpu
, cpu
);
484 return wq
->cpu_wq
.single
;
487 } else if (likely(cpu
== WORK_CPU_UNBOUND
))
488 return wq
->cpu_wq
.single
;
492 static unsigned int work_color_to_flags(int color
)
494 return color
<< WORK_STRUCT_COLOR_SHIFT
;
497 static int get_work_color(struct work_struct
*work
)
499 return (*work_data_bits(work
) >> WORK_STRUCT_COLOR_SHIFT
) &
500 ((1 << WORK_STRUCT_COLOR_BITS
) - 1);
503 static int work_next_color(int color
)
505 return (color
+ 1) % WORK_NR_COLORS
;
509 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
510 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
511 * cleared and the work data contains the cpu number it was last on.
513 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
514 * cwq, cpu or clear work->data. These functions should only be
515 * called while the work is owned - ie. while the PENDING bit is set.
517 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
518 * corresponding to a work. gcwq is available once the work has been
519 * queued anywhere after initialization. cwq is available only from
520 * queueing until execution starts.
522 static inline void set_work_data(struct work_struct
*work
, unsigned long data
,
525 BUG_ON(!work_pending(work
));
526 atomic_long_set(&work
->data
, data
| flags
| work_static(work
));
529 static void set_work_cwq(struct work_struct
*work
,
530 struct cpu_workqueue_struct
*cwq
,
531 unsigned long extra_flags
)
533 set_work_data(work
, (unsigned long)cwq
,
534 WORK_STRUCT_PENDING
| WORK_STRUCT_CWQ
| extra_flags
);
537 static void set_work_cpu(struct work_struct
*work
, unsigned int cpu
)
539 set_work_data(work
, cpu
<< WORK_STRUCT_FLAG_BITS
, WORK_STRUCT_PENDING
);
542 static void clear_work_data(struct work_struct
*work
)
544 set_work_data(work
, WORK_STRUCT_NO_CPU
, 0);
547 static struct cpu_workqueue_struct
*get_work_cwq(struct work_struct
*work
)
549 unsigned long data
= atomic_long_read(&work
->data
);
551 if (data
& WORK_STRUCT_CWQ
)
552 return (void *)(data
& WORK_STRUCT_WQ_DATA_MASK
);
557 static struct global_cwq
*get_work_gcwq(struct work_struct
*work
)
559 unsigned long data
= atomic_long_read(&work
->data
);
562 if (data
& WORK_STRUCT_CWQ
)
563 return ((struct cpu_workqueue_struct
*)
564 (data
& WORK_STRUCT_WQ_DATA_MASK
))->gcwq
;
566 cpu
= data
>> WORK_STRUCT_FLAG_BITS
;
567 if (cpu
== WORK_CPU_NONE
)
570 BUG_ON(cpu
>= nr_cpu_ids
&& cpu
!= WORK_CPU_UNBOUND
);
571 return get_gcwq(cpu
);
575 * Policy functions. These define the policies on how the global
576 * worker pool is managed. Unless noted otherwise, these functions
577 * assume that they're being called with gcwq->lock held.
580 static bool __need_more_worker(struct global_cwq
*gcwq
)
582 return !atomic_read(get_gcwq_nr_running(gcwq
->cpu
)) ||
583 gcwq
->flags
& GCWQ_HIGHPRI_PENDING
;
587 * Need to wake up a worker? Called from anything but currently
590 static bool need_more_worker(struct global_cwq
*gcwq
)
592 return !list_empty(&gcwq
->worklist
) && __need_more_worker(gcwq
);
595 /* Can I start working? Called from busy but !running workers. */
596 static bool may_start_working(struct global_cwq
*gcwq
)
598 return gcwq
->nr_idle
;
601 /* Do I need to keep working? Called from currently running workers. */
602 static bool keep_working(struct global_cwq
*gcwq
)
604 atomic_t
*nr_running
= get_gcwq_nr_running(gcwq
->cpu
);
606 return !list_empty(&gcwq
->worklist
) &&
607 (atomic_read(nr_running
) <= 1 ||
608 gcwq
->flags
& GCWQ_HIGHPRI_PENDING
);
611 /* Do we need a new worker? Called from manager. */
612 static bool need_to_create_worker(struct global_cwq
*gcwq
)
614 return need_more_worker(gcwq
) && !may_start_working(gcwq
);
617 /* Do I need to be the manager? */
618 static bool need_to_manage_workers(struct global_cwq
*gcwq
)
620 return need_to_create_worker(gcwq
) || gcwq
->flags
& GCWQ_MANAGE_WORKERS
;
623 /* Do we have too many workers and should some go away? */
624 static bool too_many_workers(struct global_cwq
*gcwq
)
626 bool managing
= gcwq
->flags
& GCWQ_MANAGING_WORKERS
;
627 int nr_idle
= gcwq
->nr_idle
+ managing
; /* manager is considered idle */
628 int nr_busy
= gcwq
->nr_workers
- nr_idle
;
630 return nr_idle
> 2 && (nr_idle
- 2) * MAX_IDLE_WORKERS_RATIO
>= nr_busy
;
637 /* Return the first worker. Safe with preemption disabled */
638 static struct worker
*first_worker(struct global_cwq
*gcwq
)
640 if (unlikely(list_empty(&gcwq
->idle_list
)))
643 return list_first_entry(&gcwq
->idle_list
, struct worker
, entry
);
647 * wake_up_worker - wake up an idle worker
648 * @gcwq: gcwq to wake worker for
650 * Wake up the first idle worker of @gcwq.
653 * spin_lock_irq(gcwq->lock).
655 static void wake_up_worker(struct global_cwq
*gcwq
)
657 struct worker
*worker
= first_worker(gcwq
);
660 wake_up_process(worker
->task
);
664 * wq_worker_waking_up - a worker is waking up
665 * @task: task waking up
666 * @cpu: CPU @task is waking up to
668 * This function is called during try_to_wake_up() when a worker is
672 * spin_lock_irq(rq->lock)
674 void wq_worker_waking_up(struct task_struct
*task
, unsigned int cpu
)
676 struct worker
*worker
= kthread_data(task
);
678 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
679 atomic_inc(get_gcwq_nr_running(cpu
));
683 * wq_worker_sleeping - a worker is going to sleep
684 * @task: task going to sleep
685 * @cpu: CPU in question, must be the current CPU number
687 * This function is called during schedule() when a busy worker is
688 * going to sleep. Worker on the same cpu can be woken up by
689 * returning pointer to its task.
692 * spin_lock_irq(rq->lock)
695 * Worker task on @cpu to wake up, %NULL if none.
697 struct task_struct
*wq_worker_sleeping(struct task_struct
*task
,
700 struct worker
*worker
= kthread_data(task
), *to_wakeup
= NULL
;
701 struct global_cwq
*gcwq
= get_gcwq(cpu
);
702 atomic_t
*nr_running
= get_gcwq_nr_running(cpu
);
704 if (worker
->flags
& WORKER_NOT_RUNNING
)
707 /* this can only happen on the local cpu */
708 BUG_ON(cpu
!= raw_smp_processor_id());
711 * The counterpart of the following dec_and_test, implied mb,
712 * worklist not empty test sequence is in insert_work().
713 * Please read comment there.
715 * NOT_RUNNING is clear. This means that trustee is not in
716 * charge and we're running on the local cpu w/ rq lock held
717 * and preemption disabled, which in turn means that none else
718 * could be manipulating idle_list, so dereferencing idle_list
719 * without gcwq lock is safe.
721 if (atomic_dec_and_test(nr_running
) && !list_empty(&gcwq
->worklist
))
722 to_wakeup
= first_worker(gcwq
);
723 return to_wakeup
? to_wakeup
->task
: NULL
;
727 * worker_set_flags - set worker flags and adjust nr_running accordingly
729 * @flags: flags to set
730 * @wakeup: wakeup an idle worker if necessary
732 * Set @flags in @worker->flags and adjust nr_running accordingly. If
733 * nr_running becomes zero and @wakeup is %true, an idle worker is
737 * spin_lock_irq(gcwq->lock)
739 static inline void worker_set_flags(struct worker
*worker
, unsigned int flags
,
742 struct global_cwq
*gcwq
= worker
->gcwq
;
744 WARN_ON_ONCE(worker
->task
!= current
);
747 * If transitioning into NOT_RUNNING, adjust nr_running and
748 * wake up an idle worker as necessary if requested by
751 if ((flags
& WORKER_NOT_RUNNING
) &&
752 !(worker
->flags
& WORKER_NOT_RUNNING
)) {
753 atomic_t
*nr_running
= get_gcwq_nr_running(gcwq
->cpu
);
756 if (atomic_dec_and_test(nr_running
) &&
757 !list_empty(&gcwq
->worklist
))
758 wake_up_worker(gcwq
);
760 atomic_dec(nr_running
);
763 worker
->flags
|= flags
;
767 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
769 * @flags: flags to clear
771 * Clear @flags in @worker->flags and adjust nr_running accordingly.
774 * spin_lock_irq(gcwq->lock)
776 static inline void worker_clr_flags(struct worker
*worker
, unsigned int flags
)
778 struct global_cwq
*gcwq
= worker
->gcwq
;
779 unsigned int oflags
= worker
->flags
;
781 WARN_ON_ONCE(worker
->task
!= current
);
783 worker
->flags
&= ~flags
;
786 * If transitioning out of NOT_RUNNING, increment nr_running. Note
787 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
788 * of multiple flags, not a single flag.
790 if ((flags
& WORKER_NOT_RUNNING
) && (oflags
& WORKER_NOT_RUNNING
))
791 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
792 atomic_inc(get_gcwq_nr_running(gcwq
->cpu
));
796 * busy_worker_head - return the busy hash head for a work
797 * @gcwq: gcwq of interest
798 * @work: work to be hashed
800 * Return hash head of @gcwq for @work.
803 * spin_lock_irq(gcwq->lock).
806 * Pointer to the hash head.
808 static struct hlist_head
*busy_worker_head(struct global_cwq
*gcwq
,
809 struct work_struct
*work
)
811 const int base_shift
= ilog2(sizeof(struct work_struct
));
812 unsigned long v
= (unsigned long)work
;
814 /* simple shift and fold hash, do we need something better? */
816 v
+= v
>> BUSY_WORKER_HASH_ORDER
;
817 v
&= BUSY_WORKER_HASH_MASK
;
819 return &gcwq
->busy_hash
[v
];
823 * __find_worker_executing_work - find worker which is executing a work
824 * @gcwq: gcwq of interest
825 * @bwh: hash head as returned by busy_worker_head()
826 * @work: work to find worker for
828 * Find a worker which is executing @work on @gcwq. @bwh should be
829 * the hash head obtained by calling busy_worker_head() with the same
833 * spin_lock_irq(gcwq->lock).
836 * Pointer to worker which is executing @work if found, NULL
839 static struct worker
*__find_worker_executing_work(struct global_cwq
*gcwq
,
840 struct hlist_head
*bwh
,
841 struct work_struct
*work
)
843 struct worker
*worker
;
844 struct hlist_node
*tmp
;
846 hlist_for_each_entry(worker
, tmp
, bwh
, hentry
)
847 if (worker
->current_work
== work
&&
848 worker
->current_func
== work
->func
)
854 * find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @work: work to find worker for
858 * Find a worker which is executing @work on @gcwq by searching
859 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
860 * to match, its current execution should match the address of @work and
861 * its work function. This is to avoid unwanted dependency between
862 * unrelated work executions through a work item being recycled while still
865 * This is a bit tricky. A work item may be freed once its execution
866 * starts and nothing prevents the freed area from being recycled for
867 * another work item. If the same work item address ends up being reused
868 * before the original execution finishes, workqueue will identify the
869 * recycled work item as currently executing and make it wait until the
870 * current execution finishes, introducing an unwanted dependency.
872 * This function checks the work item address, work function and workqueue
873 * to avoid false positives. Note that this isn't complete as one may
874 * construct a work function which can introduce dependency onto itself
875 * through a recycled work item. Well, if somebody wants to shoot oneself
876 * in the foot that badly, there's only so much we can do, and if such
877 * deadlock actually occurs, it should be easy to locate the culprit work
881 * spin_lock_irq(gcwq->lock).
884 * Pointer to worker which is executing @work if found, NULL
887 static struct worker
*find_worker_executing_work(struct global_cwq
*gcwq
,
888 struct work_struct
*work
)
890 return __find_worker_executing_work(gcwq
, busy_worker_head(gcwq
, work
),
895 * gcwq_determine_ins_pos - find insertion position
896 * @gcwq: gcwq of interest
897 * @cwq: cwq a work is being queued for
899 * A work for @cwq is about to be queued on @gcwq, determine insertion
900 * position for the work. If @cwq is for HIGHPRI wq, the work is
901 * queued at the head of the queue but in FIFO order with respect to
902 * other HIGHPRI works; otherwise, at the end of the queue. This
903 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
904 * there are HIGHPRI works pending.
907 * spin_lock_irq(gcwq->lock).
910 * Pointer to inserstion position.
912 static inline struct list_head
*gcwq_determine_ins_pos(struct global_cwq
*gcwq
,
913 struct cpu_workqueue_struct
*cwq
)
915 struct work_struct
*twork
;
917 if (likely(!(cwq
->wq
->flags
& WQ_HIGHPRI
)))
918 return &gcwq
->worklist
;
920 list_for_each_entry(twork
, &gcwq
->worklist
, entry
) {
921 struct cpu_workqueue_struct
*tcwq
= get_work_cwq(twork
);
923 if (!(tcwq
->wq
->flags
& WQ_HIGHPRI
))
927 gcwq
->flags
|= GCWQ_HIGHPRI_PENDING
;
928 return &twork
->entry
;
932 * insert_work - insert a work into gcwq
933 * @cwq: cwq @work belongs to
934 * @work: work to insert
935 * @head: insertion point
936 * @extra_flags: extra WORK_STRUCT_* flags to set
938 * Insert @work which belongs to @cwq into @gcwq after @head.
939 * @extra_flags is or'd to work_struct flags.
942 * spin_lock_irq(gcwq->lock).
944 static void insert_work(struct cpu_workqueue_struct
*cwq
,
945 struct work_struct
*work
, struct list_head
*head
,
946 unsigned int extra_flags
)
948 struct global_cwq
*gcwq
= cwq
->gcwq
;
950 /* we own @work, set data and link */
951 set_work_cwq(work
, cwq
, extra_flags
);
954 * Ensure that we get the right work->data if we see the
955 * result of list_add() below, see try_to_grab_pending().
959 list_add_tail(&work
->entry
, head
);
962 * Ensure either worker_sched_deactivated() sees the above
963 * list_add_tail() or we see zero nr_running to avoid workers
964 * lying around lazily while there are works to be processed.
968 if (__need_more_worker(gcwq
))
969 wake_up_worker(gcwq
);
973 * Test whether @work is being queued from another work executing on the
974 * same workqueue. This is rather expensive and should only be used from
977 static bool is_chained_work(struct workqueue_struct
*wq
)
982 for_each_gcwq_cpu(cpu
) {
983 struct global_cwq
*gcwq
= get_gcwq(cpu
);
984 struct worker
*worker
;
985 struct hlist_node
*pos
;
988 spin_lock_irqsave(&gcwq
->lock
, flags
);
989 for_each_busy_worker(worker
, i
, pos
, gcwq
) {
990 if (worker
->task
!= current
)
992 spin_unlock_irqrestore(&gcwq
->lock
, flags
);
994 * I'm @worker, no locking necessary. See if @work
995 * is headed to the same workqueue.
997 return worker
->current_cwq
->wq
== wq
;
999 spin_unlock_irqrestore(&gcwq
->lock
, flags
);
1004 static void __queue_work(unsigned int cpu
, struct workqueue_struct
*wq
,
1005 struct work_struct
*work
)
1007 struct global_cwq
*gcwq
;
1008 struct cpu_workqueue_struct
*cwq
;
1009 struct list_head
*worklist
;
1010 unsigned int work_flags
;
1011 unsigned long flags
;
1013 debug_work_activate(work
);
1015 /* if dying, only works from the same workqueue are allowed */
1016 if (unlikely(wq
->flags
& WQ_DRAINING
) &&
1017 WARN_ON_ONCE(!is_chained_work(wq
)))
1020 /* determine gcwq to use */
1021 if (!(wq
->flags
& WQ_UNBOUND
)) {
1022 struct global_cwq
*last_gcwq
;
1024 if (unlikely(cpu
== WORK_CPU_UNBOUND
))
1025 cpu
= raw_smp_processor_id();
1028 * It's multi cpu. If @wq is non-reentrant and @work
1029 * was previously on a different cpu, it might still
1030 * be running there, in which case the work needs to
1031 * be queued on that cpu to guarantee non-reentrance.
1033 gcwq
= get_gcwq(cpu
);
1034 if (wq
->flags
& WQ_NON_REENTRANT
&&
1035 (last_gcwq
= get_work_gcwq(work
)) && last_gcwq
!= gcwq
) {
1036 struct worker
*worker
;
1038 spin_lock_irqsave(&last_gcwq
->lock
, flags
);
1040 worker
= find_worker_executing_work(last_gcwq
, work
);
1042 if (worker
&& worker
->current_cwq
->wq
== wq
)
1045 /* meh... not running there, queue here */
1046 spin_unlock_irqrestore(&last_gcwq
->lock
, flags
);
1047 spin_lock_irqsave(&gcwq
->lock
, flags
);
1050 spin_lock_irqsave(&gcwq
->lock
, flags
);
1052 gcwq
= get_gcwq(WORK_CPU_UNBOUND
);
1053 spin_lock_irqsave(&gcwq
->lock
, flags
);
1056 /* gcwq determined, get cwq and queue */
1057 cwq
= get_cwq(gcwq
->cpu
, wq
);
1058 trace_workqueue_queue_work(cpu
, cwq
, work
);
1060 BUG_ON(!list_empty(&work
->entry
));
1062 cwq
->nr_in_flight
[cwq
->work_color
]++;
1063 work_flags
= work_color_to_flags(cwq
->work_color
);
1065 if (likely(cwq
->nr_active
< cwq
->max_active
)) {
1066 trace_workqueue_activate_work(work
);
1068 worklist
= gcwq_determine_ins_pos(gcwq
, cwq
);
1070 work_flags
|= WORK_STRUCT_DELAYED
;
1071 worklist
= &cwq
->delayed_works
;
1074 insert_work(cwq
, work
, worklist
, work_flags
);
1076 spin_unlock_irqrestore(&gcwq
->lock
, flags
);
1080 * queue_work - queue work on a workqueue
1081 * @wq: workqueue to use
1082 * @work: work to queue
1084 * Returns 0 if @work was already on a queue, non-zero otherwise.
1086 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1087 * it can be processed by another CPU.
1089 int queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
1093 ret
= queue_work_on(get_cpu(), wq
, work
);
1098 EXPORT_SYMBOL_GPL(queue_work
);
1101 * queue_work_on - queue work on specific cpu
1102 * @cpu: CPU number to execute work on
1103 * @wq: workqueue to use
1104 * @work: work to queue
1106 * Returns 0 if @work was already on a queue, non-zero otherwise.
1108 * We queue the work to a specific CPU, the caller must ensure it
1112 queue_work_on(int cpu
, struct workqueue_struct
*wq
, struct work_struct
*work
)
1116 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1117 __queue_work(cpu
, wq
, work
);
1122 EXPORT_SYMBOL_GPL(queue_work_on
);
1124 static void delayed_work_timer_fn(unsigned long __data
)
1126 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
1127 struct cpu_workqueue_struct
*cwq
= get_work_cwq(&dwork
->work
);
1129 __queue_work(smp_processor_id(), cwq
->wq
, &dwork
->work
);
1133 * queue_delayed_work - queue work on a workqueue after delay
1134 * @wq: workqueue to use
1135 * @dwork: delayable work to queue
1136 * @delay: number of jiffies to wait before queueing
1138 * Returns 0 if @work was already on a queue, non-zero otherwise.
1140 int queue_delayed_work(struct workqueue_struct
*wq
,
1141 struct delayed_work
*dwork
, unsigned long delay
)
1144 return queue_work(wq
, &dwork
->work
);
1146 return queue_delayed_work_on(-1, wq
, dwork
, delay
);
1148 EXPORT_SYMBOL_GPL(queue_delayed_work
);
1151 * queue_delayed_work_on - queue work on specific CPU after delay
1152 * @cpu: CPU number to execute work on
1153 * @wq: workqueue to use
1154 * @dwork: work to queue
1155 * @delay: number of jiffies to wait before queueing
1157 * Returns 0 if @work was already on a queue, non-zero otherwise.
1159 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1160 struct delayed_work
*dwork
, unsigned long delay
)
1163 struct timer_list
*timer
= &dwork
->timer
;
1164 struct work_struct
*work
= &dwork
->work
;
1166 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1169 WARN_ON_ONCE(timer_pending(timer
));
1170 WARN_ON_ONCE(!list_empty(&work
->entry
));
1172 timer_stats_timer_set_start_info(&dwork
->timer
);
1175 * This stores cwq for the moment, for the timer_fn.
1176 * Note that the work's gcwq is preserved to allow
1177 * reentrance detection for delayed works.
1179 if (!(wq
->flags
& WQ_UNBOUND
)) {
1180 struct global_cwq
*gcwq
= get_work_gcwq(work
);
1182 if (gcwq
&& gcwq
->cpu
!= WORK_CPU_UNBOUND
)
1185 lcpu
= raw_smp_processor_id();
1187 lcpu
= WORK_CPU_UNBOUND
;
1189 set_work_cwq(work
, get_cwq(lcpu
, wq
), 0);
1191 timer
->expires
= jiffies
+ delay
;
1192 timer
->data
= (unsigned long)dwork
;
1193 timer
->function
= delayed_work_timer_fn
;
1195 if (unlikely(cpu
>= 0))
1196 add_timer_on(timer
, cpu
);
1203 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
1206 * worker_enter_idle - enter idle state
1207 * @worker: worker which is entering idle state
1209 * @worker is entering idle state. Update stats and idle timer if
1213 * spin_lock_irq(gcwq->lock).
1215 static void worker_enter_idle(struct worker
*worker
)
1217 struct global_cwq
*gcwq
= worker
->gcwq
;
1219 BUG_ON(worker
->flags
& WORKER_IDLE
);
1220 BUG_ON(!list_empty(&worker
->entry
) &&
1221 (worker
->hentry
.next
|| worker
->hentry
.pprev
));
1223 /* can't use worker_set_flags(), also called from start_worker() */
1224 worker
->flags
|= WORKER_IDLE
;
1226 worker
->last_active
= jiffies
;
1228 /* idle_list is LIFO */
1229 list_add(&worker
->entry
, &gcwq
->idle_list
);
1231 if (likely(!(worker
->flags
& WORKER_ROGUE
))) {
1232 if (too_many_workers(gcwq
) && !timer_pending(&gcwq
->idle_timer
))
1233 mod_timer(&gcwq
->idle_timer
,
1234 jiffies
+ IDLE_WORKER_TIMEOUT
);
1236 wake_up_all(&gcwq
->trustee_wait
);
1239 * Sanity check nr_running. Because trustee releases gcwq->lock
1240 * between setting %WORKER_ROGUE and zapping nr_running, the
1241 * warning may trigger spuriously. Check iff trustee is idle.
1243 WARN_ON_ONCE(gcwq
->trustee_state
== TRUSTEE_DONE
&&
1244 gcwq
->nr_workers
== gcwq
->nr_idle
&&
1245 atomic_read(get_gcwq_nr_running(gcwq
->cpu
)));
1249 * worker_leave_idle - leave idle state
1250 * @worker: worker which is leaving idle state
1252 * @worker is leaving idle state. Update stats.
1255 * spin_lock_irq(gcwq->lock).
1257 static void worker_leave_idle(struct worker
*worker
)
1259 struct global_cwq
*gcwq
= worker
->gcwq
;
1261 BUG_ON(!(worker
->flags
& WORKER_IDLE
));
1262 worker_clr_flags(worker
, WORKER_IDLE
);
1264 list_del_init(&worker
->entry
);
1268 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1271 * Works which are scheduled while the cpu is online must at least be
1272 * scheduled to a worker which is bound to the cpu so that if they are
1273 * flushed from cpu callbacks while cpu is going down, they are
1274 * guaranteed to execute on the cpu.
1276 * This function is to be used by rogue workers and rescuers to bind
1277 * themselves to the target cpu and may race with cpu going down or
1278 * coming online. kthread_bind() can't be used because it may put the
1279 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1280 * verbatim as it's best effort and blocking and gcwq may be
1281 * [dis]associated in the meantime.
1283 * This function tries set_cpus_allowed() and locks gcwq and verifies
1284 * the binding against GCWQ_DISASSOCIATED which is set during
1285 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1286 * idle state or fetches works without dropping lock, it can guarantee
1287 * the scheduling requirement described in the first paragraph.
1290 * Might sleep. Called without any lock but returns with gcwq->lock
1294 * %true if the associated gcwq is online (@worker is successfully
1295 * bound), %false if offline.
1297 static bool worker_maybe_bind_and_lock(struct worker
*worker
)
1298 __acquires(&gcwq
->lock
)
1300 struct global_cwq
*gcwq
= worker
->gcwq
;
1301 struct task_struct
*task
= worker
->task
;
1305 * The following call may fail, succeed or succeed
1306 * without actually migrating the task to the cpu if
1307 * it races with cpu hotunplug operation. Verify
1308 * against GCWQ_DISASSOCIATED.
1310 if (!(gcwq
->flags
& GCWQ_DISASSOCIATED
))
1311 set_cpus_allowed_ptr(task
, get_cpu_mask(gcwq
->cpu
));
1313 spin_lock_irq(&gcwq
->lock
);
1314 if (gcwq
->flags
& GCWQ_DISASSOCIATED
)
1316 if (task_cpu(task
) == gcwq
->cpu
&&
1317 cpumask_equal(¤t
->cpus_allowed
,
1318 get_cpu_mask(gcwq
->cpu
)))
1320 spin_unlock_irq(&gcwq
->lock
);
1323 * We've raced with CPU hot[un]plug. Give it a breather
1324 * and retry migration. cond_resched() is required here;
1325 * otherwise, we might deadlock against cpu_stop trying to
1326 * bring down the CPU on non-preemptive kernel.
1334 * Function for worker->rebind_work used to rebind rogue busy workers
1335 * to the associated cpu which is coming back online. This is
1336 * scheduled by cpu up but can race with other cpu hotplug operations
1337 * and may be executed twice without intervening cpu down.
1339 static void worker_rebind_fn(struct work_struct
*work
)
1341 struct worker
*worker
= container_of(work
, struct worker
, rebind_work
);
1342 struct global_cwq
*gcwq
= worker
->gcwq
;
1344 if (worker_maybe_bind_and_lock(worker
))
1345 worker_clr_flags(worker
, WORKER_REBIND
);
1347 spin_unlock_irq(&gcwq
->lock
);
1350 static struct worker
*alloc_worker(void)
1352 struct worker
*worker
;
1354 worker
= kzalloc(sizeof(*worker
), GFP_KERNEL
);
1356 INIT_LIST_HEAD(&worker
->entry
);
1357 INIT_LIST_HEAD(&worker
->scheduled
);
1358 INIT_WORK(&worker
->rebind_work
, worker_rebind_fn
);
1359 /* on creation a worker is in !idle && prep state */
1360 worker
->flags
= WORKER_PREP
;
1366 * create_worker - create a new workqueue worker
1367 * @gcwq: gcwq the new worker will belong to
1368 * @bind: whether to set affinity to @cpu or not
1370 * Create a new worker which is bound to @gcwq. The returned worker
1371 * can be started by calling start_worker() or destroyed using
1375 * Might sleep. Does GFP_KERNEL allocations.
1378 * Pointer to the newly created worker.
1380 static struct worker
*create_worker(struct global_cwq
*gcwq
, bool bind
)
1382 bool on_unbound_cpu
= gcwq
->cpu
== WORK_CPU_UNBOUND
;
1383 struct worker
*worker
= NULL
;
1386 spin_lock_irq(&gcwq
->lock
);
1387 while (ida_get_new(&gcwq
->worker_ida
, &id
)) {
1388 spin_unlock_irq(&gcwq
->lock
);
1389 if (!ida_pre_get(&gcwq
->worker_ida
, GFP_KERNEL
))
1391 spin_lock_irq(&gcwq
->lock
);
1393 spin_unlock_irq(&gcwq
->lock
);
1395 worker
= alloc_worker();
1399 worker
->gcwq
= gcwq
;
1402 if (!on_unbound_cpu
)
1403 worker
->task
= kthread_create_on_node(worker_thread
,
1405 cpu_to_node(gcwq
->cpu
),
1406 "kworker/%u:%d", gcwq
->cpu
, id
);
1408 worker
->task
= kthread_create(worker_thread
, worker
,
1409 "kworker/u:%d", id
);
1410 if (IS_ERR(worker
->task
))
1414 * A rogue worker will become a regular one if CPU comes
1415 * online later on. Make sure every worker has
1416 * PF_THREAD_BOUND set.
1418 if (bind
&& !on_unbound_cpu
)
1419 kthread_bind(worker
->task
, gcwq
->cpu
);
1421 worker
->task
->flags
|= PF_THREAD_BOUND
;
1423 worker
->flags
|= WORKER_UNBOUND
;
1429 spin_lock_irq(&gcwq
->lock
);
1430 ida_remove(&gcwq
->worker_ida
, id
);
1431 spin_unlock_irq(&gcwq
->lock
);
1438 * start_worker - start a newly created worker
1439 * @worker: worker to start
1441 * Make the gcwq aware of @worker and start it.
1444 * spin_lock_irq(gcwq->lock).
1446 static void start_worker(struct worker
*worker
)
1448 worker
->flags
|= WORKER_STARTED
;
1449 worker
->gcwq
->nr_workers
++;
1450 worker_enter_idle(worker
);
1451 wake_up_process(worker
->task
);
1455 * destroy_worker - destroy a workqueue worker
1456 * @worker: worker to be destroyed
1458 * Destroy @worker and adjust @gcwq stats accordingly.
1461 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1463 static void destroy_worker(struct worker
*worker
)
1465 struct global_cwq
*gcwq
= worker
->gcwq
;
1466 int id
= worker
->id
;
1468 /* sanity check frenzy */
1469 BUG_ON(worker
->current_work
);
1470 BUG_ON(!list_empty(&worker
->scheduled
));
1472 if (worker
->flags
& WORKER_STARTED
)
1474 if (worker
->flags
& WORKER_IDLE
)
1477 list_del_init(&worker
->entry
);
1478 worker
->flags
|= WORKER_DIE
;
1480 spin_unlock_irq(&gcwq
->lock
);
1482 kthread_stop(worker
->task
);
1485 spin_lock_irq(&gcwq
->lock
);
1486 ida_remove(&gcwq
->worker_ida
, id
);
1489 static void idle_worker_timeout(unsigned long __gcwq
)
1491 struct global_cwq
*gcwq
= (void *)__gcwq
;
1493 spin_lock_irq(&gcwq
->lock
);
1495 if (too_many_workers(gcwq
)) {
1496 struct worker
*worker
;
1497 unsigned long expires
;
1499 /* idle_list is kept in LIFO order, check the last one */
1500 worker
= list_entry(gcwq
->idle_list
.prev
, struct worker
, entry
);
1501 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
1503 if (time_before(jiffies
, expires
))
1504 mod_timer(&gcwq
->idle_timer
, expires
);
1506 /* it's been idle for too long, wake up manager */
1507 gcwq
->flags
|= GCWQ_MANAGE_WORKERS
;
1508 wake_up_worker(gcwq
);
1512 spin_unlock_irq(&gcwq
->lock
);
1515 static bool send_mayday(struct work_struct
*work
)
1517 struct cpu_workqueue_struct
*cwq
= get_work_cwq(work
);
1518 struct workqueue_struct
*wq
= cwq
->wq
;
1521 if (!(wq
->flags
& WQ_RESCUER
))
1524 /* mayday mayday mayday */
1525 cpu
= cwq
->gcwq
->cpu
;
1526 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1527 if (cpu
== WORK_CPU_UNBOUND
)
1529 if (!mayday_test_and_set_cpu(cpu
, wq
->mayday_mask
))
1530 wake_up_process(wq
->rescuer
->task
);
1534 static void gcwq_mayday_timeout(unsigned long __gcwq
)
1536 struct global_cwq
*gcwq
= (void *)__gcwq
;
1537 struct work_struct
*work
;
1539 spin_lock_irq(&gcwq
->lock
);
1541 if (need_to_create_worker(gcwq
)) {
1543 * We've been trying to create a new worker but
1544 * haven't been successful. We might be hitting an
1545 * allocation deadlock. Send distress signals to
1548 list_for_each_entry(work
, &gcwq
->worklist
, entry
)
1552 spin_unlock_irq(&gcwq
->lock
);
1554 mod_timer(&gcwq
->mayday_timer
, jiffies
+ MAYDAY_INTERVAL
);
1558 * maybe_create_worker - create a new worker if necessary
1559 * @gcwq: gcwq to create a new worker for
1561 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1562 * have at least one idle worker on return from this function. If
1563 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1564 * sent to all rescuers with works scheduled on @gcwq to resolve
1565 * possible allocation deadlock.
1567 * On return, need_to_create_worker() is guaranteed to be false and
1568 * may_start_working() true.
1571 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1572 * multiple times. Does GFP_KERNEL allocations. Called only from
1576 * false if no action was taken and gcwq->lock stayed locked, true
1579 static bool maybe_create_worker(struct global_cwq
*gcwq
)
1580 __releases(&gcwq
->lock
)
1581 __acquires(&gcwq
->lock
)
1583 if (!need_to_create_worker(gcwq
))
1586 spin_unlock_irq(&gcwq
->lock
);
1588 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1589 mod_timer(&gcwq
->mayday_timer
, jiffies
+ MAYDAY_INITIAL_TIMEOUT
);
1592 struct worker
*worker
;
1594 worker
= create_worker(gcwq
, true);
1596 del_timer_sync(&gcwq
->mayday_timer
);
1597 spin_lock_irq(&gcwq
->lock
);
1598 start_worker(worker
);
1599 BUG_ON(need_to_create_worker(gcwq
));
1603 if (!need_to_create_worker(gcwq
))
1606 __set_current_state(TASK_INTERRUPTIBLE
);
1607 schedule_timeout(CREATE_COOLDOWN
);
1609 if (!need_to_create_worker(gcwq
))
1613 del_timer_sync(&gcwq
->mayday_timer
);
1614 spin_lock_irq(&gcwq
->lock
);
1615 if (need_to_create_worker(gcwq
))
1621 * maybe_destroy_worker - destroy workers which have been idle for a while
1622 * @gcwq: gcwq to destroy workers for
1624 * Destroy @gcwq workers which have been idle for longer than
1625 * IDLE_WORKER_TIMEOUT.
1628 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1629 * multiple times. Called only from manager.
1632 * false if no action was taken and gcwq->lock stayed locked, true
1635 static bool maybe_destroy_workers(struct global_cwq
*gcwq
)
1639 while (too_many_workers(gcwq
)) {
1640 struct worker
*worker
;
1641 unsigned long expires
;
1643 worker
= list_entry(gcwq
->idle_list
.prev
, struct worker
, entry
);
1644 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
1646 if (time_before(jiffies
, expires
)) {
1647 mod_timer(&gcwq
->idle_timer
, expires
);
1651 destroy_worker(worker
);
1659 * manage_workers - manage worker pool
1662 * Assume the manager role and manage gcwq worker pool @worker belongs
1663 * to. At any given time, there can be only zero or one manager per
1664 * gcwq. The exclusion is handled automatically by this function.
1666 * The caller can safely start processing works on false return. On
1667 * true return, it's guaranteed that need_to_create_worker() is false
1668 * and may_start_working() is true.
1671 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1672 * multiple times. Does GFP_KERNEL allocations.
1675 * false if no action was taken and gcwq->lock stayed locked, true if
1676 * some action was taken.
1678 static bool manage_workers(struct worker
*worker
)
1680 struct global_cwq
*gcwq
= worker
->gcwq
;
1683 if (gcwq
->flags
& GCWQ_MANAGING_WORKERS
)
1686 gcwq
->flags
&= ~GCWQ_MANAGE_WORKERS
;
1687 gcwq
->flags
|= GCWQ_MANAGING_WORKERS
;
1690 * Destroy and then create so that may_start_working() is true
1693 ret
|= maybe_destroy_workers(gcwq
);
1694 ret
|= maybe_create_worker(gcwq
);
1696 gcwq
->flags
&= ~GCWQ_MANAGING_WORKERS
;
1699 * The trustee might be waiting to take over the manager
1700 * position, tell it we're done.
1702 if (unlikely(gcwq
->trustee
))
1703 wake_up_all(&gcwq
->trustee_wait
);
1709 * move_linked_works - move linked works to a list
1710 * @work: start of series of works to be scheduled
1711 * @head: target list to append @work to
1712 * @nextp: out paramter for nested worklist walking
1714 * Schedule linked works starting from @work to @head. Work series to
1715 * be scheduled starts at @work and includes any consecutive work with
1716 * WORK_STRUCT_LINKED set in its predecessor.
1718 * If @nextp is not NULL, it's updated to point to the next work of
1719 * the last scheduled work. This allows move_linked_works() to be
1720 * nested inside outer list_for_each_entry_safe().
1723 * spin_lock_irq(gcwq->lock).
1725 static void move_linked_works(struct work_struct
*work
, struct list_head
*head
,
1726 struct work_struct
**nextp
)
1728 struct work_struct
*n
;
1731 * Linked worklist will always end before the end of the list,
1732 * use NULL for list head.
1734 list_for_each_entry_safe_from(work
, n
, NULL
, entry
) {
1735 list_move_tail(&work
->entry
, head
);
1736 if (!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))
1741 * If we're already inside safe list traversal and have moved
1742 * multiple works to the scheduled queue, the next position
1743 * needs to be updated.
1749 static void cwq_activate_delayed_work(struct work_struct
*work
)
1751 struct cpu_workqueue_struct
*cwq
= get_work_cwq(work
);
1752 struct list_head
*pos
= gcwq_determine_ins_pos(cwq
->gcwq
, cwq
);
1754 trace_workqueue_activate_work(work
);
1755 move_linked_works(work
, pos
, NULL
);
1756 __clear_bit(WORK_STRUCT_DELAYED_BIT
, work_data_bits(work
));
1760 static void cwq_activate_first_delayed(struct cpu_workqueue_struct
*cwq
)
1762 struct work_struct
*work
= list_first_entry(&cwq
->delayed_works
,
1763 struct work_struct
, entry
);
1765 cwq_activate_delayed_work(work
);
1769 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1770 * @cwq: cwq of interest
1771 * @color: color of work which left the queue
1772 * @delayed: for a delayed work
1774 * A work either has completed or is removed from pending queue,
1775 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1778 * spin_lock_irq(gcwq->lock).
1780 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct
*cwq
, int color
,
1783 /* ignore uncolored works */
1784 if (color
== WORK_NO_COLOR
)
1787 cwq
->nr_in_flight
[color
]--;
1791 if (!list_empty(&cwq
->delayed_works
)) {
1792 /* one down, submit a delayed one */
1793 if (cwq
->nr_active
< cwq
->max_active
)
1794 cwq_activate_first_delayed(cwq
);
1798 /* is flush in progress and are we at the flushing tip? */
1799 if (likely(cwq
->flush_color
!= color
))
1802 /* are there still in-flight works? */
1803 if (cwq
->nr_in_flight
[color
])
1806 /* this cwq is done, clear flush_color */
1807 cwq
->flush_color
= -1;
1810 * If this was the last cwq, wake up the first flusher. It
1811 * will handle the rest.
1813 if (atomic_dec_and_test(&cwq
->wq
->nr_cwqs_to_flush
))
1814 complete(&cwq
->wq
->first_flusher
->done
);
1818 * process_one_work - process single work
1820 * @work: work to process
1822 * Process @work. This function contains all the logics necessary to
1823 * process a single work including synchronization against and
1824 * interaction with other workers on the same cpu, queueing and
1825 * flushing. As long as context requirement is met, any worker can
1826 * call this function to process a work.
1829 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1831 static void process_one_work(struct worker
*worker
, struct work_struct
*work
)
1832 __releases(&gcwq
->lock
)
1833 __acquires(&gcwq
->lock
)
1835 struct cpu_workqueue_struct
*cwq
= get_work_cwq(work
);
1836 struct global_cwq
*gcwq
= cwq
->gcwq
;
1837 struct hlist_head
*bwh
= busy_worker_head(gcwq
, work
);
1838 bool cpu_intensive
= cwq
->wq
->flags
& WQ_CPU_INTENSIVE
;
1840 struct worker
*collision
;
1841 #ifdef CONFIG_LOCKDEP
1843 * It is permissible to free the struct work_struct from
1844 * inside the function that is called from it, this we need to
1845 * take into account for lockdep too. To avoid bogus "held
1846 * lock freed" warnings as well as problems when looking into
1847 * work->lockdep_map, make a copy and use that here.
1849 struct lockdep_map lockdep_map
= work
->lockdep_map
;
1852 * A single work shouldn't be executed concurrently by
1853 * multiple workers on a single cpu. Check whether anyone is
1854 * already processing the work. If so, defer the work to the
1855 * currently executing one.
1857 collision
= __find_worker_executing_work(gcwq
, bwh
, work
);
1858 if (unlikely(collision
)) {
1859 move_linked_works(work
, &collision
->scheduled
, NULL
);
1863 /* claim and process */
1864 debug_work_deactivate(work
);
1865 hlist_add_head(&worker
->hentry
, bwh
);
1866 worker
->current_work
= work
;
1867 worker
->current_func
= work
->func
;
1868 worker
->current_cwq
= cwq
;
1869 work_color
= get_work_color(work
);
1871 /* record the current cpu number in the work data and dequeue */
1872 set_work_cpu(work
, gcwq
->cpu
);
1873 list_del_init(&work
->entry
);
1876 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1877 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1879 if (unlikely(gcwq
->flags
& GCWQ_HIGHPRI_PENDING
)) {
1880 struct work_struct
*nwork
= list_first_entry(&gcwq
->worklist
,
1881 struct work_struct
, entry
);
1883 if (!list_empty(&gcwq
->worklist
) &&
1884 get_work_cwq(nwork
)->wq
->flags
& WQ_HIGHPRI
)
1885 wake_up_worker(gcwq
);
1887 gcwq
->flags
&= ~GCWQ_HIGHPRI_PENDING
;
1891 * CPU intensive works don't participate in concurrency
1892 * management. They're the scheduler's responsibility.
1894 if (unlikely(cpu_intensive
))
1895 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
, true);
1897 spin_unlock_irq(&gcwq
->lock
);
1899 smp_wmb(); /* paired with test_and_set_bit(PENDING) */
1900 work_clear_pending(work
);
1902 lock_map_acquire_read(&cwq
->wq
->lockdep_map
);
1903 lock_map_acquire(&lockdep_map
);
1904 trace_workqueue_execute_start(work
);
1905 worker
->current_func(work
);
1907 * While we must be careful to not use "work" after this, the trace
1908 * point will only record its address.
1910 trace_workqueue_execute_end(work
);
1911 lock_map_release(&lockdep_map
);
1912 lock_map_release(&cwq
->wq
->lockdep_map
);
1914 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
1915 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
1916 " last function: %pf\n",
1917 current
->comm
, preempt_count(), task_pid_nr(current
),
1918 worker
->current_func
);
1919 debug_show_held_locks(current
);
1924 * The following prevents a kworker from hogging CPU on !PREEMPT
1925 * kernels, where a requeueing work item waiting for something to
1926 * happen could deadlock with stop_machine as such work item could
1927 * indefinitely requeue itself while all other CPUs are trapped in
1932 spin_lock_irq(&gcwq
->lock
);
1934 /* clear cpu intensive status */
1935 if (unlikely(cpu_intensive
))
1936 worker_clr_flags(worker
, WORKER_CPU_INTENSIVE
);
1938 /* we're done with it, release */
1939 hlist_del_init(&worker
->hentry
);
1940 worker
->current_work
= NULL
;
1941 worker
->current_func
= NULL
;
1942 worker
->current_cwq
= NULL
;
1943 cwq_dec_nr_in_flight(cwq
, work_color
, false);
1947 * process_scheduled_works - process scheduled works
1950 * Process all scheduled works. Please note that the scheduled list
1951 * may change while processing a work, so this function repeatedly
1952 * fetches a work from the top and executes it.
1955 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1958 static void process_scheduled_works(struct worker
*worker
)
1960 while (!list_empty(&worker
->scheduled
)) {
1961 struct work_struct
*work
= list_first_entry(&worker
->scheduled
,
1962 struct work_struct
, entry
);
1963 process_one_work(worker
, work
);
1968 * worker_thread - the worker thread function
1971 * The gcwq worker thread function. There's a single dynamic pool of
1972 * these per each cpu. These workers process all works regardless of
1973 * their specific target workqueue. The only exception is works which
1974 * belong to workqueues with a rescuer which will be explained in
1977 static int worker_thread(void *__worker
)
1979 struct worker
*worker
= __worker
;
1980 struct global_cwq
*gcwq
= worker
->gcwq
;
1982 /* tell the scheduler that this is a workqueue worker */
1983 worker
->task
->flags
|= PF_WQ_WORKER
;
1985 spin_lock_irq(&gcwq
->lock
);
1987 /* DIE can be set only while we're idle, checking here is enough */
1988 if (worker
->flags
& WORKER_DIE
) {
1989 spin_unlock_irq(&gcwq
->lock
);
1990 worker
->task
->flags
&= ~PF_WQ_WORKER
;
1994 worker_leave_idle(worker
);
1996 /* no more worker necessary? */
1997 if (!need_more_worker(gcwq
))
2000 /* do we need to manage? */
2001 if (unlikely(!may_start_working(gcwq
)) && manage_workers(worker
))
2005 * ->scheduled list can only be filled while a worker is
2006 * preparing to process a work or actually processing it.
2007 * Make sure nobody diddled with it while I was sleeping.
2009 BUG_ON(!list_empty(&worker
->scheduled
));
2012 * When control reaches this point, we're guaranteed to have
2013 * at least one idle worker or that someone else has already
2014 * assumed the manager role.
2016 worker_clr_flags(worker
, WORKER_PREP
);
2019 struct work_struct
*work
=
2020 list_first_entry(&gcwq
->worklist
,
2021 struct work_struct
, entry
);
2023 if (likely(!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))) {
2024 /* optimization path, not strictly necessary */
2025 process_one_work(worker
, work
);
2026 if (unlikely(!list_empty(&worker
->scheduled
)))
2027 process_scheduled_works(worker
);
2029 move_linked_works(work
, &worker
->scheduled
, NULL
);
2030 process_scheduled_works(worker
);
2032 } while (keep_working(gcwq
));
2034 worker_set_flags(worker
, WORKER_PREP
, false);
2036 if (unlikely(need_to_manage_workers(gcwq
)) && manage_workers(worker
))
2040 * gcwq->lock is held and there's no work to process and no
2041 * need to manage, sleep. Workers are woken up only while
2042 * holding gcwq->lock or from local cpu, so setting the
2043 * current state before releasing gcwq->lock is enough to
2044 * prevent losing any event.
2046 worker_enter_idle(worker
);
2047 __set_current_state(TASK_INTERRUPTIBLE
);
2048 spin_unlock_irq(&gcwq
->lock
);
2054 * rescuer_thread - the rescuer thread function
2055 * @__wq: the associated workqueue
2057 * Workqueue rescuer thread function. There's one rescuer for each
2058 * workqueue which has WQ_RESCUER set.
2060 * Regular work processing on a gcwq may block trying to create a new
2061 * worker which uses GFP_KERNEL allocation which has slight chance of
2062 * developing into deadlock if some works currently on the same queue
2063 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2064 * the problem rescuer solves.
2066 * When such condition is possible, the gcwq summons rescuers of all
2067 * workqueues which have works queued on the gcwq and let them process
2068 * those works so that forward progress can be guaranteed.
2070 * This should happen rarely.
2072 static int rescuer_thread(void *__wq
)
2074 struct workqueue_struct
*wq
= __wq
;
2075 struct worker
*rescuer
= wq
->rescuer
;
2076 struct list_head
*scheduled
= &rescuer
->scheduled
;
2077 bool is_unbound
= wq
->flags
& WQ_UNBOUND
;
2080 set_user_nice(current
, RESCUER_NICE_LEVEL
);
2082 set_current_state(TASK_INTERRUPTIBLE
);
2084 if (kthread_should_stop()) {
2085 __set_current_state(TASK_RUNNING
);
2090 * See whether any cpu is asking for help. Unbounded
2091 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2093 for_each_mayday_cpu(cpu
, wq
->mayday_mask
) {
2094 unsigned int tcpu
= is_unbound
? WORK_CPU_UNBOUND
: cpu
;
2095 struct cpu_workqueue_struct
*cwq
= get_cwq(tcpu
, wq
);
2096 struct global_cwq
*gcwq
= cwq
->gcwq
;
2097 struct work_struct
*work
, *n
;
2099 __set_current_state(TASK_RUNNING
);
2100 mayday_clear_cpu(cpu
, wq
->mayday_mask
);
2102 /* migrate to the target cpu if possible */
2103 rescuer
->gcwq
= gcwq
;
2104 worker_maybe_bind_and_lock(rescuer
);
2107 * Slurp in all works issued via this workqueue and
2110 BUG_ON(!list_empty(&rescuer
->scheduled
));
2111 list_for_each_entry_safe(work
, n
, &gcwq
->worklist
, entry
)
2112 if (get_work_cwq(work
) == cwq
)
2113 move_linked_works(work
, scheduled
, &n
);
2115 process_scheduled_works(rescuer
);
2118 * Leave this gcwq. If keep_working() is %true, notify a
2119 * regular worker; otherwise, we end up with 0 concurrency
2120 * and stalling the execution.
2122 if (keep_working(gcwq
))
2123 wake_up_worker(gcwq
);
2125 spin_unlock_irq(&gcwq
->lock
);
2133 struct work_struct work
;
2134 struct completion done
;
2137 static void wq_barrier_func(struct work_struct
*work
)
2139 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
2140 complete(&barr
->done
);
2144 * insert_wq_barrier - insert a barrier work
2145 * @cwq: cwq to insert barrier into
2146 * @barr: wq_barrier to insert
2147 * @target: target work to attach @barr to
2148 * @worker: worker currently executing @target, NULL if @target is not executing
2150 * @barr is linked to @target such that @barr is completed only after
2151 * @target finishes execution. Please note that the ordering
2152 * guarantee is observed only with respect to @target and on the local
2155 * Currently, a queued barrier can't be canceled. This is because
2156 * try_to_grab_pending() can't determine whether the work to be
2157 * grabbed is at the head of the queue and thus can't clear LINKED
2158 * flag of the previous work while there must be a valid next work
2159 * after a work with LINKED flag set.
2161 * Note that when @worker is non-NULL, @target may be modified
2162 * underneath us, so we can't reliably determine cwq from @target.
2165 * spin_lock_irq(gcwq->lock).
2167 static void insert_wq_barrier(struct cpu_workqueue_struct
*cwq
,
2168 struct wq_barrier
*barr
,
2169 struct work_struct
*target
, struct worker
*worker
)
2171 struct list_head
*head
;
2172 unsigned int linked
= 0;
2175 * debugobject calls are safe here even with gcwq->lock locked
2176 * as we know for sure that this will not trigger any of the
2177 * checks and call back into the fixup functions where we
2180 INIT_WORK_ONSTACK(&barr
->work
, wq_barrier_func
);
2181 __set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&barr
->work
));
2182 init_completion(&barr
->done
);
2185 * If @target is currently being executed, schedule the
2186 * barrier to the worker; otherwise, put it after @target.
2189 head
= worker
->scheduled
.next
;
2191 unsigned long *bits
= work_data_bits(target
);
2193 head
= target
->entry
.next
;
2194 /* there can already be other linked works, inherit and set */
2195 linked
= *bits
& WORK_STRUCT_LINKED
;
2196 __set_bit(WORK_STRUCT_LINKED_BIT
, bits
);
2199 debug_work_activate(&barr
->work
);
2200 insert_work(cwq
, &barr
->work
, head
,
2201 work_color_to_flags(WORK_NO_COLOR
) | linked
);
2205 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2206 * @wq: workqueue being flushed
2207 * @flush_color: new flush color, < 0 for no-op
2208 * @work_color: new work color, < 0 for no-op
2210 * Prepare cwqs for workqueue flushing.
2212 * If @flush_color is non-negative, flush_color on all cwqs should be
2213 * -1. If no cwq has in-flight commands at the specified color, all
2214 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2215 * has in flight commands, its cwq->flush_color is set to
2216 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2217 * wakeup logic is armed and %true is returned.
2219 * The caller should have initialized @wq->first_flusher prior to
2220 * calling this function with non-negative @flush_color. If
2221 * @flush_color is negative, no flush color update is done and %false
2224 * If @work_color is non-negative, all cwqs should have the same
2225 * work_color which is previous to @work_color and all will be
2226 * advanced to @work_color.
2229 * mutex_lock(wq->flush_mutex).
2232 * %true if @flush_color >= 0 and there's something to flush. %false
2235 static bool flush_workqueue_prep_cwqs(struct workqueue_struct
*wq
,
2236 int flush_color
, int work_color
)
2241 if (flush_color
>= 0) {
2242 BUG_ON(atomic_read(&wq
->nr_cwqs_to_flush
));
2243 atomic_set(&wq
->nr_cwqs_to_flush
, 1);
2246 for_each_cwq_cpu(cpu
, wq
) {
2247 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
2248 struct global_cwq
*gcwq
= cwq
->gcwq
;
2250 spin_lock_irq(&gcwq
->lock
);
2252 if (flush_color
>= 0) {
2253 BUG_ON(cwq
->flush_color
!= -1);
2255 if (cwq
->nr_in_flight
[flush_color
]) {
2256 cwq
->flush_color
= flush_color
;
2257 atomic_inc(&wq
->nr_cwqs_to_flush
);
2262 if (work_color
>= 0) {
2263 BUG_ON(work_color
!= work_next_color(cwq
->work_color
));
2264 cwq
->work_color
= work_color
;
2267 spin_unlock_irq(&gcwq
->lock
);
2270 if (flush_color
>= 0 && atomic_dec_and_test(&wq
->nr_cwqs_to_flush
))
2271 complete(&wq
->first_flusher
->done
);
2277 * flush_workqueue - ensure that any scheduled work has run to completion.
2278 * @wq: workqueue to flush
2280 * Forces execution of the workqueue and blocks until its completion.
2281 * This is typically used in driver shutdown handlers.
2283 * We sleep until all works which were queued on entry have been handled,
2284 * but we are not livelocked by new incoming ones.
2286 void flush_workqueue(struct workqueue_struct
*wq
)
2288 struct wq_flusher this_flusher
= {
2289 .list
= LIST_HEAD_INIT(this_flusher
.list
),
2291 .done
= COMPLETION_INITIALIZER_ONSTACK(this_flusher
.done
),
2295 lock_map_acquire(&wq
->lockdep_map
);
2296 lock_map_release(&wq
->lockdep_map
);
2298 mutex_lock(&wq
->flush_mutex
);
2301 * Start-to-wait phase
2303 next_color
= work_next_color(wq
->work_color
);
2305 if (next_color
!= wq
->flush_color
) {
2307 * Color space is not full. The current work_color
2308 * becomes our flush_color and work_color is advanced
2311 BUG_ON(!list_empty(&wq
->flusher_overflow
));
2312 this_flusher
.flush_color
= wq
->work_color
;
2313 wq
->work_color
= next_color
;
2315 if (!wq
->first_flusher
) {
2316 /* no flush in progress, become the first flusher */
2317 BUG_ON(wq
->flush_color
!= this_flusher
.flush_color
);
2319 wq
->first_flusher
= &this_flusher
;
2321 if (!flush_workqueue_prep_cwqs(wq
, wq
->flush_color
,
2323 /* nothing to flush, done */
2324 wq
->flush_color
= next_color
;
2325 wq
->first_flusher
= NULL
;
2330 BUG_ON(wq
->flush_color
== this_flusher
.flush_color
);
2331 list_add_tail(&this_flusher
.list
, &wq
->flusher_queue
);
2332 flush_workqueue_prep_cwqs(wq
, -1, wq
->work_color
);
2336 * Oops, color space is full, wait on overflow queue.
2337 * The next flush completion will assign us
2338 * flush_color and transfer to flusher_queue.
2340 list_add_tail(&this_flusher
.list
, &wq
->flusher_overflow
);
2343 mutex_unlock(&wq
->flush_mutex
);
2345 wait_for_completion(&this_flusher
.done
);
2348 * Wake-up-and-cascade phase
2350 * First flushers are responsible for cascading flushes and
2351 * handling overflow. Non-first flushers can simply return.
2353 if (wq
->first_flusher
!= &this_flusher
)
2356 mutex_lock(&wq
->flush_mutex
);
2358 /* we might have raced, check again with mutex held */
2359 if (wq
->first_flusher
!= &this_flusher
)
2362 wq
->first_flusher
= NULL
;
2364 BUG_ON(!list_empty(&this_flusher
.list
));
2365 BUG_ON(wq
->flush_color
!= this_flusher
.flush_color
);
2368 struct wq_flusher
*next
, *tmp
;
2370 /* complete all the flushers sharing the current flush color */
2371 list_for_each_entry_safe(next
, tmp
, &wq
->flusher_queue
, list
) {
2372 if (next
->flush_color
!= wq
->flush_color
)
2374 list_del_init(&next
->list
);
2375 complete(&next
->done
);
2378 BUG_ON(!list_empty(&wq
->flusher_overflow
) &&
2379 wq
->flush_color
!= work_next_color(wq
->work_color
));
2381 /* this flush_color is finished, advance by one */
2382 wq
->flush_color
= work_next_color(wq
->flush_color
);
2384 /* one color has been freed, handle overflow queue */
2385 if (!list_empty(&wq
->flusher_overflow
)) {
2387 * Assign the same color to all overflowed
2388 * flushers, advance work_color and append to
2389 * flusher_queue. This is the start-to-wait
2390 * phase for these overflowed flushers.
2392 list_for_each_entry(tmp
, &wq
->flusher_overflow
, list
)
2393 tmp
->flush_color
= wq
->work_color
;
2395 wq
->work_color
= work_next_color(wq
->work_color
);
2397 list_splice_tail_init(&wq
->flusher_overflow
,
2398 &wq
->flusher_queue
);
2399 flush_workqueue_prep_cwqs(wq
, -1, wq
->work_color
);
2402 if (list_empty(&wq
->flusher_queue
)) {
2403 BUG_ON(wq
->flush_color
!= wq
->work_color
);
2408 * Need to flush more colors. Make the next flusher
2409 * the new first flusher and arm cwqs.
2411 BUG_ON(wq
->flush_color
== wq
->work_color
);
2412 BUG_ON(wq
->flush_color
!= next
->flush_color
);
2414 list_del_init(&next
->list
);
2415 wq
->first_flusher
= next
;
2417 if (flush_workqueue_prep_cwqs(wq
, wq
->flush_color
, -1))
2421 * Meh... this color is already done, clear first
2422 * flusher and repeat cascading.
2424 wq
->first_flusher
= NULL
;
2428 mutex_unlock(&wq
->flush_mutex
);
2430 EXPORT_SYMBOL_GPL(flush_workqueue
);
2433 * drain_workqueue - drain a workqueue
2434 * @wq: workqueue to drain
2436 * Wait until the workqueue becomes empty. While draining is in progress,
2437 * only chain queueing is allowed. IOW, only currently pending or running
2438 * work items on @wq can queue further work items on it. @wq is flushed
2439 * repeatedly until it becomes empty. The number of flushing is detemined
2440 * by the depth of chaining and should be relatively short. Whine if it
2443 void drain_workqueue(struct workqueue_struct
*wq
)
2445 unsigned int flush_cnt
= 0;
2449 * __queue_work() needs to test whether there are drainers, is much
2450 * hotter than drain_workqueue() and already looks at @wq->flags.
2451 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2453 spin_lock(&workqueue_lock
);
2454 if (!wq
->nr_drainers
++)
2455 wq
->flags
|= WQ_DRAINING
;
2456 spin_unlock(&workqueue_lock
);
2458 flush_workqueue(wq
);
2460 for_each_cwq_cpu(cpu
, wq
) {
2461 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
2464 spin_lock_irq(&cwq
->gcwq
->lock
);
2465 drained
= !cwq
->nr_active
&& list_empty(&cwq
->delayed_works
);
2466 spin_unlock_irq(&cwq
->gcwq
->lock
);
2471 if (++flush_cnt
== 10 ||
2472 (flush_cnt
% 100 == 0 && flush_cnt
<= 1000))
2473 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2474 wq
->name
, flush_cnt
);
2478 spin_lock(&workqueue_lock
);
2479 if (!--wq
->nr_drainers
)
2480 wq
->flags
&= ~WQ_DRAINING
;
2481 spin_unlock(&workqueue_lock
);
2483 EXPORT_SYMBOL_GPL(drain_workqueue
);
2485 static bool start_flush_work(struct work_struct
*work
, struct wq_barrier
*barr
,
2486 bool wait_executing
)
2488 struct worker
*worker
= NULL
;
2489 struct global_cwq
*gcwq
;
2490 struct cpu_workqueue_struct
*cwq
;
2493 gcwq
= get_work_gcwq(work
);
2497 spin_lock_irq(&gcwq
->lock
);
2498 if (!list_empty(&work
->entry
)) {
2500 * See the comment near try_to_grab_pending()->smp_rmb().
2501 * If it was re-queued to a different gcwq under us, we
2502 * are not going to wait.
2505 cwq
= get_work_cwq(work
);
2506 if (unlikely(!cwq
|| gcwq
!= cwq
->gcwq
))
2508 } else if (wait_executing
) {
2509 worker
= find_worker_executing_work(gcwq
, work
);
2512 cwq
= worker
->current_cwq
;
2516 insert_wq_barrier(cwq
, barr
, work
, worker
);
2517 spin_unlock_irq(&gcwq
->lock
);
2520 * If @max_active is 1 or rescuer is in use, flushing another work
2521 * item on the same workqueue may lead to deadlock. Make sure the
2522 * flusher is not running on the same workqueue by verifying write
2525 if (cwq
->wq
->saved_max_active
== 1 || cwq
->wq
->flags
& WQ_RESCUER
)
2526 lock_map_acquire(&cwq
->wq
->lockdep_map
);
2528 lock_map_acquire_read(&cwq
->wq
->lockdep_map
);
2529 lock_map_release(&cwq
->wq
->lockdep_map
);
2533 spin_unlock_irq(&gcwq
->lock
);
2538 * flush_work - wait for a work to finish executing the last queueing instance
2539 * @work: the work to flush
2541 * Wait until @work has finished execution. This function considers
2542 * only the last queueing instance of @work. If @work has been
2543 * enqueued across different CPUs on a non-reentrant workqueue or on
2544 * multiple workqueues, @work might still be executing on return on
2545 * some of the CPUs from earlier queueing.
2547 * If @work was queued only on a non-reentrant, ordered or unbound
2548 * workqueue, @work is guaranteed to be idle on return if it hasn't
2549 * been requeued since flush started.
2552 * %true if flush_work() waited for the work to finish execution,
2553 * %false if it was already idle.
2555 bool flush_work(struct work_struct
*work
)
2557 struct wq_barrier barr
;
2559 if (start_flush_work(work
, &barr
, true)) {
2560 wait_for_completion(&barr
.done
);
2561 destroy_work_on_stack(&barr
.work
);
2566 EXPORT_SYMBOL_GPL(flush_work
);
2568 static bool wait_on_cpu_work(struct global_cwq
*gcwq
, struct work_struct
*work
)
2570 struct wq_barrier barr
;
2571 struct worker
*worker
;
2573 spin_lock_irq(&gcwq
->lock
);
2575 worker
= find_worker_executing_work(gcwq
, work
);
2576 if (unlikely(worker
))
2577 insert_wq_barrier(worker
->current_cwq
, &barr
, work
, worker
);
2579 spin_unlock_irq(&gcwq
->lock
);
2581 if (unlikely(worker
)) {
2582 wait_for_completion(&barr
.done
);
2583 destroy_work_on_stack(&barr
.work
);
2589 static bool wait_on_work(struct work_struct
*work
)
2596 lock_map_acquire(&work
->lockdep_map
);
2597 lock_map_release(&work
->lockdep_map
);
2599 for_each_gcwq_cpu(cpu
)
2600 ret
|= wait_on_cpu_work(get_gcwq(cpu
), work
);
2605 * flush_work_sync - wait until a work has finished execution
2606 * @work: the work to flush
2608 * Wait until @work has finished execution. On return, it's
2609 * guaranteed that all queueing instances of @work which happened
2610 * before this function is called are finished. In other words, if
2611 * @work hasn't been requeued since this function was called, @work is
2612 * guaranteed to be idle on return.
2615 * %true if flush_work_sync() waited for the work to finish execution,
2616 * %false if it was already idle.
2618 bool flush_work_sync(struct work_struct
*work
)
2620 struct wq_barrier barr
;
2621 bool pending
, waited
;
2623 /* we'll wait for executions separately, queue barr only if pending */
2624 pending
= start_flush_work(work
, &barr
, false);
2626 /* wait for executions to finish */
2627 waited
= wait_on_work(work
);
2629 /* wait for the pending one */
2631 wait_for_completion(&barr
.done
);
2632 destroy_work_on_stack(&barr
.work
);
2635 return pending
|| waited
;
2637 EXPORT_SYMBOL_GPL(flush_work_sync
);
2640 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2641 * so this work can't be re-armed in any way.
2643 static int try_to_grab_pending(struct work_struct
*work
)
2645 struct global_cwq
*gcwq
;
2648 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)))
2652 * The queueing is in progress, or it is already queued. Try to
2653 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2655 gcwq
= get_work_gcwq(work
);
2659 spin_lock_irq(&gcwq
->lock
);
2660 if (!list_empty(&work
->entry
)) {
2662 * This work is queued, but perhaps we locked the wrong gcwq.
2663 * In that case we must see the new value after rmb(), see
2664 * insert_work()->wmb().
2667 if (gcwq
== get_work_gcwq(work
)) {
2668 debug_work_deactivate(work
);
2671 * A delayed work item cannot be grabbed directly
2672 * because it might have linked NO_COLOR work items
2673 * which, if left on the delayed_list, will confuse
2674 * cwq->nr_active management later on and cause
2675 * stall. Make sure the work item is activated
2678 if (*work_data_bits(work
) & WORK_STRUCT_DELAYED
)
2679 cwq_activate_delayed_work(work
);
2681 list_del_init(&work
->entry
);
2682 cwq_dec_nr_in_flight(get_work_cwq(work
),
2683 get_work_color(work
),
2684 *work_data_bits(work
) & WORK_STRUCT_DELAYED
);
2688 spin_unlock_irq(&gcwq
->lock
);
2693 static bool __cancel_work_timer(struct work_struct
*work
,
2694 struct timer_list
* timer
)
2699 ret
= (timer
&& likely(del_timer(timer
)));
2701 ret
= try_to_grab_pending(work
);
2703 } while (unlikely(ret
< 0));
2705 clear_work_data(work
);
2710 * cancel_work_sync - cancel a work and wait for it to finish
2711 * @work: the work to cancel
2713 * Cancel @work and wait for its execution to finish. This function
2714 * can be used even if the work re-queues itself or migrates to
2715 * another workqueue. On return from this function, @work is
2716 * guaranteed to be not pending or executing on any CPU.
2718 * cancel_work_sync(&delayed_work->work) must not be used for
2719 * delayed_work's. Use cancel_delayed_work_sync() instead.
2721 * The caller must ensure that the workqueue on which @work was last
2722 * queued can't be destroyed before this function returns.
2725 * %true if @work was pending, %false otherwise.
2727 bool cancel_work_sync(struct work_struct
*work
)
2729 return __cancel_work_timer(work
, NULL
);
2731 EXPORT_SYMBOL_GPL(cancel_work_sync
);
2734 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2735 * @dwork: the delayed work to flush
2737 * Delayed timer is cancelled and the pending work is queued for
2738 * immediate execution. Like flush_work(), this function only
2739 * considers the last queueing instance of @dwork.
2742 * %true if flush_work() waited for the work to finish execution,
2743 * %false if it was already idle.
2745 bool flush_delayed_work(struct delayed_work
*dwork
)
2747 if (del_timer_sync(&dwork
->timer
))
2748 __queue_work(raw_smp_processor_id(),
2749 get_work_cwq(&dwork
->work
)->wq
, &dwork
->work
);
2750 return flush_work(&dwork
->work
);
2752 EXPORT_SYMBOL(flush_delayed_work
);
2755 * flush_delayed_work_sync - wait for a dwork to finish
2756 * @dwork: the delayed work to flush
2758 * Delayed timer is cancelled and the pending work is queued for
2759 * execution immediately. Other than timer handling, its behavior
2760 * is identical to flush_work_sync().
2763 * %true if flush_work_sync() waited for the work to finish execution,
2764 * %false if it was already idle.
2766 bool flush_delayed_work_sync(struct delayed_work
*dwork
)
2768 if (del_timer_sync(&dwork
->timer
))
2769 __queue_work(raw_smp_processor_id(),
2770 get_work_cwq(&dwork
->work
)->wq
, &dwork
->work
);
2771 return flush_work_sync(&dwork
->work
);
2773 EXPORT_SYMBOL(flush_delayed_work_sync
);
2776 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2777 * @dwork: the delayed work cancel
2779 * This is cancel_work_sync() for delayed works.
2782 * %true if @dwork was pending, %false otherwise.
2784 bool cancel_delayed_work_sync(struct delayed_work
*dwork
)
2786 return __cancel_work_timer(&dwork
->work
, &dwork
->timer
);
2788 EXPORT_SYMBOL(cancel_delayed_work_sync
);
2791 * schedule_work - put work task in global workqueue
2792 * @work: job to be done
2794 * Returns zero if @work was already on the kernel-global workqueue and
2795 * non-zero otherwise.
2797 * This puts a job in the kernel-global workqueue if it was not already
2798 * queued and leaves it in the same position on the kernel-global
2799 * workqueue otherwise.
2801 int schedule_work(struct work_struct
*work
)
2803 return queue_work(system_wq
, work
);
2805 EXPORT_SYMBOL(schedule_work
);
2808 * schedule_work_on - put work task on a specific cpu
2809 * @cpu: cpu to put the work task on
2810 * @work: job to be done
2812 * This puts a job on a specific cpu
2814 int schedule_work_on(int cpu
, struct work_struct
*work
)
2816 return queue_work_on(cpu
, system_wq
, work
);
2818 EXPORT_SYMBOL(schedule_work_on
);
2821 * schedule_delayed_work - put work task in global workqueue after delay
2822 * @dwork: job to be done
2823 * @delay: number of jiffies to wait or 0 for immediate execution
2825 * After waiting for a given time this puts a job in the kernel-global
2828 int schedule_delayed_work(struct delayed_work
*dwork
,
2829 unsigned long delay
)
2831 return queue_delayed_work(system_wq
, dwork
, delay
);
2833 EXPORT_SYMBOL(schedule_delayed_work
);
2836 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2838 * @dwork: job to be done
2839 * @delay: number of jiffies to wait
2841 * After waiting for a given time this puts a job in the kernel-global
2842 * workqueue on the specified CPU.
2844 int schedule_delayed_work_on(int cpu
,
2845 struct delayed_work
*dwork
, unsigned long delay
)
2847 return queue_delayed_work_on(cpu
, system_wq
, dwork
, delay
);
2849 EXPORT_SYMBOL(schedule_delayed_work_on
);
2852 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2853 * @func: the function to call
2855 * schedule_on_each_cpu() executes @func on each online CPU using the
2856 * system workqueue and blocks until all CPUs have completed.
2857 * schedule_on_each_cpu() is very slow.
2860 * 0 on success, -errno on failure.
2862 int schedule_on_each_cpu(work_func_t func
)
2865 struct work_struct __percpu
*works
;
2867 works
= alloc_percpu(struct work_struct
);
2873 for_each_online_cpu(cpu
) {
2874 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
2876 INIT_WORK(work
, func
);
2877 schedule_work_on(cpu
, work
);
2880 for_each_online_cpu(cpu
)
2881 flush_work(per_cpu_ptr(works
, cpu
));
2889 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2891 * Forces execution of the kernel-global workqueue and blocks until its
2894 * Think twice before calling this function! It's very easy to get into
2895 * trouble if you don't take great care. Either of the following situations
2896 * will lead to deadlock:
2898 * One of the work items currently on the workqueue needs to acquire
2899 * a lock held by your code or its caller.
2901 * Your code is running in the context of a work routine.
2903 * They will be detected by lockdep when they occur, but the first might not
2904 * occur very often. It depends on what work items are on the workqueue and
2905 * what locks they need, which you have no control over.
2907 * In most situations flushing the entire workqueue is overkill; you merely
2908 * need to know that a particular work item isn't queued and isn't running.
2909 * In such cases you should use cancel_delayed_work_sync() or
2910 * cancel_work_sync() instead.
2912 void flush_scheduled_work(void)
2914 flush_workqueue(system_wq
);
2916 EXPORT_SYMBOL(flush_scheduled_work
);
2919 * execute_in_process_context - reliably execute the routine with user context
2920 * @fn: the function to execute
2921 * @ew: guaranteed storage for the execute work structure (must
2922 * be available when the work executes)
2924 * Executes the function immediately if process context is available,
2925 * otherwise schedules the function for delayed execution.
2927 * Returns: 0 - function was executed
2928 * 1 - function was scheduled for execution
2930 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
2932 if (!in_interrupt()) {
2937 INIT_WORK(&ew
->work
, fn
);
2938 schedule_work(&ew
->work
);
2942 EXPORT_SYMBOL_GPL(execute_in_process_context
);
2944 int keventd_up(void)
2946 return system_wq
!= NULL
;
2949 static int alloc_cwqs(struct workqueue_struct
*wq
)
2952 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2953 * Make sure that the alignment isn't lower than that of
2954 * unsigned long long.
2956 const size_t size
= sizeof(struct cpu_workqueue_struct
);
2957 const size_t align
= max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS
,
2958 __alignof__(unsigned long long));
2960 bool percpu
= !(wq
->flags
& WQ_UNBOUND
);
2962 bool percpu
= false;
2966 wq
->cpu_wq
.pcpu
= __alloc_percpu(size
, align
);
2971 * Allocate enough room to align cwq and put an extra
2972 * pointer at the end pointing back to the originally
2973 * allocated pointer which will be used for free.
2975 ptr
= kzalloc(size
+ align
+ sizeof(void *), GFP_KERNEL
);
2977 wq
->cpu_wq
.single
= PTR_ALIGN(ptr
, align
);
2978 *(void **)(wq
->cpu_wq
.single
+ 1) = ptr
;
2982 /* just in case, make sure it's actually aligned */
2983 BUG_ON(!IS_ALIGNED(wq
->cpu_wq
.v
, align
));
2984 return wq
->cpu_wq
.v
? 0 : -ENOMEM
;
2987 static void free_cwqs(struct workqueue_struct
*wq
)
2990 bool percpu
= !(wq
->flags
& WQ_UNBOUND
);
2992 bool percpu
= false;
2996 free_percpu(wq
->cpu_wq
.pcpu
);
2997 else if (wq
->cpu_wq
.single
) {
2998 /* the pointer to free is stored right after the cwq */
2999 kfree(*(void **)(wq
->cpu_wq
.single
+ 1));
3003 static int wq_clamp_max_active(int max_active
, unsigned int flags
,
3006 int lim
= flags
& WQ_UNBOUND
? WQ_UNBOUND_MAX_ACTIVE
: WQ_MAX_ACTIVE
;
3008 if (max_active
< 1 || max_active
> lim
)
3009 printk(KERN_WARNING
"workqueue: max_active %d requested for %s "
3010 "is out of range, clamping between %d and %d\n",
3011 max_active
, name
, 1, lim
);
3013 return clamp_val(max_active
, 1, lim
);
3016 struct workqueue_struct
*__alloc_workqueue_key(const char *name
,
3019 struct lock_class_key
*key
,
3020 const char *lock_name
)
3022 struct workqueue_struct
*wq
;
3026 * Workqueues which may be used during memory reclaim should
3027 * have a rescuer to guarantee forward progress.
3029 if (flags
& WQ_MEM_RECLAIM
)
3030 flags
|= WQ_RESCUER
;
3033 * Unbound workqueues aren't concurrency managed and should be
3034 * dispatched to workers immediately.
3036 if (flags
& WQ_UNBOUND
)
3037 flags
|= WQ_HIGHPRI
;
3039 max_active
= max_active
?: WQ_DFL_ACTIVE
;
3040 max_active
= wq_clamp_max_active(max_active
, flags
, name
);
3042 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
3047 wq
->saved_max_active
= max_active
;
3048 mutex_init(&wq
->flush_mutex
);
3049 atomic_set(&wq
->nr_cwqs_to_flush
, 0);
3050 INIT_LIST_HEAD(&wq
->flusher_queue
);
3051 INIT_LIST_HEAD(&wq
->flusher_overflow
);
3054 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
3055 INIT_LIST_HEAD(&wq
->list
);
3057 if (alloc_cwqs(wq
) < 0)
3060 for_each_cwq_cpu(cpu
, wq
) {
3061 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
3062 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3064 BUG_ON((unsigned long)cwq
& WORK_STRUCT_FLAG_MASK
);
3067 cwq
->flush_color
= -1;
3068 cwq
->max_active
= max_active
;
3069 INIT_LIST_HEAD(&cwq
->delayed_works
);
3072 if (flags
& WQ_RESCUER
) {
3073 struct worker
*rescuer
;
3075 if (!alloc_mayday_mask(&wq
->mayday_mask
, GFP_KERNEL
))
3078 wq
->rescuer
= rescuer
= alloc_worker();
3082 rescuer
->task
= kthread_create(rescuer_thread
, wq
, "%s", name
);
3083 if (IS_ERR(rescuer
->task
))
3086 rescuer
->task
->flags
|= PF_THREAD_BOUND
;
3087 wake_up_process(rescuer
->task
);
3091 * workqueue_lock protects global freeze state and workqueues
3092 * list. Grab it, set max_active accordingly and add the new
3093 * workqueue to workqueues list.
3095 spin_lock(&workqueue_lock
);
3097 if (workqueue_freezing
&& wq
->flags
& WQ_FREEZABLE
)
3098 for_each_cwq_cpu(cpu
, wq
)
3099 get_cwq(cpu
, wq
)->max_active
= 0;
3101 list_add(&wq
->list
, &workqueues
);
3103 spin_unlock(&workqueue_lock
);
3109 free_mayday_mask(wq
->mayday_mask
);
3115 EXPORT_SYMBOL_GPL(__alloc_workqueue_key
);
3118 * destroy_workqueue - safely terminate a workqueue
3119 * @wq: target workqueue
3121 * Safely destroy a workqueue. All work currently pending will be done first.
3123 void destroy_workqueue(struct workqueue_struct
*wq
)
3127 /* drain it before proceeding with destruction */
3128 drain_workqueue(wq
);
3131 * wq list is used to freeze wq, remove from list after
3132 * flushing is complete in case freeze races us.
3134 spin_lock(&workqueue_lock
);
3135 list_del(&wq
->list
);
3136 spin_unlock(&workqueue_lock
);
3139 for_each_cwq_cpu(cpu
, wq
) {
3140 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
3143 for (i
= 0; i
< WORK_NR_COLORS
; i
++)
3144 BUG_ON(cwq
->nr_in_flight
[i
]);
3145 BUG_ON(cwq
->nr_active
);
3146 BUG_ON(!list_empty(&cwq
->delayed_works
));
3149 if (wq
->flags
& WQ_RESCUER
) {
3150 kthread_stop(wq
->rescuer
->task
);
3151 free_mayday_mask(wq
->mayday_mask
);
3158 EXPORT_SYMBOL_GPL(destroy_workqueue
);
3161 * workqueue_set_max_active - adjust max_active of a workqueue
3162 * @wq: target workqueue
3163 * @max_active: new max_active value.
3165 * Set max_active of @wq to @max_active.
3168 * Don't call from IRQ context.
3170 void workqueue_set_max_active(struct workqueue_struct
*wq
, int max_active
)
3174 max_active
= wq_clamp_max_active(max_active
, wq
->flags
, wq
->name
);
3176 spin_lock(&workqueue_lock
);
3178 wq
->saved_max_active
= max_active
;
3180 for_each_cwq_cpu(cpu
, wq
) {
3181 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3183 spin_lock_irq(&gcwq
->lock
);
3185 if (!(wq
->flags
& WQ_FREEZABLE
) ||
3186 !(gcwq
->flags
& GCWQ_FREEZING
))
3187 get_cwq(gcwq
->cpu
, wq
)->max_active
= max_active
;
3189 spin_unlock_irq(&gcwq
->lock
);
3192 spin_unlock(&workqueue_lock
);
3194 EXPORT_SYMBOL_GPL(workqueue_set_max_active
);
3197 * workqueue_congested - test whether a workqueue is congested
3198 * @cpu: CPU in question
3199 * @wq: target workqueue
3201 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3202 * no synchronization around this function and the test result is
3203 * unreliable and only useful as advisory hints or for debugging.
3206 * %true if congested, %false otherwise.
3208 bool workqueue_congested(unsigned int cpu
, struct workqueue_struct
*wq
)
3210 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
3212 return !list_empty(&cwq
->delayed_works
);
3214 EXPORT_SYMBOL_GPL(workqueue_congested
);
3217 * work_cpu - return the last known associated cpu for @work
3218 * @work: the work of interest
3221 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3223 unsigned int work_cpu(struct work_struct
*work
)
3225 struct global_cwq
*gcwq
= get_work_gcwq(work
);
3227 return gcwq
? gcwq
->cpu
: WORK_CPU_NONE
;
3229 EXPORT_SYMBOL_GPL(work_cpu
);
3232 * work_busy - test whether a work is currently pending or running
3233 * @work: the work to be tested
3235 * Test whether @work is currently pending or running. There is no
3236 * synchronization around this function and the test result is
3237 * unreliable and only useful as advisory hints or for debugging.
3238 * Especially for reentrant wqs, the pending state might hide the
3242 * OR'd bitmask of WORK_BUSY_* bits.
3244 unsigned int work_busy(struct work_struct
*work
)
3246 struct global_cwq
*gcwq
= get_work_gcwq(work
);
3247 unsigned long flags
;
3248 unsigned int ret
= 0;
3253 spin_lock_irqsave(&gcwq
->lock
, flags
);
3255 if (work_pending(work
))
3256 ret
|= WORK_BUSY_PENDING
;
3257 if (find_worker_executing_work(gcwq
, work
))
3258 ret
|= WORK_BUSY_RUNNING
;
3260 spin_unlock_irqrestore(&gcwq
->lock
, flags
);
3264 EXPORT_SYMBOL_GPL(work_busy
);
3269 * There are two challenges in supporting CPU hotplug. Firstly, there
3270 * are a lot of assumptions on strong associations among work, cwq and
3271 * gcwq which make migrating pending and scheduled works very
3272 * difficult to implement without impacting hot paths. Secondly,
3273 * gcwqs serve mix of short, long and very long running works making
3274 * blocked draining impractical.
3276 * This is solved by allowing a gcwq to be detached from CPU, running
3277 * it with unbound (rogue) workers and allowing it to be reattached
3278 * later if the cpu comes back online. A separate thread is created
3279 * to govern a gcwq in such state and is called the trustee of the
3282 * Trustee states and their descriptions.
3284 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3285 * new trustee is started with this state.
3287 * IN_CHARGE Once started, trustee will enter this state after
3288 * assuming the manager role and making all existing
3289 * workers rogue. DOWN_PREPARE waits for trustee to
3290 * enter this state. After reaching IN_CHARGE, trustee
3291 * tries to execute the pending worklist until it's empty
3292 * and the state is set to BUTCHER, or the state is set
3295 * BUTCHER Command state which is set by the cpu callback after
3296 * the cpu has went down. Once this state is set trustee
3297 * knows that there will be no new works on the worklist
3298 * and once the worklist is empty it can proceed to
3299 * killing idle workers.
3301 * RELEASE Command state which is set by the cpu callback if the
3302 * cpu down has been canceled or it has come online
3303 * again. After recognizing this state, trustee stops
3304 * trying to drain or butcher and clears ROGUE, rebinds
3305 * all remaining workers back to the cpu and releases
3308 * DONE Trustee will enter this state after BUTCHER or RELEASE
3311 * trustee CPU draining
3312 * took over down complete
3313 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3315 * | CPU is back online v return workers |
3316 * ----------------> RELEASE --------------
3320 * trustee_wait_event_timeout - timed event wait for trustee
3321 * @cond: condition to wait for
3322 * @timeout: timeout in jiffies
3324 * wait_event_timeout() for trustee to use. Handles locking and
3325 * checks for RELEASE request.
3328 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3329 * multiple times. To be used by trustee.
3332 * Positive indicating left time if @cond is satisfied, 0 if timed
3333 * out, -1 if canceled.
3335 #define trustee_wait_event_timeout(cond, timeout) ({ \
3336 long __ret = (timeout); \
3337 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3339 spin_unlock_irq(&gcwq->lock); \
3340 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3341 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3343 spin_lock_irq(&gcwq->lock); \
3345 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3349 * trustee_wait_event - event wait for trustee
3350 * @cond: condition to wait for
3352 * wait_event() for trustee to use. Automatically handles locking and
3353 * checks for CANCEL request.
3356 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3357 * multiple times. To be used by trustee.
3360 * 0 if @cond is satisfied, -1 if canceled.
3362 #define trustee_wait_event(cond) ({ \
3364 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3365 __ret1 < 0 ? -1 : 0; \
3368 static int __cpuinit
trustee_thread(void *__gcwq
)
3370 struct global_cwq
*gcwq
= __gcwq
;
3371 struct worker
*worker
;
3372 struct work_struct
*work
;
3373 struct hlist_node
*pos
;
3377 BUG_ON(gcwq
->cpu
!= smp_processor_id());
3379 spin_lock_irq(&gcwq
->lock
);
3381 * Claim the manager position and make all workers rogue.
3382 * Trustee must be bound to the target cpu and can't be
3385 BUG_ON(gcwq
->cpu
!= smp_processor_id());
3386 rc
= trustee_wait_event(!(gcwq
->flags
& GCWQ_MANAGING_WORKERS
));
3389 gcwq
->flags
|= GCWQ_MANAGING_WORKERS
;
3391 list_for_each_entry(worker
, &gcwq
->idle_list
, entry
)
3392 worker
->flags
|= WORKER_ROGUE
;
3394 for_each_busy_worker(worker
, i
, pos
, gcwq
)
3395 worker
->flags
|= WORKER_ROGUE
;
3398 * Call schedule() so that we cross rq->lock and thus can
3399 * guarantee sched callbacks see the rogue flag. This is
3400 * necessary as scheduler callbacks may be invoked from other
3403 spin_unlock_irq(&gcwq
->lock
);
3405 spin_lock_irq(&gcwq
->lock
);
3408 * Sched callbacks are disabled now. Zap nr_running. After
3409 * this, nr_running stays zero and need_more_worker() and
3410 * keep_working() are always true as long as the worklist is
3413 atomic_set(get_gcwq_nr_running(gcwq
->cpu
), 0);
3415 spin_unlock_irq(&gcwq
->lock
);
3416 del_timer_sync(&gcwq
->idle_timer
);
3417 spin_lock_irq(&gcwq
->lock
);
3420 * We're now in charge. Notify and proceed to drain. We need
3421 * to keep the gcwq running during the whole CPU down
3422 * procedure as other cpu hotunplug callbacks may need to
3423 * flush currently running tasks.
3425 gcwq
->trustee_state
= TRUSTEE_IN_CHARGE
;
3426 wake_up_all(&gcwq
->trustee_wait
);
3429 * The original cpu is in the process of dying and may go away
3430 * anytime now. When that happens, we and all workers would
3431 * be migrated to other cpus. Try draining any left work. We
3432 * want to get it over with ASAP - spam rescuers, wake up as
3433 * many idlers as necessary and create new ones till the
3434 * worklist is empty. Note that if the gcwq is frozen, there
3435 * may be frozen works in freezable cwqs. Don't declare
3436 * completion while frozen.
3438 while (gcwq
->nr_workers
!= gcwq
->nr_idle
||
3439 gcwq
->flags
& GCWQ_FREEZING
||
3440 gcwq
->trustee_state
== TRUSTEE_IN_CHARGE
) {
3443 list_for_each_entry(work
, &gcwq
->worklist
, entry
) {
3448 list_for_each_entry(worker
, &gcwq
->idle_list
, entry
) {
3451 wake_up_process(worker
->task
);
3454 if (need_to_create_worker(gcwq
)) {
3455 spin_unlock_irq(&gcwq
->lock
);
3456 worker
= create_worker(gcwq
, false);
3457 spin_lock_irq(&gcwq
->lock
);
3459 worker
->flags
|= WORKER_ROGUE
;
3460 start_worker(worker
);
3464 /* give a breather */
3465 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN
) < 0)
3470 * Either all works have been scheduled and cpu is down, or
3471 * cpu down has already been canceled. Wait for and butcher
3472 * all workers till we're canceled.
3475 rc
= trustee_wait_event(!list_empty(&gcwq
->idle_list
));
3476 while (!list_empty(&gcwq
->idle_list
))
3477 destroy_worker(list_first_entry(&gcwq
->idle_list
,
3478 struct worker
, entry
));
3479 } while (gcwq
->nr_workers
&& rc
>= 0);
3482 * At this point, either draining has completed and no worker
3483 * is left, or cpu down has been canceled or the cpu is being
3484 * brought back up. There shouldn't be any idle one left.
3485 * Tell the remaining busy ones to rebind once it finishes the
3486 * currently scheduled works by scheduling the rebind_work.
3488 WARN_ON(!list_empty(&gcwq
->idle_list
));
3490 for_each_busy_worker(worker
, i
, pos
, gcwq
) {
3491 struct work_struct
*rebind_work
= &worker
->rebind_work
;
3492 unsigned long worker_flags
= worker
->flags
;
3495 * Rebind_work may race with future cpu hotplug
3496 * operations. Use a separate flag to mark that
3497 * rebinding is scheduled. The morphing should
3500 worker_flags
|= WORKER_REBIND
;
3501 worker_flags
&= ~WORKER_ROGUE
;
3502 ACCESS_ONCE(worker
->flags
) = worker_flags
;
3504 /* queue rebind_work, wq doesn't matter, use the default one */
3505 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT
,
3506 work_data_bits(rebind_work
)))
3509 debug_work_activate(rebind_work
);
3510 insert_work(get_cwq(gcwq
->cpu
, system_wq
), rebind_work
,
3511 worker
->scheduled
.next
,
3512 work_color_to_flags(WORK_NO_COLOR
));
3515 /* relinquish manager role */
3516 gcwq
->flags
&= ~GCWQ_MANAGING_WORKERS
;
3518 /* notify completion */
3519 gcwq
->trustee
= NULL
;
3520 gcwq
->trustee_state
= TRUSTEE_DONE
;
3521 wake_up_all(&gcwq
->trustee_wait
);
3522 spin_unlock_irq(&gcwq
->lock
);
3527 * wait_trustee_state - wait for trustee to enter the specified state
3528 * @gcwq: gcwq the trustee of interest belongs to
3529 * @state: target state to wait for
3531 * Wait for the trustee to reach @state. DONE is already matched.
3534 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3535 * multiple times. To be used by cpu_callback.
3537 static void __cpuinit
wait_trustee_state(struct global_cwq
*gcwq
, int state
)
3538 __releases(&gcwq
->lock
)
3539 __acquires(&gcwq
->lock
)
3541 if (!(gcwq
->trustee_state
== state
||
3542 gcwq
->trustee_state
== TRUSTEE_DONE
)) {
3543 spin_unlock_irq(&gcwq
->lock
);
3544 __wait_event(gcwq
->trustee_wait
,
3545 gcwq
->trustee_state
== state
||
3546 gcwq
->trustee_state
== TRUSTEE_DONE
);
3547 spin_lock_irq(&gcwq
->lock
);
3551 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
3552 unsigned long action
,
3555 unsigned int cpu
= (unsigned long)hcpu
;
3556 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3557 struct task_struct
*new_trustee
= NULL
;
3558 struct worker
*uninitialized_var(new_worker
);
3559 unsigned long flags
;
3561 action
&= ~CPU_TASKS_FROZEN
;
3564 case CPU_DOWN_PREPARE
:
3565 new_trustee
= kthread_create(trustee_thread
, gcwq
,
3566 "workqueue_trustee/%d\n", cpu
);
3567 if (IS_ERR(new_trustee
))
3568 return notifier_from_errno(PTR_ERR(new_trustee
));
3569 kthread_bind(new_trustee
, cpu
);
3571 case CPU_UP_PREPARE
:
3572 BUG_ON(gcwq
->first_idle
);
3573 new_worker
= create_worker(gcwq
, false);
3576 kthread_stop(new_trustee
);
3581 /* some are called w/ irq disabled, don't disturb irq status */
3582 spin_lock_irqsave(&gcwq
->lock
, flags
);
3585 case CPU_DOWN_PREPARE
:
3586 /* initialize trustee and tell it to acquire the gcwq */
3587 BUG_ON(gcwq
->trustee
|| gcwq
->trustee_state
!= TRUSTEE_DONE
);
3588 gcwq
->trustee
= new_trustee
;
3589 gcwq
->trustee_state
= TRUSTEE_START
;
3590 wake_up_process(gcwq
->trustee
);
3591 wait_trustee_state(gcwq
, TRUSTEE_IN_CHARGE
);
3593 case CPU_UP_PREPARE
:
3594 BUG_ON(gcwq
->first_idle
);
3595 gcwq
->first_idle
= new_worker
;
3600 * Before this, the trustee and all workers except for
3601 * the ones which are still executing works from
3602 * before the last CPU down must be on the cpu. After
3603 * this, they'll all be diasporas.
3605 gcwq
->flags
|= GCWQ_DISASSOCIATED
;
3609 gcwq
->trustee_state
= TRUSTEE_BUTCHER
;
3611 case CPU_UP_CANCELED
:
3612 destroy_worker(gcwq
->first_idle
);
3613 gcwq
->first_idle
= NULL
;
3616 case CPU_DOWN_FAILED
:
3618 gcwq
->flags
&= ~GCWQ_DISASSOCIATED
;
3619 if (gcwq
->trustee_state
!= TRUSTEE_DONE
) {
3620 gcwq
->trustee_state
= TRUSTEE_RELEASE
;
3621 wake_up_process(gcwq
->trustee
);
3622 wait_trustee_state(gcwq
, TRUSTEE_DONE
);
3626 * Trustee is done and there might be no worker left.
3627 * Put the first_idle in and request a real manager to
3630 spin_unlock_irq(&gcwq
->lock
);
3631 kthread_bind(gcwq
->first_idle
->task
, cpu
);
3632 spin_lock_irq(&gcwq
->lock
);
3633 gcwq
->flags
|= GCWQ_MANAGE_WORKERS
;
3634 start_worker(gcwq
->first_idle
);
3635 gcwq
->first_idle
= NULL
;
3639 spin_unlock_irqrestore(&gcwq
->lock
, flags
);
3641 return notifier_from_errno(0);
3645 * Workqueues should be brought up before normal priority CPU notifiers.
3646 * This will be registered high priority CPU notifier.
3648 static int __devinit
workqueue_cpu_up_callback(struct notifier_block
*nfb
,
3649 unsigned long action
,
3652 switch (action
& ~CPU_TASKS_FROZEN
) {
3653 case CPU_UP_PREPARE
:
3654 case CPU_UP_CANCELED
:
3655 case CPU_DOWN_FAILED
:
3657 return workqueue_cpu_callback(nfb
, action
, hcpu
);
3663 * Workqueues should be brought down after normal priority CPU notifiers.
3664 * This will be registered as low priority CPU notifier.
3666 static int __devinit
workqueue_cpu_down_callback(struct notifier_block
*nfb
,
3667 unsigned long action
,
3670 switch (action
& ~CPU_TASKS_FROZEN
) {
3671 case CPU_DOWN_PREPARE
:
3674 return workqueue_cpu_callback(nfb
, action
, hcpu
);
3681 struct work_for_cpu
{
3682 struct work_struct work
;
3688 static void work_for_cpu_fn(struct work_struct
*work
)
3690 struct work_for_cpu
*wfc
= container_of(work
, struct work_for_cpu
, work
);
3692 wfc
->ret
= wfc
->fn(wfc
->arg
);
3696 * work_on_cpu - run a function in user context on a particular cpu
3697 * @cpu: the cpu to run on
3698 * @fn: the function to run
3699 * @arg: the function arg
3701 * This will return the value @fn returns.
3702 * It is up to the caller to ensure that the cpu doesn't go offline.
3703 * The caller must not hold any locks which would prevent @fn from completing.
3705 long work_on_cpu(unsigned int cpu
, long (*fn
)(void *), void *arg
)
3707 struct work_for_cpu wfc
= { .fn
= fn
, .arg
= arg
};
3709 INIT_WORK_ONSTACK(&wfc
.work
, work_for_cpu_fn
);
3710 schedule_work_on(cpu
, &wfc
.work
);
3711 flush_work(&wfc
.work
);
3714 EXPORT_SYMBOL_GPL(work_on_cpu
);
3715 #endif /* CONFIG_SMP */
3717 #ifdef CONFIG_FREEZER
3720 * freeze_workqueues_begin - begin freezing workqueues
3722 * Start freezing workqueues. After this function returns, all freezable
3723 * workqueues will queue new works to their frozen_works list instead of
3727 * Grabs and releases workqueue_lock and gcwq->lock's.
3729 void freeze_workqueues_begin(void)
3733 spin_lock(&workqueue_lock
);
3735 BUG_ON(workqueue_freezing
);
3736 workqueue_freezing
= true;
3738 for_each_gcwq_cpu(cpu
) {
3739 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3740 struct workqueue_struct
*wq
;
3742 spin_lock_irq(&gcwq
->lock
);
3744 BUG_ON(gcwq
->flags
& GCWQ_FREEZING
);
3745 gcwq
->flags
|= GCWQ_FREEZING
;
3747 list_for_each_entry(wq
, &workqueues
, list
) {
3748 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
3750 if (cwq
&& wq
->flags
& WQ_FREEZABLE
)
3751 cwq
->max_active
= 0;
3754 spin_unlock_irq(&gcwq
->lock
);
3757 spin_unlock(&workqueue_lock
);
3761 * freeze_workqueues_busy - are freezable workqueues still busy?
3763 * Check whether freezing is complete. This function must be called
3764 * between freeze_workqueues_begin() and thaw_workqueues().
3767 * Grabs and releases workqueue_lock.
3770 * %true if some freezable workqueues are still busy. %false if freezing
3773 bool freeze_workqueues_busy(void)
3778 spin_lock(&workqueue_lock
);
3780 BUG_ON(!workqueue_freezing
);
3782 for_each_gcwq_cpu(cpu
) {
3783 struct workqueue_struct
*wq
;
3785 * nr_active is monotonically decreasing. It's safe
3786 * to peek without lock.
3788 list_for_each_entry(wq
, &workqueues
, list
) {
3789 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
3791 if (!cwq
|| !(wq
->flags
& WQ_FREEZABLE
))
3794 BUG_ON(cwq
->nr_active
< 0);
3795 if (cwq
->nr_active
) {
3802 spin_unlock(&workqueue_lock
);
3807 * thaw_workqueues - thaw workqueues
3809 * Thaw workqueues. Normal queueing is restored and all collected
3810 * frozen works are transferred to their respective gcwq worklists.
3813 * Grabs and releases workqueue_lock and gcwq->lock's.
3815 void thaw_workqueues(void)
3819 spin_lock(&workqueue_lock
);
3821 if (!workqueue_freezing
)
3824 for_each_gcwq_cpu(cpu
) {
3825 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3826 struct workqueue_struct
*wq
;
3828 spin_lock_irq(&gcwq
->lock
);
3830 BUG_ON(!(gcwq
->flags
& GCWQ_FREEZING
));
3831 gcwq
->flags
&= ~GCWQ_FREEZING
;
3833 list_for_each_entry(wq
, &workqueues
, list
) {
3834 struct cpu_workqueue_struct
*cwq
= get_cwq(cpu
, wq
);
3836 if (!cwq
|| !(wq
->flags
& WQ_FREEZABLE
))
3839 /* restore max_active and repopulate worklist */
3840 cwq
->max_active
= wq
->saved_max_active
;
3842 while (!list_empty(&cwq
->delayed_works
) &&
3843 cwq
->nr_active
< cwq
->max_active
)
3844 cwq_activate_first_delayed(cwq
);
3847 wake_up_worker(gcwq
);
3849 spin_unlock_irq(&gcwq
->lock
);
3852 workqueue_freezing
= false;
3854 spin_unlock(&workqueue_lock
);
3856 #endif /* CONFIG_FREEZER */
3858 static int __init
init_workqueues(void)
3863 cpu_notifier(workqueue_cpu_up_callback
, CPU_PRI_WORKQUEUE_UP
);
3864 cpu_notifier(workqueue_cpu_down_callback
, CPU_PRI_WORKQUEUE_DOWN
);
3866 /* initialize gcwqs */
3867 for_each_gcwq_cpu(cpu
) {
3868 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3870 spin_lock_init(&gcwq
->lock
);
3871 INIT_LIST_HEAD(&gcwq
->worklist
);
3873 gcwq
->flags
|= GCWQ_DISASSOCIATED
;
3875 INIT_LIST_HEAD(&gcwq
->idle_list
);
3876 for (i
= 0; i
< BUSY_WORKER_HASH_SIZE
; i
++)
3877 INIT_HLIST_HEAD(&gcwq
->busy_hash
[i
]);
3879 init_timer_deferrable(&gcwq
->idle_timer
);
3880 gcwq
->idle_timer
.function
= idle_worker_timeout
;
3881 gcwq
->idle_timer
.data
= (unsigned long)gcwq
;
3883 setup_timer(&gcwq
->mayday_timer
, gcwq_mayday_timeout
,
3884 (unsigned long)gcwq
);
3886 ida_init(&gcwq
->worker_ida
);
3888 gcwq
->trustee_state
= TRUSTEE_DONE
;
3889 init_waitqueue_head(&gcwq
->trustee_wait
);
3892 /* create the initial worker */
3893 for_each_online_gcwq_cpu(cpu
) {
3894 struct global_cwq
*gcwq
= get_gcwq(cpu
);
3895 struct worker
*worker
;
3897 if (cpu
!= WORK_CPU_UNBOUND
)
3898 gcwq
->flags
&= ~GCWQ_DISASSOCIATED
;
3899 worker
= create_worker(gcwq
, true);
3901 spin_lock_irq(&gcwq
->lock
);
3902 start_worker(worker
);
3903 spin_unlock_irq(&gcwq
->lock
);
3906 system_wq
= alloc_workqueue("events", 0, 0);
3907 system_long_wq
= alloc_workqueue("events_long", 0, 0);
3908 system_nrt_wq
= alloc_workqueue("events_nrt", WQ_NON_REENTRANT
, 0);
3909 system_unbound_wq
= alloc_workqueue("events_unbound", WQ_UNBOUND
,
3910 WQ_UNBOUND_MAX_ACTIVE
);
3911 system_freezable_wq
= alloc_workqueue("events_freezable",
3913 system_nrt_freezable_wq
= alloc_workqueue("events_nrt_freezable",
3914 WQ_NON_REENTRANT
| WQ_FREEZABLE
, 0);
3915 BUG_ON(!system_wq
|| !system_long_wq
|| !system_nrt_wq
||
3916 !system_unbound_wq
|| !system_freezable_wq
||
3917 !system_nrt_freezable_wq
);
3920 early_initcall(init_workqueues
);