2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_iomap.h"
32 #include "xfs_trace.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_dinode.h"
37 #include <linux/aio.h>
38 #include <linux/gfp.h>
39 #include <linux/mpage.h>
40 #include <linux/pagevec.h>
41 #include <linux/writeback.h>
49 struct buffer_head
*bh
, *head
;
51 *delalloc
= *unwritten
= 0;
53 bh
= head
= page_buffers(page
);
55 if (buffer_unwritten(bh
))
57 else if (buffer_delay(bh
))
59 } while ((bh
= bh
->b_this_page
) != head
);
62 STATIC
struct block_device
*
63 xfs_find_bdev_for_inode(
66 struct xfs_inode
*ip
= XFS_I(inode
);
67 struct xfs_mount
*mp
= ip
->i_mount
;
69 if (XFS_IS_REALTIME_INODE(ip
))
70 return mp
->m_rtdev_targp
->bt_bdev
;
72 return mp
->m_ddev_targp
->bt_bdev
;
76 * We're now finished for good with this ioend structure.
77 * Update the page state via the associated buffer_heads,
78 * release holds on the inode and bio, and finally free
79 * up memory. Do not use the ioend after this.
85 struct buffer_head
*bh
, *next
;
87 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
89 bh
->b_end_io(bh
, !ioend
->io_error
);
92 mempool_free(ioend
, xfs_ioend_pool
);
96 * Fast and loose check if this write could update the on-disk inode size.
98 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
100 return ioend
->io_offset
+ ioend
->io_size
>
101 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
105 xfs_setfilesize_trans_alloc(
106 struct xfs_ioend
*ioend
)
108 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
109 struct xfs_trans
*tp
;
112 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
114 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
116 xfs_trans_cancel(tp
, 0);
120 ioend
->io_append_trans
= tp
;
123 * We may pass freeze protection with a transaction. So tell lockdep
126 rwsem_release(&ioend
->io_inode
->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
129 * We hand off the transaction to the completion thread now, so
130 * clear the flag here.
132 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
137 * Update on-disk file size now that data has been written to disk.
141 struct xfs_ioend
*ioend
)
143 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
144 struct xfs_trans
*tp
= ioend
->io_append_trans
;
148 * The transaction may have been allocated in the I/O submission thread,
149 * thus we need to mark ourselves as beeing in a transaction manually.
150 * Similarly for freeze protection.
152 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
153 rwsem_acquire_read(&VFS_I(ip
)->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
156 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
157 isize
= xfs_new_eof(ip
, ioend
->io_offset
+ ioend
->io_size
);
159 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
160 xfs_trans_cancel(tp
, 0);
164 trace_xfs_setfilesize(ip
, ioend
->io_offset
, ioend
->io_size
);
166 ip
->i_d
.di_size
= isize
;
167 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
168 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
170 return xfs_trans_commit(tp
, 0);
174 * Schedule IO completion handling on the final put of an ioend.
176 * If there is no work to do we might as well call it a day and free the
181 struct xfs_ioend
*ioend
)
183 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
184 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
186 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
187 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
188 else if (ioend
->io_append_trans
||
189 (ioend
->io_isdirect
&& xfs_ioend_is_append(ioend
)))
190 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
192 xfs_destroy_ioend(ioend
);
197 * IO write completion.
201 struct work_struct
*work
)
203 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
204 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
207 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
208 ioend
->io_error
= -EIO
;
215 * For unwritten extents we need to issue transactions to convert a
216 * range to normal written extens after the data I/O has finished.
218 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
219 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
221 } else if (ioend
->io_isdirect
&& xfs_ioend_is_append(ioend
)) {
223 * For direct I/O we do not know if we need to allocate blocks
224 * or not so we can't preallocate an append transaction as that
225 * results in nested reservations and log space deadlocks. Hence
226 * allocate the transaction here. While this is sub-optimal and
227 * can block IO completion for some time, we're stuck with doing
228 * it this way until we can pass the ioend to the direct IO
229 * allocation callbacks and avoid nesting that way.
231 error
= xfs_setfilesize_trans_alloc(ioend
);
234 error
= xfs_setfilesize(ioend
);
235 } else if (ioend
->io_append_trans
) {
236 error
= xfs_setfilesize(ioend
);
238 ASSERT(!xfs_ioend_is_append(ioend
));
243 ioend
->io_error
= -error
;
244 xfs_destroy_ioend(ioend
);
248 * Call IO completion handling in caller context on the final put of an ioend.
251 xfs_finish_ioend_sync(
252 struct xfs_ioend
*ioend
)
254 if (atomic_dec_and_test(&ioend
->io_remaining
))
255 xfs_end_io(&ioend
->io_work
);
259 * Allocate and initialise an IO completion structure.
260 * We need to track unwritten extent write completion here initially.
261 * We'll need to extend this for updating the ondisk inode size later
271 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
274 * Set the count to 1 initially, which will prevent an I/O
275 * completion callback from happening before we have started
276 * all the I/O from calling the completion routine too early.
278 atomic_set(&ioend
->io_remaining
, 1);
279 ioend
->io_isdirect
= 0;
281 ioend
->io_list
= NULL
;
282 ioend
->io_type
= type
;
283 ioend
->io_inode
= inode
;
284 ioend
->io_buffer_head
= NULL
;
285 ioend
->io_buffer_tail
= NULL
;
286 ioend
->io_offset
= 0;
288 ioend
->io_append_trans
= NULL
;
290 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
298 struct xfs_bmbt_irec
*imap
,
302 struct xfs_inode
*ip
= XFS_I(inode
);
303 struct xfs_mount
*mp
= ip
->i_mount
;
304 ssize_t count
= 1 << inode
->i_blkbits
;
305 xfs_fileoff_t offset_fsb
, end_fsb
;
307 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
310 if (XFS_FORCED_SHUTDOWN(mp
))
311 return -XFS_ERROR(EIO
);
313 if (type
== XFS_IO_UNWRITTEN
)
314 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
316 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
318 return -XFS_ERROR(EAGAIN
);
319 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
322 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
323 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
324 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
326 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
327 count
= mp
->m_super
->s_maxbytes
- offset
;
328 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
329 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
330 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
331 imap
, &nimaps
, bmapi_flags
);
332 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
335 return -XFS_ERROR(error
);
337 if (type
== XFS_IO_DELALLOC
&&
338 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
339 error
= xfs_iomap_write_allocate(ip
, offset
, imap
);
341 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
342 return -XFS_ERROR(error
);
346 if (type
== XFS_IO_UNWRITTEN
) {
348 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
349 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
353 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
360 struct xfs_bmbt_irec
*imap
,
363 offset
>>= inode
->i_blkbits
;
365 return offset
>= imap
->br_startoff
&&
366 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
370 * BIO completion handler for buffered IO.
377 xfs_ioend_t
*ioend
= bio
->bi_private
;
379 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
380 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
382 /* Toss bio and pass work off to an xfsdatad thread */
383 bio
->bi_private
= NULL
;
384 bio
->bi_end_io
= NULL
;
387 xfs_finish_ioend(ioend
);
391 xfs_submit_ioend_bio(
392 struct writeback_control
*wbc
,
396 atomic_inc(&ioend
->io_remaining
);
397 bio
->bi_private
= ioend
;
398 bio
->bi_end_io
= xfs_end_bio
;
399 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
404 struct buffer_head
*bh
)
406 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
407 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
409 ASSERT(bio
->bi_private
== NULL
);
410 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
411 bio
->bi_bdev
= bh
->b_bdev
;
416 xfs_start_buffer_writeback(
417 struct buffer_head
*bh
)
419 ASSERT(buffer_mapped(bh
));
420 ASSERT(buffer_locked(bh
));
421 ASSERT(!buffer_delay(bh
));
422 ASSERT(!buffer_unwritten(bh
));
424 mark_buffer_async_write(bh
);
425 set_buffer_uptodate(bh
);
426 clear_buffer_dirty(bh
);
430 xfs_start_page_writeback(
435 ASSERT(PageLocked(page
));
436 ASSERT(!PageWriteback(page
));
438 clear_page_dirty_for_io(page
);
439 set_page_writeback(page
);
441 /* If no buffers on the page are to be written, finish it here */
443 end_page_writeback(page
);
446 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
448 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
452 * Submit all of the bios for all of the ioends we have saved up, covering the
453 * initial writepage page and also any probed pages.
455 * Because we may have multiple ioends spanning a page, we need to start
456 * writeback on all the buffers before we submit them for I/O. If we mark the
457 * buffers as we got, then we can end up with a page that only has buffers
458 * marked async write and I/O complete on can occur before we mark the other
459 * buffers async write.
461 * The end result of this is that we trip a bug in end_page_writeback() because
462 * we call it twice for the one page as the code in end_buffer_async_write()
463 * assumes that all buffers on the page are started at the same time.
465 * The fix is two passes across the ioend list - one to start writeback on the
466 * buffer_heads, and then submit them for I/O on the second pass.
468 * If @fail is non-zero, it means that we have a situation where some part of
469 * the submission process has failed after we have marked paged for writeback
470 * and unlocked them. In this situation, we need to fail the ioend chain rather
471 * than submit it to IO. This typically only happens on a filesystem shutdown.
475 struct writeback_control
*wbc
,
479 xfs_ioend_t
*head
= ioend
;
481 struct buffer_head
*bh
;
483 sector_t lastblock
= 0;
485 /* Pass 1 - start writeback */
487 next
= ioend
->io_list
;
488 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
489 xfs_start_buffer_writeback(bh
);
490 } while ((ioend
= next
) != NULL
);
492 /* Pass 2 - submit I/O */
495 next
= ioend
->io_list
;
499 * If we are failing the IO now, just mark the ioend with an
500 * error and finish it. This will run IO completion immediately
501 * as there is only one reference to the ioend at this point in
505 ioend
->io_error
= -fail
;
506 xfs_finish_ioend(ioend
);
510 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
514 bio
= xfs_alloc_ioend_bio(bh
);
515 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
516 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
520 if (xfs_bio_add_buffer(bio
, bh
) != bh
->b_size
) {
521 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
525 lastblock
= bh
->b_blocknr
;
528 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
529 xfs_finish_ioend(ioend
);
530 } while ((ioend
= next
) != NULL
);
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
543 struct buffer_head
*bh
, *next_bh
;
546 next
= ioend
->io_list
;
547 bh
= ioend
->io_buffer_head
;
549 next_bh
= bh
->b_private
;
550 clear_buffer_async_write(bh
);
552 } while ((bh
= next_bh
) != NULL
);
554 mempool_free(ioend
, xfs_ioend_pool
);
555 } while ((ioend
= next
) != NULL
);
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
567 struct buffer_head
*bh
,
570 xfs_ioend_t
**result
,
573 xfs_ioend_t
*ioend
= *result
;
575 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
576 xfs_ioend_t
*previous
= *result
;
578 ioend
= xfs_alloc_ioend(inode
, type
);
579 ioend
->io_offset
= offset
;
580 ioend
->io_buffer_head
= bh
;
581 ioend
->io_buffer_tail
= bh
;
583 previous
->io_list
= ioend
;
586 ioend
->io_buffer_tail
->b_private
= bh
;
587 ioend
->io_buffer_tail
= bh
;
590 bh
->b_private
= NULL
;
591 ioend
->io_size
+= bh
->b_size
;
597 struct buffer_head
*bh
,
598 struct xfs_bmbt_irec
*imap
,
602 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
603 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
604 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
606 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
607 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
609 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
610 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
612 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
615 set_buffer_mapped(bh
);
621 struct buffer_head
*bh
,
622 struct xfs_bmbt_irec
*imap
,
625 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
626 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
628 xfs_map_buffer(inode
, bh
, imap
, offset
);
629 set_buffer_mapped(bh
);
630 clear_buffer_delay(bh
);
631 clear_buffer_unwritten(bh
);
635 * Test if a given page contains at least one buffer of a given @type.
636 * If @check_all_buffers is true, then we walk all the buffers in the page to
637 * try to find one of the type passed in. If it is not set, then the caller only
638 * needs to check the first buffer on the page for a match.
644 bool check_all_buffers
)
646 struct buffer_head
*bh
;
647 struct buffer_head
*head
;
649 if (PageWriteback(page
))
653 if (!page_has_buffers(page
))
656 bh
= head
= page_buffers(page
);
658 if (buffer_unwritten(bh
)) {
659 if (type
== XFS_IO_UNWRITTEN
)
661 } else if (buffer_delay(bh
)) {
662 if (type
== XFS_IO_DELALLOC
)
664 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
665 if (type
== XFS_IO_OVERWRITE
)
669 /* If we are only checking the first buffer, we are done now. */
670 if (!check_all_buffers
)
672 } while ((bh
= bh
->b_this_page
) != head
);
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
688 struct xfs_bmbt_irec
*imap
,
689 xfs_ioend_t
**ioendp
,
690 struct writeback_control
*wbc
)
692 struct buffer_head
*bh
, *head
;
693 xfs_off_t end_offset
;
694 unsigned long p_offset
;
697 int count
= 0, done
= 0, uptodate
= 1;
698 xfs_off_t offset
= page_offset(page
);
700 if (page
->index
!= tindex
)
702 if (!trylock_page(page
))
704 if (PageWriteback(page
))
705 goto fail_unlock_page
;
706 if (page
->mapping
!= inode
->i_mapping
)
707 goto fail_unlock_page
;
708 if (!xfs_check_page_type(page
, (*ioendp
)->io_type
, false))
709 goto fail_unlock_page
;
712 * page_dirty is initially a count of buffers on the page before
713 * EOF and is decremented as we move each into a cleanable state.
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
724 end_offset
= min_t(unsigned long long,
725 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
729 * If the current map does not span the entire page we are about to try
730 * to write, then give up. The only way we can write a page that spans
731 * multiple mappings in a single writeback iteration is via the
732 * xfs_vm_writepage() function. Data integrity writeback requires the
733 * entire page to be written in a single attempt, otherwise the part of
734 * the page we don't write here doesn't get written as part of the data
737 * For normal writeback, we also don't attempt to write partial pages
738 * here as it simply means that write_cache_pages() will see it under
739 * writeback and ignore the page until some point in the future, at
740 * which time this will be the only page in the file that needs
741 * writeback. Hence for more optimal IO patterns, we should always
742 * avoid partial page writeback due to multiple mappings on a page here.
744 if (!xfs_imap_valid(inode
, imap
, end_offset
))
745 goto fail_unlock_page
;
747 len
= 1 << inode
->i_blkbits
;
748 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
750 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
751 page_dirty
= p_offset
/ len
;
754 * The moment we find a buffer that doesn't match our current type
755 * specification or can't be written, abort the loop and start
756 * writeback. As per the above xfs_imap_valid() check, only
757 * xfs_vm_writepage() can handle partial page writeback fully - we are
758 * limited here to the buffers that are contiguous with the current
759 * ioend, and hence a buffer we can't write breaks that contiguity and
760 * we have to defer the rest of the IO to xfs_vm_writepage().
762 bh
= head
= page_buffers(page
);
764 if (offset
>= end_offset
)
766 if (!buffer_uptodate(bh
))
768 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
773 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
775 if (buffer_unwritten(bh
))
776 type
= XFS_IO_UNWRITTEN
;
777 else if (buffer_delay(bh
))
778 type
= XFS_IO_DELALLOC
;
780 type
= XFS_IO_OVERWRITE
;
783 * imap should always be valid because of the above
784 * partial page end_offset check on the imap.
786 ASSERT(xfs_imap_valid(inode
, imap
, offset
));
789 if (type
!= XFS_IO_OVERWRITE
)
790 xfs_map_at_offset(inode
, bh
, imap
, offset
);
791 xfs_add_to_ioend(inode
, bh
, offset
, type
,
800 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
802 if (uptodate
&& bh
== head
)
803 SetPageUptodate(page
);
806 if (--wbc
->nr_to_write
<= 0 &&
807 wbc
->sync_mode
== WB_SYNC_NONE
)
810 xfs_start_page_writeback(page
, !page_dirty
, count
);
820 * Convert & write out a cluster of pages in the same extent as defined
821 * by mp and following the start page.
827 struct xfs_bmbt_irec
*imap
,
828 xfs_ioend_t
**ioendp
,
829 struct writeback_control
*wbc
,
835 pagevec_init(&pvec
, 0);
836 while (!done
&& tindex
<= tlast
) {
837 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
839 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
842 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
843 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
849 pagevec_release(&pvec
);
855 xfs_vm_invalidatepage(
860 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
862 block_invalidatepage(page
, offset
, length
);
866 * If the page has delalloc buffers on it, we need to punch them out before we
867 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
868 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
869 * is done on that same region - the delalloc extent is returned when none is
870 * supposed to be there.
872 * We prevent this by truncating away the delalloc regions on the page before
873 * invalidating it. Because they are delalloc, we can do this without needing a
874 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
875 * truncation without a transaction as there is no space left for block
876 * reservation (typically why we see a ENOSPC in writeback).
878 * This is not a performance critical path, so for now just do the punching a
879 * buffer head at a time.
882 xfs_aops_discard_page(
885 struct inode
*inode
= page
->mapping
->host
;
886 struct xfs_inode
*ip
= XFS_I(inode
);
887 struct buffer_head
*bh
, *head
;
888 loff_t offset
= page_offset(page
);
890 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
893 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
896 xfs_alert(ip
->i_mount
,
897 "page discard on page %p, inode 0x%llx, offset %llu.",
898 page
, ip
->i_ino
, offset
);
900 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
901 bh
= head
= page_buffers(page
);
904 xfs_fileoff_t start_fsb
;
906 if (!buffer_delay(bh
))
909 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
910 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
912 /* something screwed, just bail */
913 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
914 xfs_alert(ip
->i_mount
,
915 "page discard unable to remove delalloc mapping.");
920 offset
+= 1 << inode
->i_blkbits
;
922 } while ((bh
= bh
->b_this_page
) != head
);
924 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
926 xfs_vm_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
931 * Write out a dirty page.
933 * For delalloc space on the page we need to allocate space and flush it.
934 * For unwritten space on the page we need to start the conversion to
935 * regular allocated space.
936 * For any other dirty buffer heads on the page we should flush them.
941 struct writeback_control
*wbc
)
943 struct inode
*inode
= page
->mapping
->host
;
944 struct buffer_head
*bh
, *head
;
945 struct xfs_bmbt_irec imap
;
946 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
949 __uint64_t end_offset
;
950 pgoff_t end_index
, last_index
;
952 int err
, imap_valid
= 0, uptodate
= 1;
956 trace_xfs_writepage(inode
, page
, 0, 0);
958 ASSERT(page_has_buffers(page
));
961 * Refuse to write the page out if we are called from reclaim context.
963 * This avoids stack overflows when called from deeply used stacks in
964 * random callers for direct reclaim or memcg reclaim. We explicitly
965 * allow reclaim from kswapd as the stack usage there is relatively low.
967 * This should never happen except in the case of a VM regression so
970 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
975 * Given that we do not allow direct reclaim to call us, we should
976 * never be called while in a filesystem transaction.
978 if (WARN_ON(current
->flags
& PF_FSTRANS
))
981 /* Is this page beyond the end of the file? */
982 offset
= i_size_read(inode
);
983 end_index
= offset
>> PAGE_CACHE_SHIFT
;
984 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
985 if (page
->index
>= end_index
) {
986 unsigned offset_into_page
= offset
& (PAGE_CACHE_SIZE
- 1);
989 * Skip the page if it is fully outside i_size, e.g. due to a
990 * truncate operation that is in progress. We must redirty the
991 * page so that reclaim stops reclaiming it. Otherwise
992 * xfs_vm_releasepage() is called on it and gets confused.
994 if (page
->index
>= end_index
+ 1 || offset_into_page
== 0)
998 * The page straddles i_size. It must be zeroed out on each
999 * and every writepage invocation because it may be mmapped.
1000 * "A file is mapped in multiples of the page size. For a file
1001 * that is not a multiple of the page size, the remaining
1002 * memory is zeroed when mapped, and writes to that region are
1003 * not written out to the file."
1005 zero_user_segment(page
, offset_into_page
, PAGE_CACHE_SIZE
);
1008 end_offset
= min_t(unsigned long long,
1009 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
1011 len
= 1 << inode
->i_blkbits
;
1013 bh
= head
= page_buffers(page
);
1014 offset
= page_offset(page
);
1015 type
= XFS_IO_OVERWRITE
;
1017 if (wbc
->sync_mode
== WB_SYNC_NONE
)
1023 if (offset
>= end_offset
)
1025 if (!buffer_uptodate(bh
))
1029 * set_page_dirty dirties all buffers in a page, independent
1030 * of their state. The dirty state however is entirely
1031 * meaningless for holes (!mapped && uptodate), so skip
1032 * buffers covering holes here.
1034 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
1039 if (buffer_unwritten(bh
)) {
1040 if (type
!= XFS_IO_UNWRITTEN
) {
1041 type
= XFS_IO_UNWRITTEN
;
1044 } else if (buffer_delay(bh
)) {
1045 if (type
!= XFS_IO_DELALLOC
) {
1046 type
= XFS_IO_DELALLOC
;
1049 } else if (buffer_uptodate(bh
)) {
1050 if (type
!= XFS_IO_OVERWRITE
) {
1051 type
= XFS_IO_OVERWRITE
;
1055 if (PageUptodate(page
))
1056 ASSERT(buffer_mapped(bh
));
1058 * This buffer is not uptodate and will not be
1059 * written to disk. Ensure that we will put any
1060 * subsequent writeable buffers into a new
1068 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1071 * If we didn't have a valid mapping then we need to
1072 * put the new mapping into a separate ioend structure.
1073 * This ensures non-contiguous extents always have
1074 * separate ioends, which is particularly important
1075 * for unwritten extent conversion at I/O completion
1079 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1083 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1087 if (type
!= XFS_IO_OVERWRITE
)
1088 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1089 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1097 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1099 if (uptodate
&& bh
== head
)
1100 SetPageUptodate(page
);
1102 xfs_start_page_writeback(page
, 1, count
);
1104 /* if there is no IO to be submitted for this page, we are done */
1111 * Any errors from this point onwards need tobe reported through the IO
1112 * completion path as we have marked the initial page as under writeback
1116 xfs_off_t end_index
;
1118 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1121 end_index
<<= inode
->i_blkbits
;
1124 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1126 /* check against file size */
1127 if (end_index
> last_index
)
1128 end_index
= last_index
;
1130 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1136 * Reserve log space if we might write beyond the on-disk inode size.
1139 if (ioend
->io_type
!= XFS_IO_UNWRITTEN
&& xfs_ioend_is_append(ioend
))
1140 err
= xfs_setfilesize_trans_alloc(ioend
);
1142 xfs_submit_ioend(wbc
, iohead
, err
);
1148 xfs_cancel_ioend(iohead
);
1153 xfs_aops_discard_page(page
);
1154 ClearPageUptodate(page
);
1159 redirty_page_for_writepage(wbc
, page
);
1166 struct address_space
*mapping
,
1167 struct writeback_control
*wbc
)
1169 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1170 return generic_writepages(mapping
, wbc
);
1174 * Called to move a page into cleanable state - and from there
1175 * to be released. The page should already be clean. We always
1176 * have buffer heads in this call.
1178 * Returns 1 if the page is ok to release, 0 otherwise.
1185 int delalloc
, unwritten
;
1187 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1189 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1191 if (WARN_ON(delalloc
))
1193 if (WARN_ON(unwritten
))
1196 return try_to_free_buffers(page
);
1201 struct inode
*inode
,
1203 struct buffer_head
*bh_result
,
1207 struct xfs_inode
*ip
= XFS_I(inode
);
1208 struct xfs_mount
*mp
= ip
->i_mount
;
1209 xfs_fileoff_t offset_fsb
, end_fsb
;
1212 struct xfs_bmbt_irec imap
;
1218 if (XFS_FORCED_SHUTDOWN(mp
))
1219 return -XFS_ERROR(EIO
);
1221 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1222 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1223 size
= bh_result
->b_size
;
1225 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1229 * Direct I/O is usually done on preallocated files, so try getting
1230 * a block mapping without an exclusive lock first. For buffered
1231 * writes we already have the exclusive iolock anyway, so avoiding
1232 * a lock roundtrip here by taking the ilock exclusive from the
1233 * beginning is a useful micro optimization.
1235 if (create
&& !direct
) {
1236 lockmode
= XFS_ILOCK_EXCL
;
1237 xfs_ilock(ip
, lockmode
);
1239 lockmode
= xfs_ilock_data_map_shared(ip
);
1242 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1243 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1244 size
= mp
->m_super
->s_maxbytes
- offset
;
1245 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1246 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1248 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1249 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1255 (imap
.br_startblock
== HOLESTARTBLOCK
||
1256 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1257 if (direct
|| xfs_get_extsz_hint(ip
)) {
1259 * Drop the ilock in preparation for starting the block
1260 * allocation transaction. It will be retaken
1261 * exclusively inside xfs_iomap_write_direct for the
1262 * actual allocation.
1264 xfs_iunlock(ip
, lockmode
);
1265 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1272 * Delalloc reservations do not require a transaction,
1273 * we can go on without dropping the lock here. If we
1274 * are allocating a new delalloc block, make sure that
1275 * we set the new flag so that we mark the buffer new so
1276 * that we know that it is newly allocated if the write
1279 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1281 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1285 xfs_iunlock(ip
, lockmode
);
1288 trace_xfs_get_blocks_alloc(ip
, offset
, size
, 0, &imap
);
1289 } else if (nimaps
) {
1290 trace_xfs_get_blocks_found(ip
, offset
, size
, 0, &imap
);
1291 xfs_iunlock(ip
, lockmode
);
1293 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1297 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1298 imap
.br_startblock
!= DELAYSTARTBLOCK
) {
1300 * For unwritten extents do not report a disk address on
1301 * the read case (treat as if we're reading into a hole).
1303 if (create
|| !ISUNWRITTEN(&imap
))
1304 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1305 if (create
&& ISUNWRITTEN(&imap
)) {
1307 bh_result
->b_private
= inode
;
1308 set_buffer_defer_completion(bh_result
);
1310 set_buffer_unwritten(bh_result
);
1315 * If this is a realtime file, data may be on a different device.
1316 * to that pointed to from the buffer_head b_bdev currently.
1318 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1321 * If we previously allocated a block out beyond eof and we are now
1322 * coming back to use it then we will need to flag it as new even if it
1323 * has a disk address.
1325 * With sub-block writes into unwritten extents we also need to mark
1326 * the buffer as new so that the unwritten parts of the buffer gets
1330 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1331 (offset
>= i_size_read(inode
)) ||
1332 (new || ISUNWRITTEN(&imap
))))
1333 set_buffer_new(bh_result
);
1335 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1338 set_buffer_uptodate(bh_result
);
1339 set_buffer_mapped(bh_result
);
1340 set_buffer_delay(bh_result
);
1345 * If this is O_DIRECT or the mpage code calling tell them how large
1346 * the mapping is, so that we can avoid repeated get_blocks calls.
1348 * If the mapping spans EOF, then we have to break the mapping up as the
1349 * mapping for blocks beyond EOF must be marked new so that sub block
1350 * regions can be correctly zeroed. We can't do this for mappings within
1351 * EOF unless the mapping was just allocated or is unwritten, otherwise
1352 * the callers would overwrite existing data with zeros. Hence we have
1353 * to split the mapping into a range up to and including EOF, and a
1354 * second mapping for beyond EOF.
1356 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1357 xfs_off_t mapping_size
;
1359 mapping_size
= imap
.br_startoff
+ imap
.br_blockcount
- iblock
;
1360 mapping_size
<<= inode
->i_blkbits
;
1362 ASSERT(mapping_size
> 0);
1363 if (mapping_size
> size
)
1364 mapping_size
= size
;
1365 if (offset
< i_size_read(inode
) &&
1366 offset
+ mapping_size
>= i_size_read(inode
)) {
1367 /* limit mapping to block that spans EOF */
1368 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1369 1 << inode
->i_blkbits
);
1371 if (mapping_size
> LONG_MAX
)
1372 mapping_size
= LONG_MAX
;
1374 bh_result
->b_size
= mapping_size
;
1380 xfs_iunlock(ip
, lockmode
);
1386 struct inode
*inode
,
1388 struct buffer_head
*bh_result
,
1391 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 0);
1395 xfs_get_blocks_direct(
1396 struct inode
*inode
,
1398 struct buffer_head
*bh_result
,
1401 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 1);
1405 * Complete a direct I/O write request.
1407 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1408 * need to issue a transaction to convert the range from unwritten to written
1409 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1410 * to do this and we are done. But in case this was a successful AIO
1411 * request this handler is called from interrupt context, from which we
1412 * can't start transactions. In that case offload the I/O completion to
1413 * the workqueues we also use for buffered I/O completion.
1416 xfs_end_io_direct_write(
1422 struct xfs_ioend
*ioend
= iocb
->private;
1425 * While the generic direct I/O code updates the inode size, it does
1426 * so only after the end_io handler is called, which means our
1427 * end_io handler thinks the on-disk size is outside the in-core
1428 * size. To prevent this just update it a little bit earlier here.
1430 if (offset
+ size
> i_size_read(ioend
->io_inode
))
1431 i_size_write(ioend
->io_inode
, offset
+ size
);
1434 * blockdev_direct_IO can return an error even after the I/O
1435 * completion handler was called. Thus we need to protect
1436 * against double-freeing.
1438 iocb
->private = NULL
;
1440 ioend
->io_offset
= offset
;
1441 ioend
->io_size
= size
;
1442 if (private && size
> 0)
1443 ioend
->io_type
= XFS_IO_UNWRITTEN
;
1445 xfs_finish_ioend_sync(ioend
);
1452 const struct iovec
*iov
,
1454 unsigned long nr_segs
)
1456 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1457 struct block_device
*bdev
= xfs_find_bdev_for_inode(inode
);
1458 struct xfs_ioend
*ioend
= NULL
;
1462 size_t size
= iov_length(iov
, nr_segs
);
1465 * We cannot preallocate a size update transaction here as we
1466 * don't know whether allocation is necessary or not. Hence we
1467 * can only tell IO completion that one is necessary if we are
1468 * not doing unwritten extent conversion.
1470 iocb
->private = ioend
= xfs_alloc_ioend(inode
, XFS_IO_DIRECT
);
1471 if (offset
+ size
> XFS_I(inode
)->i_d
.di_size
)
1472 ioend
->io_isdirect
= 1;
1474 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1476 xfs_get_blocks_direct
,
1477 xfs_end_io_direct_write
, NULL
,
1479 if (ret
!= -EIOCBQUEUED
&& iocb
->private)
1480 goto out_destroy_ioend
;
1482 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1484 xfs_get_blocks_direct
,
1491 xfs_destroy_ioend(ioend
);
1496 * Punch out the delalloc blocks we have already allocated.
1498 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1499 * as the page is still locked at this point.
1502 xfs_vm_kill_delalloc_range(
1503 struct inode
*inode
,
1507 struct xfs_inode
*ip
= XFS_I(inode
);
1508 xfs_fileoff_t start_fsb
;
1509 xfs_fileoff_t end_fsb
;
1512 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1513 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1514 if (end_fsb
<= start_fsb
)
1517 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1518 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1519 end_fsb
- start_fsb
);
1521 /* something screwed, just bail */
1522 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1523 xfs_alert(ip
->i_mount
,
1524 "xfs_vm_write_failed: unable to clean up ino %lld",
1528 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1532 xfs_vm_write_failed(
1533 struct inode
*inode
,
1538 loff_t block_offset
;
1541 loff_t from
= pos
& (PAGE_CACHE_SIZE
- 1);
1542 loff_t to
= from
+ len
;
1543 struct buffer_head
*bh
, *head
;
1546 * The request pos offset might be 32 or 64 bit, this is all fine
1547 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1548 * platform, the high 32-bit will be masked off if we evaluate the
1549 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1550 * 0xfffff000 as an unsigned long, hence the result is incorrect
1551 * which could cause the following ASSERT failed in most cases.
1552 * In order to avoid this, we can evaluate the block_offset of the
1553 * start of the page by using shifts rather than masks the mismatch
1556 block_offset
= (pos
>> PAGE_CACHE_SHIFT
) << PAGE_CACHE_SHIFT
;
1558 ASSERT(block_offset
+ from
== pos
);
1560 head
= page_buffers(page
);
1562 for (bh
= head
; bh
!= head
|| !block_start
;
1563 bh
= bh
->b_this_page
, block_start
= block_end
,
1564 block_offset
+= bh
->b_size
) {
1565 block_end
= block_start
+ bh
->b_size
;
1567 /* skip buffers before the write */
1568 if (block_end
<= from
)
1571 /* if the buffer is after the write, we're done */
1572 if (block_start
>= to
)
1575 if (!buffer_delay(bh
))
1578 if (!buffer_new(bh
) && block_offset
< i_size_read(inode
))
1581 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1582 block_offset
+ bh
->b_size
);
1585 * This buffer does not contain data anymore. make sure anyone
1586 * who finds it knows that for certain.
1588 clear_buffer_delay(bh
);
1589 clear_buffer_uptodate(bh
);
1590 clear_buffer_mapped(bh
);
1591 clear_buffer_new(bh
);
1592 clear_buffer_dirty(bh
);
1598 * This used to call block_write_begin(), but it unlocks and releases the page
1599 * on error, and we need that page to be able to punch stale delalloc blocks out
1600 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1601 * the appropriate point.
1606 struct address_space
*mapping
,
1610 struct page
**pagep
,
1613 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1617 ASSERT(len
<= PAGE_CACHE_SIZE
);
1619 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1623 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1624 if (unlikely(status
)) {
1625 struct inode
*inode
= mapping
->host
;
1626 size_t isize
= i_size_read(inode
);
1628 xfs_vm_write_failed(inode
, page
, pos
, len
);
1632 * If the write is beyond EOF, we only want to kill blocks
1633 * allocated in this write, not blocks that were previously
1634 * written successfully.
1636 if (pos
+ len
> isize
) {
1637 ssize_t start
= max_t(ssize_t
, pos
, isize
);
1639 truncate_pagecache_range(inode
, start
, pos
+ len
);
1642 page_cache_release(page
);
1651 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1652 * this specific write because they will never be written. Previous writes
1653 * beyond EOF where block allocation succeeded do not need to be trashed, so
1654 * only new blocks from this write should be trashed. For blocks within
1655 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1656 * written with all the other valid data.
1661 struct address_space
*mapping
,
1670 ASSERT(len
<= PAGE_CACHE_SIZE
);
1672 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1673 if (unlikely(ret
< len
)) {
1674 struct inode
*inode
= mapping
->host
;
1675 size_t isize
= i_size_read(inode
);
1676 loff_t to
= pos
+ len
;
1679 /* only kill blocks in this write beyond EOF */
1682 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1683 truncate_pagecache_range(inode
, isize
, to
);
1691 struct address_space
*mapping
,
1694 struct inode
*inode
= (struct inode
*)mapping
->host
;
1695 struct xfs_inode
*ip
= XFS_I(inode
);
1697 trace_xfs_vm_bmap(XFS_I(inode
));
1698 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1699 filemap_write_and_wait(mapping
);
1700 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1701 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1706 struct file
*unused
,
1709 return mpage_readpage(page
, xfs_get_blocks
);
1714 struct file
*unused
,
1715 struct address_space
*mapping
,
1716 struct list_head
*pages
,
1719 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1722 const struct address_space_operations xfs_address_space_operations
= {
1723 .readpage
= xfs_vm_readpage
,
1724 .readpages
= xfs_vm_readpages
,
1725 .writepage
= xfs_vm_writepage
,
1726 .writepages
= xfs_vm_writepages
,
1727 .releasepage
= xfs_vm_releasepage
,
1728 .invalidatepage
= xfs_vm_invalidatepage
,
1729 .write_begin
= xfs_vm_write_begin
,
1730 .write_end
= xfs_vm_write_end
,
1731 .bmap
= xfs_vm_bmap
,
1732 .direct_IO
= xfs_vm_direct_IO
,
1733 .migratepage
= buffer_migrate_page
,
1734 .is_partially_uptodate
= block_is_partially_uptodate
,
1735 .error_remove_page
= generic_error_remove_page
,