2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
48 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
50 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
52 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
59 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
60 static int xfs_uuid_table_size
;
61 static uuid_t
*xfs_uuid_table
;
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
71 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
74 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
77 if (uuid_is_nil(uuid
)) {
78 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
79 return XFS_ERROR(EINVAL
);
82 mutex_lock(&xfs_uuid_table_mutex
);
83 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
84 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
88 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
93 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
94 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
95 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
97 hole
= xfs_uuid_table_size
++;
99 xfs_uuid_table
[hole
] = *uuid
;
100 mutex_unlock(&xfs_uuid_table_mutex
);
105 mutex_unlock(&xfs_uuid_table_mutex
);
106 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
107 return XFS_ERROR(EINVAL
);
112 struct xfs_mount
*mp
)
114 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
117 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
120 mutex_lock(&xfs_uuid_table_mutex
);
121 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
122 if (uuid_is_nil(&xfs_uuid_table
[i
]))
124 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
126 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
129 ASSERT(i
< xfs_uuid_table_size
);
130 mutex_unlock(&xfs_uuid_table_mutex
);
136 struct rcu_head
*head
)
138 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
140 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
145 * Free up the per-ag resources associated with the mount structure.
152 struct xfs_perag
*pag
;
154 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
155 spin_lock(&mp
->m_perag_lock
);
156 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
157 spin_unlock(&mp
->m_perag_lock
);
159 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
160 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
169 xfs_sb_validate_fsb_count(
173 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
174 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
177 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
179 #else /* Limited by UINT_MAX of sectors */
180 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
187 xfs_initialize_perag(
189 xfs_agnumber_t agcount
,
190 xfs_agnumber_t
*maxagi
)
192 xfs_agnumber_t index
;
193 xfs_agnumber_t first_initialised
= 0;
197 xfs_sb_t
*sbp
= &mp
->m_sb
;
201 * Walk the current per-ag tree so we don't try to initialise AGs
202 * that already exist (growfs case). Allocate and insert all the
203 * AGs we don't find ready for initialisation.
205 for (index
= 0; index
< agcount
; index
++) {
206 pag
= xfs_perag_get(mp
, index
);
211 if (!first_initialised
)
212 first_initialised
= index
;
214 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
217 pag
->pag_agno
= index
;
219 spin_lock_init(&pag
->pag_ici_lock
);
220 mutex_init(&pag
->pag_ici_reclaim_lock
);
221 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
222 spin_lock_init(&pag
->pag_buf_lock
);
223 pag
->pag_buf_tree
= RB_ROOT
;
225 if (radix_tree_preload(GFP_NOFS
))
228 spin_lock(&mp
->m_perag_lock
);
229 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
231 spin_unlock(&mp
->m_perag_lock
);
232 radix_tree_preload_end();
236 spin_unlock(&mp
->m_perag_lock
);
237 radix_tree_preload_end();
241 * If we mount with the inode64 option, or no inode overflows
242 * the legacy 32-bit address space clear the inode32 option.
244 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
245 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
247 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
248 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
250 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
252 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
253 index
= xfs_set_inode32(mp
);
255 index
= xfs_set_inode64(mp
);
263 for (; index
> first_initialised
; index
--) {
264 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
273 * Does the initial read of the superblock.
277 struct xfs_mount
*mp
,
280 unsigned int sector_size
;
282 struct xfs_sb
*sbp
= &mp
->m_sb
;
284 int loud
= !(flags
& XFS_MFSI_QUIET
);
285 const struct xfs_buf_ops
*buf_ops
;
287 ASSERT(mp
->m_sb_bp
== NULL
);
288 ASSERT(mp
->m_ddev_targp
!= NULL
);
291 * For the initial read, we must guess at the sector
292 * size based on the block device. It's enough to
293 * get the sb_sectsize out of the superblock and
294 * then reread with the proper length.
295 * We don't verify it yet, because it may not be complete.
297 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
301 * Allocate a (locked) buffer to hold the superblock.
302 * This will be kept around at all times to optimize
303 * access to the superblock.
306 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
307 BTOBB(sector_size
), 0, buf_ops
);
310 xfs_warn(mp
, "SB buffer read failed");
316 xfs_warn(mp
, "SB validate failed with error %d.", error
);
317 /* bad CRC means corrupted metadata */
318 if (error
== EFSBADCRC
)
319 error
= EFSCORRUPTED
;
324 * Initialize the mount structure from the superblock.
326 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
327 xfs_sb_quota_from_disk(&mp
->m_sb
);
330 * We must be able to do sector-sized and sector-aligned IO.
332 if (sector_size
> sbp
->sb_sectsize
) {
334 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
335 sector_size
, sbp
->sb_sectsize
);
341 * Re-read the superblock so the buffer is correctly sized,
342 * and properly verified.
344 if (buf_ops
== NULL
) {
346 sector_size
= sbp
->sb_sectsize
;
347 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
351 /* Initialize per-cpu counters */
352 xfs_icsb_reinit_counters(mp
);
354 /* no need to be quiet anymore, so reset the buf ops */
355 bp
->b_ops
= &xfs_sb_buf_ops
;
367 * Update alignment values based on mount options and sb values
370 xfs_update_alignment(xfs_mount_t
*mp
)
372 xfs_sb_t
*sbp
= &(mp
->m_sb
);
376 * If stripe unit and stripe width are not multiples
377 * of the fs blocksize turn off alignment.
379 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
380 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
382 "alignment check failed: sunit/swidth vs. blocksize(%d)",
384 return XFS_ERROR(EINVAL
);
387 * Convert the stripe unit and width to FSBs.
389 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
390 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
392 "alignment check failed: sunit/swidth vs. agsize(%d)",
394 return XFS_ERROR(EINVAL
);
395 } else if (mp
->m_dalign
) {
396 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
399 "alignment check failed: sunit(%d) less than bsize(%d)",
400 mp
->m_dalign
, sbp
->sb_blocksize
);
401 return XFS_ERROR(EINVAL
);
406 * Update superblock with new values
409 if (xfs_sb_version_hasdalign(sbp
)) {
410 if (sbp
->sb_unit
!= mp
->m_dalign
) {
411 sbp
->sb_unit
= mp
->m_dalign
;
412 mp
->m_update_flags
|= XFS_SB_UNIT
;
414 if (sbp
->sb_width
!= mp
->m_swidth
) {
415 sbp
->sb_width
= mp
->m_swidth
;
416 mp
->m_update_flags
|= XFS_SB_WIDTH
;
420 "cannot change alignment: superblock does not support data alignment");
421 return XFS_ERROR(EINVAL
);
423 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
424 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
425 mp
->m_dalign
= sbp
->sb_unit
;
426 mp
->m_swidth
= sbp
->sb_width
;
433 * Set the maximum inode count for this filesystem
436 xfs_set_maxicount(xfs_mount_t
*mp
)
438 xfs_sb_t
*sbp
= &(mp
->m_sb
);
441 if (sbp
->sb_imax_pct
) {
443 * Make sure the maximum inode count is a multiple
444 * of the units we allocate inodes in.
446 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
448 do_div(icount
, mp
->m_ialloc_blks
);
449 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
457 * Set the default minimum read and write sizes unless
458 * already specified in a mount option.
459 * We use smaller I/O sizes when the file system
460 * is being used for NFS service (wsync mount option).
463 xfs_set_rw_sizes(xfs_mount_t
*mp
)
465 xfs_sb_t
*sbp
= &(mp
->m_sb
);
466 int readio_log
, writeio_log
;
468 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
469 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
470 readio_log
= XFS_WSYNC_READIO_LOG
;
471 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
473 readio_log
= XFS_READIO_LOG_LARGE
;
474 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
477 readio_log
= mp
->m_readio_log
;
478 writeio_log
= mp
->m_writeio_log
;
481 if (sbp
->sb_blocklog
> readio_log
) {
482 mp
->m_readio_log
= sbp
->sb_blocklog
;
484 mp
->m_readio_log
= readio_log
;
486 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
487 if (sbp
->sb_blocklog
> writeio_log
) {
488 mp
->m_writeio_log
= sbp
->sb_blocklog
;
490 mp
->m_writeio_log
= writeio_log
;
492 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
496 * precalculate the low space thresholds for dynamic speculative preallocation.
499 xfs_set_low_space_thresholds(
500 struct xfs_mount
*mp
)
504 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
505 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
508 mp
->m_low_space
[i
] = space
* (i
+ 1);
514 * Set whether we're using inode alignment.
517 xfs_set_inoalignment(xfs_mount_t
*mp
)
519 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
520 mp
->m_sb
.sb_inoalignmt
>=
521 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
522 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
524 mp
->m_inoalign_mask
= 0;
526 * If we are using stripe alignment, check whether
527 * the stripe unit is a multiple of the inode alignment
529 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
530 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
531 mp
->m_sinoalign
= mp
->m_dalign
;
537 * Check that the data (and log if separate) is an ok size.
540 xfs_check_sizes(xfs_mount_t
*mp
)
545 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
546 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
547 xfs_warn(mp
, "filesystem size mismatch detected");
548 return XFS_ERROR(EFBIG
);
550 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
551 d
- XFS_FSS_TO_BB(mp
, 1),
552 XFS_FSS_TO_BB(mp
, 1), 0, NULL
);
554 xfs_warn(mp
, "last sector read failed");
559 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
560 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
561 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
562 xfs_warn(mp
, "log size mismatch detected");
563 return XFS_ERROR(EFBIG
);
565 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
566 d
- XFS_FSB_TO_BB(mp
, 1),
567 XFS_FSB_TO_BB(mp
, 1), 0, NULL
);
569 xfs_warn(mp
, "log device read failed");
578 * Clear the quotaflags in memory and in the superblock.
581 xfs_mount_reset_sbqflags(
582 struct xfs_mount
*mp
)
585 struct xfs_trans
*tp
;
590 * It is OK to look at sb_qflags here in mount path,
593 if (mp
->m_sb
.sb_qflags
== 0)
595 spin_lock(&mp
->m_sb_lock
);
596 mp
->m_sb
.sb_qflags
= 0;
597 spin_unlock(&mp
->m_sb_lock
);
600 * If the fs is readonly, let the incore superblock run
601 * with quotas off but don't flush the update out to disk
603 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
606 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
607 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_qm_sbchange
, 0, 0);
609 xfs_trans_cancel(tp
, 0);
610 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
614 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
615 return xfs_trans_commit(tp
, 0);
619 xfs_default_resblks(xfs_mount_t
*mp
)
624 * We default to 5% or 8192 fsbs of space reserved, whichever is
625 * smaller. This is intended to cover concurrent allocation
626 * transactions when we initially hit enospc. These each require a 4
627 * block reservation. Hence by default we cover roughly 2000 concurrent
628 * allocation reservations.
630 resblks
= mp
->m_sb
.sb_dblocks
;
632 resblks
= min_t(__uint64_t
, resblks
, 8192);
637 * This function does the following on an initial mount of a file system:
638 * - reads the superblock from disk and init the mount struct
639 * - if we're a 32-bit kernel, do a size check on the superblock
640 * so we don't mount terabyte filesystems
641 * - init mount struct realtime fields
642 * - allocate inode hash table for fs
643 * - init directory manager
644 * - perform recovery and init the log manager
650 xfs_sb_t
*sbp
= &(mp
->m_sb
);
657 xfs_sb_mount_common(mp
, sbp
);
660 * Check for a mismatched features2 values. Older kernels
661 * read & wrote into the wrong sb offset for sb_features2
662 * on some platforms due to xfs_sb_t not being 64bit size aligned
663 * when sb_features2 was added, which made older superblock
664 * reading/writing routines swap it as a 64-bit value.
666 * For backwards compatibility, we make both slots equal.
668 * If we detect a mismatched field, we OR the set bits into the
669 * existing features2 field in case it has already been modified; we
670 * don't want to lose any features. We then update the bad location
671 * with the ORed value so that older kernels will see any features2
672 * flags, and mark the two fields as needing updates once the
673 * transaction subsystem is online.
675 if (xfs_sb_has_mismatched_features2(sbp
)) {
676 xfs_warn(mp
, "correcting sb_features alignment problem");
677 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
678 sbp
->sb_bad_features2
= sbp
->sb_features2
;
679 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
682 * Re-check for ATTR2 in case it was found in bad_features2
685 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
686 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
687 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
690 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
691 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
692 xfs_sb_version_removeattr2(&mp
->m_sb
);
693 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
695 /* update sb_versionnum for the clearing of the morebits */
696 if (!sbp
->sb_features2
)
697 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
701 * Check if sb_agblocks is aligned at stripe boundary
702 * If sb_agblocks is NOT aligned turn off m_dalign since
703 * allocator alignment is within an ag, therefore ag has
704 * to be aligned at stripe boundary.
706 error
= xfs_update_alignment(mp
);
710 xfs_alloc_compute_maxlevels(mp
);
711 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
712 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
713 xfs_ialloc_compute_maxlevels(mp
);
715 xfs_set_maxicount(mp
);
717 error
= xfs_uuid_mount(mp
);
722 * Set the minimum read and write sizes
724 xfs_set_rw_sizes(mp
);
726 /* set the low space thresholds for dynamic preallocation */
727 xfs_set_low_space_thresholds(mp
);
730 * Set the inode cluster size.
731 * This may still be overridden by the file system
732 * block size if it is larger than the chosen cluster size.
734 * For v5 filesystems, scale the cluster size with the inode size to
735 * keep a constant ratio of inode per cluster buffer, but only if mkfs
736 * has set the inode alignment value appropriately for larger cluster
739 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
740 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
741 int new_size
= mp
->m_inode_cluster_size
;
743 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
744 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
745 mp
->m_inode_cluster_size
= new_size
;
749 * Set inode alignment fields
751 xfs_set_inoalignment(mp
);
754 * Check that the data (and log if separate) is an ok size.
756 error
= xfs_check_sizes(mp
);
758 goto out_remove_uuid
;
761 * Initialize realtime fields in the mount structure
763 error
= xfs_rtmount_init(mp
);
765 xfs_warn(mp
, "RT mount failed");
766 goto out_remove_uuid
;
770 * Copies the low order bits of the timestamp and the randomly
771 * set "sequence" number out of a UUID.
773 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
775 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
780 * Initialize the attribute manager's entries.
782 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
785 * Initialize the precomputed transaction reservations values.
790 * Allocate and initialize the per-ag data.
792 spin_lock_init(&mp
->m_perag_lock
);
793 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
794 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
796 xfs_warn(mp
, "Failed per-ag init: %d", error
);
797 goto out_remove_uuid
;
800 if (!sbp
->sb_logblocks
) {
801 xfs_warn(mp
, "no log defined");
802 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
803 error
= XFS_ERROR(EFSCORRUPTED
);
808 * log's mount-time initialization. Perform 1st part recovery if needed
810 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
811 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
812 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
814 xfs_warn(mp
, "log mount failed");
819 * Now the log is mounted, we know if it was an unclean shutdown or
820 * not. If it was, with the first phase of recovery has completed, we
821 * have consistent AG blocks on disk. We have not recovered EFIs yet,
822 * but they are recovered transactionally in the second recovery phase
825 * Hence we can safely re-initialise incore superblock counters from
826 * the per-ag data. These may not be correct if the filesystem was not
827 * cleanly unmounted, so we need to wait for recovery to finish before
830 * If the filesystem was cleanly unmounted, then we can trust the
831 * values in the superblock to be correct and we don't need to do
834 * If we are currently making the filesystem, the initialisation will
835 * fail as the perag data is in an undefined state.
837 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
838 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
839 !mp
->m_sb
.sb_inprogress
) {
840 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
846 * Get and sanity-check the root inode.
847 * Save the pointer to it in the mount structure.
849 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
851 xfs_warn(mp
, "failed to read root inode");
852 goto out_log_dealloc
;
857 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
858 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
859 (unsigned long long)rip
->i_ino
);
860 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
861 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
863 error
= XFS_ERROR(EFSCORRUPTED
);
866 mp
->m_rootip
= rip
; /* save it */
868 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
871 * Initialize realtime inode pointers in the mount structure
873 error
= xfs_rtmount_inodes(mp
);
876 * Free up the root inode.
878 xfs_warn(mp
, "failed to read RT inodes");
883 * If this is a read-only mount defer the superblock updates until
884 * the next remount into writeable mode. Otherwise we would never
885 * perform the update e.g. for the root filesystem.
887 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
888 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
890 xfs_warn(mp
, "failed to write sb changes");
896 * Initialise the XFS quota management subsystem for this mount
898 if (XFS_IS_QUOTA_RUNNING(mp
)) {
899 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
903 ASSERT(!XFS_IS_QUOTA_ON(mp
));
906 * If a file system had quotas running earlier, but decided to
907 * mount without -o uquota/pquota/gquota options, revoke the
908 * quotachecked license.
910 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
911 xfs_notice(mp
, "resetting quota flags");
912 error
= xfs_mount_reset_sbqflags(mp
);
919 * Finish recovering the file system. This part needed to be
920 * delayed until after the root and real-time bitmap inodes
921 * were consistently read in.
923 error
= xfs_log_mount_finish(mp
);
925 xfs_warn(mp
, "log mount finish failed");
930 * Complete the quota initialisation, post-log-replay component.
933 ASSERT(mp
->m_qflags
== 0);
934 mp
->m_qflags
= quotaflags
;
936 xfs_qm_mount_quotas(mp
);
940 * Now we are mounted, reserve a small amount of unused space for
941 * privileged transactions. This is needed so that transaction
942 * space required for critical operations can dip into this pool
943 * when at ENOSPC. This is needed for operations like create with
944 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
945 * are not allowed to use this reserved space.
947 * This may drive us straight to ENOSPC on mount, but that implies
948 * we were already there on the last unmount. Warn if this occurs.
950 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
951 resblks
= xfs_default_resblks(mp
);
952 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
955 "Unable to allocate reserve blocks. Continuing without reserve pool.");
961 xfs_rtunmount_inodes(mp
);
967 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
968 xfs_wait_buftarg(mp
->m_logdev_targp
);
969 xfs_wait_buftarg(mp
->m_ddev_targp
);
973 xfs_uuid_unmount(mp
);
979 * This flushes out the inodes,dquots and the superblock, unmounts the
980 * log and makes sure that incore structures are freed.
984 struct xfs_mount
*mp
)
989 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
991 xfs_qm_unmount_quotas(mp
);
992 xfs_rtunmount_inodes(mp
);
996 * We can potentially deadlock here if we have an inode cluster
997 * that has been freed has its buffer still pinned in memory because
998 * the transaction is still sitting in a iclog. The stale inodes
999 * on that buffer will have their flush locks held until the
1000 * transaction hits the disk and the callbacks run. the inode
1001 * flush takes the flush lock unconditionally and with nothing to
1002 * push out the iclog we will never get that unlocked. hence we
1003 * need to force the log first.
1005 xfs_log_force(mp
, XFS_LOG_SYNC
);
1008 * Flush all pending changes from the AIL.
1010 xfs_ail_push_all_sync(mp
->m_ail
);
1013 * And reclaim all inodes. At this point there should be no dirty
1014 * inodes and none should be pinned or locked, but use synchronous
1015 * reclaim just to be sure. We can stop background inode reclaim
1016 * here as well if it is still running.
1018 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1019 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1024 * Unreserve any blocks we have so that when we unmount we don't account
1025 * the reserved free space as used. This is really only necessary for
1026 * lazy superblock counting because it trusts the incore superblock
1027 * counters to be absolutely correct on clean unmount.
1029 * We don't bother correcting this elsewhere for lazy superblock
1030 * counting because on mount of an unclean filesystem we reconstruct the
1031 * correct counter value and this is irrelevant.
1033 * For non-lazy counter filesystems, this doesn't matter at all because
1034 * we only every apply deltas to the superblock and hence the incore
1035 * value does not matter....
1038 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1040 xfs_warn(mp
, "Unable to free reserved block pool. "
1041 "Freespace may not be correct on next mount.");
1043 error
= xfs_log_sbcount(mp
);
1045 xfs_warn(mp
, "Unable to update superblock counters. "
1046 "Freespace may not be correct on next mount.");
1048 xfs_log_unmount(mp
);
1049 xfs_uuid_unmount(mp
);
1052 xfs_errortag_clearall(mp
, 0);
1058 xfs_fs_writable(xfs_mount_t
*mp
)
1060 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1061 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1067 * Sync the superblock counters to disk.
1069 * Note this code can be called during the process of freezing, so
1070 * we may need to use the transaction allocator which does not
1071 * block when the transaction subsystem is in its frozen state.
1074 xfs_log_sbcount(xfs_mount_t
*mp
)
1079 if (!xfs_fs_writable(mp
))
1082 xfs_icsb_sync_counters(mp
, 0);
1085 * we don't need to do this if we are updating the superblock
1086 * counters on every modification.
1088 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1091 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1092 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_sb
, 0, 0);
1094 xfs_trans_cancel(tp
, 0);
1098 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1099 xfs_trans_set_sync(tp
);
1100 error
= xfs_trans_commit(tp
, 0);
1105 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1106 * a delta to a specified field in the in-core superblock. Simply
1107 * switch on the field indicated and apply the delta to that field.
1108 * Fields are not allowed to dip below zero, so if the delta would
1109 * do this do not apply it and return EINVAL.
1111 * The m_sb_lock must be held when this routine is called.
1114 xfs_mod_incore_sb_unlocked(
1116 xfs_sb_field_t field
,
1120 int scounter
; /* short counter for 32 bit fields */
1121 long long lcounter
; /* long counter for 64 bit fields */
1122 long long res_used
, rem
;
1125 * With the in-core superblock spin lock held, switch
1126 * on the indicated field. Apply the delta to the
1127 * proper field. If the fields value would dip below
1128 * 0, then do not apply the delta and return EINVAL.
1131 case XFS_SBS_ICOUNT
:
1132 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1136 return XFS_ERROR(EINVAL
);
1138 mp
->m_sb
.sb_icount
= lcounter
;
1141 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1145 return XFS_ERROR(EINVAL
);
1147 mp
->m_sb
.sb_ifree
= lcounter
;
1149 case XFS_SBS_FDBLOCKS
:
1150 lcounter
= (long long)
1151 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1152 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1154 if (delta
> 0) { /* Putting blocks back */
1155 if (res_used
> delta
) {
1156 mp
->m_resblks_avail
+= delta
;
1158 rem
= delta
- res_used
;
1159 mp
->m_resblks_avail
= mp
->m_resblks
;
1162 } else { /* Taking blocks away */
1164 if (lcounter
>= 0) {
1165 mp
->m_sb
.sb_fdblocks
= lcounter
+
1166 XFS_ALLOC_SET_ASIDE(mp
);
1171 * We are out of blocks, use any available reserved
1172 * blocks if were allowed to.
1175 return XFS_ERROR(ENOSPC
);
1177 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1178 if (lcounter
>= 0) {
1179 mp
->m_resblks_avail
= lcounter
;
1182 printk_once(KERN_WARNING
1183 "Filesystem \"%s\": reserve blocks depleted! "
1184 "Consider increasing reserve pool size.",
1186 return XFS_ERROR(ENOSPC
);
1189 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1191 case XFS_SBS_FREXTENTS
:
1192 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1195 return XFS_ERROR(ENOSPC
);
1197 mp
->m_sb
.sb_frextents
= lcounter
;
1199 case XFS_SBS_DBLOCKS
:
1200 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1204 return XFS_ERROR(EINVAL
);
1206 mp
->m_sb
.sb_dblocks
= lcounter
;
1208 case XFS_SBS_AGCOUNT
:
1209 scounter
= mp
->m_sb
.sb_agcount
;
1213 return XFS_ERROR(EINVAL
);
1215 mp
->m_sb
.sb_agcount
= scounter
;
1217 case XFS_SBS_IMAX_PCT
:
1218 scounter
= mp
->m_sb
.sb_imax_pct
;
1222 return XFS_ERROR(EINVAL
);
1224 mp
->m_sb
.sb_imax_pct
= scounter
;
1226 case XFS_SBS_REXTSIZE
:
1227 scounter
= mp
->m_sb
.sb_rextsize
;
1231 return XFS_ERROR(EINVAL
);
1233 mp
->m_sb
.sb_rextsize
= scounter
;
1235 case XFS_SBS_RBMBLOCKS
:
1236 scounter
= mp
->m_sb
.sb_rbmblocks
;
1240 return XFS_ERROR(EINVAL
);
1242 mp
->m_sb
.sb_rbmblocks
= scounter
;
1244 case XFS_SBS_RBLOCKS
:
1245 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1249 return XFS_ERROR(EINVAL
);
1251 mp
->m_sb
.sb_rblocks
= lcounter
;
1253 case XFS_SBS_REXTENTS
:
1254 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1258 return XFS_ERROR(EINVAL
);
1260 mp
->m_sb
.sb_rextents
= lcounter
;
1262 case XFS_SBS_REXTSLOG
:
1263 scounter
= mp
->m_sb
.sb_rextslog
;
1267 return XFS_ERROR(EINVAL
);
1269 mp
->m_sb
.sb_rextslog
= scounter
;
1273 return XFS_ERROR(EINVAL
);
1278 * xfs_mod_incore_sb() is used to change a field in the in-core
1279 * superblock structure by the specified delta. This modification
1280 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1281 * routine to do the work.
1285 struct xfs_mount
*mp
,
1286 xfs_sb_field_t field
,
1292 #ifdef HAVE_PERCPU_SB
1293 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1295 spin_lock(&mp
->m_sb_lock
);
1296 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1297 spin_unlock(&mp
->m_sb_lock
);
1303 * Change more than one field in the in-core superblock structure at a time.
1305 * The fields and changes to those fields are specified in the array of
1306 * xfs_mod_sb structures passed in. Either all of the specified deltas
1307 * will be applied or none of them will. If any modified field dips below 0,
1308 * then all modifications will be backed out and EINVAL will be returned.
1310 * Note that this function may not be used for the superblock values that
1311 * are tracked with the in-memory per-cpu counters - a direct call to
1312 * xfs_icsb_modify_counters is required for these.
1315 xfs_mod_incore_sb_batch(
1316 struct xfs_mount
*mp
,
1325 * Loop through the array of mod structures and apply each individually.
1326 * If any fail, then back out all those which have already been applied.
1327 * Do all of this within the scope of the m_sb_lock so that all of the
1328 * changes will be atomic.
1330 spin_lock(&mp
->m_sb_lock
);
1331 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1332 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1333 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1335 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1336 msbp
->msb_delta
, rsvd
);
1340 spin_unlock(&mp
->m_sb_lock
);
1344 while (--msbp
>= msb
) {
1345 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1346 -msbp
->msb_delta
, rsvd
);
1349 spin_unlock(&mp
->m_sb_lock
);
1354 * xfs_getsb() is called to obtain the buffer for the superblock.
1355 * The buffer is returned locked and read in from disk.
1356 * The buffer should be released with a call to xfs_brelse().
1358 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1359 * the superblock buffer if it can be locked without sleeping.
1360 * If it can't then we'll return NULL.
1364 struct xfs_mount
*mp
,
1367 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1369 if (!xfs_buf_trylock(bp
)) {
1370 if (flags
& XBF_TRYLOCK
)
1376 ASSERT(XFS_BUF_ISDONE(bp
));
1381 * Used to free the superblock along various error paths.
1385 struct xfs_mount
*mp
)
1387 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1395 * Used to log changes to the superblock unit and width fields which could
1396 * be altered by the mount options, as well as any potential sb_features2
1397 * fixup. Only the first superblock is updated.
1407 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1408 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1409 XFS_SB_VERSIONNUM
));
1411 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1412 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_sb
, 0, 0);
1414 xfs_trans_cancel(tp
, 0);
1417 xfs_mod_sb(tp
, fields
);
1418 error
= xfs_trans_commit(tp
, 0);
1423 * If the underlying (data/log/rt) device is readonly, there are some
1424 * operations that cannot proceed.
1427 xfs_dev_is_read_only(
1428 struct xfs_mount
*mp
,
1431 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1432 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1433 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1434 xfs_notice(mp
, "%s required on read-only device.", message
);
1435 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1441 #ifdef HAVE_PERCPU_SB
1443 * Per-cpu incore superblock counters
1445 * Simple concept, difficult implementation
1447 * Basically, replace the incore superblock counters with a distributed per cpu
1448 * counter for contended fields (e.g. free block count).
1450 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1451 * hence needs to be accurately read when we are running low on space. Hence
1452 * there is a method to enable and disable the per-cpu counters based on how
1453 * much "stuff" is available in them.
1455 * Basically, a counter is enabled if there is enough free resource to justify
1456 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1457 * ENOSPC), then we disable the counters to synchronise all callers and
1458 * re-distribute the available resources.
1460 * If, once we redistributed the available resources, we still get a failure,
1461 * we disable the per-cpu counter and go through the slow path.
1463 * The slow path is the current xfs_mod_incore_sb() function. This means that
1464 * when we disable a per-cpu counter, we need to drain its resources back to
1465 * the global superblock. We do this after disabling the counter to prevent
1466 * more threads from queueing up on the counter.
1468 * Essentially, this means that we still need a lock in the fast path to enable
1469 * synchronisation between the global counters and the per-cpu counters. This
1470 * is not a problem because the lock will be local to a CPU almost all the time
1471 * and have little contention except when we get to ENOSPC conditions.
1473 * Basically, this lock becomes a barrier that enables us to lock out the fast
1474 * path while we do things like enabling and disabling counters and
1475 * synchronising the counters.
1479 * 1. m_sb_lock before picking up per-cpu locks
1480 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1481 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1482 * 4. modifying per-cpu counters requires holding per-cpu lock
1483 * 5. modifying global counters requires holding m_sb_lock
1484 * 6. enabling or disabling a counter requires holding the m_sb_lock
1485 * and _none_ of the per-cpu locks.
1487 * Disabled counters are only ever re-enabled by a balance operation
1488 * that results in more free resources per CPU than a given threshold.
1489 * To ensure counters don't remain disabled, they are rebalanced when
1490 * the global resource goes above a higher threshold (i.e. some hysteresis
1491 * is present to prevent thrashing).
1494 #ifdef CONFIG_HOTPLUG_CPU
1496 * hot-plug CPU notifier support.
1498 * We need a notifier per filesystem as we need to be able to identify
1499 * the filesystem to balance the counters out. This is achieved by
1500 * having a notifier block embedded in the xfs_mount_t and doing pointer
1501 * magic to get the mount pointer from the notifier block address.
1504 xfs_icsb_cpu_notify(
1505 struct notifier_block
*nfb
,
1506 unsigned long action
,
1509 xfs_icsb_cnts_t
*cntp
;
1512 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
1513 cntp
= (xfs_icsb_cnts_t
*)
1514 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
1516 case CPU_UP_PREPARE
:
1517 case CPU_UP_PREPARE_FROZEN
:
1518 /* Easy Case - initialize the area and locks, and
1519 * then rebalance when online does everything else for us. */
1520 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1523 case CPU_ONLINE_FROZEN
:
1525 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1526 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1527 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1528 xfs_icsb_unlock(mp
);
1531 case CPU_DEAD_FROZEN
:
1532 /* Disable all the counters, then fold the dead cpu's
1533 * count into the total on the global superblock and
1534 * re-enable the counters. */
1536 spin_lock(&mp
->m_sb_lock
);
1537 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
1538 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
1539 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
1541 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
1542 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
1543 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
1545 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1547 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
1548 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
1549 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
1550 spin_unlock(&mp
->m_sb_lock
);
1551 xfs_icsb_unlock(mp
);
1557 #endif /* CONFIG_HOTPLUG_CPU */
1560 xfs_icsb_init_counters(
1563 xfs_icsb_cnts_t
*cntp
;
1566 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
1567 if (mp
->m_sb_cnts
== NULL
)
1570 for_each_online_cpu(i
) {
1571 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1572 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1575 mutex_init(&mp
->m_icsb_mutex
);
1578 * start with all counters disabled so that the
1579 * initial balance kicks us off correctly
1581 mp
->m_icsb_counters
= -1;
1583 #ifdef CONFIG_HOTPLUG_CPU
1584 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
1585 mp
->m_icsb_notifier
.priority
= 0;
1586 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
1587 #endif /* CONFIG_HOTPLUG_CPU */
1593 xfs_icsb_reinit_counters(
1598 * start with all counters disabled so that the
1599 * initial balance kicks us off correctly
1601 mp
->m_icsb_counters
= -1;
1602 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1603 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1604 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1605 xfs_icsb_unlock(mp
);
1609 xfs_icsb_destroy_counters(
1612 if (mp
->m_sb_cnts
) {
1613 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
1614 free_percpu(mp
->m_sb_cnts
);
1616 mutex_destroy(&mp
->m_icsb_mutex
);
1621 xfs_icsb_cnts_t
*icsbp
)
1623 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
1629 xfs_icsb_unlock_cntr(
1630 xfs_icsb_cnts_t
*icsbp
)
1632 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
1637 xfs_icsb_lock_all_counters(
1640 xfs_icsb_cnts_t
*cntp
;
1643 for_each_online_cpu(i
) {
1644 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1645 xfs_icsb_lock_cntr(cntp
);
1650 xfs_icsb_unlock_all_counters(
1653 xfs_icsb_cnts_t
*cntp
;
1656 for_each_online_cpu(i
) {
1657 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1658 xfs_icsb_unlock_cntr(cntp
);
1665 xfs_icsb_cnts_t
*cnt
,
1668 xfs_icsb_cnts_t
*cntp
;
1671 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
1673 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
1674 xfs_icsb_lock_all_counters(mp
);
1676 for_each_online_cpu(i
) {
1677 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1678 cnt
->icsb_icount
+= cntp
->icsb_icount
;
1679 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
1680 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
1683 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
1684 xfs_icsb_unlock_all_counters(mp
);
1688 xfs_icsb_counter_disabled(
1690 xfs_sb_field_t field
)
1692 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1693 return test_bit(field
, &mp
->m_icsb_counters
);
1697 xfs_icsb_disable_counter(
1699 xfs_sb_field_t field
)
1701 xfs_icsb_cnts_t cnt
;
1703 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1706 * If we are already disabled, then there is nothing to do
1707 * here. We check before locking all the counters to avoid
1708 * the expensive lock operation when being called in the
1709 * slow path and the counter is already disabled. This is
1710 * safe because the only time we set or clear this state is under
1713 if (xfs_icsb_counter_disabled(mp
, field
))
1716 xfs_icsb_lock_all_counters(mp
);
1717 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
1718 /* drain back to superblock */
1720 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
1722 case XFS_SBS_ICOUNT
:
1723 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
1726 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
1728 case XFS_SBS_FDBLOCKS
:
1729 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
1736 xfs_icsb_unlock_all_counters(mp
);
1740 xfs_icsb_enable_counter(
1742 xfs_sb_field_t field
,
1746 xfs_icsb_cnts_t
*cntp
;
1749 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1751 xfs_icsb_lock_all_counters(mp
);
1752 for_each_online_cpu(i
) {
1753 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
1755 case XFS_SBS_ICOUNT
:
1756 cntp
->icsb_icount
= count
+ resid
;
1759 cntp
->icsb_ifree
= count
+ resid
;
1761 case XFS_SBS_FDBLOCKS
:
1762 cntp
->icsb_fdblocks
= count
+ resid
;
1770 clear_bit(field
, &mp
->m_icsb_counters
);
1771 xfs_icsb_unlock_all_counters(mp
);
1775 xfs_icsb_sync_counters_locked(
1779 xfs_icsb_cnts_t cnt
;
1781 xfs_icsb_count(mp
, &cnt
, flags
);
1783 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
1784 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
1785 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
1786 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
1787 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
1788 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
1792 * Accurate update of per-cpu counters to incore superblock
1795 xfs_icsb_sync_counters(
1799 spin_lock(&mp
->m_sb_lock
);
1800 xfs_icsb_sync_counters_locked(mp
, flags
);
1801 spin_unlock(&mp
->m_sb_lock
);
1805 * Balance and enable/disable counters as necessary.
1807 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1808 * chosen to be the same number as single on disk allocation chunk per CPU, and
1809 * free blocks is something far enough zero that we aren't going thrash when we
1810 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1811 * prevent looping endlessly when xfs_alloc_space asks for more than will
1812 * be distributed to a single CPU but each CPU has enough blocks to be
1815 * Note that we can be called when counters are already disabled.
1816 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1817 * prevent locking every per-cpu counter needlessly.
1820 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1821 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1822 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1824 xfs_icsb_balance_counter_locked(
1826 xfs_sb_field_t field
,
1829 uint64_t count
, resid
;
1830 int weight
= num_online_cpus();
1831 uint64_t min
= (uint64_t)min_per_cpu
;
1833 /* disable counter and sync counter */
1834 xfs_icsb_disable_counter(mp
, field
);
1836 /* update counters - first CPU gets residual*/
1838 case XFS_SBS_ICOUNT
:
1839 count
= mp
->m_sb
.sb_icount
;
1840 resid
= do_div(count
, weight
);
1841 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
1845 count
= mp
->m_sb
.sb_ifree
;
1846 resid
= do_div(count
, weight
);
1847 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
1850 case XFS_SBS_FDBLOCKS
:
1851 count
= mp
->m_sb
.sb_fdblocks
;
1852 resid
= do_div(count
, weight
);
1853 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
1858 count
= resid
= 0; /* quiet, gcc */
1862 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
1866 xfs_icsb_balance_counter(
1868 xfs_sb_field_t fields
,
1871 spin_lock(&mp
->m_sb_lock
);
1872 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
1873 spin_unlock(&mp
->m_sb_lock
);
1877 xfs_icsb_modify_counters(
1879 xfs_sb_field_t field
,
1883 xfs_icsb_cnts_t
*icsbp
;
1884 long long lcounter
; /* long counter for 64 bit fields */
1890 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
1893 * if the counter is disabled, go to slow path
1895 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
1897 xfs_icsb_lock_cntr(icsbp
);
1898 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
1899 xfs_icsb_unlock_cntr(icsbp
);
1904 case XFS_SBS_ICOUNT
:
1905 lcounter
= icsbp
->icsb_icount
;
1907 if (unlikely(lcounter
< 0))
1908 goto balance_counter
;
1909 icsbp
->icsb_icount
= lcounter
;
1913 lcounter
= icsbp
->icsb_ifree
;
1915 if (unlikely(lcounter
< 0))
1916 goto balance_counter
;
1917 icsbp
->icsb_ifree
= lcounter
;
1920 case XFS_SBS_FDBLOCKS
:
1921 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
1923 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1925 if (unlikely(lcounter
< 0))
1926 goto balance_counter
;
1927 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1933 xfs_icsb_unlock_cntr(icsbp
);
1941 * serialise with a mutex so we don't burn lots of cpu on
1942 * the superblock lock. We still need to hold the superblock
1943 * lock, however, when we modify the global structures.
1948 * Now running atomically.
1950 * If the counter is enabled, someone has beaten us to rebalancing.
1951 * Drop the lock and try again in the fast path....
1953 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
1954 xfs_icsb_unlock(mp
);
1959 * The counter is currently disabled. Because we are
1960 * running atomically here, we know a rebalance cannot
1961 * be in progress. Hence we can go straight to operating
1962 * on the global superblock. We do not call xfs_mod_incore_sb()
1963 * here even though we need to get the m_sb_lock. Doing so
1964 * will cause us to re-enter this function and deadlock.
1965 * Hence we get the m_sb_lock ourselves and then call
1966 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1967 * directly on the global counters.
1969 spin_lock(&mp
->m_sb_lock
);
1970 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1971 spin_unlock(&mp
->m_sb_lock
);
1974 * Now that we've modified the global superblock, we
1975 * may be able to re-enable the distributed counters
1976 * (e.g. lots of space just got freed). After that
1980 xfs_icsb_balance_counter(mp
, field
, 0);
1981 xfs_icsb_unlock(mp
);
1985 xfs_icsb_unlock_cntr(icsbp
);
1989 * We may have multiple threads here if multiple per-cpu
1990 * counters run dry at the same time. This will mean we can
1991 * do more balances than strictly necessary but it is not
1992 * the common slowpath case.
1997 * running atomically.
1999 * This will leave the counter in the correct state for future
2000 * accesses. After the rebalance, we simply try again and our retry
2001 * will either succeed through the fast path or slow path without
2002 * another balance operation being required.
2004 xfs_icsb_balance_counter(mp
, field
, delta
);
2005 xfs_icsb_unlock(mp
);