gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / arch / arm / kvm / arm.c
blob87b2663a556474e8b3eb66a6eca0e316bb2d9794
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
85 return &kvm_arm_running_vcpu;
88 int kvm_arch_hardware_enable(void)
90 return 0;
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 int kvm_arch_hardware_setup(void)
100 return 0;
103 void kvm_arch_check_processor_compat(void *rtn)
105 *(int *)rtn = 0;
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 int ret = 0;
117 if (type)
118 return -EINVAL;
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
128 kvm_timer_init(kvm);
130 /* Mark the initial VMID generation invalid */
131 kvm->arch.vmid_gen = 0;
133 /* The maximum number of VCPUs is limited by the host's GIC model */
134 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136 return ret;
137 out_free_stage2_pgd:
138 kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140 return ret;
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 return VM_FAULT_SIGBUS;
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm: pointer to the KVM struct
153 void kvm_arch_destroy_vm(struct kvm *kvm)
155 int i;
157 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
158 if (kvm->vcpus[i]) {
159 kvm_arch_vcpu_free(kvm->vcpus[i]);
160 kvm->vcpus[i] = NULL;
164 kvm_vgic_destroy(kvm);
167 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 int r;
170 switch (ext) {
171 case KVM_CAP_IRQCHIP:
172 case KVM_CAP_IRQFD:
173 case KVM_CAP_IOEVENTFD:
174 case KVM_CAP_DEVICE_CTRL:
175 case KVM_CAP_USER_MEMORY:
176 case KVM_CAP_SYNC_MMU:
177 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
178 case KVM_CAP_ONE_REG:
179 case KVM_CAP_ARM_PSCI:
180 case KVM_CAP_ARM_PSCI_0_2:
181 case KVM_CAP_READONLY_MEM:
182 case KVM_CAP_MP_STATE:
183 r = 1;
184 break;
185 case KVM_CAP_COALESCED_MMIO:
186 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187 break;
188 case KVM_CAP_ARM_SET_DEVICE_ADDR:
189 r = 1;
190 break;
191 case KVM_CAP_NR_VCPUS:
192 r = num_online_cpus();
193 break;
194 case KVM_CAP_MAX_VCPUS:
195 r = KVM_MAX_VCPUS;
196 break;
197 default:
198 r = kvm_arch_dev_ioctl_check_extension(ext);
199 break;
201 return r;
204 long kvm_arch_dev_ioctl(struct file *filp,
205 unsigned int ioctl, unsigned long arg)
207 return -EINVAL;
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
213 int err;
214 struct kvm_vcpu *vcpu;
216 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217 err = -EBUSY;
218 goto out;
221 if (id >= kvm->arch.max_vcpus) {
222 err = -EINVAL;
223 goto out;
226 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
227 if (!vcpu) {
228 err = -ENOMEM;
229 goto out;
232 err = kvm_vcpu_init(vcpu, kvm, id);
233 if (err)
234 goto free_vcpu;
236 err = create_hyp_mappings(vcpu, vcpu + 1);
237 if (err)
238 goto vcpu_uninit;
240 return vcpu;
241 vcpu_uninit:
242 kvm_vcpu_uninit(vcpu);
243 free_vcpu:
244 kmem_cache_free(kvm_vcpu_cache, vcpu);
245 out:
246 return ERR_PTR(err);
249 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 kvm_mmu_free_memory_caches(vcpu);
256 kvm_timer_vcpu_terminate(vcpu);
257 kvm_vgic_vcpu_destroy(vcpu);
258 kvm_vcpu_uninit(vcpu);
259 kmem_cache_free(kvm_vcpu_cache, vcpu);
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264 kvm_arch_vcpu_free(vcpu);
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269 return kvm_timer_should_fire(vcpu);
272 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
274 /* Force users to call KVM_ARM_VCPU_INIT */
275 vcpu->arch.target = -1;
276 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
278 /* Set up the timer */
279 kvm_timer_vcpu_init(vcpu);
281 return 0;
284 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
286 vcpu->cpu = cpu;
287 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
289 kvm_arm_set_running_vcpu(vcpu);
292 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
295 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
296 * if the vcpu is no longer assigned to a cpu. This is used for the
297 * optimized make_all_cpus_request path.
299 vcpu->cpu = -1;
301 kvm_arm_set_running_vcpu(NULL);
304 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
305 struct kvm_guest_debug *dbg)
307 return -EINVAL;
311 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
312 struct kvm_mp_state *mp_state)
314 if (vcpu->arch.pause)
315 mp_state->mp_state = KVM_MP_STATE_STOPPED;
316 else
317 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
319 return 0;
322 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
323 struct kvm_mp_state *mp_state)
325 switch (mp_state->mp_state) {
326 case KVM_MP_STATE_RUNNABLE:
327 vcpu->arch.pause = false;
328 break;
329 case KVM_MP_STATE_STOPPED:
330 vcpu->arch.pause = true;
331 break;
332 default:
333 return -EINVAL;
336 return 0;
340 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
341 * @v: The VCPU pointer
343 * If the guest CPU is not waiting for interrupts or an interrupt line is
344 * asserted, the CPU is by definition runnable.
346 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
348 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
351 /* Just ensure a guest exit from a particular CPU */
352 static void exit_vm_noop(void *info)
356 void force_vm_exit(const cpumask_t *mask)
358 smp_call_function_many(mask, exit_vm_noop, NULL, true);
362 * need_new_vmid_gen - check that the VMID is still valid
363 * @kvm: The VM's VMID to checkt
365 * return true if there is a new generation of VMIDs being used
367 * The hardware supports only 256 values with the value zero reserved for the
368 * host, so we check if an assigned value belongs to a previous generation,
369 * which which requires us to assign a new value. If we're the first to use a
370 * VMID for the new generation, we must flush necessary caches and TLBs on all
371 * CPUs.
373 static bool need_new_vmid_gen(struct kvm *kvm)
375 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
379 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
380 * @kvm The guest that we are about to run
382 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
383 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
384 * caches and TLBs.
386 static void update_vttbr(struct kvm *kvm)
388 phys_addr_t pgd_phys;
389 u64 vmid;
391 if (!need_new_vmid_gen(kvm))
392 return;
394 spin_lock(&kvm_vmid_lock);
397 * We need to re-check the vmid_gen here to ensure that if another vcpu
398 * already allocated a valid vmid for this vm, then this vcpu should
399 * use the same vmid.
401 if (!need_new_vmid_gen(kvm)) {
402 spin_unlock(&kvm_vmid_lock);
403 return;
406 /* First user of a new VMID generation? */
407 if (unlikely(kvm_next_vmid == 0)) {
408 atomic64_inc(&kvm_vmid_gen);
409 kvm_next_vmid = 1;
412 * On SMP we know no other CPUs can use this CPU's or each
413 * other's VMID after force_vm_exit returns since the
414 * kvm_vmid_lock blocks them from reentry to the guest.
416 force_vm_exit(cpu_all_mask);
418 * Now broadcast TLB + ICACHE invalidation over the inner
419 * shareable domain to make sure all data structures are
420 * clean.
422 kvm_call_hyp(__kvm_flush_vm_context);
425 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
426 kvm->arch.vmid = kvm_next_vmid;
427 kvm_next_vmid++;
429 /* update vttbr to be used with the new vmid */
430 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
431 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
432 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
433 kvm->arch.vttbr = pgd_phys | vmid;
435 spin_unlock(&kvm_vmid_lock);
438 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
440 struct kvm *kvm = vcpu->kvm;
441 int ret;
443 if (likely(vcpu->arch.has_run_once))
444 return 0;
446 vcpu->arch.has_run_once = true;
449 * Map the VGIC hardware resources before running a vcpu the first
450 * time on this VM.
452 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
453 ret = kvm_vgic_map_resources(kvm);
454 if (ret)
455 return ret;
459 * Enable the arch timers only if we have an in-kernel VGIC
460 * and it has been properly initialized, since we cannot handle
461 * interrupts from the virtual timer with a userspace gic.
463 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
464 kvm_timer_enable(kvm);
466 return 0;
469 bool kvm_arch_intc_initialized(struct kvm *kvm)
471 return vgic_initialized(kvm);
474 static void vcpu_pause(struct kvm_vcpu *vcpu)
476 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
478 wait_event_interruptible(*wq, !vcpu->arch.pause);
481 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
483 return vcpu->arch.target >= 0;
487 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
488 * @vcpu: The VCPU pointer
489 * @run: The kvm_run structure pointer used for userspace state exchange
491 * This function is called through the VCPU_RUN ioctl called from user space. It
492 * will execute VM code in a loop until the time slice for the process is used
493 * or some emulation is needed from user space in which case the function will
494 * return with return value 0 and with the kvm_run structure filled in with the
495 * required data for the requested emulation.
497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
499 int ret;
500 sigset_t sigsaved;
502 if (unlikely(!kvm_vcpu_initialized(vcpu)))
503 return -ENOEXEC;
505 ret = kvm_vcpu_first_run_init(vcpu);
506 if (ret)
507 return ret;
509 if (run->exit_reason == KVM_EXIT_MMIO) {
510 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
511 if (ret)
512 return ret;
515 if (vcpu->sigset_active)
516 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
518 ret = 1;
519 run->exit_reason = KVM_EXIT_UNKNOWN;
520 while (ret > 0) {
522 * Check conditions before entering the guest
524 cond_resched();
526 update_vttbr(vcpu->kvm);
528 if (vcpu->arch.pause)
529 vcpu_pause(vcpu);
531 kvm_vgic_flush_hwstate(vcpu);
532 kvm_timer_flush_hwstate(vcpu);
534 local_irq_disable();
537 * Re-check atomic conditions
539 if (signal_pending(current)) {
540 ret = -EINTR;
541 run->exit_reason = KVM_EXIT_INTR;
544 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
545 local_irq_enable();
546 kvm_timer_sync_hwstate(vcpu);
547 kvm_vgic_sync_hwstate(vcpu);
548 continue;
551 /**************************************************************
552 * Enter the guest
554 trace_kvm_entry(*vcpu_pc(vcpu));
555 kvm_guest_enter();
556 vcpu->mode = IN_GUEST_MODE;
558 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
560 vcpu->mode = OUTSIDE_GUEST_MODE;
561 kvm_guest_exit();
562 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
564 * We may have taken a host interrupt in HYP mode (ie
565 * while executing the guest). This interrupt is still
566 * pending, as we haven't serviced it yet!
568 * We're now back in SVC mode, with interrupts
569 * disabled. Enabling the interrupts now will have
570 * the effect of taking the interrupt again, in SVC
571 * mode this time.
573 local_irq_enable();
576 * Back from guest
577 *************************************************************/
579 kvm_timer_sync_hwstate(vcpu);
580 kvm_vgic_sync_hwstate(vcpu);
582 ret = handle_exit(vcpu, run, ret);
585 if (vcpu->sigset_active)
586 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
587 return ret;
590 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
592 int bit_index;
593 bool set;
594 unsigned long *ptr;
596 if (number == KVM_ARM_IRQ_CPU_IRQ)
597 bit_index = __ffs(HCR_VI);
598 else /* KVM_ARM_IRQ_CPU_FIQ */
599 bit_index = __ffs(HCR_VF);
601 ptr = (unsigned long *)&vcpu->arch.irq_lines;
602 if (level)
603 set = test_and_set_bit(bit_index, ptr);
604 else
605 set = test_and_clear_bit(bit_index, ptr);
608 * If we didn't change anything, no need to wake up or kick other CPUs
610 if (set == level)
611 return 0;
614 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
615 * trigger a world-switch round on the running physical CPU to set the
616 * virtual IRQ/FIQ fields in the HCR appropriately.
618 kvm_vcpu_kick(vcpu);
620 return 0;
623 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
624 bool line_status)
626 u32 irq = irq_level->irq;
627 unsigned int irq_type, vcpu_idx, irq_num;
628 int nrcpus = atomic_read(&kvm->online_vcpus);
629 struct kvm_vcpu *vcpu = NULL;
630 bool level = irq_level->level;
632 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
633 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
634 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
636 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
638 switch (irq_type) {
639 case KVM_ARM_IRQ_TYPE_CPU:
640 if (irqchip_in_kernel(kvm))
641 return -ENXIO;
643 if (vcpu_idx >= nrcpus)
644 return -EINVAL;
646 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
647 if (!vcpu)
648 return -EINVAL;
650 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
651 return -EINVAL;
653 return vcpu_interrupt_line(vcpu, irq_num, level);
654 case KVM_ARM_IRQ_TYPE_PPI:
655 if (!irqchip_in_kernel(kvm))
656 return -ENXIO;
658 if (vcpu_idx >= nrcpus)
659 return -EINVAL;
661 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
662 if (!vcpu)
663 return -EINVAL;
665 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
666 return -EINVAL;
668 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
669 case KVM_ARM_IRQ_TYPE_SPI:
670 if (!irqchip_in_kernel(kvm))
671 return -ENXIO;
673 if (irq_num < VGIC_NR_PRIVATE_IRQS)
674 return -EINVAL;
676 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
679 return -EINVAL;
682 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
683 const struct kvm_vcpu_init *init)
685 unsigned int i;
686 int phys_target = kvm_target_cpu();
688 if (init->target != phys_target)
689 return -EINVAL;
692 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
693 * use the same target.
695 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
696 return -EINVAL;
698 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
699 for (i = 0; i < sizeof(init->features) * 8; i++) {
700 bool set = (init->features[i / 32] & (1 << (i % 32)));
702 if (set && i >= KVM_VCPU_MAX_FEATURES)
703 return -ENOENT;
706 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
707 * use the same feature set.
709 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
710 test_bit(i, vcpu->arch.features) != set)
711 return -EINVAL;
713 if (set)
714 set_bit(i, vcpu->arch.features);
717 vcpu->arch.target = phys_target;
719 /* Now we know what it is, we can reset it. */
720 return kvm_reset_vcpu(vcpu);
724 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
725 struct kvm_vcpu_init *init)
727 int ret;
729 ret = kvm_vcpu_set_target(vcpu, init);
730 if (ret)
731 return ret;
734 * Ensure a rebooted VM will fault in RAM pages and detect if the
735 * guest MMU is turned off and flush the caches as needed.
737 if (vcpu->arch.has_run_once)
738 stage2_unmap_vm(vcpu->kvm);
740 vcpu_reset_hcr(vcpu);
743 * Handle the "start in power-off" case by marking the VCPU as paused.
745 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
746 vcpu->arch.pause = true;
747 else
748 vcpu->arch.pause = false;
750 return 0;
753 long kvm_arch_vcpu_ioctl(struct file *filp,
754 unsigned int ioctl, unsigned long arg)
756 struct kvm_vcpu *vcpu = filp->private_data;
757 void __user *argp = (void __user *)arg;
759 switch (ioctl) {
760 case KVM_ARM_VCPU_INIT: {
761 struct kvm_vcpu_init init;
763 if (copy_from_user(&init, argp, sizeof(init)))
764 return -EFAULT;
766 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
768 case KVM_SET_ONE_REG:
769 case KVM_GET_ONE_REG: {
770 struct kvm_one_reg reg;
772 if (unlikely(!kvm_vcpu_initialized(vcpu)))
773 return -ENOEXEC;
775 if (copy_from_user(&reg, argp, sizeof(reg)))
776 return -EFAULT;
777 if (ioctl == KVM_SET_ONE_REG)
778 return kvm_arm_set_reg(vcpu, &reg);
779 else
780 return kvm_arm_get_reg(vcpu, &reg);
782 case KVM_GET_REG_LIST: {
783 struct kvm_reg_list __user *user_list = argp;
784 struct kvm_reg_list reg_list;
785 unsigned n;
787 if (unlikely(!kvm_vcpu_initialized(vcpu)))
788 return -ENOEXEC;
790 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
791 return -EFAULT;
792 n = reg_list.n;
793 reg_list.n = kvm_arm_num_regs(vcpu);
794 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
795 return -EFAULT;
796 if (n < reg_list.n)
797 return -E2BIG;
798 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
800 default:
801 return -EINVAL;
806 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
807 * @kvm: kvm instance
808 * @log: slot id and address to which we copy the log
810 * Steps 1-4 below provide general overview of dirty page logging. See
811 * kvm_get_dirty_log_protect() function description for additional details.
813 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
814 * always flush the TLB (step 4) even if previous step failed and the dirty
815 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
816 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
817 * writes will be marked dirty for next log read.
819 * 1. Take a snapshot of the bit and clear it if needed.
820 * 2. Write protect the corresponding page.
821 * 3. Copy the snapshot to the userspace.
822 * 4. Flush TLB's if needed.
824 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
826 bool is_dirty = false;
827 int r;
829 mutex_lock(&kvm->slots_lock);
831 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
833 if (is_dirty)
834 kvm_flush_remote_tlbs(kvm);
836 mutex_unlock(&kvm->slots_lock);
837 return r;
840 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
841 struct kvm_arm_device_addr *dev_addr)
843 unsigned long dev_id, type;
845 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
846 KVM_ARM_DEVICE_ID_SHIFT;
847 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
848 KVM_ARM_DEVICE_TYPE_SHIFT;
850 switch (dev_id) {
851 case KVM_ARM_DEVICE_VGIC_V2:
852 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
853 default:
854 return -ENODEV;
858 long kvm_arch_vm_ioctl(struct file *filp,
859 unsigned int ioctl, unsigned long arg)
861 struct kvm *kvm = filp->private_data;
862 void __user *argp = (void __user *)arg;
864 switch (ioctl) {
865 case KVM_CREATE_IRQCHIP: {
866 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
868 case KVM_ARM_SET_DEVICE_ADDR: {
869 struct kvm_arm_device_addr dev_addr;
871 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
872 return -EFAULT;
873 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
875 case KVM_ARM_PREFERRED_TARGET: {
876 int err;
877 struct kvm_vcpu_init init;
879 err = kvm_vcpu_preferred_target(&init);
880 if (err)
881 return err;
883 if (copy_to_user(argp, &init, sizeof(init)))
884 return -EFAULT;
886 return 0;
888 default:
889 return -EINVAL;
893 static void cpu_init_hyp_mode(void *dummy)
895 phys_addr_t boot_pgd_ptr;
896 phys_addr_t pgd_ptr;
897 unsigned long hyp_stack_ptr;
898 unsigned long stack_page;
899 unsigned long vector_ptr;
901 /* Switch from the HYP stub to our own HYP init vector */
902 __hyp_set_vectors(kvm_get_idmap_vector());
904 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
905 pgd_ptr = kvm_mmu_get_httbr();
906 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
907 hyp_stack_ptr = stack_page + PAGE_SIZE;
908 vector_ptr = (unsigned long)__kvm_hyp_vector;
910 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
913 static int hyp_init_cpu_notify(struct notifier_block *self,
914 unsigned long action, void *cpu)
916 switch (action) {
917 case CPU_STARTING:
918 case CPU_STARTING_FROZEN:
919 if (__hyp_get_vectors() == hyp_default_vectors)
920 cpu_init_hyp_mode(NULL);
921 break;
924 return NOTIFY_OK;
927 static struct notifier_block hyp_init_cpu_nb = {
928 .notifier_call = hyp_init_cpu_notify,
931 #ifdef CONFIG_CPU_PM
932 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
933 unsigned long cmd,
934 void *v)
936 if (cmd == CPU_PM_EXIT &&
937 __hyp_get_vectors() == hyp_default_vectors) {
938 cpu_init_hyp_mode(NULL);
939 return NOTIFY_OK;
942 return NOTIFY_DONE;
945 static struct notifier_block hyp_init_cpu_pm_nb = {
946 .notifier_call = hyp_init_cpu_pm_notifier,
949 static void __init hyp_cpu_pm_init(void)
951 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
953 #else
954 static inline void hyp_cpu_pm_init(void)
957 #endif
960 * Inits Hyp-mode on all online CPUs
962 static int init_hyp_mode(void)
964 int cpu;
965 int err = 0;
968 * Allocate Hyp PGD and setup Hyp identity mapping
970 err = kvm_mmu_init();
971 if (err)
972 goto out_err;
975 * It is probably enough to obtain the default on one
976 * CPU. It's unlikely to be different on the others.
978 hyp_default_vectors = __hyp_get_vectors();
981 * Allocate stack pages for Hypervisor-mode
983 for_each_possible_cpu(cpu) {
984 unsigned long stack_page;
986 stack_page = __get_free_page(GFP_KERNEL);
987 if (!stack_page) {
988 err = -ENOMEM;
989 goto out_free_stack_pages;
992 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
996 * Map the Hyp-code called directly from the host
998 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
999 if (err) {
1000 kvm_err("Cannot map world-switch code\n");
1001 goto out_free_mappings;
1005 * Map the Hyp stack pages
1007 for_each_possible_cpu(cpu) {
1008 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1009 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011 if (err) {
1012 kvm_err("Cannot map hyp stack\n");
1013 goto out_free_mappings;
1018 * Map the host CPU structures
1020 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1021 if (!kvm_host_cpu_state) {
1022 err = -ENOMEM;
1023 kvm_err("Cannot allocate host CPU state\n");
1024 goto out_free_mappings;
1027 for_each_possible_cpu(cpu) {
1028 kvm_cpu_context_t *cpu_ctxt;
1030 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1031 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033 if (err) {
1034 kvm_err("Cannot map host CPU state: %d\n", err);
1035 goto out_free_context;
1040 * Execute the init code on each CPU.
1042 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1045 * Init HYP view of VGIC
1047 err = kvm_vgic_hyp_init();
1048 if (err)
1049 goto out_free_context;
1052 * Init HYP architected timer support
1054 err = kvm_timer_hyp_init();
1055 if (err)
1056 goto out_free_mappings;
1058 #ifndef CONFIG_HOTPLUG_CPU
1059 free_boot_hyp_pgd();
1060 #endif
1062 kvm_perf_init();
1064 kvm_info("Hyp mode initialized successfully\n");
1066 return 0;
1067 out_free_context:
1068 free_percpu(kvm_host_cpu_state);
1069 out_free_mappings:
1070 free_hyp_pgds();
1071 out_free_stack_pages:
1072 for_each_possible_cpu(cpu)
1073 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1074 out_err:
1075 kvm_err("error initializing Hyp mode: %d\n", err);
1076 return err;
1079 static void check_kvm_target_cpu(void *ret)
1081 *(int *)ret = kvm_target_cpu();
1084 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086 struct kvm_vcpu *vcpu;
1087 int i;
1089 mpidr &= MPIDR_HWID_BITMASK;
1090 kvm_for_each_vcpu(i, vcpu, kvm) {
1091 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1092 return vcpu;
1094 return NULL;
1098 * Initialize Hyp-mode and memory mappings on all CPUs.
1100 int kvm_arch_init(void *opaque)
1102 int err;
1103 int ret, cpu;
1105 if (!is_hyp_mode_available()) {
1106 kvm_err("HYP mode not available\n");
1107 return -ENODEV;
1110 for_each_online_cpu(cpu) {
1111 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1112 if (ret < 0) {
1113 kvm_err("Error, CPU %d not supported!\n", cpu);
1114 return -ENODEV;
1118 cpu_notifier_register_begin();
1120 err = init_hyp_mode();
1121 if (err)
1122 goto out_err;
1124 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1125 if (err) {
1126 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1127 goto out_err;
1130 cpu_notifier_register_done();
1132 hyp_cpu_pm_init();
1134 kvm_coproc_table_init();
1135 return 0;
1136 out_err:
1137 cpu_notifier_register_done();
1138 return err;
1141 /* NOP: Compiling as a module not supported */
1142 void kvm_arch_exit(void)
1144 kvm_perf_teardown();
1147 static int arm_init(void)
1149 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1150 return rc;
1153 module_init(arm_init);