2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
45 #include <asm/cpu-type.h>
48 #include <asm/fpu_emulator.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
67 extern void check_wait(void);
68 extern asmlinkage
void rollback_handle_int(void);
69 extern asmlinkage
void handle_int(void);
70 extern u32 handle_tlbl
[];
71 extern u32 handle_tlbs
[];
72 extern u32 handle_tlbm
[];
73 extern asmlinkage
void handle_adel(void);
74 extern asmlinkage
void handle_ades(void);
75 extern asmlinkage
void handle_ibe(void);
76 extern asmlinkage
void handle_dbe(void);
77 extern asmlinkage
void handle_sys(void);
78 extern asmlinkage
void handle_bp(void);
79 extern asmlinkage
void handle_ri(void);
80 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage
void handle_ri_rdhwr(void);
82 extern asmlinkage
void handle_cpu(void);
83 extern asmlinkage
void handle_ov(void);
84 extern asmlinkage
void handle_tr(void);
85 extern asmlinkage
void handle_msa_fpe(void);
86 extern asmlinkage
void handle_fpe(void);
87 extern asmlinkage
void handle_ftlb(void);
88 extern asmlinkage
void handle_msa(void);
89 extern asmlinkage
void handle_mdmx(void);
90 extern asmlinkage
void handle_watch(void);
91 extern asmlinkage
void handle_mt(void);
92 extern asmlinkage
void handle_dsp(void);
93 extern asmlinkage
void handle_mcheck(void);
94 extern asmlinkage
void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
97 void (*board_be_init
)(void);
98 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
99 void (*board_nmi_handler_setup
)(void);
100 void (*board_ejtag_handler_setup
)(void);
101 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
102 void (*board_ebase_setup
)(void);
103 void(*board_cache_error_setup
)(void);
105 static void show_raw_backtrace(unsigned long reg29
)
107 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
110 printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
114 while (!kstack_end(sp
)) {
115 unsigned long __user
*p
=
116 (unsigned long __user
*)(unsigned long)sp
++;
117 if (__get_user(addr
, p
)) {
118 printk(" (Bad stack address)");
121 if (__kernel_text_address(addr
))
127 #ifdef CONFIG_KALLSYMS
129 static int __init
set_raw_show_trace(char *str
)
134 __setup("raw_show_trace", set_raw_show_trace
);
137 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
139 unsigned long sp
= regs
->regs
[29];
140 unsigned long ra
= regs
->regs
[31];
141 unsigned long pc
= regs
->cp0_epc
;
146 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
147 show_raw_backtrace(sp
);
150 printk("Call Trace:\n");
153 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
162 static void show_stacktrace(struct task_struct
*task
,
163 const struct pt_regs
*regs
)
165 const int field
= 2 * sizeof(unsigned long);
168 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
172 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
173 if (i
&& ((i
% (64 / field
)) == 0))
180 if (__get_user(stackdata
, sp
++)) {
181 printk(" (Bad stack address)");
185 printk(" %0*lx", field
, stackdata
);
189 show_backtrace(task
, regs
);
192 void show_stack(struct task_struct
*task
, unsigned long *sp
)
195 mm_segment_t old_fs
= get_fs();
197 regs
.regs
[29] = (unsigned long)sp
;
201 if (task
&& task
!= current
) {
202 regs
.regs
[29] = task
->thread
.reg29
;
204 regs
.cp0_epc
= task
->thread
.reg31
;
205 #ifdef CONFIG_KGDB_KDB
206 } else if (atomic_read(&kgdb_active
) != -1 &&
208 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
209 #endif /* CONFIG_KGDB_KDB */
211 prepare_frametrace(®s
);
215 * show_stack() deals exclusively with kernel mode, so be sure to access
216 * the stack in the kernel (not user) address space.
219 show_stacktrace(task
, ®s
);
223 static void show_code(unsigned int __user
*pc
)
226 unsigned short __user
*pc16
= NULL
;
230 if ((unsigned long)pc
& 1)
231 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
232 for(i
= -3 ; i
< 6 ; i
++) {
234 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
235 printk(" (Bad address in epc)\n");
238 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
242 static void __show_regs(const struct pt_regs
*regs
)
244 const int field
= 2 * sizeof(unsigned long);
245 unsigned int cause
= regs
->cp0_cause
;
248 show_regs_print_info(KERN_DEFAULT
);
251 * Saved main processor registers
253 for (i
= 0; i
< 32; ) {
257 printk(" %0*lx", field
, 0UL);
258 else if (i
== 26 || i
== 27)
259 printk(" %*s", field
, "");
261 printk(" %0*lx", field
, regs
->regs
[i
]);
268 #ifdef CONFIG_CPU_HAS_SMARTMIPS
269 printk("Acx : %0*lx\n", field
, regs
->acx
);
271 printk("Hi : %0*lx\n", field
, regs
->hi
);
272 printk("Lo : %0*lx\n", field
, regs
->lo
);
275 * Saved cp0 registers
277 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
278 (void *) regs
->cp0_epc
);
279 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
280 (void *) regs
->regs
[31]);
282 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
285 if (regs
->cp0_status
& ST0_KUO
)
287 if (regs
->cp0_status
& ST0_IEO
)
289 if (regs
->cp0_status
& ST0_KUP
)
291 if (regs
->cp0_status
& ST0_IEP
)
293 if (regs
->cp0_status
& ST0_KUC
)
295 if (regs
->cp0_status
& ST0_IEC
)
297 } else if (cpu_has_4kex
) {
298 if (regs
->cp0_status
& ST0_KX
)
300 if (regs
->cp0_status
& ST0_SX
)
302 if (regs
->cp0_status
& ST0_UX
)
304 switch (regs
->cp0_status
& ST0_KSU
) {
309 printk("SUPERVISOR ");
318 if (regs
->cp0_status
& ST0_ERL
)
320 if (regs
->cp0_status
& ST0_EXL
)
322 if (regs
->cp0_status
& ST0_IE
)
327 printk("Cause : %08x\n", cause
);
329 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
330 if (1 <= cause
&& cause
<= 5)
331 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
333 printk("PrId : %08x (%s)\n", read_c0_prid(),
338 * FIXME: really the generic show_regs should take a const pointer argument.
340 void show_regs(struct pt_regs
*regs
)
342 __show_regs((struct pt_regs
*)regs
);
345 void show_registers(struct pt_regs
*regs
)
347 const int field
= 2 * sizeof(unsigned long);
348 mm_segment_t old_fs
= get_fs();
352 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
353 current
->comm
, current
->pid
, current_thread_info(), current
,
354 field
, current_thread_info()->tp_value
);
355 if (cpu_has_userlocal
) {
358 tls
= read_c0_userlocal();
359 if (tls
!= current_thread_info()->tp_value
)
360 printk("*HwTLS: %0*lx\n", field
, tls
);
363 if (!user_mode(regs
))
364 /* Necessary for getting the correct stack content */
366 show_stacktrace(current
, regs
);
367 show_code((unsigned int __user
*) regs
->cp0_epc
);
372 static int regs_to_trapnr(struct pt_regs
*regs
)
374 return (regs
->cp0_cause
>> 2) & 0x1f;
377 static DEFINE_RAW_SPINLOCK(die_lock
);
379 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
381 static int die_counter
;
386 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
),
387 SIGSEGV
) == NOTIFY_STOP
)
391 raw_spin_lock_irq(&die_lock
);
394 printk("%s[#%d]:\n", str
, ++die_counter
);
395 show_registers(regs
);
396 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
397 raw_spin_unlock_irq(&die_lock
);
402 panic("Fatal exception in interrupt");
405 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds");
407 panic("Fatal exception");
410 if (regs
&& kexec_should_crash(current
))
416 extern struct exception_table_entry __start___dbe_table
[];
417 extern struct exception_table_entry __stop___dbe_table
[];
420 " .section __dbe_table, \"a\"\n"
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
426 const struct exception_table_entry
*e
;
428 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
430 e
= search_module_dbetables(addr
);
434 asmlinkage
void do_be(struct pt_regs
*regs
)
436 const int field
= 2 * sizeof(unsigned long);
437 const struct exception_table_entry
*fixup
= NULL
;
438 int data
= regs
->cp0_cause
& 4;
439 int action
= MIPS_BE_FATAL
;
440 enum ctx_state prev_state
;
442 prev_state
= exception_enter();
443 /* XXX For now. Fixme, this searches the wrong table ... */
444 if (data
&& !user_mode(regs
))
445 fixup
= search_dbe_tables(exception_epc(regs
));
448 action
= MIPS_BE_FIXUP
;
450 if (board_be_handler
)
451 action
= board_be_handler(regs
, fixup
!= NULL
);
454 case MIPS_BE_DISCARD
:
458 regs
->cp0_epc
= fixup
->nextinsn
;
467 * Assume it would be too dangerous to continue ...
469 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
470 data
? "Data" : "Instruction",
471 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
472 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
),
473 SIGBUS
) == NOTIFY_STOP
)
476 die_if_kernel("Oops", regs
);
477 force_sig(SIGBUS
, current
);
480 exception_exit(prev_state
);
484 * ll/sc, rdhwr, sync emulation
487 #define OPCODE 0xfc000000
488 #define BASE 0x03e00000
489 #define RT 0x001f0000
490 #define OFFSET 0x0000ffff
491 #define LL 0xc0000000
492 #define SC 0xe0000000
493 #define SPEC0 0x00000000
494 #define SPEC3 0x7c000000
495 #define RD 0x0000f800
496 #define FUNC 0x0000003f
497 #define SYNC 0x0000000f
498 #define RDHWR 0x0000003b
500 /* microMIPS definitions */
501 #define MM_POOL32A_FUNC 0xfc00ffff
502 #define MM_RDHWR 0x00006b3c
503 #define MM_RS 0x001f0000
504 #define MM_RT 0x03e00000
507 * The ll_bit is cleared by r*_switch.S
511 struct task_struct
*ll_task
;
513 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
515 unsigned long value
, __user
*vaddr
;
519 * analyse the ll instruction that just caused a ri exception
520 * and put the referenced address to addr.
523 /* sign extend offset */
524 offset
= opcode
& OFFSET
;
528 vaddr
= (unsigned long __user
*)
529 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
531 if ((unsigned long)vaddr
& 3)
533 if (get_user(value
, vaddr
))
538 if (ll_task
== NULL
|| ll_task
== current
) {
547 regs
->regs
[(opcode
& RT
) >> 16] = value
;
552 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
554 unsigned long __user
*vaddr
;
559 * analyse the sc instruction that just caused a ri exception
560 * and put the referenced address to addr.
563 /* sign extend offset */
564 offset
= opcode
& OFFSET
;
568 vaddr
= (unsigned long __user
*)
569 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
570 reg
= (opcode
& RT
) >> 16;
572 if ((unsigned long)vaddr
& 3)
577 if (ll_bit
== 0 || ll_task
!= current
) {
585 if (put_user(regs
->regs
[reg
], vaddr
))
594 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
595 * opcodes are supposed to result in coprocessor unusable exceptions if
596 * executed on ll/sc-less processors. That's the theory. In practice a
597 * few processors such as NEC's VR4100 throw reserved instruction exceptions
598 * instead, so we're doing the emulation thing in both exception handlers.
600 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
602 if ((opcode
& OPCODE
) == LL
) {
603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
605 return simulate_ll(regs
, opcode
);
607 if ((opcode
& OPCODE
) == SC
) {
608 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
610 return simulate_sc(regs
, opcode
);
613 return -1; /* Must be something else ... */
617 * Simulate trapping 'rdhwr' instructions to provide user accessible
618 * registers not implemented in hardware.
620 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
622 struct thread_info
*ti
= task_thread_info(current
);
624 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
627 case 0: /* CPU number */
628 regs
->regs
[rt
] = smp_processor_id();
630 case 1: /* SYNCI length */
631 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
632 current_cpu_data
.icache
.linesz
);
634 case 2: /* Read count register */
635 regs
->regs
[rt
] = read_c0_count();
637 case 3: /* Count register resolution */
638 switch (current_cpu_type()) {
648 regs
->regs
[rt
] = ti
->tp_value
;
655 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
657 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
658 int rd
= (opcode
& RD
) >> 11;
659 int rt
= (opcode
& RT
) >> 16;
661 simulate_rdhwr(regs
, rd
, rt
);
669 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned short opcode
)
671 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
672 int rd
= (opcode
& MM_RS
) >> 16;
673 int rt
= (opcode
& MM_RT
) >> 21;
674 simulate_rdhwr(regs
, rd
, rt
);
682 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
684 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
685 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
690 return -1; /* Must be something else ... */
693 asmlinkage
void do_ov(struct pt_regs
*regs
)
695 enum ctx_state prev_state
;
698 .si_code
= FPE_INTOVF
,
699 .si_addr
= (void __user
*)regs
->cp0_epc
,
702 prev_state
= exception_enter();
703 die_if_kernel("Integer overflow", regs
);
705 force_sig_info(SIGFPE
, &info
, current
);
706 exception_exit(prev_state
);
709 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
711 struct siginfo si
= { 0 };
718 si
.si_addr
= fault_addr
;
721 * Inexact can happen together with Overflow or Underflow.
722 * Respect the mask to deliver the correct exception.
724 fcr31
&= (fcr31
& FPU_CSR_ALL_E
) <<
725 (ffs(FPU_CSR_ALL_X
) - ffs(FPU_CSR_ALL_E
));
726 if (fcr31
& FPU_CSR_INV_X
)
727 si
.si_code
= FPE_FLTINV
;
728 else if (fcr31
& FPU_CSR_DIV_X
)
729 si
.si_code
= FPE_FLTDIV
;
730 else if (fcr31
& FPU_CSR_OVF_X
)
731 si
.si_code
= FPE_FLTOVF
;
732 else if (fcr31
& FPU_CSR_UDF_X
)
733 si
.si_code
= FPE_FLTUND
;
734 else if (fcr31
& FPU_CSR_INE_X
)
735 si
.si_code
= FPE_FLTRES
;
737 si
.si_code
= __SI_FAULT
;
738 force_sig_info(sig
, &si
, current
);
742 si
.si_addr
= fault_addr
;
744 si
.si_code
= BUS_ADRERR
;
745 force_sig_info(sig
, &si
, current
);
749 si
.si_addr
= fault_addr
;
751 down_read(¤t
->mm
->mmap_sem
);
752 if (find_vma(current
->mm
, (unsigned long)fault_addr
))
753 si
.si_code
= SEGV_ACCERR
;
755 si
.si_code
= SEGV_MAPERR
;
756 up_read(¤t
->mm
->mmap_sem
);
757 force_sig_info(sig
, &si
, current
);
761 force_sig(sig
, current
);
766 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
767 unsigned long old_epc
, unsigned long old_ra
)
769 union mips_instruction inst
= { .word
= opcode
};
770 void __user
*fault_addr
;
774 /* If it's obviously not an FP instruction, skip it */
775 switch (inst
.i_format
.opcode
) {
789 * do_ri skipped over the instruction via compute_return_epc, undo
790 * that for the FPU emulator.
792 regs
->cp0_epc
= old_epc
;
793 regs
->regs
[31] = old_ra
;
795 /* Save the FP context to struct thread_struct */
798 /* Run the emulator */
799 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
801 fcr31
= current
->thread
.fpu
.fcr31
;
804 * We can't allow the emulated instruction to leave any of
805 * the cause bits set in $fcr31.
807 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
809 /* Restore the hardware register state */
812 /* Send a signal if required. */
813 process_fpemu_return(sig
, fault_addr
, fcr31
);
819 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
821 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
823 enum ctx_state prev_state
;
824 void __user
*fault_addr
;
827 prev_state
= exception_enter();
828 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
),
829 SIGFPE
) == NOTIFY_STOP
)
832 /* Clear FCSR.Cause before enabling interrupts */
833 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~FPU_CSR_ALL_X
);
836 die_if_kernel("FP exception in kernel code", regs
);
838 if (fcr31
& FPU_CSR_UNI_X
) {
840 * Unimplemented operation exception. If we've got the full
841 * software emulator on-board, let's use it...
843 * Force FPU to dump state into task/thread context. We're
844 * moving a lot of data here for what is probably a single
845 * instruction, but the alternative is to pre-decode the FP
846 * register operands before invoking the emulator, which seems
847 * a bit extreme for what should be an infrequent event.
849 /* Ensure 'resume' not overwrite saved fp context again. */
852 /* Run the emulator */
853 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
855 fcr31
= current
->thread
.fpu
.fcr31
;
858 * We can't allow the emulated instruction to leave any of
859 * the cause bits set in $fcr31.
861 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
863 /* Restore the hardware register state */
864 own_fpu(1); /* Using the FPU again. */
867 fault_addr
= (void __user
*) regs
->cp0_epc
;
870 /* Send a signal if required. */
871 process_fpemu_return(sig
, fault_addr
, fcr31
);
874 exception_exit(prev_state
);
877 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
880 siginfo_t info
= { 0 };
883 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
884 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
886 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
888 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
),
889 SIGTRAP
) == NOTIFY_STOP
)
893 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
894 * insns, even for trap and break codes that indicate arithmetic
895 * failures. Weird ...
896 * But should we continue the brokenness??? --macro
901 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
902 die_if_kernel(b
, regs
);
903 if (code
== BRK_DIVZERO
)
904 info
.si_code
= FPE_INTDIV
;
906 info
.si_code
= FPE_INTOVF
;
907 info
.si_signo
= SIGFPE
;
908 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
909 force_sig_info(SIGFPE
, &info
, current
);
912 die_if_kernel("Kernel bug detected", regs
);
913 force_sig(SIGTRAP
, current
);
917 * This breakpoint code is used by the FPU emulator to retake
918 * control of the CPU after executing the instruction from the
919 * delay slot of an emulated branch.
921 * Terminate if exception was recognized as a delay slot return
922 * otherwise handle as normal.
924 if (do_dsemulret(regs
))
927 die_if_kernel("Math emu break/trap", regs
);
928 force_sig(SIGTRAP
, current
);
931 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
932 die_if_kernel(b
, regs
);
933 force_sig(SIGTRAP
, current
);
937 asmlinkage
void do_bp(struct pt_regs
*regs
)
939 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
940 unsigned int opcode
, bcode
;
941 enum ctx_state prev_state
;
945 if (!user_mode(regs
))
948 prev_state
= exception_enter();
949 if (get_isa16_mode(regs
->cp0_epc
)) {
952 if (__get_user(instr
[0], (u16 __user
*)epc
))
955 if (!cpu_has_mmips
) {
957 bcode
= (instr
[0] >> 5) & 0x3f;
958 } else if (mm_insn_16bit(instr
[0])) {
959 /* 16-bit microMIPS BREAK */
960 bcode
= instr
[0] & 0xf;
962 /* 32-bit microMIPS BREAK */
963 if (__get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
965 opcode
= (instr
[0] << 16) | instr
[1];
966 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
969 if (__get_user(opcode
, (unsigned int __user
*)epc
))
971 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
975 * There is the ancient bug in the MIPS assemblers that the break
976 * code starts left to bit 16 instead to bit 6 in the opcode.
977 * Gas is bug-compatible, but not always, grrr...
978 * We handle both cases with a simple heuristics. --macro
980 if (bcode
>= (1 << 10))
981 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
984 * notify the kprobe handlers, if instruction is likely to
989 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
990 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
994 case BRK_KPROBE_SSTEPBP
:
995 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
996 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
1004 do_trap_or_bp(regs
, bcode
, "Break");
1008 exception_exit(prev_state
);
1012 force_sig(SIGSEGV
, current
);
1016 asmlinkage
void do_tr(struct pt_regs
*regs
)
1018 u32 opcode
, tcode
= 0;
1019 enum ctx_state prev_state
;
1022 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1025 if (!user_mode(regs
))
1028 prev_state
= exception_enter();
1029 if (get_isa16_mode(regs
->cp0_epc
)) {
1030 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
1031 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1033 opcode
= (instr
[0] << 16) | instr
[1];
1034 /* Immediate versions don't provide a code. */
1035 if (!(opcode
& OPCODE
))
1036 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1038 if (__get_user(opcode
, (u32 __user
*)epc
))
1040 /* Immediate versions don't provide a code. */
1041 if (!(opcode
& OPCODE
))
1042 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1045 do_trap_or_bp(regs
, tcode
, "Trap");
1049 exception_exit(prev_state
);
1053 force_sig(SIGSEGV
, current
);
1057 asmlinkage
void do_ri(struct pt_regs
*regs
)
1059 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1060 unsigned long old_epc
= regs
->cp0_epc
;
1061 unsigned long old31
= regs
->regs
[31];
1062 enum ctx_state prev_state
;
1063 unsigned int opcode
= 0;
1067 * Avoid any kernel code. Just emulate the R2 instruction
1068 * as quickly as possible.
1070 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1071 likely(user_mode(regs
)) &&
1072 likely(get_user(opcode
, epc
) >= 0)) {
1073 unsigned long fcr31
= 0;
1075 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1079 task_thread_info(current
)->r2_emul_return
= 1;
1084 process_fpemu_return(status
,
1085 ¤t
->thread
.cp0_baduaddr
,
1087 task_thread_info(current
)->r2_emul_return
= 1;
1094 prev_state
= exception_enter();
1096 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
),
1097 SIGILL
) == NOTIFY_STOP
)
1100 die_if_kernel("Reserved instruction in kernel code", regs
);
1102 if (unlikely(compute_return_epc(regs
) < 0))
1105 if (get_isa16_mode(regs
->cp0_epc
)) {
1106 unsigned short mmop
[2] = { 0 };
1108 if (unlikely(get_user(mmop
[0], epc
) < 0))
1110 if (unlikely(get_user(mmop
[1], epc
) < 0))
1112 opcode
= (mmop
[0] << 16) | mmop
[1];
1115 status
= simulate_rdhwr_mm(regs
, opcode
);
1117 if (unlikely(get_user(opcode
, epc
) < 0))
1120 if (!cpu_has_llsc
&& status
< 0)
1121 status
= simulate_llsc(regs
, opcode
);
1124 status
= simulate_rdhwr_normal(regs
, opcode
);
1127 status
= simulate_sync(regs
, opcode
);
1130 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1136 if (unlikely(status
> 0)) {
1137 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1138 regs
->regs
[31] = old31
;
1139 force_sig(status
, current
);
1143 exception_exit(prev_state
);
1147 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1148 * emulated more than some threshold number of instructions, force migration to
1149 * a "CPU" that has FP support.
1151 static void mt_ase_fp_affinity(void)
1153 #ifdef CONFIG_MIPS_MT_FPAFF
1154 if (mt_fpemul_threshold
> 0 &&
1155 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1157 * If there's no FPU present, or if the application has already
1158 * restricted the allowed set to exclude any CPUs with FPUs,
1159 * we'll skip the procedure.
1161 if (cpumask_intersects(¤t
->cpus_allowed
, &mt_fpu_cpumask
)) {
1164 current
->thread
.user_cpus_allowed
1165 = current
->cpus_allowed
;
1166 cpumask_and(&tmask
, ¤t
->cpus_allowed
,
1168 set_cpus_allowed_ptr(current
, &tmask
);
1169 set_thread_flag(TIF_FPUBOUND
);
1172 #endif /* CONFIG_MIPS_MT_FPAFF */
1176 * No lock; only written during early bootup by CPU 0.
1178 static RAW_NOTIFIER_HEAD(cu2_chain
);
1180 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1182 return raw_notifier_chain_register(&cu2_chain
, nb
);
1185 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1187 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1190 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1193 struct pt_regs
*regs
= data
;
1195 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1196 "instruction", regs
);
1197 force_sig(SIGILL
, current
);
1202 static int wait_on_fp_mode_switch(atomic_t
*p
)
1205 * The FP mode for this task is currently being switched. That may
1206 * involve modifications to the format of this tasks FP context which
1207 * make it unsafe to proceed with execution for the moment. Instead,
1208 * schedule some other task.
1214 static int enable_restore_fp_context(int msa
)
1216 int err
, was_fpu_owner
, prior_msa
;
1219 * If an FP mode switch is currently underway, wait for it to
1220 * complete before proceeding.
1222 wait_on_atomic_t(¤t
->mm
->context
.fp_mode_switching
,
1223 wait_on_fp_mode_switch
, TASK_KILLABLE
);
1226 /* First time FP context user. */
1232 set_thread_flag(TIF_USEDMSA
);
1233 set_thread_flag(TIF_MSA_CTX_LIVE
);
1242 * This task has formerly used the FP context.
1244 * If this thread has no live MSA vector context then we can simply
1245 * restore the scalar FP context. If it has live MSA vector context
1246 * (that is, it has or may have used MSA since last performing a
1247 * function call) then we'll need to restore the vector context. This
1248 * applies even if we're currently only executing a scalar FP
1249 * instruction. This is because if we were to later execute an MSA
1250 * instruction then we'd either have to:
1252 * - Restore the vector context & clobber any registers modified by
1253 * scalar FP instructions between now & then.
1257 * - Not restore the vector context & lose the most significant bits
1258 * of all vector registers.
1260 * Neither of those options is acceptable. We cannot restore the least
1261 * significant bits of the registers now & only restore the most
1262 * significant bits later because the most significant bits of any
1263 * vector registers whose aliased FP register is modified now will have
1264 * been zeroed. We'd have no way to know that when restoring the vector
1265 * context & thus may load an outdated value for the most significant
1266 * bits of a vector register.
1268 if (!msa
&& !thread_msa_context_live())
1272 * This task is using or has previously used MSA. Thus we require
1273 * that Status.FR == 1.
1276 was_fpu_owner
= is_fpu_owner();
1277 err
= own_fpu_inatomic(0);
1282 write_msa_csr(current
->thread
.fpu
.msacsr
);
1283 set_thread_flag(TIF_USEDMSA
);
1286 * If this is the first time that the task is using MSA and it has
1287 * previously used scalar FP in this time slice then we already nave
1288 * FP context which we shouldn't clobber. We do however need to clear
1289 * the upper 64b of each vector register so that this task has no
1290 * opportunity to see data left behind by another.
1292 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1293 if (!prior_msa
&& was_fpu_owner
) {
1301 * Restore the least significant 64b of each vector register
1302 * from the existing scalar FP context.
1304 _restore_fp(current
);
1307 * The task has not formerly used MSA, so clear the upper 64b
1308 * of each vector register such that it cannot see data left
1309 * behind by another task.
1313 /* We need to restore the vector context. */
1314 restore_msa(current
);
1316 /* Restore the scalar FP control & status register */
1318 write_32bit_cp1_register(CP1_STATUS
,
1319 current
->thread
.fpu
.fcr31
);
1328 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1330 enum ctx_state prev_state
;
1331 unsigned int __user
*epc
;
1332 unsigned long old_epc
, old31
;
1333 void __user
*fault_addr
;
1334 unsigned int opcode
;
1335 unsigned long fcr31
;
1338 unsigned long __maybe_unused flags
;
1341 prev_state
= exception_enter();
1342 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1345 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1349 epc
= (unsigned int __user
*)exception_epc(regs
);
1350 old_epc
= regs
->cp0_epc
;
1351 old31
= regs
->regs
[31];
1355 if (unlikely(compute_return_epc(regs
) < 0))
1358 if (get_isa16_mode(regs
->cp0_epc
)) {
1359 unsigned short mmop
[2] = { 0 };
1361 if (unlikely(get_user(mmop
[0], epc
) < 0))
1363 if (unlikely(get_user(mmop
[1], epc
) < 0))
1365 opcode
= (mmop
[0] << 16) | mmop
[1];
1368 status
= simulate_rdhwr_mm(regs
, opcode
);
1370 if (unlikely(get_user(opcode
, epc
) < 0))
1373 if (!cpu_has_llsc
&& status
< 0)
1374 status
= simulate_llsc(regs
, opcode
);
1377 status
= simulate_rdhwr_normal(regs
, opcode
);
1383 if (unlikely(status
> 0)) {
1384 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1385 regs
->regs
[31] = old31
;
1386 force_sig(status
, current
);
1393 * The COP3 opcode space and consequently the CP0.Status.CU3
1394 * bit and the CP0.Cause.CE=3 encoding have been removed as
1395 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1396 * up the space has been reused for COP1X instructions, that
1397 * are enabled by the CP0.Status.CU1 bit and consequently
1398 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1399 * exceptions. Some FPU-less processors that implement one
1400 * of these ISAs however use this code erroneously for COP1X
1401 * instructions. Therefore we redirect this trap to the FP
1404 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1405 force_sig(SIGILL
, current
);
1411 err
= enable_restore_fp_context(0);
1413 if (raw_cpu_has_fpu
&& !err
)
1416 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1418 fcr31
= current
->thread
.fpu
.fcr31
;
1421 * We can't allow the emulated instruction to leave
1422 * any of the cause bits set in $fcr31.
1424 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
1426 /* Send a signal if required. */
1427 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1428 mt_ase_fp_affinity();
1433 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1437 exception_exit(prev_state
);
1440 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1442 enum ctx_state prev_state
;
1444 prev_state
= exception_enter();
1445 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1446 regs_to_trapnr(regs
), SIGFPE
) == NOTIFY_STOP
)
1449 /* Clear MSACSR.Cause before enabling interrupts */
1450 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1453 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1454 force_sig(SIGFPE
, current
);
1456 exception_exit(prev_state
);
1459 asmlinkage
void do_msa(struct pt_regs
*regs
)
1461 enum ctx_state prev_state
;
1464 prev_state
= exception_enter();
1466 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1467 force_sig(SIGILL
, current
);
1471 die_if_kernel("do_msa invoked from kernel context!", regs
);
1473 err
= enable_restore_fp_context(1);
1475 force_sig(SIGILL
, current
);
1477 exception_exit(prev_state
);
1480 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1482 enum ctx_state prev_state
;
1484 prev_state
= exception_enter();
1485 force_sig(SIGILL
, current
);
1486 exception_exit(prev_state
);
1490 * Called with interrupts disabled.
1492 asmlinkage
void do_watch(struct pt_regs
*regs
)
1494 enum ctx_state prev_state
;
1497 prev_state
= exception_enter();
1499 * Clear WP (bit 22) bit of cause register so we don't loop
1502 cause
= read_c0_cause();
1503 cause
&= ~(1 << 22);
1504 write_c0_cause(cause
);
1507 * If the current thread has the watch registers loaded, save
1508 * their values and send SIGTRAP. Otherwise another thread
1509 * left the registers set, clear them and continue.
1511 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1512 mips_read_watch_registers();
1514 force_sig(SIGTRAP
, current
);
1516 mips_clear_watch_registers();
1519 exception_exit(prev_state
);
1522 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1524 const int field
= 2 * sizeof(unsigned long);
1525 int multi_match
= regs
->cp0_status
& ST0_TS
;
1526 enum ctx_state prev_state
;
1527 mm_segment_t old_fs
= get_fs();
1529 prev_state
= exception_enter();
1533 pr_err("Index : %0x\n", read_c0_index());
1534 pr_err("Pagemask: %0x\n", read_c0_pagemask());
1535 pr_err("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1536 pr_err("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1537 pr_err("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1538 pr_err("Wired : %0x\n", read_c0_wired());
1539 pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1541 pr_err("PWField : %0*lx\n", field
, read_c0_pwfield());
1542 pr_err("PWSize : %0*lx\n", field
, read_c0_pwsize());
1543 pr_err("PWCtl : %0x\n", read_c0_pwctl());
1549 if (!user_mode(regs
))
1552 show_code((unsigned int __user
*) regs
->cp0_epc
);
1557 * Some chips may have other causes of machine check (e.g. SB1
1560 panic("Caught Machine Check exception - %scaused by multiple "
1561 "matching entries in the TLB.",
1562 (multi_match
) ? "" : "not ");
1565 asmlinkage
void do_mt(struct pt_regs
*regs
)
1569 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1570 >> VPECONTROL_EXCPT_SHIFT
;
1573 printk(KERN_DEBUG
"Thread Underflow\n");
1576 printk(KERN_DEBUG
"Thread Overflow\n");
1579 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1582 printk(KERN_DEBUG
"Gating Storage Exception\n");
1585 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1588 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1591 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1595 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1597 force_sig(SIGILL
, current
);
1601 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1604 panic("Unexpected DSP exception");
1606 force_sig(SIGILL
, current
);
1609 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1612 * Game over - no way to handle this if it ever occurs. Most probably
1613 * caused by a new unknown cpu type or after another deadly
1614 * hard/software error.
1617 panic("Caught reserved exception %ld - should not happen.",
1618 (regs
->cp0_cause
& 0x7f) >> 2);
1621 static int __initdata l1parity
= 1;
1622 static int __init
nol1parity(char *s
)
1627 __setup("nol1par", nol1parity
);
1628 static int __initdata l2parity
= 1;
1629 static int __init
nol2parity(char *s
)
1634 __setup("nol2par", nol2parity
);
1637 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1638 * it different ways.
1640 static inline void parity_protection_init(void)
1642 switch (current_cpu_type()) {
1648 case CPU_INTERAPTIV
:
1651 case CPU_QEMU_GENERIC
:
1653 #define ERRCTL_PE 0x80000000
1654 #define ERRCTL_L2P 0x00800000
1655 unsigned long errctl
;
1656 unsigned int l1parity_present
, l2parity_present
;
1658 errctl
= read_c0_ecc();
1659 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1661 /* probe L1 parity support */
1662 write_c0_ecc(errctl
| ERRCTL_PE
);
1663 back_to_back_c0_hazard();
1664 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1666 /* probe L2 parity support */
1667 write_c0_ecc(errctl
|ERRCTL_L2P
);
1668 back_to_back_c0_hazard();
1669 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1671 if (l1parity_present
&& l2parity_present
) {
1673 errctl
|= ERRCTL_PE
;
1674 if (l1parity
^ l2parity
)
1675 errctl
|= ERRCTL_L2P
;
1676 } else if (l1parity_present
) {
1678 errctl
|= ERRCTL_PE
;
1679 } else if (l2parity_present
) {
1681 errctl
|= ERRCTL_L2P
;
1683 /* No parity available */
1686 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1688 write_c0_ecc(errctl
);
1689 back_to_back_c0_hazard();
1690 errctl
= read_c0_ecc();
1691 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1693 if (l1parity_present
)
1694 printk(KERN_INFO
"Cache parity protection %sabled\n",
1695 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1697 if (l2parity_present
) {
1698 if (l1parity_present
&& l1parity
)
1699 errctl
^= ERRCTL_L2P
;
1700 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1701 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1709 write_c0_ecc(0x80000000);
1710 back_to_back_c0_hazard();
1711 /* Set the PE bit (bit 31) in the c0_errctl register. */
1712 printk(KERN_INFO
"Cache parity protection %sabled\n",
1713 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1717 /* Clear the DE bit (bit 16) in the c0_status register. */
1718 printk(KERN_INFO
"Enable cache parity protection for "
1719 "MIPS 20KC/25KF CPUs.\n");
1720 clear_c0_status(ST0_DE
);
1727 asmlinkage
void cache_parity_error(void)
1729 const int field
= 2 * sizeof(unsigned long);
1730 unsigned int reg_val
;
1732 /* For the moment, report the problem and hang. */
1733 printk("Cache error exception:\n");
1734 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1735 reg_val
= read_c0_cacheerr();
1736 printk("c0_cacheerr == %08x\n", reg_val
);
1738 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1739 reg_val
& (1<<30) ? "secondary" : "primary",
1740 reg_val
& (1<<31) ? "data" : "insn");
1741 if ((cpu_has_mips_r2_r6
) &&
1742 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1743 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1744 reg_val
& (1<<29) ? "ED " : "",
1745 reg_val
& (1<<28) ? "ET " : "",
1746 reg_val
& (1<<27) ? "ES " : "",
1747 reg_val
& (1<<26) ? "EE " : "",
1748 reg_val
& (1<<25) ? "EB " : "",
1749 reg_val
& (1<<24) ? "EI " : "",
1750 reg_val
& (1<<23) ? "E1 " : "",
1751 reg_val
& (1<<22) ? "E0 " : "");
1753 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1754 reg_val
& (1<<29) ? "ED " : "",
1755 reg_val
& (1<<28) ? "ET " : "",
1756 reg_val
& (1<<26) ? "EE " : "",
1757 reg_val
& (1<<25) ? "EB " : "",
1758 reg_val
& (1<<24) ? "EI " : "",
1759 reg_val
& (1<<23) ? "E1 " : "",
1760 reg_val
& (1<<22) ? "E0 " : "");
1762 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1764 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1765 if (reg_val
& (1<<22))
1766 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1768 if (reg_val
& (1<<23))
1769 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1772 panic("Can't handle the cache error!");
1775 asmlinkage
void do_ftlb(void)
1777 const int field
= 2 * sizeof(unsigned long);
1778 unsigned int reg_val
;
1780 /* For the moment, report the problem and hang. */
1781 if ((cpu_has_mips_r2_r6
) &&
1782 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1783 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1785 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1786 reg_val
= read_c0_cacheerr();
1787 pr_err("c0_cacheerr == %08x\n", reg_val
);
1789 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1790 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1792 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1793 reg_val
& (1<<30) ? "secondary" : "primary",
1794 reg_val
& (1<<31) ? "data" : "insn");
1797 pr_err("FTLB error exception\n");
1799 /* Just print the cacheerr bits for now */
1800 cache_parity_error();
1804 * SDBBP EJTAG debug exception handler.
1805 * We skip the instruction and return to the next instruction.
1807 void ejtag_exception_handler(struct pt_regs
*regs
)
1809 const int field
= 2 * sizeof(unsigned long);
1810 unsigned long depc
, old_epc
, old_ra
;
1813 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1814 depc
= read_c0_depc();
1815 debug
= read_c0_debug();
1816 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1817 if (debug
& 0x80000000) {
1819 * In branch delay slot.
1820 * We cheat a little bit here and use EPC to calculate the
1821 * debug return address (DEPC). EPC is restored after the
1824 old_epc
= regs
->cp0_epc
;
1825 old_ra
= regs
->regs
[31];
1826 regs
->cp0_epc
= depc
;
1827 compute_return_epc(regs
);
1828 depc
= regs
->cp0_epc
;
1829 regs
->cp0_epc
= old_epc
;
1830 regs
->regs
[31] = old_ra
;
1833 write_c0_depc(depc
);
1836 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1837 write_c0_debug(debug
| 0x100);
1842 * NMI exception handler.
1843 * No lock; only written during early bootup by CPU 0.
1845 static RAW_NOTIFIER_HEAD(nmi_chain
);
1847 int register_nmi_notifier(struct notifier_block
*nb
)
1849 return raw_notifier_chain_register(&nmi_chain
, nb
);
1852 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1856 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1858 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1859 smp_processor_id(), regs
->cp0_epc
);
1860 regs
->cp0_epc
= read_c0_errorepc();
1864 #define VECTORSPACING 0x100 /* for EI/VI mode */
1866 unsigned long ebase
;
1867 unsigned long exception_handlers
[32];
1868 unsigned long vi_handlers
[64];
1870 void __init
*set_except_vector(int n
, void *addr
)
1872 unsigned long handler
= (unsigned long) addr
;
1873 unsigned long old_handler
;
1875 #ifdef CONFIG_CPU_MICROMIPS
1877 * Only the TLB handlers are cache aligned with an even
1878 * address. All other handlers are on an odd address and
1879 * require no modification. Otherwise, MIPS32 mode will
1880 * be entered when handling any TLB exceptions. That
1881 * would be bad...since we must stay in microMIPS mode.
1883 if (!(handler
& 0x1))
1886 old_handler
= xchg(&exception_handlers
[n
], handler
);
1888 if (n
== 0 && cpu_has_divec
) {
1889 #ifdef CONFIG_CPU_MICROMIPS
1890 unsigned long jump_mask
= ~((1 << 27) - 1);
1892 unsigned long jump_mask
= ~((1 << 28) - 1);
1894 u32
*buf
= (u32
*)(ebase
+ 0x200);
1895 unsigned int k0
= 26;
1896 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1897 uasm_i_j(&buf
, handler
& ~jump_mask
);
1900 UASM_i_LA(&buf
, k0
, handler
);
1901 uasm_i_jr(&buf
, k0
);
1904 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1906 return (void *)old_handler
;
1909 static void do_default_vi(void)
1911 show_regs(get_irq_regs());
1912 panic("Caught unexpected vectored interrupt.");
1915 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1917 unsigned long handler
;
1918 unsigned long old_handler
= vi_handlers
[n
];
1919 int srssets
= current_cpu_data
.srsets
;
1923 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1926 handler
= (unsigned long) do_default_vi
;
1929 handler
= (unsigned long) addr
;
1930 vi_handlers
[n
] = handler
;
1932 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1935 panic("Shadow register set %d not supported", srs
);
1938 if (board_bind_eic_interrupt
)
1939 board_bind_eic_interrupt(n
, srs
);
1940 } else if (cpu_has_vint
) {
1941 /* SRSMap is only defined if shadow sets are implemented */
1943 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1948 * If no shadow set is selected then use the default handler
1949 * that does normal register saving and standard interrupt exit
1951 extern char except_vec_vi
, except_vec_vi_lui
;
1952 extern char except_vec_vi_ori
, except_vec_vi_end
;
1953 extern char rollback_except_vec_vi
;
1954 char *vec_start
= using_rollback_handler() ?
1955 &rollback_except_vec_vi
: &except_vec_vi
;
1956 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1957 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
1958 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
1960 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1961 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1963 const int handler_len
= &except_vec_vi_end
- vec_start
;
1965 if (handler_len
> VECTORSPACING
) {
1967 * Sigh... panicing won't help as the console
1968 * is probably not configured :(
1970 panic("VECTORSPACING too small");
1973 set_handler(((unsigned long)b
- ebase
), vec_start
,
1974 #ifdef CONFIG_CPU_MICROMIPS
1979 h
= (u16
*)(b
+ lui_offset
);
1980 *h
= (handler
>> 16) & 0xffff;
1981 h
= (u16
*)(b
+ ori_offset
);
1982 *h
= (handler
& 0xffff);
1983 local_flush_icache_range((unsigned long)b
,
1984 (unsigned long)(b
+handler_len
));
1988 * In other cases jump directly to the interrupt handler. It
1989 * is the handler's responsibility to save registers if required
1990 * (eg hi/lo) and return from the exception using "eret".
1996 #ifdef CONFIG_CPU_MICROMIPS
1997 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
1999 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
2001 h
[0] = (insn
>> 16) & 0xffff;
2002 h
[1] = insn
& 0xffff;
2005 local_flush_icache_range((unsigned long)b
,
2006 (unsigned long)(b
+8));
2009 return (void *)old_handler
;
2012 void *set_vi_handler(int n
, vi_handler_t addr
)
2014 return set_vi_srs_handler(n
, addr
, 0);
2017 extern void tlb_init(void);
2022 int cp0_compare_irq
;
2023 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2024 int cp0_compare_irq_shift
;
2027 * Performance counter IRQ or -1 if shared with timer
2029 int cp0_perfcount_irq
;
2030 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2033 * Fast debug channel IRQ or -1 if not present
2036 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2040 static int __init
ulri_disable(char *s
)
2042 pr_info("Disabling ulri\n");
2047 __setup("noulri", ulri_disable
);
2049 /* configure STATUS register */
2050 static void configure_status(void)
2053 * Disable coprocessors and select 32-bit or 64-bit addressing
2054 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2055 * flag that some firmware may have left set and the TS bit (for
2056 * IP27). Set XX for ISA IV code to work.
2058 unsigned int status_set
= ST0_CU0
;
2060 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2062 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2063 status_set
|= ST0_XX
;
2065 status_set
|= ST0_MX
;
2067 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2071 /* configure HWRENA register */
2072 static void configure_hwrena(void)
2074 unsigned int hwrena
= cpu_hwrena_impl_bits
;
2076 if (cpu_has_mips_r2_r6
)
2077 hwrena
|= 0x0000000f;
2079 if (!noulri
&& cpu_has_userlocal
)
2080 hwrena
|= (1 << 29);
2083 write_c0_hwrena(hwrena
);
2086 static void configure_exception_vector(void)
2088 if (cpu_has_veic
|| cpu_has_vint
) {
2089 unsigned long sr
= set_c0_status(ST0_BEV
);
2090 write_c0_ebase(ebase
);
2091 write_c0_status(sr
);
2092 /* Setting vector spacing enables EI/VI mode */
2093 change_c0_intctl(0x3e0, VECTORSPACING
);
2095 if (cpu_has_divec
) {
2096 if (cpu_has_mipsmt
) {
2097 unsigned int vpflags
= dvpe();
2098 set_c0_cause(CAUSEF_IV
);
2101 set_c0_cause(CAUSEF_IV
);
2105 void per_cpu_trap_init(bool is_boot_cpu
)
2107 unsigned int cpu
= smp_processor_id();
2112 configure_exception_vector();
2115 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2117 * o read IntCtl.IPTI to determine the timer interrupt
2118 * o read IntCtl.IPPCI to determine the performance counter interrupt
2119 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2121 if (cpu_has_mips_r2_r6
) {
2122 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2123 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2124 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2125 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2130 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2131 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2132 cp0_perfcount_irq
= -1;
2136 if (!cpu_data
[cpu
].asid_cache
)
2137 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
2139 atomic_inc(&init_mm
.mm_count
);
2140 current
->active_mm
= &init_mm
;
2141 BUG_ON(current
->mm
);
2142 enter_lazy_tlb(&init_mm
, current
);
2144 /* Boot CPU's cache setup in setup_arch(). */
2148 TLBMISS_HANDLER_SETUP();
2151 /* Install CPU exception handler */
2152 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
2154 #ifdef CONFIG_CPU_MICROMIPS
2155 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2157 memcpy((void *)(ebase
+ offset
), addr
, size
);
2159 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2162 static char panic_null_cerr
[] =
2163 "Trying to set NULL cache error exception handler";
2166 * Install uncached CPU exception handler.
2167 * This is suitable only for the cache error exception which is the only
2168 * exception handler that is being run uncached.
2170 void set_uncached_handler(unsigned long offset
, void *addr
,
2173 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2176 panic(panic_null_cerr
);
2178 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2181 static int __initdata rdhwr_noopt
;
2182 static int __init
set_rdhwr_noopt(char *str
)
2188 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2190 void __init
trap_init(void)
2192 extern char except_vec3_generic
;
2193 extern char except_vec4
;
2194 extern char except_vec3_r4000
;
2199 #if defined(CONFIG_KGDB)
2200 if (kgdb_early_setup
)
2201 return; /* Already done */
2204 if (cpu_has_veic
|| cpu_has_vint
) {
2205 unsigned long size
= 0x200 + VECTORSPACING
*64;
2206 ebase
= (unsigned long)
2207 __alloc_bootmem(size
, 1 << fls(size
), 0);
2209 #ifdef CONFIG_KVM_GUEST
2210 #define KVM_GUEST_KSEG0 0x40000000
2211 ebase
= KVM_GUEST_KSEG0
;
2215 if (cpu_has_mips_r2_r6
)
2216 ebase
+= (read_c0_ebase() & 0x3ffff000);
2219 if (cpu_has_mmips
) {
2220 unsigned int config3
= read_c0_config3();
2222 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2223 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2225 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2228 if (board_ebase_setup
)
2229 board_ebase_setup();
2230 per_cpu_trap_init(true);
2233 * Copy the generic exception handlers to their final destination.
2234 * This will be overriden later as suitable for a particular
2237 set_handler(0x180, &except_vec3_generic
, 0x80);
2240 * Setup default vectors
2242 for (i
= 0; i
<= 31; i
++)
2243 set_except_vector(i
, handle_reserved
);
2246 * Copy the EJTAG debug exception vector handler code to it's final
2249 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2250 board_ejtag_handler_setup();
2253 * Only some CPUs have the watch exceptions.
2256 set_except_vector(23, handle_watch
);
2259 * Initialise interrupt handlers
2261 if (cpu_has_veic
|| cpu_has_vint
) {
2262 int nvec
= cpu_has_veic
? 64 : 8;
2263 for (i
= 0; i
< nvec
; i
++)
2264 set_vi_handler(i
, NULL
);
2266 else if (cpu_has_divec
)
2267 set_handler(0x200, &except_vec4
, 0x8);
2270 * Some CPUs can enable/disable for cache parity detection, but does
2271 * it different ways.
2273 parity_protection_init();
2276 * The Data Bus Errors / Instruction Bus Errors are signaled
2277 * by external hardware. Therefore these two exceptions
2278 * may have board specific handlers.
2283 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2285 set_except_vector(1, handle_tlbm
);
2286 set_except_vector(2, handle_tlbl
);
2287 set_except_vector(3, handle_tlbs
);
2289 set_except_vector(4, handle_adel
);
2290 set_except_vector(5, handle_ades
);
2292 set_except_vector(6, handle_ibe
);
2293 set_except_vector(7, handle_dbe
);
2295 set_except_vector(8, handle_sys
);
2296 set_except_vector(9, handle_bp
);
2297 set_except_vector(10, rdhwr_noopt
? handle_ri
:
2298 (cpu_has_vtag_icache
?
2299 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
2300 set_except_vector(11, handle_cpu
);
2301 set_except_vector(12, handle_ov
);
2302 set_except_vector(13, handle_tr
);
2303 set_except_vector(14, handle_msa_fpe
);
2305 if (current_cpu_type() == CPU_R6000
||
2306 current_cpu_type() == CPU_R6000A
) {
2308 * The R6000 is the only R-series CPU that features a machine
2309 * check exception (similar to the R4000 cache error) and
2310 * unaligned ldc1/sdc1 exception. The handlers have not been
2311 * written yet. Well, anyway there is no R6000 machine on the
2312 * current list of targets for Linux/MIPS.
2313 * (Duh, crap, there is someone with a triple R6k machine)
2315 //set_except_vector(14, handle_mc);
2316 //set_except_vector(15, handle_ndc);
2320 if (board_nmi_handler_setup
)
2321 board_nmi_handler_setup();
2323 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2324 set_except_vector(15, handle_fpe
);
2326 set_except_vector(16, handle_ftlb
);
2328 if (cpu_has_rixiex
) {
2329 set_except_vector(19, tlb_do_page_fault_0
);
2330 set_except_vector(20, tlb_do_page_fault_0
);
2333 set_except_vector(21, handle_msa
);
2334 set_except_vector(22, handle_mdmx
);
2337 set_except_vector(24, handle_mcheck
);
2340 set_except_vector(25, handle_mt
);
2342 set_except_vector(26, handle_dsp
);
2344 if (board_cache_error_setup
)
2345 board_cache_error_setup();
2348 /* Special exception: R4[04]00 uses also the divec space. */
2349 set_handler(0x180, &except_vec3_r4000
, 0x100);
2350 else if (cpu_has_4kex
)
2351 set_handler(0x180, &except_vec3_generic
, 0x80);
2353 set_handler(0x080, &except_vec3_generic
, 0x80);
2355 local_flush_icache_range(ebase
, ebase
+ 0x400);
2357 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2359 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2362 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2366 case CPU_PM_ENTER_FAILED
:
2370 configure_exception_vector();
2372 /* Restore register with CPU number for TLB handlers */
2373 TLBMISS_HANDLER_RESTORE();
2381 static struct notifier_block trap_pm_notifier_block
= {
2382 .notifier_call
= trap_pm_notifier
,
2385 static int __init
trap_pm_init(void)
2387 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2389 arch_initcall(trap_pm_init
);