gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / arch / s390 / mm / pgtable.c
blob9ac703cfdb213265df84b274a051aa0634d3733b
1 /*
2 * Copyright IBM Corp. 2007, 2011
3 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21 #include <linux/sysctl.h>
22 #include <linux/ksm.h>
23 #include <linux/mman.h>
25 #include <asm/pgtable.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
31 #define ALLOC_ORDER 2
32 #define FRAG_MASK 0x03
34 unsigned long *crst_table_alloc(struct mm_struct *mm)
36 struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
38 if (!page)
39 return NULL;
40 return (unsigned long *) page_to_phys(page);
43 void crst_table_free(struct mm_struct *mm, unsigned long *table)
45 free_pages((unsigned long) table, ALLOC_ORDER);
48 static void __crst_table_upgrade(void *arg)
50 struct mm_struct *mm = arg;
52 if (current->active_mm == mm) {
53 clear_user_asce();
54 set_user_asce(mm);
56 __tlb_flush_local();
59 int crst_table_upgrade(struct mm_struct *mm)
61 unsigned long *table, *pgd;
63 /* upgrade should only happen from 3 to 4 levels */
64 BUG_ON(mm->context.asce_limit != (1UL << 42));
66 table = crst_table_alloc(mm);
67 if (!table)
68 return -ENOMEM;
70 spin_lock_bh(&mm->page_table_lock);
71 pgd = (unsigned long *) mm->pgd;
72 crst_table_init(table, _REGION2_ENTRY_EMPTY);
73 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
74 mm->pgd = (pgd_t *) table;
75 mm->context.asce_limit = 1UL << 53;
76 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
77 _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
78 mm->task_size = mm->context.asce_limit;
79 spin_unlock_bh(&mm->page_table_lock);
81 on_each_cpu(__crst_table_upgrade, mm, 0);
82 return 0;
85 void crst_table_downgrade(struct mm_struct *mm)
87 pgd_t *pgd;
89 /* downgrade should only happen from 3 to 2 levels (compat only) */
90 BUG_ON(mm->context.asce_limit != (1UL << 42));
92 if (current->active_mm == mm) {
93 clear_user_asce();
94 __tlb_flush_mm(mm);
97 pgd = mm->pgd;
98 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
99 mm->context.asce_limit = 1UL << 31;
100 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
101 _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT;
102 mm->task_size = mm->context.asce_limit;
103 crst_table_free(mm, (unsigned long *) pgd);
105 if (current->active_mm == mm)
106 set_user_asce(mm);
109 #ifdef CONFIG_PGSTE
112 * gmap_alloc - allocate a guest address space
113 * @mm: pointer to the parent mm_struct
114 * @limit: maximum size of the gmap address space
116 * Returns a guest address space structure.
118 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
120 struct gmap *gmap;
121 struct page *page;
122 unsigned long *table;
123 unsigned long etype, atype;
125 if (limit < (1UL << 31)) {
126 limit = (1UL << 31) - 1;
127 atype = _ASCE_TYPE_SEGMENT;
128 etype = _SEGMENT_ENTRY_EMPTY;
129 } else if (limit < (1UL << 42)) {
130 limit = (1UL << 42) - 1;
131 atype = _ASCE_TYPE_REGION3;
132 etype = _REGION3_ENTRY_EMPTY;
133 } else if (limit < (1UL << 53)) {
134 limit = (1UL << 53) - 1;
135 atype = _ASCE_TYPE_REGION2;
136 etype = _REGION2_ENTRY_EMPTY;
137 } else {
138 limit = -1UL;
139 atype = _ASCE_TYPE_REGION1;
140 etype = _REGION1_ENTRY_EMPTY;
142 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
143 if (!gmap)
144 goto out;
145 INIT_LIST_HEAD(&gmap->crst_list);
146 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
147 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
148 spin_lock_init(&gmap->guest_table_lock);
149 gmap->mm = mm;
150 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
151 if (!page)
152 goto out_free;
153 page->index = 0;
154 list_add(&page->lru, &gmap->crst_list);
155 table = (unsigned long *) page_to_phys(page);
156 crst_table_init(table, etype);
157 gmap->table = table;
158 gmap->asce = atype | _ASCE_TABLE_LENGTH |
159 _ASCE_USER_BITS | __pa(table);
160 gmap->asce_end = limit;
161 down_write(&mm->mmap_sem);
162 list_add(&gmap->list, &mm->context.gmap_list);
163 up_write(&mm->mmap_sem);
164 return gmap;
166 out_free:
167 kfree(gmap);
168 out:
169 return NULL;
171 EXPORT_SYMBOL_GPL(gmap_alloc);
173 static void gmap_flush_tlb(struct gmap *gmap)
175 if (MACHINE_HAS_IDTE)
176 __tlb_flush_idte(gmap->asce);
177 else
178 __tlb_flush_global();
181 static void gmap_radix_tree_free(struct radix_tree_root *root)
183 struct radix_tree_iter iter;
184 unsigned long indices[16];
185 unsigned long index;
186 void **slot;
187 int i, nr;
189 /* A radix tree is freed by deleting all of its entries */
190 index = 0;
191 do {
192 nr = 0;
193 radix_tree_for_each_slot(slot, root, &iter, index) {
194 indices[nr] = iter.index;
195 if (++nr == 16)
196 break;
198 for (i = 0; i < nr; i++) {
199 index = indices[i];
200 radix_tree_delete(root, index);
202 } while (nr > 0);
206 * gmap_free - free a guest address space
207 * @gmap: pointer to the guest address space structure
209 void gmap_free(struct gmap *gmap)
211 struct page *page, *next;
213 /* Flush tlb. */
214 if (MACHINE_HAS_IDTE)
215 __tlb_flush_idte(gmap->asce);
216 else
217 __tlb_flush_global();
219 /* Free all segment & region tables. */
220 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
221 __free_pages(page, ALLOC_ORDER);
222 gmap_radix_tree_free(&gmap->guest_to_host);
223 gmap_radix_tree_free(&gmap->host_to_guest);
224 down_write(&gmap->mm->mmap_sem);
225 list_del(&gmap->list);
226 up_write(&gmap->mm->mmap_sem);
227 kfree(gmap);
229 EXPORT_SYMBOL_GPL(gmap_free);
232 * gmap_enable - switch primary space to the guest address space
233 * @gmap: pointer to the guest address space structure
235 void gmap_enable(struct gmap *gmap)
237 S390_lowcore.gmap = (unsigned long) gmap;
239 EXPORT_SYMBOL_GPL(gmap_enable);
242 * gmap_disable - switch back to the standard primary address space
243 * @gmap: pointer to the guest address space structure
245 void gmap_disable(struct gmap *gmap)
247 S390_lowcore.gmap = 0UL;
249 EXPORT_SYMBOL_GPL(gmap_disable);
252 * gmap_alloc_table is assumed to be called with mmap_sem held
254 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
255 unsigned long init, unsigned long gaddr)
257 struct page *page;
258 unsigned long *new;
260 /* since we dont free the gmap table until gmap_free we can unlock */
261 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
262 if (!page)
263 return -ENOMEM;
264 new = (unsigned long *) page_to_phys(page);
265 crst_table_init(new, init);
266 spin_lock(&gmap->mm->page_table_lock);
267 if (*table & _REGION_ENTRY_INVALID) {
268 list_add(&page->lru, &gmap->crst_list);
269 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
270 (*table & _REGION_ENTRY_TYPE_MASK);
271 page->index = gaddr;
272 page = NULL;
274 spin_unlock(&gmap->mm->page_table_lock);
275 if (page)
276 __free_pages(page, ALLOC_ORDER);
277 return 0;
281 * __gmap_segment_gaddr - find virtual address from segment pointer
282 * @entry: pointer to a segment table entry in the guest address space
284 * Returns the virtual address in the guest address space for the segment
286 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
288 struct page *page;
289 unsigned long offset, mask;
291 offset = (unsigned long) entry / sizeof(unsigned long);
292 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
293 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
294 page = virt_to_page((void *)((unsigned long) entry & mask));
295 return page->index + offset;
299 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
300 * @gmap: pointer to the guest address space structure
301 * @vmaddr: address in the host process address space
303 * Returns 1 if a TLB flush is required
305 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
307 unsigned long *entry;
308 int flush = 0;
310 spin_lock(&gmap->guest_table_lock);
311 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
312 if (entry) {
313 flush = (*entry != _SEGMENT_ENTRY_INVALID);
314 *entry = _SEGMENT_ENTRY_INVALID;
316 spin_unlock(&gmap->guest_table_lock);
317 return flush;
321 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
322 * @gmap: pointer to the guest address space structure
323 * @gaddr: address in the guest address space
325 * Returns 1 if a TLB flush is required
327 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
329 unsigned long vmaddr;
331 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
332 gaddr >> PMD_SHIFT);
333 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
337 * gmap_unmap_segment - unmap segment from the guest address space
338 * @gmap: pointer to the guest address space structure
339 * @to: address in the guest address space
340 * @len: length of the memory area to unmap
342 * Returns 0 if the unmap succeeded, -EINVAL if not.
344 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
346 unsigned long off;
347 int flush;
349 if ((to | len) & (PMD_SIZE - 1))
350 return -EINVAL;
351 if (len == 0 || to + len < to)
352 return -EINVAL;
354 flush = 0;
355 down_write(&gmap->mm->mmap_sem);
356 for (off = 0; off < len; off += PMD_SIZE)
357 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
358 up_write(&gmap->mm->mmap_sem);
359 if (flush)
360 gmap_flush_tlb(gmap);
361 return 0;
363 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
366 * gmap_mmap_segment - map a segment to the guest address space
367 * @gmap: pointer to the guest address space structure
368 * @from: source address in the parent address space
369 * @to: target address in the guest address space
370 * @len: length of the memory area to map
372 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
374 int gmap_map_segment(struct gmap *gmap, unsigned long from,
375 unsigned long to, unsigned long len)
377 unsigned long off;
378 int flush;
380 if ((from | to | len) & (PMD_SIZE - 1))
381 return -EINVAL;
382 if (len == 0 || from + len < from || to + len < to ||
383 from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
384 return -EINVAL;
386 flush = 0;
387 down_write(&gmap->mm->mmap_sem);
388 for (off = 0; off < len; off += PMD_SIZE) {
389 /* Remove old translation */
390 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
391 /* Store new translation */
392 if (radix_tree_insert(&gmap->guest_to_host,
393 (to + off) >> PMD_SHIFT,
394 (void *) from + off))
395 break;
397 up_write(&gmap->mm->mmap_sem);
398 if (flush)
399 gmap_flush_tlb(gmap);
400 if (off >= len)
401 return 0;
402 gmap_unmap_segment(gmap, to, len);
403 return -ENOMEM;
405 EXPORT_SYMBOL_GPL(gmap_map_segment);
408 * __gmap_translate - translate a guest address to a user space address
409 * @gmap: pointer to guest mapping meta data structure
410 * @gaddr: guest address
412 * Returns user space address which corresponds to the guest address or
413 * -EFAULT if no such mapping exists.
414 * This function does not establish potentially missing page table entries.
415 * The mmap_sem of the mm that belongs to the address space must be held
416 * when this function gets called.
418 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
420 unsigned long vmaddr;
422 vmaddr = (unsigned long)
423 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
424 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
426 EXPORT_SYMBOL_GPL(__gmap_translate);
429 * gmap_translate - translate a guest address to a user space address
430 * @gmap: pointer to guest mapping meta data structure
431 * @gaddr: guest address
433 * Returns user space address which corresponds to the guest address or
434 * -EFAULT if no such mapping exists.
435 * This function does not establish potentially missing page table entries.
437 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
439 unsigned long rc;
441 down_read(&gmap->mm->mmap_sem);
442 rc = __gmap_translate(gmap, gaddr);
443 up_read(&gmap->mm->mmap_sem);
444 return rc;
446 EXPORT_SYMBOL_GPL(gmap_translate);
449 * gmap_unlink - disconnect a page table from the gmap shadow tables
450 * @gmap: pointer to guest mapping meta data structure
451 * @table: pointer to the host page table
452 * @vmaddr: vm address associated with the host page table
454 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
455 unsigned long vmaddr)
457 struct gmap *gmap;
458 int flush;
460 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
461 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
462 if (flush)
463 gmap_flush_tlb(gmap);
468 * gmap_link - set up shadow page tables to connect a host to a guest address
469 * @gmap: pointer to guest mapping meta data structure
470 * @gaddr: guest address
471 * @vmaddr: vm address
473 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
474 * if the vm address is already mapped to a different guest segment.
475 * The mmap_sem of the mm that belongs to the address space must be held
476 * when this function gets called.
478 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
480 struct mm_struct *mm;
481 unsigned long *table;
482 spinlock_t *ptl;
483 pgd_t *pgd;
484 pud_t *pud;
485 pmd_t *pmd;
486 int rc;
488 /* Create higher level tables in the gmap page table */
489 table = gmap->table;
490 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
491 table += (gaddr >> 53) & 0x7ff;
492 if ((*table & _REGION_ENTRY_INVALID) &&
493 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
494 gaddr & 0xffe0000000000000UL))
495 return -ENOMEM;
496 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
498 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
499 table += (gaddr >> 42) & 0x7ff;
500 if ((*table & _REGION_ENTRY_INVALID) &&
501 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
502 gaddr & 0xfffffc0000000000UL))
503 return -ENOMEM;
504 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
506 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
507 table += (gaddr >> 31) & 0x7ff;
508 if ((*table & _REGION_ENTRY_INVALID) &&
509 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
510 gaddr & 0xffffffff80000000UL))
511 return -ENOMEM;
512 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
514 table += (gaddr >> 20) & 0x7ff;
515 /* Walk the parent mm page table */
516 mm = gmap->mm;
517 pgd = pgd_offset(mm, vmaddr);
518 VM_BUG_ON(pgd_none(*pgd));
519 pud = pud_offset(pgd, vmaddr);
520 VM_BUG_ON(pud_none(*pud));
521 pmd = pmd_offset(pud, vmaddr);
522 VM_BUG_ON(pmd_none(*pmd));
523 /* large pmds cannot yet be handled */
524 if (pmd_large(*pmd))
525 return -EFAULT;
526 /* Link gmap segment table entry location to page table. */
527 rc = radix_tree_preload(GFP_KERNEL);
528 if (rc)
529 return rc;
530 ptl = pmd_lock(mm, pmd);
531 spin_lock(&gmap->guest_table_lock);
532 if (*table == _SEGMENT_ENTRY_INVALID) {
533 rc = radix_tree_insert(&gmap->host_to_guest,
534 vmaddr >> PMD_SHIFT, table);
535 if (!rc)
536 *table = pmd_val(*pmd);
537 } else
538 rc = 0;
539 spin_unlock(&gmap->guest_table_lock);
540 spin_unlock(ptl);
541 radix_tree_preload_end();
542 return rc;
546 * gmap_fault - resolve a fault on a guest address
547 * @gmap: pointer to guest mapping meta data structure
548 * @gaddr: guest address
549 * @fault_flags: flags to pass down to handle_mm_fault()
551 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
552 * if the vm address is already mapped to a different guest segment.
554 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
555 unsigned int fault_flags)
557 unsigned long vmaddr;
558 int rc;
560 down_read(&gmap->mm->mmap_sem);
561 vmaddr = __gmap_translate(gmap, gaddr);
562 if (IS_ERR_VALUE(vmaddr)) {
563 rc = vmaddr;
564 goto out_up;
566 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
567 rc = -EFAULT;
568 goto out_up;
570 rc = __gmap_link(gmap, gaddr, vmaddr);
571 out_up:
572 up_read(&gmap->mm->mmap_sem);
573 return rc;
575 EXPORT_SYMBOL_GPL(gmap_fault);
577 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
579 if (!non_swap_entry(entry))
580 dec_mm_counter(mm, MM_SWAPENTS);
581 else if (is_migration_entry(entry)) {
582 struct page *page = migration_entry_to_page(entry);
584 if (PageAnon(page))
585 dec_mm_counter(mm, MM_ANONPAGES);
586 else
587 dec_mm_counter(mm, MM_FILEPAGES);
589 free_swap_and_cache(entry);
593 * this function is assumed to be called with mmap_sem held
595 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
597 unsigned long vmaddr, ptev, pgstev;
598 pte_t *ptep, pte;
599 spinlock_t *ptl;
600 pgste_t pgste;
602 /* Find the vm address for the guest address */
603 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
604 gaddr >> PMD_SHIFT);
605 if (!vmaddr)
606 return;
607 vmaddr |= gaddr & ~PMD_MASK;
608 /* Get pointer to the page table entry */
609 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
610 if (unlikely(!ptep))
611 return;
612 pte = *ptep;
613 if (!pte_swap(pte))
614 goto out_pte;
615 /* Zap unused and logically-zero pages */
616 pgste = pgste_get_lock(ptep);
617 pgstev = pgste_val(pgste);
618 ptev = pte_val(pte);
619 if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
620 ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
621 gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
622 pte_clear(gmap->mm, vmaddr, ptep);
624 pgste_set_unlock(ptep, pgste);
625 out_pte:
626 pte_unmap_unlock(ptep, ptl);
628 EXPORT_SYMBOL_GPL(__gmap_zap);
630 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
632 unsigned long gaddr, vmaddr, size;
633 struct vm_area_struct *vma;
635 down_read(&gmap->mm->mmap_sem);
636 for (gaddr = from; gaddr < to;
637 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
638 /* Find the vm address for the guest address */
639 vmaddr = (unsigned long)
640 radix_tree_lookup(&gmap->guest_to_host,
641 gaddr >> PMD_SHIFT);
642 if (!vmaddr)
643 continue;
644 vmaddr |= gaddr & ~PMD_MASK;
645 /* Find vma in the parent mm */
646 vma = find_vma(gmap->mm, vmaddr);
647 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
648 zap_page_range(vma, vmaddr, size, NULL);
650 up_read(&gmap->mm->mmap_sem);
652 EXPORT_SYMBOL_GPL(gmap_discard);
654 static LIST_HEAD(gmap_notifier_list);
655 static DEFINE_SPINLOCK(gmap_notifier_lock);
658 * gmap_register_ipte_notifier - register a pte invalidation callback
659 * @nb: pointer to the gmap notifier block
661 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
663 spin_lock(&gmap_notifier_lock);
664 list_add(&nb->list, &gmap_notifier_list);
665 spin_unlock(&gmap_notifier_lock);
667 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
670 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
671 * @nb: pointer to the gmap notifier block
673 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
675 spin_lock(&gmap_notifier_lock);
676 list_del_init(&nb->list);
677 spin_unlock(&gmap_notifier_lock);
679 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
682 * gmap_ipte_notify - mark a range of ptes for invalidation notification
683 * @gmap: pointer to guest mapping meta data structure
684 * @gaddr: virtual address in the guest address space
685 * @len: size of area
687 * Returns 0 if for each page in the given range a gmap mapping exists and
688 * the invalidation notification could be set. If the gmap mapping is missing
689 * for one or more pages -EFAULT is returned. If no memory could be allocated
690 * -ENOMEM is returned. This function establishes missing page table entries.
692 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
694 unsigned long addr;
695 spinlock_t *ptl;
696 pte_t *ptep, entry;
697 pgste_t pgste;
698 int rc = 0;
700 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
701 return -EINVAL;
702 down_read(&gmap->mm->mmap_sem);
703 while (len) {
704 /* Convert gmap address and connect the page tables */
705 addr = __gmap_translate(gmap, gaddr);
706 if (IS_ERR_VALUE(addr)) {
707 rc = addr;
708 break;
710 /* Get the page mapped */
711 if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
712 rc = -EFAULT;
713 break;
715 rc = __gmap_link(gmap, gaddr, addr);
716 if (rc)
717 break;
718 /* Walk the process page table, lock and get pte pointer */
719 ptep = get_locked_pte(gmap->mm, addr, &ptl);
720 VM_BUG_ON(!ptep);
721 /* Set notification bit in the pgste of the pte */
722 entry = *ptep;
723 if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
724 pgste = pgste_get_lock(ptep);
725 pgste_val(pgste) |= PGSTE_IN_BIT;
726 pgste_set_unlock(ptep, pgste);
727 gaddr += PAGE_SIZE;
728 len -= PAGE_SIZE;
730 pte_unmap_unlock(ptep, ptl);
732 up_read(&gmap->mm->mmap_sem);
733 return rc;
735 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
738 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
739 * @mm: pointer to the process mm_struct
740 * @addr: virtual address in the process address space
741 * @pte: pointer to the page table entry
743 * This function is assumed to be called with the page table lock held
744 * for the pte to notify.
746 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
748 unsigned long offset, gaddr;
749 unsigned long *table;
750 struct gmap_notifier *nb;
751 struct gmap *gmap;
753 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
754 offset = offset * (4096 / sizeof(pte_t));
755 spin_lock(&gmap_notifier_lock);
756 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
757 table = radix_tree_lookup(&gmap->host_to_guest,
758 vmaddr >> PMD_SHIFT);
759 if (!table)
760 continue;
761 gaddr = __gmap_segment_gaddr(table) + offset;
762 list_for_each_entry(nb, &gmap_notifier_list, list)
763 nb->notifier_call(gmap, gaddr);
765 spin_unlock(&gmap_notifier_lock);
767 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
769 static inline int page_table_with_pgste(struct page *page)
771 return atomic_read(&page->_mapcount) == 0;
774 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
776 struct page *page;
777 unsigned long *table;
779 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
780 if (!page)
781 return NULL;
782 if (!pgtable_page_ctor(page)) {
783 __free_page(page);
784 return NULL;
786 atomic_set(&page->_mapcount, 0);
787 table = (unsigned long *) page_to_phys(page);
788 clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
789 clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
790 return table;
793 static inline void page_table_free_pgste(unsigned long *table)
795 struct page *page;
797 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
798 pgtable_page_dtor(page);
799 atomic_set(&page->_mapcount, -1);
800 __free_page(page);
803 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
804 unsigned long key, bool nq)
806 spinlock_t *ptl;
807 pgste_t old, new;
808 pte_t *ptep;
810 down_read(&mm->mmap_sem);
811 retry:
812 ptep = get_locked_pte(mm, addr, &ptl);
813 if (unlikely(!ptep)) {
814 up_read(&mm->mmap_sem);
815 return -EFAULT;
817 if (!(pte_val(*ptep) & _PAGE_INVALID) &&
818 (pte_val(*ptep) & _PAGE_PROTECT)) {
819 pte_unmap_unlock(ptep, ptl);
820 if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
821 up_read(&mm->mmap_sem);
822 return -EFAULT;
824 goto retry;
827 new = old = pgste_get_lock(ptep);
828 pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
829 PGSTE_ACC_BITS | PGSTE_FP_BIT);
830 pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
831 pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
832 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
833 unsigned long address, bits, skey;
835 address = pte_val(*ptep) & PAGE_MASK;
836 skey = (unsigned long) page_get_storage_key(address);
837 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
838 skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
839 /* Set storage key ACC and FP */
840 page_set_storage_key(address, skey, !nq);
841 /* Merge host changed & referenced into pgste */
842 pgste_val(new) |= bits << 52;
844 /* changing the guest storage key is considered a change of the page */
845 if ((pgste_val(new) ^ pgste_val(old)) &
846 (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
847 pgste_val(new) |= PGSTE_UC_BIT;
849 pgste_set_unlock(ptep, new);
850 pte_unmap_unlock(ptep, ptl);
851 up_read(&mm->mmap_sem);
852 return 0;
854 EXPORT_SYMBOL(set_guest_storage_key);
856 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
858 spinlock_t *ptl;
859 pgste_t pgste;
860 pte_t *ptep;
861 uint64_t physaddr;
862 unsigned long key = 0;
864 down_read(&mm->mmap_sem);
865 ptep = get_locked_pte(mm, addr, &ptl);
866 if (unlikely(!ptep)) {
867 up_read(&mm->mmap_sem);
868 return -EFAULT;
870 pgste = pgste_get_lock(ptep);
872 if (pte_val(*ptep) & _PAGE_INVALID) {
873 key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
874 key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
875 key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
876 key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
877 } else {
878 physaddr = pte_val(*ptep) & PAGE_MASK;
879 key = page_get_storage_key(physaddr);
881 /* Reflect guest's logical view, not physical */
882 if (pgste_val(pgste) & PGSTE_GR_BIT)
883 key |= _PAGE_REFERENCED;
884 if (pgste_val(pgste) & PGSTE_GC_BIT)
885 key |= _PAGE_CHANGED;
888 pgste_set_unlock(ptep, pgste);
889 pte_unmap_unlock(ptep, ptl);
890 up_read(&mm->mmap_sem);
891 return key;
893 EXPORT_SYMBOL(get_guest_storage_key);
895 static int page_table_allocate_pgste_min = 0;
896 static int page_table_allocate_pgste_max = 1;
897 int page_table_allocate_pgste = 0;
898 EXPORT_SYMBOL(page_table_allocate_pgste);
900 static struct ctl_table page_table_sysctl[] = {
902 .procname = "allocate_pgste",
903 .data = &page_table_allocate_pgste,
904 .maxlen = sizeof(int),
905 .mode = S_IRUGO | S_IWUSR,
906 .proc_handler = proc_dointvec,
907 .extra1 = &page_table_allocate_pgste_min,
908 .extra2 = &page_table_allocate_pgste_max,
913 static struct ctl_table page_table_sysctl_dir[] = {
915 .procname = "vm",
916 .maxlen = 0,
917 .mode = 0555,
918 .child = page_table_sysctl,
923 static int __init page_table_register_sysctl(void)
925 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
927 __initcall(page_table_register_sysctl);
929 #else /* CONFIG_PGSTE */
931 static inline int page_table_with_pgste(struct page *page)
933 return 0;
936 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
938 return NULL;
941 static inline void page_table_free_pgste(unsigned long *table)
945 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
946 unsigned long vmaddr)
950 #endif /* CONFIG_PGSTE */
952 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
954 unsigned int old, new;
956 do {
957 old = atomic_read(v);
958 new = old ^ bits;
959 } while (atomic_cmpxchg(v, old, new) != old);
960 return new;
964 * page table entry allocation/free routines.
966 unsigned long *page_table_alloc(struct mm_struct *mm)
968 unsigned long *uninitialized_var(table);
969 struct page *uninitialized_var(page);
970 unsigned int mask, bit;
972 if (mm_alloc_pgste(mm))
973 return page_table_alloc_pgste(mm);
974 /* Allocate fragments of a 4K page as 1K/2K page table */
975 spin_lock_bh(&mm->context.list_lock);
976 mask = FRAG_MASK;
977 if (!list_empty(&mm->context.pgtable_list)) {
978 page = list_first_entry(&mm->context.pgtable_list,
979 struct page, lru);
980 table = (unsigned long *) page_to_phys(page);
981 mask = atomic_read(&page->_mapcount);
982 mask = mask | (mask >> 4);
984 if ((mask & FRAG_MASK) == FRAG_MASK) {
985 spin_unlock_bh(&mm->context.list_lock);
986 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
987 if (!page)
988 return NULL;
989 if (!pgtable_page_ctor(page)) {
990 __free_page(page);
991 return NULL;
993 atomic_set(&page->_mapcount, 1);
994 table = (unsigned long *) page_to_phys(page);
995 clear_table(table, _PAGE_INVALID, PAGE_SIZE);
996 spin_lock_bh(&mm->context.list_lock);
997 list_add(&page->lru, &mm->context.pgtable_list);
998 } else {
999 for (bit = 1; mask & bit; bit <<= 1)
1000 table += PTRS_PER_PTE;
1001 mask = atomic_xor_bits(&page->_mapcount, bit);
1002 if ((mask & FRAG_MASK) == FRAG_MASK)
1003 list_del(&page->lru);
1005 spin_unlock_bh(&mm->context.list_lock);
1006 return table;
1009 void page_table_free(struct mm_struct *mm, unsigned long *table)
1011 struct page *page;
1012 unsigned int bit, mask;
1014 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1015 if (page_table_with_pgste(page))
1016 return page_table_free_pgste(table);
1017 /* Free 1K/2K page table fragment of a 4K page */
1018 bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1019 spin_lock_bh(&mm->context.list_lock);
1020 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1021 list_del(&page->lru);
1022 mask = atomic_xor_bits(&page->_mapcount, bit);
1023 if (mask & FRAG_MASK)
1024 list_add(&page->lru, &mm->context.pgtable_list);
1025 spin_unlock_bh(&mm->context.list_lock);
1026 if (mask == 0) {
1027 pgtable_page_dtor(page);
1028 atomic_set(&page->_mapcount, -1);
1029 __free_page(page);
1033 static void __page_table_free_rcu(void *table, unsigned bit)
1035 struct page *page;
1037 if (bit == FRAG_MASK)
1038 return page_table_free_pgste(table);
1039 /* Free 1K/2K page table fragment of a 4K page */
1040 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1041 if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1042 pgtable_page_dtor(page);
1043 atomic_set(&page->_mapcount, -1);
1044 __free_page(page);
1048 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1049 unsigned long vmaddr)
1051 struct mm_struct *mm;
1052 struct page *page;
1053 unsigned int bit, mask;
1055 mm = tlb->mm;
1056 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1057 if (page_table_with_pgste(page)) {
1058 gmap_unlink(mm, table, vmaddr);
1059 table = (unsigned long *) (__pa(table) | FRAG_MASK);
1060 tlb_remove_table(tlb, table);
1061 return;
1063 bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1064 spin_lock_bh(&mm->context.list_lock);
1065 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1066 list_del(&page->lru);
1067 mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1068 if (mask & FRAG_MASK)
1069 list_add_tail(&page->lru, &mm->context.pgtable_list);
1070 spin_unlock_bh(&mm->context.list_lock);
1071 table = (unsigned long *) (__pa(table) | (bit << 4));
1072 tlb_remove_table(tlb, table);
1075 static void __tlb_remove_table(void *_table)
1077 const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1078 void *table = (void *)((unsigned long) _table & ~mask);
1079 unsigned type = (unsigned long) _table & mask;
1081 if (type)
1082 __page_table_free_rcu(table, type);
1083 else
1084 free_pages((unsigned long) table, ALLOC_ORDER);
1087 static void tlb_remove_table_smp_sync(void *arg)
1089 /* Simply deliver the interrupt */
1092 static void tlb_remove_table_one(void *table)
1095 * This isn't an RCU grace period and hence the page-tables cannot be
1096 * assumed to be actually RCU-freed.
1098 * It is however sufficient for software page-table walkers that rely
1099 * on IRQ disabling. See the comment near struct mmu_table_batch.
1101 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1102 __tlb_remove_table(table);
1105 static void tlb_remove_table_rcu(struct rcu_head *head)
1107 struct mmu_table_batch *batch;
1108 int i;
1110 batch = container_of(head, struct mmu_table_batch, rcu);
1112 for (i = 0; i < batch->nr; i++)
1113 __tlb_remove_table(batch->tables[i]);
1115 free_page((unsigned long)batch);
1118 void tlb_table_flush(struct mmu_gather *tlb)
1120 struct mmu_table_batch **batch = &tlb->batch;
1122 if (*batch) {
1123 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1124 *batch = NULL;
1128 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1130 struct mmu_table_batch **batch = &tlb->batch;
1132 tlb->mm->context.flush_mm = 1;
1133 if (*batch == NULL) {
1134 *batch = (struct mmu_table_batch *)
1135 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1136 if (*batch == NULL) {
1137 __tlb_flush_mm_lazy(tlb->mm);
1138 tlb_remove_table_one(table);
1139 return;
1141 (*batch)->nr = 0;
1143 (*batch)->tables[(*batch)->nr++] = table;
1144 if ((*batch)->nr == MAX_TABLE_BATCH)
1145 tlb_flush_mmu(tlb);
1148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1149 static inline void thp_split_vma(struct vm_area_struct *vma)
1151 unsigned long addr;
1153 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1154 follow_page(vma, addr, FOLL_SPLIT);
1157 static inline void thp_split_mm(struct mm_struct *mm)
1159 struct vm_area_struct *vma;
1161 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1162 thp_split_vma(vma);
1163 vma->vm_flags &= ~VM_HUGEPAGE;
1164 vma->vm_flags |= VM_NOHUGEPAGE;
1166 mm->def_flags |= VM_NOHUGEPAGE;
1168 #else
1169 static inline void thp_split_mm(struct mm_struct *mm)
1172 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1175 * switch on pgstes for its userspace process (for kvm)
1177 int s390_enable_sie(void)
1179 struct mm_struct *mm = current->mm;
1181 /* Do we have pgstes? if yes, we are done */
1182 if (mm_has_pgste(mm))
1183 return 0;
1184 /* Fail if the page tables are 2K */
1185 if (!mm_alloc_pgste(mm))
1186 return -EINVAL;
1187 down_write(&mm->mmap_sem);
1188 mm->context.has_pgste = 1;
1189 /* split thp mappings and disable thp for future mappings */
1190 thp_split_mm(mm);
1191 up_write(&mm->mmap_sem);
1192 return 0;
1194 EXPORT_SYMBOL_GPL(s390_enable_sie);
1197 * Enable storage key handling from now on and initialize the storage
1198 * keys with the default key.
1200 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1201 unsigned long next, struct mm_walk *walk)
1203 unsigned long ptev;
1204 pgste_t pgste;
1206 pgste = pgste_get_lock(pte);
1208 * Remove all zero page mappings,
1209 * after establishing a policy to forbid zero page mappings
1210 * following faults for that page will get fresh anonymous pages
1212 if (is_zero_pfn(pte_pfn(*pte))) {
1213 ptep_flush_direct(walk->mm, addr, pte);
1214 pte_val(*pte) = _PAGE_INVALID;
1216 /* Clear storage key */
1217 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1218 PGSTE_GR_BIT | PGSTE_GC_BIT);
1219 ptev = pte_val(*pte);
1220 if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1221 page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1222 pgste_set_unlock(pte, pgste);
1223 return 0;
1226 int s390_enable_skey(void)
1228 struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1229 struct mm_struct *mm = current->mm;
1230 struct vm_area_struct *vma;
1231 int rc = 0;
1233 down_write(&mm->mmap_sem);
1234 if (mm_use_skey(mm))
1235 goto out_up;
1237 mm->context.use_skey = 1;
1238 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1239 if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1240 MADV_UNMERGEABLE, &vma->vm_flags)) {
1241 mm->context.use_skey = 0;
1242 rc = -ENOMEM;
1243 goto out_up;
1246 mm->def_flags &= ~VM_MERGEABLE;
1248 walk.mm = mm;
1249 walk_page_range(0, TASK_SIZE, &walk);
1251 out_up:
1252 up_write(&mm->mmap_sem);
1253 return rc;
1255 EXPORT_SYMBOL_GPL(s390_enable_skey);
1258 * Reset CMMA state, make all pages stable again.
1260 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1261 unsigned long next, struct mm_walk *walk)
1263 pgste_t pgste;
1265 pgste = pgste_get_lock(pte);
1266 pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1267 pgste_set_unlock(pte, pgste);
1268 return 0;
1271 void s390_reset_cmma(struct mm_struct *mm)
1273 struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1275 down_write(&mm->mmap_sem);
1276 walk.mm = mm;
1277 walk_page_range(0, TASK_SIZE, &walk);
1278 up_write(&mm->mmap_sem);
1280 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1283 * Test and reset if a guest page is dirty
1285 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1287 pte_t *pte;
1288 spinlock_t *ptl;
1289 bool dirty = false;
1291 pte = get_locked_pte(gmap->mm, address, &ptl);
1292 if (unlikely(!pte))
1293 return false;
1295 if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1296 dirty = true;
1298 spin_unlock(ptl);
1299 return dirty;
1301 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1304 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1305 pmd_t *pmdp)
1307 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1308 /* No need to flush TLB
1309 * On s390 reference bits are in storage key and never in TLB */
1310 return pmdp_test_and_clear_young(vma, address, pmdp);
1313 int pmdp_set_access_flags(struct vm_area_struct *vma,
1314 unsigned long address, pmd_t *pmdp,
1315 pmd_t entry, int dirty)
1317 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1319 entry = pmd_mkyoung(entry);
1320 if (dirty)
1321 entry = pmd_mkdirty(entry);
1322 if (pmd_same(*pmdp, entry))
1323 return 0;
1324 pmdp_invalidate(vma, address, pmdp);
1325 set_pmd_at(vma->vm_mm, address, pmdp, entry);
1326 return 1;
1329 static void pmdp_splitting_flush_sync(void *arg)
1331 /* Simply deliver the interrupt */
1334 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1335 pmd_t *pmdp)
1337 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1338 if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1339 (unsigned long *) pmdp)) {
1340 /* need to serialize against gup-fast (IRQ disabled) */
1341 smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1345 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1346 pgtable_t pgtable)
1348 struct list_head *lh = (struct list_head *) pgtable;
1350 assert_spin_locked(pmd_lockptr(mm, pmdp));
1352 /* FIFO */
1353 if (!pmd_huge_pte(mm, pmdp))
1354 INIT_LIST_HEAD(lh);
1355 else
1356 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1357 pmd_huge_pte(mm, pmdp) = pgtable;
1360 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1362 struct list_head *lh;
1363 pgtable_t pgtable;
1364 pte_t *ptep;
1366 assert_spin_locked(pmd_lockptr(mm, pmdp));
1368 /* FIFO */
1369 pgtable = pmd_huge_pte(mm, pmdp);
1370 lh = (struct list_head *) pgtable;
1371 if (list_empty(lh))
1372 pmd_huge_pte(mm, pmdp) = NULL;
1373 else {
1374 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1375 list_del(lh);
1377 ptep = (pte_t *) pgtable;
1378 pte_val(*ptep) = _PAGE_INVALID;
1379 ptep++;
1380 pte_val(*ptep) = _PAGE_INVALID;
1381 return pgtable;
1383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */