2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
44 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++)
45 if (hctx
->ctx_map
.map
[i
].word
)
51 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
52 struct blk_mq_ctx
*ctx
)
54 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
64 struct blk_mq_ctx
*ctx
)
66 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
68 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
69 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
73 struct blk_mq_ctx
*ctx
)
75 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
77 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
80 static int blk_mq_queue_enter(struct request_queue
*q
, gfp_t gfp
)
85 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
88 if (!(gfp
& __GFP_WAIT
))
91 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
92 !q
->mq_freeze_depth
|| blk_queue_dying(q
));
93 if (blk_queue_dying(q
))
100 static void blk_mq_queue_exit(struct request_queue
*q
)
102 percpu_ref_put(&q
->mq_usage_counter
);
105 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
107 struct request_queue
*q
=
108 container_of(ref
, struct request_queue
, mq_usage_counter
);
110 wake_up_all(&q
->mq_freeze_wq
);
113 void blk_mq_freeze_queue_start(struct request_queue
*q
)
117 spin_lock_irq(q
->queue_lock
);
118 freeze
= !q
->mq_freeze_depth
++;
119 spin_unlock_irq(q
->queue_lock
);
122 percpu_ref_kill(&q
->mq_usage_counter
);
123 blk_mq_run_hw_queues(q
, false);
126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
128 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
130 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
134 * Guarantee no request is in use, so we can change any data structure of
135 * the queue afterward.
137 void blk_mq_freeze_queue(struct request_queue
*q
)
139 blk_mq_freeze_queue_start(q
);
140 blk_mq_freeze_queue_wait(q
);
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
144 void blk_mq_unfreeze_queue(struct request_queue
*q
)
148 spin_lock_irq(q
->queue_lock
);
149 wake
= !--q
->mq_freeze_depth
;
150 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
151 spin_unlock_irq(q
->queue_lock
);
153 percpu_ref_reinit(&q
->mq_usage_counter
);
154 wake_up_all(&q
->mq_freeze_wq
);
157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
159 void blk_mq_wake_waiters(struct request_queue
*q
)
161 struct blk_mq_hw_ctx
*hctx
;
164 queue_for_each_hw_ctx(q
, hctx
, i
)
165 if (blk_mq_hw_queue_mapped(hctx
))
166 blk_mq_tag_wakeup_all(hctx
->tags
, true);
169 * If we are called because the queue has now been marked as
170 * dying, we need to ensure that processes currently waiting on
171 * the queue are notified as well.
173 wake_up_all(&q
->mq_freeze_wq
);
176 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
178 return blk_mq_has_free_tags(hctx
->tags
);
180 EXPORT_SYMBOL(blk_mq_can_queue
);
182 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
183 struct request
*rq
, unsigned int rw_flags
)
185 if (blk_queue_io_stat(q
))
186 rw_flags
|= REQ_IO_STAT
;
188 INIT_LIST_HEAD(&rq
->queuelist
);
189 /* csd/requeue_work/fifo_time is initialized before use */
192 rq
->cmd_flags
|= rw_flags
;
193 /* do not touch atomic flags, it needs atomic ops against the timer */
195 INIT_HLIST_NODE(&rq
->hash
);
196 RB_CLEAR_NODE(&rq
->rb_node
);
199 rq
->start_time
= jiffies
;
200 #ifdef CONFIG_BLK_CGROUP
202 set_start_time_ns(rq
);
203 rq
->io_start_time_ns
= 0;
205 rq
->nr_phys_segments
= 0;
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207 rq
->nr_integrity_segments
= 0;
210 /* tag was already set */
220 INIT_LIST_HEAD(&rq
->timeout_list
);
224 rq
->end_io_data
= NULL
;
227 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
230 static struct request
*
231 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
236 tag
= blk_mq_get_tag(data
);
237 if (tag
!= BLK_MQ_TAG_FAIL
) {
238 rq
= data
->hctx
->tags
->rqs
[tag
];
240 if (blk_mq_tag_busy(data
->hctx
)) {
241 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
242 atomic_inc(&data
->hctx
->nr_active
);
246 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
253 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
256 struct blk_mq_ctx
*ctx
;
257 struct blk_mq_hw_ctx
*hctx
;
259 struct blk_mq_alloc_data alloc_data
;
262 ret
= blk_mq_queue_enter(q
, gfp
);
266 ctx
= blk_mq_get_ctx(q
);
267 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
268 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
269 reserved
, ctx
, hctx
);
271 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
272 if (!rq
&& (gfp
& __GFP_WAIT
)) {
273 __blk_mq_run_hw_queue(hctx
);
276 ctx
= blk_mq_get_ctx(q
);
277 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
278 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
280 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
281 ctx
= alloc_data
.ctx
;
285 blk_mq_queue_exit(q
);
286 return ERR_PTR(-EWOULDBLOCK
);
290 EXPORT_SYMBOL(blk_mq_alloc_request
);
292 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
293 struct blk_mq_ctx
*ctx
, struct request
*rq
)
295 const int tag
= rq
->tag
;
296 struct request_queue
*q
= rq
->q
;
298 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
299 atomic_dec(&hctx
->nr_active
);
302 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
303 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
304 blk_mq_queue_exit(q
);
307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
309 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
311 ctx
->rq_completed
[rq_is_sync(rq
)]++;
312 __blk_mq_free_request(hctx
, ctx
, rq
);
315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
317 void blk_mq_free_request(struct request
*rq
)
319 struct blk_mq_hw_ctx
*hctx
;
320 struct request_queue
*q
= rq
->q
;
322 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
323 blk_mq_free_hctx_request(hctx
, rq
);
325 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
327 inline void __blk_mq_end_request(struct request
*rq
, int error
)
329 blk_account_io_done(rq
);
332 rq
->end_io(rq
, error
);
334 if (unlikely(blk_bidi_rq(rq
)))
335 blk_mq_free_request(rq
->next_rq
);
336 blk_mq_free_request(rq
);
339 EXPORT_SYMBOL(__blk_mq_end_request
);
341 void blk_mq_end_request(struct request
*rq
, int error
)
343 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
345 __blk_mq_end_request(rq
, error
);
347 EXPORT_SYMBOL(blk_mq_end_request
);
349 static void __blk_mq_complete_request_remote(void *data
)
351 struct request
*rq
= data
;
353 rq
->q
->softirq_done_fn(rq
);
356 static void blk_mq_ipi_complete_request(struct request
*rq
)
358 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
362 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
363 rq
->q
->softirq_done_fn(rq
);
368 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
369 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
371 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
372 rq
->csd
.func
= __blk_mq_complete_request_remote
;
375 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
377 rq
->q
->softirq_done_fn(rq
);
382 void __blk_mq_complete_request(struct request
*rq
)
384 struct request_queue
*q
= rq
->q
;
386 if (!q
->softirq_done_fn
)
387 blk_mq_end_request(rq
, rq
->errors
);
389 blk_mq_ipi_complete_request(rq
);
393 * blk_mq_complete_request - end I/O on a request
394 * @rq: the request being processed
397 * Ends all I/O on a request. It does not handle partial completions.
398 * The actual completion happens out-of-order, through a IPI handler.
400 void blk_mq_complete_request(struct request
*rq
)
402 struct request_queue
*q
= rq
->q
;
404 if (unlikely(blk_should_fake_timeout(q
)))
406 if (!blk_mark_rq_complete(rq
))
407 __blk_mq_complete_request(rq
);
409 EXPORT_SYMBOL(blk_mq_complete_request
);
411 int blk_mq_request_started(struct request
*rq
)
413 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
415 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
417 void blk_mq_start_request(struct request
*rq
)
419 struct request_queue
*q
= rq
->q
;
421 trace_block_rq_issue(q
, rq
);
423 rq
->resid_len
= blk_rq_bytes(rq
);
424 if (unlikely(blk_bidi_rq(rq
)))
425 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
430 * Ensure that ->deadline is visible before set the started
431 * flag and clear the completed flag.
433 smp_mb__before_atomic();
436 * Mark us as started and clear complete. Complete might have been
437 * set if requeue raced with timeout, which then marked it as
438 * complete. So be sure to clear complete again when we start
439 * the request, otherwise we'll ignore the completion event.
441 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
442 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
443 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
444 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
446 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
448 * Make sure space for the drain appears. We know we can do
449 * this because max_hw_segments has been adjusted to be one
450 * fewer than the device can handle.
452 rq
->nr_phys_segments
++;
455 EXPORT_SYMBOL(blk_mq_start_request
);
457 static void __blk_mq_requeue_request(struct request
*rq
)
459 struct request_queue
*q
= rq
->q
;
461 trace_block_rq_requeue(q
, rq
);
463 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
464 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
465 rq
->nr_phys_segments
--;
469 void blk_mq_requeue_request(struct request
*rq
)
471 __blk_mq_requeue_request(rq
);
473 BUG_ON(blk_queued_rq(rq
));
474 blk_mq_add_to_requeue_list(rq
, true);
476 EXPORT_SYMBOL(blk_mq_requeue_request
);
478 static void blk_mq_requeue_work(struct work_struct
*work
)
480 struct request_queue
*q
=
481 container_of(work
, struct request_queue
, requeue_work
);
483 struct request
*rq
, *next
;
486 spin_lock_irqsave(&q
->requeue_lock
, flags
);
487 list_splice_init(&q
->requeue_list
, &rq_list
);
488 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
490 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
491 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
494 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
495 list_del_init(&rq
->queuelist
);
496 blk_mq_insert_request(rq
, true, false, false);
499 while (!list_empty(&rq_list
)) {
500 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
501 list_del_init(&rq
->queuelist
);
502 blk_mq_insert_request(rq
, false, false, false);
506 * Use the start variant of queue running here, so that running
507 * the requeue work will kick stopped queues.
509 blk_mq_start_hw_queues(q
);
512 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
514 struct request_queue
*q
= rq
->q
;
518 * We abuse this flag that is otherwise used by the I/O scheduler to
519 * request head insertation from the workqueue.
521 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
523 spin_lock_irqsave(&q
->requeue_lock
, flags
);
525 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
526 list_add(&rq
->queuelist
, &q
->requeue_list
);
528 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
530 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
534 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
536 cancel_work_sync(&q
->requeue_work
);
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
540 void blk_mq_kick_requeue_list(struct request_queue
*q
)
542 kblockd_schedule_work(&q
->requeue_work
);
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
546 void blk_mq_abort_requeue_list(struct request_queue
*q
)
551 spin_lock_irqsave(&q
->requeue_lock
, flags
);
552 list_splice_init(&q
->requeue_list
, &rq_list
);
553 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
555 while (!list_empty(&rq_list
)) {
558 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
559 list_del_init(&rq
->queuelist
);
561 blk_mq_end_request(rq
, rq
->errors
);
564 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
566 static inline bool is_flush_request(struct request
*rq
,
567 struct blk_flush_queue
*fq
, unsigned int tag
)
569 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
570 fq
->flush_rq
->tag
== tag
);
573 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
575 struct request
*rq
= tags
->rqs
[tag
];
576 /* mq_ctx of flush rq is always cloned from the corresponding req */
577 struct blk_flush_queue
*fq
= blk_get_flush_queue(rq
->q
, rq
->mq_ctx
);
579 if (!is_flush_request(rq
, fq
, tag
))
584 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
586 struct blk_mq_timeout_data
{
588 unsigned int next_set
;
591 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
593 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
594 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
605 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
609 ret
= ops
->timeout(req
, reserved
);
613 __blk_mq_complete_request(req
);
615 case BLK_EH_RESET_TIMER
:
617 blk_clear_rq_complete(req
);
619 case BLK_EH_NOT_HANDLED
:
622 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
628 struct request
*rq
, void *priv
, bool reserved
)
630 struct blk_mq_timeout_data
*data
= priv
;
632 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
634 * If a request wasn't started before the queue was
635 * marked dying, kill it here or it'll go unnoticed.
637 if (unlikely(blk_queue_dying(rq
->q
))) {
639 blk_mq_complete_request(rq
);
643 if (rq
->cmd_flags
& REQ_NO_TIMEOUT
)
646 if (time_after_eq(jiffies
, rq
->deadline
)) {
647 if (!blk_mark_rq_complete(rq
))
648 blk_mq_rq_timed_out(rq
, reserved
);
649 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
650 data
->next
= rq
->deadline
;
655 static void blk_mq_rq_timer(unsigned long priv
)
657 struct request_queue
*q
= (struct request_queue
*)priv
;
658 struct blk_mq_timeout_data data
= {
662 struct blk_mq_hw_ctx
*hctx
;
665 queue_for_each_hw_ctx(q
, hctx
, i
) {
667 * If not software queues are currently mapped to this
668 * hardware queue, there's nothing to check
670 if (!blk_mq_hw_queue_mapped(hctx
))
673 blk_mq_tag_busy_iter(hctx
, blk_mq_check_expired
, &data
);
677 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
678 mod_timer(&q
->timeout
, data
.next
);
680 queue_for_each_hw_ctx(q
, hctx
, i
) {
681 /* the hctx may be unmapped, so check it here */
682 if (blk_mq_hw_queue_mapped(hctx
))
683 blk_mq_tag_idle(hctx
);
689 * Reverse check our software queue for entries that we could potentially
690 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691 * too much time checking for merges.
693 static bool blk_mq_attempt_merge(struct request_queue
*q
,
694 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
699 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
705 if (!blk_rq_merge_ok(rq
, bio
))
708 el_ret
= blk_try_merge(rq
, bio
);
709 if (el_ret
== ELEVATOR_BACK_MERGE
) {
710 if (bio_attempt_back_merge(q
, rq
, bio
)) {
715 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
716 if (bio_attempt_front_merge(q
, rq
, bio
)) {
728 * Process software queues that have been marked busy, splicing them
729 * to the for-dispatch
731 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
733 struct blk_mq_ctx
*ctx
;
736 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++) {
737 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
738 unsigned int off
, bit
;
744 off
= i
* hctx
->ctx_map
.bits_per_word
;
746 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
747 if (bit
>= bm
->depth
)
750 ctx
= hctx
->ctxs
[bit
+ off
];
751 clear_bit(bit
, &bm
->word
);
752 spin_lock(&ctx
->lock
);
753 list_splice_tail_init(&ctx
->rq_list
, list
);
754 spin_unlock(&ctx
->lock
);
762 * Run this hardware queue, pulling any software queues mapped to it in.
763 * Note that this function currently has various problems around ordering
764 * of IO. In particular, we'd like FIFO behaviour on handling existing
765 * items on the hctx->dispatch list. Ignore that for now.
767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
769 struct request_queue
*q
= hctx
->queue
;
772 LIST_HEAD(driver_list
);
773 struct list_head
*dptr
;
776 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
778 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
784 * Touch any software queue that has pending entries.
786 flush_busy_ctxs(hctx
, &rq_list
);
789 * If we have previous entries on our dispatch list, grab them
790 * and stuff them at the front for more fair dispatch.
792 if (!list_empty_careful(&hctx
->dispatch
)) {
793 spin_lock(&hctx
->lock
);
794 if (!list_empty(&hctx
->dispatch
))
795 list_splice_init(&hctx
->dispatch
, &rq_list
);
796 spin_unlock(&hctx
->lock
);
800 * Start off with dptr being NULL, so we start the first request
801 * immediately, even if we have more pending.
806 * Now process all the entries, sending them to the driver.
809 while (!list_empty(&rq_list
)) {
810 struct blk_mq_queue_data bd
;
813 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
814 list_del_init(&rq
->queuelist
);
818 bd
.last
= list_empty(&rq_list
);
820 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
822 case BLK_MQ_RQ_QUEUE_OK
:
825 case BLK_MQ_RQ_QUEUE_BUSY
:
826 list_add(&rq
->queuelist
, &rq_list
);
827 __blk_mq_requeue_request(rq
);
830 pr_err("blk-mq: bad return on queue: %d\n", ret
);
831 case BLK_MQ_RQ_QUEUE_ERROR
:
833 blk_mq_end_request(rq
, rq
->errors
);
837 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
841 * We've done the first request. If we have more than 1
842 * left in the list, set dptr to defer issue.
844 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
849 hctx
->dispatched
[0]++;
850 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
851 hctx
->dispatched
[ilog2(queued
) + 1]++;
854 * Any items that need requeuing? Stuff them into hctx->dispatch,
855 * that is where we will continue on next queue run.
857 if (!list_empty(&rq_list
)) {
858 spin_lock(&hctx
->lock
);
859 list_splice(&rq_list
, &hctx
->dispatch
);
860 spin_unlock(&hctx
->lock
);
862 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
863 * it's possible the queue is stopped and restarted again
864 * before this. Queue restart will dispatch requests. And since
865 * requests in rq_list aren't added into hctx->dispatch yet,
866 * the requests in rq_list might get lost.
868 * blk_mq_run_hw_queue() already checks the STOPPED bit
870 blk_mq_run_hw_queue(hctx
, true);
875 * It'd be great if the workqueue API had a way to pass
876 * in a mask and had some smarts for more clever placement.
877 * For now we just round-robin here, switching for every
878 * BLK_MQ_CPU_WORK_BATCH queued items.
880 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
882 if (hctx
->queue
->nr_hw_queues
== 1)
883 return WORK_CPU_UNBOUND
;
885 if (--hctx
->next_cpu_batch
<= 0) {
886 int cpu
= hctx
->next_cpu
, next_cpu
;
888 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
889 if (next_cpu
>= nr_cpu_ids
)
890 next_cpu
= cpumask_first(hctx
->cpumask
);
892 hctx
->next_cpu
= next_cpu
;
893 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
898 return hctx
->next_cpu
;
901 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
903 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
904 !blk_mq_hw_queue_mapped(hctx
)))
909 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
910 __blk_mq_run_hw_queue(hctx
);
918 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
922 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
924 struct blk_mq_hw_ctx
*hctx
;
927 queue_for_each_hw_ctx(q
, hctx
, i
) {
928 if ((!blk_mq_hctx_has_pending(hctx
) &&
929 list_empty_careful(&hctx
->dispatch
)) ||
930 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
933 blk_mq_run_hw_queue(hctx
, async
);
936 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
938 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
940 cancel_delayed_work(&hctx
->run_work
);
941 cancel_delayed_work(&hctx
->delay_work
);
942 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
944 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
946 void blk_mq_stop_hw_queues(struct request_queue
*q
)
948 struct blk_mq_hw_ctx
*hctx
;
951 queue_for_each_hw_ctx(q
, hctx
, i
)
952 blk_mq_stop_hw_queue(hctx
);
954 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
956 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
958 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
960 blk_mq_run_hw_queue(hctx
, false);
962 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
964 void blk_mq_start_hw_queues(struct request_queue
*q
)
966 struct blk_mq_hw_ctx
*hctx
;
969 queue_for_each_hw_ctx(q
, hctx
, i
)
970 blk_mq_start_hw_queue(hctx
);
972 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
974 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
976 struct blk_mq_hw_ctx
*hctx
;
979 queue_for_each_hw_ctx(q
, hctx
, i
) {
980 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
983 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
984 blk_mq_run_hw_queue(hctx
, async
);
987 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
989 static void blk_mq_run_work_fn(struct work_struct
*work
)
991 struct blk_mq_hw_ctx
*hctx
;
993 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
995 __blk_mq_run_hw_queue(hctx
);
998 static void blk_mq_delay_work_fn(struct work_struct
*work
)
1000 struct blk_mq_hw_ctx
*hctx
;
1002 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
1004 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1005 __blk_mq_run_hw_queue(hctx
);
1008 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1010 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1013 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1014 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1016 EXPORT_SYMBOL(blk_mq_delay_queue
);
1018 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1019 struct request
*rq
, bool at_head
)
1021 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1023 trace_block_rq_insert(hctx
->queue
, rq
);
1026 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1028 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1030 blk_mq_hctx_mark_pending(hctx
, ctx
);
1033 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1036 struct request_queue
*q
= rq
->q
;
1037 struct blk_mq_hw_ctx
*hctx
;
1038 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1040 current_ctx
= blk_mq_get_ctx(q
);
1041 if (!cpu_online(ctx
->cpu
))
1042 rq
->mq_ctx
= ctx
= current_ctx
;
1044 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1046 spin_lock(&ctx
->lock
);
1047 __blk_mq_insert_request(hctx
, rq
, at_head
);
1048 spin_unlock(&ctx
->lock
);
1051 blk_mq_run_hw_queue(hctx
, async
);
1053 blk_mq_put_ctx(current_ctx
);
1056 static void blk_mq_insert_requests(struct request_queue
*q
,
1057 struct blk_mq_ctx
*ctx
,
1058 struct list_head
*list
,
1063 struct blk_mq_hw_ctx
*hctx
;
1064 struct blk_mq_ctx
*current_ctx
;
1066 trace_block_unplug(q
, depth
, !from_schedule
);
1068 current_ctx
= blk_mq_get_ctx(q
);
1070 if (!cpu_online(ctx
->cpu
))
1072 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1075 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1078 spin_lock(&ctx
->lock
);
1079 while (!list_empty(list
)) {
1082 rq
= list_first_entry(list
, struct request
, queuelist
);
1083 list_del_init(&rq
->queuelist
);
1085 __blk_mq_insert_request(hctx
, rq
, false);
1087 spin_unlock(&ctx
->lock
);
1089 blk_mq_run_hw_queue(hctx
, from_schedule
);
1090 blk_mq_put_ctx(current_ctx
);
1093 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1095 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1096 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1098 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1099 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1100 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1103 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1105 struct blk_mq_ctx
*this_ctx
;
1106 struct request_queue
*this_q
;
1109 LIST_HEAD(ctx_list
);
1112 list_splice_init(&plug
->mq_list
, &list
);
1114 list_sort(NULL
, &list
, plug_ctx_cmp
);
1120 while (!list_empty(&list
)) {
1121 rq
= list_entry_rq(list
.next
);
1122 list_del_init(&rq
->queuelist
);
1124 if (rq
->mq_ctx
!= this_ctx
) {
1126 blk_mq_insert_requests(this_q
, this_ctx
,
1131 this_ctx
= rq
->mq_ctx
;
1137 list_add_tail(&rq
->queuelist
, &ctx_list
);
1141 * If 'this_ctx' is set, we know we have entries to complete
1142 * on 'ctx_list'. Do those.
1145 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1150 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1152 init_request_from_bio(rq
, bio
);
1154 if (blk_do_io_stat(rq
))
1155 blk_account_io_start(rq
, 1);
1158 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1160 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1161 !blk_queue_nomerges(hctx
->queue
);
1164 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1165 struct blk_mq_ctx
*ctx
,
1166 struct request
*rq
, struct bio
*bio
)
1168 if (!hctx_allow_merges(hctx
)) {
1169 blk_mq_bio_to_request(rq
, bio
);
1170 spin_lock(&ctx
->lock
);
1172 __blk_mq_insert_request(hctx
, rq
, false);
1173 spin_unlock(&ctx
->lock
);
1176 struct request_queue
*q
= hctx
->queue
;
1178 spin_lock(&ctx
->lock
);
1179 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1180 blk_mq_bio_to_request(rq
, bio
);
1184 spin_unlock(&ctx
->lock
);
1185 __blk_mq_free_request(hctx
, ctx
, rq
);
1190 struct blk_map_ctx
{
1191 struct blk_mq_hw_ctx
*hctx
;
1192 struct blk_mq_ctx
*ctx
;
1195 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1197 struct blk_map_ctx
*data
)
1199 struct blk_mq_hw_ctx
*hctx
;
1200 struct blk_mq_ctx
*ctx
;
1202 int rw
= bio_data_dir(bio
);
1203 struct blk_mq_alloc_data alloc_data
;
1205 if (unlikely(blk_mq_queue_enter(q
, GFP_KERNEL
))) {
1206 bio_endio(bio
, -EIO
);
1210 ctx
= blk_mq_get_ctx(q
);
1211 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1213 if (rw_is_sync(bio
->bi_rw
))
1216 trace_block_getrq(q
, bio
, rw
);
1217 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1219 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1220 if (unlikely(!rq
)) {
1221 __blk_mq_run_hw_queue(hctx
);
1222 blk_mq_put_ctx(ctx
);
1223 trace_block_sleeprq(q
, bio
, rw
);
1225 ctx
= blk_mq_get_ctx(q
);
1226 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1227 blk_mq_set_alloc_data(&alloc_data
, q
,
1228 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1229 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1230 ctx
= alloc_data
.ctx
;
1231 hctx
= alloc_data
.hctx
;
1241 * Multiple hardware queue variant. This will not use per-process plugs,
1242 * but will attempt to bypass the hctx queueing if we can go straight to
1243 * hardware for SYNC IO.
1245 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1247 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1248 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1249 struct blk_map_ctx data
;
1252 blk_queue_bounce(q
, &bio
);
1254 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1255 bio_endio(bio
, -EIO
);
1259 rq
= blk_mq_map_request(q
, bio
, &data
);
1263 if (unlikely(is_flush_fua
)) {
1264 blk_mq_bio_to_request(rq
, bio
);
1265 blk_insert_flush(rq
);
1270 * If the driver supports defer issued based on 'last', then
1271 * queue it up like normal since we can potentially save some
1274 if (is_sync
&& !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1275 struct blk_mq_queue_data bd
= {
1282 blk_mq_bio_to_request(rq
, bio
);
1285 * For OK queue, we are done. For error, kill it. Any other
1286 * error (busy), just add it to our list as we previously
1289 ret
= q
->mq_ops
->queue_rq(data
.hctx
, &bd
);
1290 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1293 __blk_mq_requeue_request(rq
);
1295 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1297 blk_mq_end_request(rq
, rq
->errors
);
1303 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1305 * For a SYNC request, send it to the hardware immediately. For
1306 * an ASYNC request, just ensure that we run it later on. The
1307 * latter allows for merging opportunities and more efficient
1311 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1314 blk_mq_put_ctx(data
.ctx
);
1318 * Single hardware queue variant. This will attempt to use any per-process
1319 * plug for merging and IO deferral.
1321 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1323 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1324 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1325 unsigned int use_plug
, request_count
= 0;
1326 struct blk_map_ctx data
;
1330 * If we have multiple hardware queues, just go directly to
1331 * one of those for sync IO.
1333 use_plug
= !is_flush_fua
&& !is_sync
;
1335 blk_queue_bounce(q
, &bio
);
1337 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1338 bio_endio(bio
, -EIO
);
1342 if (use_plug
&& !blk_queue_nomerges(q
) &&
1343 blk_attempt_plug_merge(q
, bio
, &request_count
))
1346 rq
= blk_mq_map_request(q
, bio
, &data
);
1350 if (unlikely(is_flush_fua
)) {
1351 blk_mq_bio_to_request(rq
, bio
);
1352 blk_insert_flush(rq
);
1357 * A task plug currently exists. Since this is completely lockless,
1358 * utilize that to temporarily store requests until the task is
1359 * either done or scheduled away.
1362 struct blk_plug
*plug
= current
->plug
;
1365 blk_mq_bio_to_request(rq
, bio
);
1366 if (list_empty(&plug
->mq_list
))
1367 trace_block_plug(q
);
1368 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1369 blk_flush_plug_list(plug
, false);
1370 trace_block_plug(q
);
1372 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1373 blk_mq_put_ctx(data
.ctx
);
1378 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1380 * For a SYNC request, send it to the hardware immediately. For
1381 * an ASYNC request, just ensure that we run it later on. The
1382 * latter allows for merging opportunities and more efficient
1386 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1389 blk_mq_put_ctx(data
.ctx
);
1393 * Default mapping to a software queue, since we use one per CPU.
1395 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1397 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1399 EXPORT_SYMBOL(blk_mq_map_queue
);
1401 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1402 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1406 if (tags
->rqs
&& set
->ops
->exit_request
) {
1409 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1412 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1414 tags
->rqs
[i
] = NULL
;
1418 while (!list_empty(&tags
->page_list
)) {
1419 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1420 list_del_init(&page
->lru
);
1421 __free_pages(page
, page
->private);
1426 blk_mq_free_tags(tags
);
1429 static size_t order_to_size(unsigned int order
)
1431 return (size_t)PAGE_SIZE
<< order
;
1434 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1435 unsigned int hctx_idx
)
1437 struct blk_mq_tags
*tags
;
1438 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1439 size_t rq_size
, left
;
1441 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1443 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1447 INIT_LIST_HEAD(&tags
->page_list
);
1449 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1450 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1453 blk_mq_free_tags(tags
);
1458 * rq_size is the size of the request plus driver payload, rounded
1459 * to the cacheline size
1461 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1463 left
= rq_size
* set
->queue_depth
;
1465 for (i
= 0; i
< set
->queue_depth
; ) {
1466 int this_order
= max_order
;
1471 while (left
< order_to_size(this_order
- 1) && this_order
)
1475 page
= alloc_pages_node(set
->numa_node
,
1476 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1482 if (order_to_size(this_order
) < rq_size
)
1489 page
->private = this_order
;
1490 list_add_tail(&page
->lru
, &tags
->page_list
);
1492 p
= page_address(page
);
1493 entries_per_page
= order_to_size(this_order
) / rq_size
;
1494 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1495 left
-= to_do
* rq_size
;
1496 for (j
= 0; j
< to_do
; j
++) {
1498 if (set
->ops
->init_request
) {
1499 if (set
->ops
->init_request(set
->driver_data
,
1500 tags
->rqs
[i
], hctx_idx
, i
,
1502 tags
->rqs
[i
] = NULL
;
1515 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1519 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1524 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1526 unsigned int bpw
= 8, total
, num_maps
, i
;
1528 bitmap
->bits_per_word
= bpw
;
1530 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1531 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1537 for (i
= 0; i
< num_maps
; i
++) {
1538 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1539 total
-= bitmap
->map
[i
].depth
;
1545 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1547 struct request_queue
*q
= hctx
->queue
;
1548 struct blk_mq_ctx
*ctx
;
1552 * Move ctx entries to new CPU, if this one is going away.
1554 ctx
= __blk_mq_get_ctx(q
, cpu
);
1556 spin_lock(&ctx
->lock
);
1557 if (!list_empty(&ctx
->rq_list
)) {
1558 list_splice_init(&ctx
->rq_list
, &tmp
);
1559 blk_mq_hctx_clear_pending(hctx
, ctx
);
1561 spin_unlock(&ctx
->lock
);
1563 if (list_empty(&tmp
))
1566 ctx
= blk_mq_get_ctx(q
);
1567 spin_lock(&ctx
->lock
);
1569 while (!list_empty(&tmp
)) {
1572 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1574 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1577 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1578 blk_mq_hctx_mark_pending(hctx
, ctx
);
1580 spin_unlock(&ctx
->lock
);
1582 blk_mq_run_hw_queue(hctx
, true);
1583 blk_mq_put_ctx(ctx
);
1587 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1590 struct blk_mq_hw_ctx
*hctx
= data
;
1592 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1593 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1596 * In case of CPU online, tags may be reallocated
1597 * in blk_mq_map_swqueue() after mapping is updated.
1603 /* hctx->ctxs will be freed in queue's release handler */
1604 static void blk_mq_exit_hctx(struct request_queue
*q
,
1605 struct blk_mq_tag_set
*set
,
1606 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1608 unsigned flush_start_tag
= set
->queue_depth
;
1610 blk_mq_tag_idle(hctx
);
1612 if (set
->ops
->exit_request
)
1613 set
->ops
->exit_request(set
->driver_data
,
1614 hctx
->fq
->flush_rq
, hctx_idx
,
1615 flush_start_tag
+ hctx_idx
);
1617 if (set
->ops
->exit_hctx
)
1618 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1620 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1621 blk_free_flush_queue(hctx
->fq
);
1622 blk_mq_free_bitmap(&hctx
->ctx_map
);
1625 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1626 struct blk_mq_tag_set
*set
, int nr_queue
)
1628 struct blk_mq_hw_ctx
*hctx
;
1631 queue_for_each_hw_ctx(q
, hctx
, i
) {
1634 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1638 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1639 struct blk_mq_tag_set
*set
)
1641 struct blk_mq_hw_ctx
*hctx
;
1644 queue_for_each_hw_ctx(q
, hctx
, i
)
1645 free_cpumask_var(hctx
->cpumask
);
1648 static int blk_mq_init_hctx(struct request_queue
*q
,
1649 struct blk_mq_tag_set
*set
,
1650 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1653 unsigned flush_start_tag
= set
->queue_depth
;
1655 node
= hctx
->numa_node
;
1656 if (node
== NUMA_NO_NODE
)
1657 node
= hctx
->numa_node
= set
->numa_node
;
1659 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1660 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1661 spin_lock_init(&hctx
->lock
);
1662 INIT_LIST_HEAD(&hctx
->dispatch
);
1664 hctx
->queue_num
= hctx_idx
;
1665 hctx
->flags
= set
->flags
;
1667 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1668 blk_mq_hctx_notify
, hctx
);
1669 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1671 hctx
->tags
= set
->tags
[hctx_idx
];
1674 * Allocate space for all possible cpus to avoid allocation at
1677 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1680 goto unregister_cpu_notifier
;
1682 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1687 if (set
->ops
->init_hctx
&&
1688 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1691 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1695 if (set
->ops
->init_request
&&
1696 set
->ops
->init_request(set
->driver_data
,
1697 hctx
->fq
->flush_rq
, hctx_idx
,
1698 flush_start_tag
+ hctx_idx
, node
))
1706 if (set
->ops
->exit_hctx
)
1707 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1709 blk_mq_free_bitmap(&hctx
->ctx_map
);
1712 unregister_cpu_notifier
:
1713 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1718 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1719 struct blk_mq_tag_set
*set
)
1721 struct blk_mq_hw_ctx
*hctx
;
1725 * Initialize hardware queues
1727 queue_for_each_hw_ctx(q
, hctx
, i
) {
1728 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1732 if (i
== q
->nr_hw_queues
)
1738 blk_mq_exit_hw_queues(q
, set
, i
);
1743 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1744 unsigned int nr_hw_queues
)
1748 for_each_possible_cpu(i
) {
1749 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1750 struct blk_mq_hw_ctx
*hctx
;
1752 memset(__ctx
, 0, sizeof(*__ctx
));
1754 spin_lock_init(&__ctx
->lock
);
1755 INIT_LIST_HEAD(&__ctx
->rq_list
);
1758 /* If the cpu isn't online, the cpu is mapped to first hctx */
1762 hctx
= q
->mq_ops
->map_queue(q
, i
);
1765 * Set local node, IFF we have more than one hw queue. If
1766 * not, we remain on the home node of the device
1768 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1769 hctx
->numa_node
= cpu_to_node(i
);
1773 static void blk_mq_map_swqueue(struct request_queue
*q
)
1776 struct blk_mq_hw_ctx
*hctx
;
1777 struct blk_mq_ctx
*ctx
;
1778 struct blk_mq_tag_set
*set
= q
->tag_set
;
1780 queue_for_each_hw_ctx(q
, hctx
, i
) {
1781 cpumask_clear(hctx
->cpumask
);
1786 * Map software to hardware queues
1788 queue_for_each_ctx(q
, ctx
, i
) {
1789 /* If the cpu isn't online, the cpu is mapped to first hctx */
1793 hctx
= q
->mq_ops
->map_queue(q
, i
);
1794 cpumask_set_cpu(i
, hctx
->cpumask
);
1795 ctx
->index_hw
= hctx
->nr_ctx
;
1796 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1799 queue_for_each_hw_ctx(q
, hctx
, i
) {
1800 struct blk_mq_ctxmap
*map
= &hctx
->ctx_map
;
1803 * If no software queues are mapped to this hardware queue,
1804 * disable it and free the request entries.
1806 if (!hctx
->nr_ctx
) {
1808 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1809 set
->tags
[i
] = NULL
;
1815 /* unmapped hw queue can be remapped after CPU topo changed */
1817 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1818 hctx
->tags
= set
->tags
[i
];
1819 WARN_ON(!hctx
->tags
);
1822 * Set the map size to the number of mapped software queues.
1823 * This is more accurate and more efficient than looping
1824 * over all possibly mapped software queues.
1826 map
->size
= DIV_ROUND_UP(hctx
->nr_ctx
, map
->bits_per_word
);
1829 * Initialize batch roundrobin counts
1831 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1832 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1836 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1838 struct blk_mq_hw_ctx
*hctx
;
1839 struct request_queue
*q
;
1843 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1848 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1849 blk_mq_freeze_queue(q
);
1851 queue_for_each_hw_ctx(q
, hctx
, i
) {
1853 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1855 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1857 blk_mq_unfreeze_queue(q
);
1861 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1863 struct blk_mq_tag_set
*set
= q
->tag_set
;
1865 mutex_lock(&set
->tag_list_lock
);
1866 list_del_init(&q
->tag_set_list
);
1867 blk_mq_update_tag_set_depth(set
);
1868 mutex_unlock(&set
->tag_list_lock
);
1871 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1872 struct request_queue
*q
)
1876 mutex_lock(&set
->tag_list_lock
);
1877 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1878 blk_mq_update_tag_set_depth(set
);
1879 mutex_unlock(&set
->tag_list_lock
);
1883 * It is the actual release handler for mq, but we do it from
1884 * request queue's release handler for avoiding use-after-free
1885 * and headache because q->mq_kobj shouldn't have been introduced,
1886 * but we can't group ctx/kctx kobj without it.
1888 void blk_mq_release(struct request_queue
*q
)
1890 struct blk_mq_hw_ctx
*hctx
;
1893 /* hctx kobj stays in hctx */
1894 queue_for_each_hw_ctx(q
, hctx
, i
) {
1901 kfree(q
->queue_hw_ctx
);
1903 /* ctx kobj stays in queue_ctx */
1904 free_percpu(q
->queue_ctx
);
1907 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1909 struct request_queue
*uninit_q
, *q
;
1911 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1913 return ERR_PTR(-ENOMEM
);
1915 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1917 blk_cleanup_queue(uninit_q
);
1921 EXPORT_SYMBOL(blk_mq_init_queue
);
1923 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
1924 struct request_queue
*q
)
1926 struct blk_mq_hw_ctx
**hctxs
;
1927 struct blk_mq_ctx __percpu
*ctx
;
1931 ctx
= alloc_percpu(struct blk_mq_ctx
);
1933 return ERR_PTR(-ENOMEM
);
1935 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1941 map
= blk_mq_make_queue_map(set
);
1945 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1946 int node
= blk_mq_hw_queue_to_node(map
, i
);
1948 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1953 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1957 atomic_set(&hctxs
[i
]->nr_active
, 0);
1958 hctxs
[i
]->numa_node
= node
;
1959 hctxs
[i
]->queue_num
= i
;
1963 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1964 * See blk_register_queue() for details.
1966 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1967 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1970 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1971 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
1973 q
->nr_queues
= nr_cpu_ids
;
1974 q
->nr_hw_queues
= set
->nr_hw_queues
;
1978 q
->queue_hw_ctx
= hctxs
;
1980 q
->mq_ops
= set
->ops
;
1981 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1983 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1984 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1986 q
->sg_reserved_size
= INT_MAX
;
1988 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1989 INIT_LIST_HEAD(&q
->requeue_list
);
1990 spin_lock_init(&q
->requeue_lock
);
1992 if (q
->nr_hw_queues
> 1)
1993 blk_queue_make_request(q
, blk_mq_make_request
);
1995 blk_queue_make_request(q
, blk_sq_make_request
);
1998 * Do this after blk_queue_make_request() overrides it...
2000 q
->nr_requests
= set
->queue_depth
;
2002 if (set
->ops
->complete
)
2003 blk_queue_softirq_done(q
, set
->ops
->complete
);
2005 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2007 if (blk_mq_init_hw_queues(q
, set
))
2010 mutex_lock(&all_q_mutex
);
2011 list_add_tail(&q
->all_q_node
, &all_q_list
);
2012 mutex_unlock(&all_q_mutex
);
2014 blk_mq_add_queue_tag_set(set
, q
);
2016 blk_mq_map_swqueue(q
);
2022 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2025 free_cpumask_var(hctxs
[i
]->cpumask
);
2032 return ERR_PTR(-ENOMEM
);
2034 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2036 void blk_mq_free_queue(struct request_queue
*q
)
2038 struct blk_mq_tag_set
*set
= q
->tag_set
;
2040 blk_mq_del_queue_tag_set(q
);
2042 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2043 blk_mq_free_hw_queues(q
, set
);
2045 percpu_ref_exit(&q
->mq_usage_counter
);
2051 mutex_lock(&all_q_mutex
);
2052 list_del_init(&q
->all_q_node
);
2053 mutex_unlock(&all_q_mutex
);
2056 /* Basically redo blk_mq_init_queue with queue frozen */
2057 static void blk_mq_queue_reinit(struct request_queue
*q
)
2059 WARN_ON_ONCE(!q
->mq_freeze_depth
);
2061 blk_mq_sysfs_unregister(q
);
2063 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
2066 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2067 * we should change hctx numa_node according to new topology (this
2068 * involves free and re-allocate memory, worthy doing?)
2071 blk_mq_map_swqueue(q
);
2073 blk_mq_sysfs_register(q
);
2076 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2077 unsigned long action
, void *hcpu
)
2079 struct request_queue
*q
;
2082 * Before new mappings are established, hotadded cpu might already
2083 * start handling requests. This doesn't break anything as we map
2084 * offline CPUs to first hardware queue. We will re-init the queue
2085 * below to get optimal settings.
2087 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
2088 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
2091 mutex_lock(&all_q_mutex
);
2094 * We need to freeze and reinit all existing queues. Freezing
2095 * involves synchronous wait for an RCU grace period and doing it
2096 * one by one may take a long time. Start freezing all queues in
2097 * one swoop and then wait for the completions so that freezing can
2098 * take place in parallel.
2100 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2101 blk_mq_freeze_queue_start(q
);
2102 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2103 blk_mq_freeze_queue_wait(q
);
2106 * timeout handler can't touch hw queue during the
2109 del_timer_sync(&q
->timeout
);
2112 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2113 blk_mq_queue_reinit(q
);
2115 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2116 blk_mq_unfreeze_queue(q
);
2118 mutex_unlock(&all_q_mutex
);
2122 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2126 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2127 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2136 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2142 * Allocate the request maps associated with this tag_set. Note that this
2143 * may reduce the depth asked for, if memory is tight. set->queue_depth
2144 * will be updated to reflect the allocated depth.
2146 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2151 depth
= set
->queue_depth
;
2153 err
= __blk_mq_alloc_rq_maps(set
);
2157 set
->queue_depth
>>= 1;
2158 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2162 } while (set
->queue_depth
);
2164 if (!set
->queue_depth
|| err
) {
2165 pr_err("blk-mq: failed to allocate request map\n");
2169 if (depth
!= set
->queue_depth
)
2170 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2171 depth
, set
->queue_depth
);
2177 * Alloc a tag set to be associated with one or more request queues.
2178 * May fail with EINVAL for various error conditions. May adjust the
2179 * requested depth down, if if it too large. In that case, the set
2180 * value will be stored in set->queue_depth.
2182 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2184 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2186 if (!set
->nr_hw_queues
)
2188 if (!set
->queue_depth
)
2190 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2193 if (!set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2196 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2197 pr_info("blk-mq: reduced tag depth to %u\n",
2199 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2203 * If a crashdump is active, then we are potentially in a very
2204 * memory constrained environment. Limit us to 1 queue and
2205 * 64 tags to prevent using too much memory.
2207 if (is_kdump_kernel()) {
2208 set
->nr_hw_queues
= 1;
2209 set
->queue_depth
= min(64U, set
->queue_depth
);
2212 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2213 sizeof(struct blk_mq_tags
*),
2214 GFP_KERNEL
, set
->numa_node
);
2218 if (blk_mq_alloc_rq_maps(set
))
2221 mutex_init(&set
->tag_list_lock
);
2222 INIT_LIST_HEAD(&set
->tag_list
);
2230 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2232 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2236 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2238 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2244 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2246 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2248 struct blk_mq_tag_set
*set
= q
->tag_set
;
2249 struct blk_mq_hw_ctx
*hctx
;
2252 if (!set
|| nr
> set
->queue_depth
)
2256 queue_for_each_hw_ctx(q
, hctx
, i
) {
2257 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2263 q
->nr_requests
= nr
;
2268 void blk_mq_disable_hotplug(void)
2270 mutex_lock(&all_q_mutex
);
2273 void blk_mq_enable_hotplug(void)
2275 mutex_unlock(&all_q_mutex
);
2278 static int __init
blk_mq_init(void)
2282 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2286 subsys_initcall(blk_mq_init
);