gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / crypto / asymmetric_keys / x509_public_key.c
blob727752851dcfbd4cfd5642bf922df8561015f222
1 /* Instantiate a public key crypto key from an X.509 Certificate
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "X.509: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/mpi.h>
18 #include <linux/asn1_decoder.h>
19 #include <keys/asymmetric-subtype.h>
20 #include <keys/asymmetric-parser.h>
21 #include <keys/system_keyring.h>
22 #include <crypto/hash.h>
23 #include "asymmetric_keys.h"
24 #include "public_key.h"
25 #include "x509_parser.h"
27 static bool use_builtin_keys;
28 static struct asymmetric_key_id *ca_keyid;
30 #ifndef MODULE
31 static struct {
32 struct asymmetric_key_id id;
33 unsigned char data[10];
34 } cakey;
36 static int __init ca_keys_setup(char *str)
38 if (!str) /* default system keyring */
39 return 1;
41 if (strncmp(str, "id:", 3) == 0) {
42 struct asymmetric_key_id *p = &cakey.id;
43 size_t hexlen = (strlen(str) - 3) / 2;
44 int ret;
46 if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
47 pr_err("Missing or invalid ca_keys id\n");
48 return 1;
51 ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
52 if (ret < 0)
53 pr_err("Unparsable ca_keys id hex string\n");
54 else
55 ca_keyid = p; /* owner key 'id:xxxxxx' */
56 } else if (strcmp(str, "builtin") == 0) {
57 use_builtin_keys = true;
60 return 1;
62 __setup("ca_keys=", ca_keys_setup);
63 #endif
65 /**
66 * x509_request_asymmetric_key - Request a key by X.509 certificate params.
67 * @keyring: The keys to search.
68 * @kid: The key ID.
69 * @partial: Use partial match if true, exact if false.
71 * Find a key in the given keyring by subject name and key ID. These might,
72 * for instance, be the issuer name and the authority key ID of an X.509
73 * certificate that needs to be verified.
75 struct key *x509_request_asymmetric_key(struct key *keyring,
76 const struct asymmetric_key_id *kid,
77 bool partial)
79 key_ref_t key;
80 char *id, *p;
82 /* Construct an identifier "id:<keyid>". */
83 p = id = kmalloc(2 + 1 + kid->len * 2 + 1, GFP_KERNEL);
84 if (!id)
85 return ERR_PTR(-ENOMEM);
87 if (partial) {
88 *p++ = 'i';
89 *p++ = 'd';
90 } else {
91 *p++ = 'e';
92 *p++ = 'x';
94 *p++ = ':';
95 p = bin2hex(p, kid->data, kid->len);
96 *p = 0;
98 pr_debug("Look up: \"%s\"\n", id);
100 key = keyring_search(make_key_ref(keyring, 1),
101 &key_type_asymmetric, id);
102 if (IS_ERR(key))
103 pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
104 kfree(id);
106 if (IS_ERR(key)) {
107 switch (PTR_ERR(key)) {
108 /* Hide some search errors */
109 case -EACCES:
110 case -ENOTDIR:
111 case -EAGAIN:
112 return ERR_PTR(-ENOKEY);
113 default:
114 return ERR_CAST(key);
118 pr_devel("<==%s() = 0 [%x]\n", __func__,
119 key_serial(key_ref_to_ptr(key)));
120 return key_ref_to_ptr(key);
122 EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
125 * Set up the signature parameters in an X.509 certificate. This involves
126 * digesting the signed data and extracting the signature.
128 int x509_get_sig_params(struct x509_certificate *cert)
130 struct crypto_shash *tfm;
131 struct shash_desc *desc;
132 size_t digest_size, desc_size;
133 void *digest;
134 int ret;
136 pr_devel("==>%s()\n", __func__);
138 if (cert->unsupported_crypto)
139 return -ENOPKG;
140 if (cert->sig.rsa.s)
141 return 0;
143 cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
144 if (!cert->sig.rsa.s)
145 return -ENOMEM;
146 cert->sig.nr_mpi = 1;
148 /* Allocate the hashing algorithm we're going to need and find out how
149 * big the hash operational data will be.
151 tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
152 if (IS_ERR(tfm)) {
153 if (PTR_ERR(tfm) == -ENOENT) {
154 cert->unsupported_crypto = true;
155 return -ENOPKG;
157 return PTR_ERR(tfm);
160 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
161 digest_size = crypto_shash_digestsize(tfm);
163 /* We allocate the hash operational data storage on the end of the
164 * digest storage space.
166 ret = -ENOMEM;
167 digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
168 if (!digest)
169 goto error;
171 cert->sig.digest = digest;
172 cert->sig.digest_size = digest_size;
174 desc = digest + digest_size;
175 desc->tfm = tfm;
176 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
178 ret = crypto_shash_init(desc);
179 if (ret < 0)
180 goto error;
181 might_sleep();
182 ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
183 error:
184 crypto_free_shash(tfm);
185 pr_devel("<==%s() = %d\n", __func__, ret);
186 return ret;
188 EXPORT_SYMBOL_GPL(x509_get_sig_params);
191 * Check the signature on a certificate using the provided public key
193 int x509_check_signature(const struct public_key *pub,
194 struct x509_certificate *cert)
196 int ret;
198 pr_devel("==>%s()\n", __func__);
200 ret = x509_get_sig_params(cert);
201 if (ret < 0)
202 return ret;
204 ret = public_key_verify_signature(pub, &cert->sig);
205 if (ret == -ENOPKG)
206 cert->unsupported_crypto = true;
207 pr_debug("Cert Verification: %d\n", ret);
208 return ret;
210 EXPORT_SYMBOL_GPL(x509_check_signature);
213 * Check the new certificate against the ones in the trust keyring. If one of
214 * those is the signing key and validates the new certificate, then mark the
215 * new certificate as being trusted.
217 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
218 * find a matching parent certificate in the trusted list and an error if there
219 * is a matching certificate but the signature check fails.
221 static int x509_validate_trust(struct x509_certificate *cert,
222 struct key *trust_keyring)
224 struct key *key;
225 int ret = 1;
227 if (!trust_keyring)
228 return -EOPNOTSUPP;
230 if (ca_keyid && !asymmetric_key_id_partial(cert->akid_skid, ca_keyid))
231 return -EPERM;
233 key = x509_request_asymmetric_key(trust_keyring, cert->akid_skid,
234 false);
235 if (!IS_ERR(key)) {
236 if (!use_builtin_keys
237 || test_bit(KEY_FLAG_BUILTIN, &key->flags))
238 ret = x509_check_signature(key->payload.data, cert);
239 key_put(key);
241 return ret;
245 * Attempt to parse a data blob for a key as an X509 certificate.
247 static int x509_key_preparse(struct key_preparsed_payload *prep)
249 struct asymmetric_key_ids *kids;
250 struct x509_certificate *cert;
251 const char *q;
252 size_t srlen, sulen;
253 char *desc = NULL, *p;
254 int ret;
256 cert = x509_cert_parse(prep->data, prep->datalen);
257 if (IS_ERR(cert))
258 return PTR_ERR(cert);
260 pr_devel("Cert Issuer: %s\n", cert->issuer);
261 pr_devel("Cert Subject: %s\n", cert->subject);
263 if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
264 cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
265 cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
266 !pkey_algo[cert->pub->pkey_algo] ||
267 !pkey_algo[cert->sig.pkey_algo] ||
268 !hash_algo_name[cert->sig.pkey_hash_algo]) {
269 ret = -ENOPKG;
270 goto error_free_cert;
273 pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
274 pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
275 pr_devel("Cert Signature: %s + %s\n",
276 pkey_algo_name[cert->sig.pkey_algo],
277 hash_algo_name[cert->sig.pkey_hash_algo]);
279 cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
280 cert->pub->id_type = PKEY_ID_X509;
282 /* Check the signature on the key if it appears to be self-signed */
283 if (!cert->akid_skid ||
284 asymmetric_key_id_same(cert->skid, cert->akid_skid)) {
285 ret = x509_check_signature(cert->pub, cert); /* self-signed */
286 if (ret < 0)
287 goto error_free_cert;
288 } else if (!prep->trusted) {
289 ret = x509_validate_trust(cert, get_system_trusted_keyring());
290 if (!ret)
291 prep->trusted = 1;
294 /* Propose a description */
295 sulen = strlen(cert->subject);
296 if (cert->raw_skid) {
297 srlen = cert->raw_skid_size;
298 q = cert->raw_skid;
299 } else {
300 srlen = cert->raw_serial_size;
301 q = cert->raw_serial;
304 ret = -ENOMEM;
305 desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
306 if (!desc)
307 goto error_free_cert;
308 p = memcpy(desc, cert->subject, sulen);
309 p += sulen;
310 *p++ = ':';
311 *p++ = ' ';
312 p = bin2hex(p, q, srlen);
313 *p = 0;
315 kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
316 if (!kids)
317 goto error_free_desc;
318 kids->id[0] = cert->id;
319 kids->id[1] = cert->skid;
321 /* We're pinning the module by being linked against it */
322 __module_get(public_key_subtype.owner);
323 prep->type_data[0] = &public_key_subtype;
324 prep->type_data[1] = kids;
325 prep->payload[0] = cert->pub;
326 prep->description = desc;
327 prep->quotalen = 100;
329 /* We've finished with the certificate */
330 cert->pub = NULL;
331 cert->id = NULL;
332 cert->skid = NULL;
333 desc = NULL;
334 ret = 0;
336 error_free_desc:
337 kfree(desc);
338 error_free_cert:
339 x509_free_certificate(cert);
340 return ret;
343 static struct asymmetric_key_parser x509_key_parser = {
344 .owner = THIS_MODULE,
345 .name = "x509",
346 .parse = x509_key_preparse,
350 * Module stuff
352 static int __init x509_key_init(void)
354 return register_asymmetric_key_parser(&x509_key_parser);
357 static void __exit x509_key_exit(void)
359 unregister_asymmetric_key_parser(&x509_key_parser);
362 module_init(x509_key_init);
363 module_exit(x509_key_exit);
365 MODULE_DESCRIPTION("X.509 certificate parser");
366 MODULE_LICENSE("GPL");