gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / clocksource / arm_arch_timer.c
blob0aa135ddbf8069e780c60f34c05a44c9e0fc0dfb
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
30 #include <clocksource/arm_arch_timer.h>
32 #define CNTTIDR 0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35 #define CNTVCT_LO 0x08
36 #define CNTVCT_HI 0x0c
37 #define CNTFRQ 0x10
38 #define CNTP_TVAL 0x28
39 #define CNTP_CTL 0x2c
40 #define CNTV_TVAL 0x38
41 #define CNTV_CTL 0x3c
43 #define ARCH_CP15_TIMER BIT(0)
44 #define ARCH_MEM_TIMER BIT(1)
45 static unsigned arch_timers_present __initdata;
47 static void __iomem *arch_counter_base;
49 struct arch_timer {
50 void __iomem *base;
51 struct clock_event_device evt;
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
56 static u32 arch_timer_rate;
58 enum ppi_nr {
59 PHYS_SECURE_PPI,
60 PHYS_NONSECURE_PPI,
61 VIRT_PPI,
62 HYP_PPI,
63 MAX_TIMER_PPI
66 static int arch_timer_ppi[MAX_TIMER_PPI];
68 static struct clock_event_device __percpu *arch_timer_evt;
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
75 * Architected system timer support.
78 static __always_inline
79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80 struct clock_event_device *clk)
82 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83 struct arch_timer *timer = to_arch_timer(clk);
84 switch (reg) {
85 case ARCH_TIMER_REG_CTRL:
86 writel_relaxed(val, timer->base + CNTP_CTL);
87 break;
88 case ARCH_TIMER_REG_TVAL:
89 writel_relaxed(val, timer->base + CNTP_TVAL);
90 break;
92 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93 struct arch_timer *timer = to_arch_timer(clk);
94 switch (reg) {
95 case ARCH_TIMER_REG_CTRL:
96 writel_relaxed(val, timer->base + CNTV_CTL);
97 break;
98 case ARCH_TIMER_REG_TVAL:
99 writel_relaxed(val, timer->base + CNTV_TVAL);
100 break;
102 } else {
103 arch_timer_reg_write_cp15(access, reg, val);
107 static __always_inline
108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109 struct clock_event_device *clk)
111 u32 val;
113 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114 struct arch_timer *timer = to_arch_timer(clk);
115 switch (reg) {
116 case ARCH_TIMER_REG_CTRL:
117 val = readl_relaxed(timer->base + CNTP_CTL);
118 break;
119 case ARCH_TIMER_REG_TVAL:
120 val = readl_relaxed(timer->base + CNTP_TVAL);
121 break;
123 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124 struct arch_timer *timer = to_arch_timer(clk);
125 switch (reg) {
126 case ARCH_TIMER_REG_CTRL:
127 val = readl_relaxed(timer->base + CNTV_CTL);
128 break;
129 case ARCH_TIMER_REG_TVAL:
130 val = readl_relaxed(timer->base + CNTV_TVAL);
131 break;
133 } else {
134 val = arch_timer_reg_read_cp15(access, reg);
137 return val;
140 static __always_inline irqreturn_t timer_handler(const int access,
141 struct clock_event_device *evt)
143 unsigned long ctrl;
145 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149 evt->event_handler(evt);
150 return IRQ_HANDLED;
153 return IRQ_NONE;
156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
158 struct clock_event_device *evt = dev_id;
160 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
165 struct clock_event_device *evt = dev_id;
167 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
172 struct clock_event_device *evt = dev_id;
174 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
179 struct clock_event_device *evt = dev_id;
181 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
184 static __always_inline void timer_set_mode(const int access, int mode,
185 struct clock_event_device *clk)
187 unsigned long ctrl;
188 switch (mode) {
189 case CLOCK_EVT_MODE_UNUSED:
190 case CLOCK_EVT_MODE_SHUTDOWN:
191 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
192 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
193 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
194 break;
195 default:
196 break;
200 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
201 struct clock_event_device *clk)
203 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
206 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
207 struct clock_event_device *clk)
209 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
212 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
213 struct clock_event_device *clk)
215 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
218 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
219 struct clock_event_device *clk)
221 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
224 static __always_inline void set_next_event(const int access, unsigned long evt,
225 struct clock_event_device *clk)
227 unsigned long ctrl;
228 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229 ctrl |= ARCH_TIMER_CTRL_ENABLE;
230 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
235 static int arch_timer_set_next_event_virt(unsigned long evt,
236 struct clock_event_device *clk)
238 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239 return 0;
242 static int arch_timer_set_next_event_phys(unsigned long evt,
243 struct clock_event_device *clk)
245 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246 return 0;
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250 struct clock_event_device *clk)
252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253 return 0;
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257 struct clock_event_device *clk)
259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260 return 0;
263 static void __arch_timer_setup(unsigned type,
264 struct clock_event_device *clk)
266 clk->features = CLOCK_EVT_FEAT_ONESHOT;
268 if (type == ARCH_CP15_TIMER) {
269 if (arch_timer_c3stop)
270 clk->features |= CLOCK_EVT_FEAT_C3STOP;
271 clk->name = "arch_sys_timer";
272 clk->rating = 450;
273 clk->cpumask = cpumask_of(smp_processor_id());
274 if (arch_timer_use_virtual) {
275 clk->irq = arch_timer_ppi[VIRT_PPI];
276 clk->set_mode = arch_timer_set_mode_virt;
277 clk->set_next_event = arch_timer_set_next_event_virt;
278 } else {
279 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
280 clk->set_mode = arch_timer_set_mode_phys;
281 clk->set_next_event = arch_timer_set_next_event_phys;
283 } else {
284 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
285 clk->name = "arch_mem_timer";
286 clk->rating = 400;
287 clk->cpumask = cpu_all_mask;
288 if (arch_timer_mem_use_virtual) {
289 clk->set_mode = arch_timer_set_mode_virt_mem;
290 clk->set_next_event =
291 arch_timer_set_next_event_virt_mem;
292 } else {
293 clk->set_mode = arch_timer_set_mode_phys_mem;
294 clk->set_next_event =
295 arch_timer_set_next_event_phys_mem;
299 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
301 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
304 static void arch_timer_evtstrm_enable(int divider)
306 u32 cntkctl = arch_timer_get_cntkctl();
308 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
309 /* Set the divider and enable virtual event stream */
310 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
311 | ARCH_TIMER_VIRT_EVT_EN;
312 arch_timer_set_cntkctl(cntkctl);
313 elf_hwcap |= HWCAP_EVTSTRM;
314 #ifdef CONFIG_COMPAT
315 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
316 #endif
319 static void arch_timer_configure_evtstream(void)
321 int evt_stream_div, pos;
323 /* Find the closest power of two to the divisor */
324 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
325 pos = fls(evt_stream_div);
326 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
327 pos--;
328 /* enable event stream */
329 arch_timer_evtstrm_enable(min(pos, 15));
332 static void arch_counter_set_user_access(void)
334 u32 cntkctl = arch_timer_get_cntkctl();
336 /* Disable user access to the timers and the physical counter */
337 /* Also disable virtual event stream */
338 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
339 | ARCH_TIMER_USR_VT_ACCESS_EN
340 | ARCH_TIMER_VIRT_EVT_EN
341 | ARCH_TIMER_USR_PCT_ACCESS_EN);
343 /* Enable user access to the virtual counter */
344 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
346 arch_timer_set_cntkctl(cntkctl);
349 static int arch_timer_setup(struct clock_event_device *clk)
351 __arch_timer_setup(ARCH_CP15_TIMER, clk);
353 if (arch_timer_use_virtual)
354 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
355 else {
356 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
357 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
358 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
361 arch_counter_set_user_access();
362 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
363 arch_timer_configure_evtstream();
365 return 0;
368 static void
369 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
371 /* Who has more than one independent system counter? */
372 if (arch_timer_rate)
373 return;
376 * Try to determine the frequency from the device tree or CNTFRQ,
377 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
379 if (!acpi_disabled ||
380 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
381 if (cntbase)
382 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
383 else
384 arch_timer_rate = arch_timer_get_cntfrq();
387 /* Check the timer frequency. */
388 if (arch_timer_rate == 0)
389 pr_warn("Architected timer frequency not available\n");
392 static void arch_timer_banner(unsigned type)
394 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
395 type & ARCH_CP15_TIMER ? "cp15" : "",
396 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
397 type & ARCH_MEM_TIMER ? "mmio" : "",
398 (unsigned long)arch_timer_rate / 1000000,
399 (unsigned long)(arch_timer_rate / 10000) % 100,
400 type & ARCH_CP15_TIMER ?
401 arch_timer_use_virtual ? "virt" : "phys" :
403 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
404 type & ARCH_MEM_TIMER ?
405 arch_timer_mem_use_virtual ? "virt" : "phys" :
406 "");
409 u32 arch_timer_get_rate(void)
411 return arch_timer_rate;
414 static u64 arch_counter_get_cntvct_mem(void)
416 u32 vct_lo, vct_hi, tmp_hi;
418 do {
419 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
420 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
421 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
422 } while (vct_hi != tmp_hi);
424 return ((u64) vct_hi << 32) | vct_lo;
428 * Default to cp15 based access because arm64 uses this function for
429 * sched_clock() before DT is probed and the cp15 method is guaranteed
430 * to exist on arm64. arm doesn't use this before DT is probed so even
431 * if we don't have the cp15 accessors we won't have a problem.
433 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
435 static cycle_t arch_counter_read(struct clocksource *cs)
437 return arch_timer_read_counter();
440 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
442 return arch_timer_read_counter();
445 static struct clocksource clocksource_counter = {
446 .name = "arch_sys_counter",
447 .rating = 400,
448 .read = arch_counter_read,
449 .mask = CLOCKSOURCE_MASK(56),
450 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
453 static struct cyclecounter cyclecounter = {
454 .read = arch_counter_read_cc,
455 .mask = CLOCKSOURCE_MASK(56),
458 static struct timecounter timecounter;
460 struct timecounter *arch_timer_get_timecounter(void)
462 return &timecounter;
465 static void __init arch_counter_register(unsigned type)
467 u64 start_count;
469 /* Register the CP15 based counter if we have one */
470 if (type & ARCH_CP15_TIMER) {
471 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
472 arch_timer_read_counter = arch_counter_get_cntvct;
473 else
474 arch_timer_read_counter = arch_counter_get_cntpct;
475 } else {
476 arch_timer_read_counter = arch_counter_get_cntvct_mem;
478 /* If the clocksource name is "arch_sys_counter" the
479 * VDSO will attempt to read the CP15-based counter.
480 * Ensure this does not happen when CP15-based
481 * counter is not available.
483 clocksource_counter.name = "arch_mem_counter";
486 start_count = arch_timer_read_counter();
487 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
488 cyclecounter.mult = clocksource_counter.mult;
489 cyclecounter.shift = clocksource_counter.shift;
490 timecounter_init(&timecounter, &cyclecounter, start_count);
492 /* 56 bits minimum, so we assume worst case rollover */
493 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
496 static void arch_timer_stop(struct clock_event_device *clk)
498 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
499 clk->irq, smp_processor_id());
501 if (arch_timer_use_virtual)
502 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
503 else {
504 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
505 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
506 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
509 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
512 static int arch_timer_cpu_notify(struct notifier_block *self,
513 unsigned long action, void *hcpu)
516 * Grab cpu pointer in each case to avoid spurious
517 * preemptible warnings
519 switch (action & ~CPU_TASKS_FROZEN) {
520 case CPU_STARTING:
521 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
522 break;
523 case CPU_DYING:
524 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
525 break;
528 return NOTIFY_OK;
531 static struct notifier_block arch_timer_cpu_nb = {
532 .notifier_call = arch_timer_cpu_notify,
535 #ifdef CONFIG_CPU_PM
536 static unsigned int saved_cntkctl;
537 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
538 unsigned long action, void *hcpu)
540 if (action == CPU_PM_ENTER)
541 saved_cntkctl = arch_timer_get_cntkctl();
542 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
543 arch_timer_set_cntkctl(saved_cntkctl);
544 return NOTIFY_OK;
547 static struct notifier_block arch_timer_cpu_pm_notifier = {
548 .notifier_call = arch_timer_cpu_pm_notify,
551 static int __init arch_timer_cpu_pm_init(void)
553 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
555 #else
556 static int __init arch_timer_cpu_pm_init(void)
558 return 0;
560 #endif
562 static int __init arch_timer_register(void)
564 int err;
565 int ppi;
567 arch_timer_evt = alloc_percpu(struct clock_event_device);
568 if (!arch_timer_evt) {
569 err = -ENOMEM;
570 goto out;
573 if (arch_timer_use_virtual) {
574 ppi = arch_timer_ppi[VIRT_PPI];
575 err = request_percpu_irq(ppi, arch_timer_handler_virt,
576 "arch_timer", arch_timer_evt);
577 } else {
578 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
579 err = request_percpu_irq(ppi, arch_timer_handler_phys,
580 "arch_timer", arch_timer_evt);
581 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
582 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
583 err = request_percpu_irq(ppi, arch_timer_handler_phys,
584 "arch_timer", arch_timer_evt);
585 if (err)
586 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
587 arch_timer_evt);
591 if (err) {
592 pr_err("arch_timer: can't register interrupt %d (%d)\n",
593 ppi, err);
594 goto out_free;
597 err = register_cpu_notifier(&arch_timer_cpu_nb);
598 if (err)
599 goto out_free_irq;
601 err = arch_timer_cpu_pm_init();
602 if (err)
603 goto out_unreg_notify;
605 /* Immediately configure the timer on the boot CPU */
606 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
608 return 0;
610 out_unreg_notify:
611 unregister_cpu_notifier(&arch_timer_cpu_nb);
612 out_free_irq:
613 if (arch_timer_use_virtual)
614 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
615 else {
616 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
617 arch_timer_evt);
618 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
619 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
620 arch_timer_evt);
623 out_free:
624 free_percpu(arch_timer_evt);
625 out:
626 return err;
629 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
631 int ret;
632 irq_handler_t func;
633 struct arch_timer *t;
635 t = kzalloc(sizeof(*t), GFP_KERNEL);
636 if (!t)
637 return -ENOMEM;
639 t->base = base;
640 t->evt.irq = irq;
641 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
643 if (arch_timer_mem_use_virtual)
644 func = arch_timer_handler_virt_mem;
645 else
646 func = arch_timer_handler_phys_mem;
648 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
649 if (ret) {
650 pr_err("arch_timer: Failed to request mem timer irq\n");
651 kfree(t);
654 return ret;
657 static const struct of_device_id arch_timer_of_match[] __initconst = {
658 { .compatible = "arm,armv7-timer", },
659 { .compatible = "arm,armv8-timer", },
663 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
664 { .compatible = "arm,armv7-timer-mem", },
668 static bool __init
669 arch_timer_needs_probing(int type, const struct of_device_id *matches)
671 struct device_node *dn;
672 bool needs_probing = false;
674 dn = of_find_matching_node(NULL, matches);
675 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
676 needs_probing = true;
677 of_node_put(dn);
679 return needs_probing;
682 static void __init arch_timer_common_init(void)
684 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
686 /* Wait until both nodes are probed if we have two timers */
687 if ((arch_timers_present & mask) != mask) {
688 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
689 return;
690 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
691 return;
694 arch_timer_banner(arch_timers_present);
695 arch_counter_register(arch_timers_present);
696 arch_timer_arch_init();
699 static void __init arch_timer_init(void)
702 * If HYP mode is available, we know that the physical timer
703 * has been configured to be accessible from PL1. Use it, so
704 * that a guest can use the virtual timer instead.
706 * If no interrupt provided for virtual timer, we'll have to
707 * stick to the physical timer. It'd better be accessible...
709 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
710 arch_timer_use_virtual = false;
712 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
713 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
714 pr_warn("arch_timer: No interrupt available, giving up\n");
715 return;
719 arch_timer_register();
720 arch_timer_common_init();
723 static void __init arch_timer_of_init(struct device_node *np)
725 int i;
727 if (arch_timers_present & ARCH_CP15_TIMER) {
728 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
729 return;
732 arch_timers_present |= ARCH_CP15_TIMER;
733 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
734 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
736 arch_timer_detect_rate(NULL, np);
738 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
741 * If we cannot rely on firmware initializing the timer registers then
742 * we should use the physical timers instead.
744 if (IS_ENABLED(CONFIG_ARM) &&
745 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
746 arch_timer_use_virtual = false;
748 arch_timer_init();
750 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
751 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
753 static void __init arch_timer_mem_init(struct device_node *np)
755 struct device_node *frame, *best_frame = NULL;
756 void __iomem *cntctlbase, *base;
757 unsigned int irq;
758 u32 cnttidr;
760 arch_timers_present |= ARCH_MEM_TIMER;
761 cntctlbase = of_iomap(np, 0);
762 if (!cntctlbase) {
763 pr_err("arch_timer: Can't find CNTCTLBase\n");
764 return;
767 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
768 iounmap(cntctlbase);
771 * Try to find a virtual capable frame. Otherwise fall back to a
772 * physical capable frame.
774 for_each_available_child_of_node(np, frame) {
775 int n;
777 if (of_property_read_u32(frame, "frame-number", &n)) {
778 pr_err("arch_timer: Missing frame-number\n");
779 of_node_put(best_frame);
780 of_node_put(frame);
781 return;
784 if (cnttidr & CNTTIDR_VIRT(n)) {
785 of_node_put(best_frame);
786 best_frame = frame;
787 arch_timer_mem_use_virtual = true;
788 break;
790 of_node_put(best_frame);
791 best_frame = of_node_get(frame);
794 base = arch_counter_base = of_iomap(best_frame, 0);
795 if (!base) {
796 pr_err("arch_timer: Can't map frame's registers\n");
797 of_node_put(best_frame);
798 return;
801 if (arch_timer_mem_use_virtual)
802 irq = irq_of_parse_and_map(best_frame, 1);
803 else
804 irq = irq_of_parse_and_map(best_frame, 0);
805 of_node_put(best_frame);
806 if (!irq) {
807 pr_err("arch_timer: Frame missing %s irq",
808 arch_timer_mem_use_virtual ? "virt" : "phys");
809 return;
812 arch_timer_detect_rate(base, np);
813 arch_timer_mem_register(base, irq);
814 arch_timer_common_init();
816 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
817 arch_timer_mem_init);
819 #ifdef CONFIG_ACPI
820 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
822 int trigger, polarity;
824 if (!interrupt)
825 return 0;
827 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
828 : ACPI_LEVEL_SENSITIVE;
830 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
831 : ACPI_ACTIVE_HIGH;
833 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
836 /* Initialize per-processor generic timer */
837 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
839 struct acpi_table_gtdt *gtdt;
841 if (arch_timers_present & ARCH_CP15_TIMER) {
842 pr_warn("arch_timer: already initialized, skipping\n");
843 return -EINVAL;
846 gtdt = container_of(table, struct acpi_table_gtdt, header);
848 arch_timers_present |= ARCH_CP15_TIMER;
850 arch_timer_ppi[PHYS_SECURE_PPI] =
851 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
852 gtdt->secure_el1_flags);
854 arch_timer_ppi[PHYS_NONSECURE_PPI] =
855 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
856 gtdt->non_secure_el1_flags);
858 arch_timer_ppi[VIRT_PPI] =
859 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
860 gtdt->virtual_timer_flags);
862 arch_timer_ppi[HYP_PPI] =
863 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
864 gtdt->non_secure_el2_flags);
866 /* Get the frequency from CNTFRQ */
867 arch_timer_detect_rate(NULL, NULL);
869 /* Always-on capability */
870 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
872 arch_timer_init();
873 return 0;
876 /* Initialize all the generic timers presented in GTDT */
877 void __init acpi_generic_timer_init(void)
879 if (acpi_disabled)
880 return;
882 acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init);
884 #endif