gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / cpufreq / cpufreq_governor.c
blob1b44496b2d2b3548bab6c1aff39a5c4f25c17428
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
23 #include "cpufreq_governor.h"
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
27 if (have_governor_per_policy())
28 return dbs_data->cdata->attr_group_gov_pol;
29 else
30 return dbs_data->cdata->attr_group_gov_sys;
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
35 struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 struct cpufreq_policy *policy;
39 unsigned int sampling_rate;
40 unsigned int max_load = 0;
41 unsigned int ignore_nice;
42 unsigned int j;
44 if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 struct od_cpu_dbs_info_s *od_dbs_info =
46 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
54 sampling_rate = od_tuners->sampling_rate;
55 sampling_rate *= od_dbs_info->rate_mult;
57 ignore_nice = od_tuners->ignore_nice_load;
58 } else {
59 sampling_rate = cs_tuners->sampling_rate;
60 ignore_nice = cs_tuners->ignore_nice_load;
63 policy = cdbs->cur_policy;
65 /* Get Absolute Load */
66 for_each_cpu(j, policy->cpus) {
67 struct cpu_dbs_common_info *j_cdbs;
68 u64 cur_wall_time, cur_idle_time;
69 unsigned int idle_time, wall_time;
70 unsigned int load;
71 int io_busy = 0;
73 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
76 * For the purpose of ondemand, waiting for disk IO is
77 * an indication that you're performance critical, and
78 * not that the system is actually idle. So do not add
79 * the iowait time to the cpu idle time.
81 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82 io_busy = od_tuners->io_is_busy;
83 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
85 wall_time = (unsigned int)
86 (cur_wall_time - j_cdbs->prev_cpu_wall);
87 j_cdbs->prev_cpu_wall = cur_wall_time;
89 idle_time = (unsigned int)
90 (cur_idle_time - j_cdbs->prev_cpu_idle);
91 j_cdbs->prev_cpu_idle = cur_idle_time;
93 if (ignore_nice) {
94 u64 cur_nice;
95 unsigned long cur_nice_jiffies;
97 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98 cdbs->prev_cpu_nice;
100 * Assumption: nice time between sampling periods will
101 * be less than 2^32 jiffies for 32 bit sys
103 cur_nice_jiffies = (unsigned long)
104 cputime64_to_jiffies64(cur_nice);
106 cdbs->prev_cpu_nice =
107 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108 idle_time += jiffies_to_usecs(cur_nice_jiffies);
111 if (unlikely(!wall_time || wall_time < idle_time))
112 continue;
115 * If the CPU had gone completely idle, and a task just woke up
116 * on this CPU now, it would be unfair to calculate 'load' the
117 * usual way for this elapsed time-window, because it will show
118 * near-zero load, irrespective of how CPU intensive that task
119 * actually is. This is undesirable for latency-sensitive bursty
120 * workloads.
122 * To avoid this, we reuse the 'load' from the previous
123 * time-window and give this task a chance to start with a
124 * reasonably high CPU frequency. (However, we shouldn't over-do
125 * this copy, lest we get stuck at a high load (high frequency)
126 * for too long, even when the current system load has actually
127 * dropped down. So we perform the copy only once, upon the
128 * first wake-up from idle.)
130 * Detecting this situation is easy: the governor's deferrable
131 * timer would not have fired during CPU-idle periods. Hence
132 * an unusually large 'wall_time' (as compared to the sampling
133 * rate) indicates this scenario.
135 * prev_load can be zero in two cases and we must recalculate it
136 * for both cases:
137 * - during long idle intervals
138 * - explicitly set to zero
140 if (unlikely(wall_time > (2 * sampling_rate) &&
141 j_cdbs->prev_load)) {
142 load = j_cdbs->prev_load;
145 * Perform a destructive copy, to ensure that we copy
146 * the previous load only once, upon the first wake-up
147 * from idle.
149 j_cdbs->prev_load = 0;
150 } else {
151 load = 100 * (wall_time - idle_time) / wall_time;
152 j_cdbs->prev_load = load;
155 if (load > max_load)
156 max_load = load;
159 dbs_data->cdata->gov_check_cpu(cpu, max_load);
161 EXPORT_SYMBOL_GPL(dbs_check_cpu);
163 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
164 unsigned int delay)
166 struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
168 mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
171 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
172 unsigned int delay, bool all_cpus)
174 int i;
176 mutex_lock(&cpufreq_governor_lock);
177 if (!policy->governor_enabled)
178 goto out_unlock;
180 if (!all_cpus) {
182 * Use raw_smp_processor_id() to avoid preemptible warnings.
183 * We know that this is only called with all_cpus == false from
184 * works that have been queued with *_work_on() functions and
185 * those works are canceled during CPU_DOWN_PREPARE so they
186 * can't possibly run on any other CPU.
188 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
189 } else {
190 for_each_cpu(i, policy->cpus)
191 __gov_queue_work(i, dbs_data, delay);
194 out_unlock:
195 mutex_unlock(&cpufreq_governor_lock);
197 EXPORT_SYMBOL_GPL(gov_queue_work);
199 static inline void gov_cancel_work(struct dbs_data *dbs_data,
200 struct cpufreq_policy *policy)
202 struct cpu_dbs_common_info *cdbs;
203 int i;
205 for_each_cpu(i, policy->cpus) {
206 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
207 cancel_delayed_work_sync(&cdbs->work);
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_common_info *cdbs,
213 unsigned int sampling_rate)
215 if (policy_is_shared(cdbs->cur_policy)) {
216 ktime_t time_now = ktime_get();
217 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
219 /* Do nothing if we recently have sampled */
220 if (delta_us < (s64)(sampling_rate / 2))
221 return false;
222 else
223 cdbs->time_stamp = time_now;
226 return true;
228 EXPORT_SYMBOL_GPL(need_load_eval);
230 static void set_sampling_rate(struct dbs_data *dbs_data,
231 unsigned int sampling_rate)
233 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
234 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
235 cs_tuners->sampling_rate = sampling_rate;
236 } else {
237 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
238 od_tuners->sampling_rate = sampling_rate;
242 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
243 struct common_dbs_data *cdata, unsigned int event)
245 struct dbs_data *dbs_data;
246 struct od_cpu_dbs_info_s *od_dbs_info = NULL;
247 struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
248 struct od_ops *od_ops = NULL;
249 struct od_dbs_tuners *od_tuners = NULL;
250 struct cs_dbs_tuners *cs_tuners = NULL;
251 struct cpu_dbs_common_info *cpu_cdbs;
252 unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
253 int io_busy = 0;
254 int rc;
256 if (have_governor_per_policy())
257 dbs_data = policy->governor_data;
258 else
259 dbs_data = cdata->gdbs_data;
261 WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
263 switch (event) {
264 case CPUFREQ_GOV_POLICY_INIT:
265 if (have_governor_per_policy()) {
266 WARN_ON(dbs_data);
267 } else if (dbs_data) {
268 dbs_data->usage_count++;
269 policy->governor_data = dbs_data;
270 return 0;
273 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
274 if (!dbs_data) {
275 pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
276 return -ENOMEM;
279 dbs_data->cdata = cdata;
280 dbs_data->usage_count = 1;
281 rc = cdata->init(dbs_data);
282 if (rc) {
283 pr_err("%s: POLICY_INIT: init() failed\n", __func__);
284 kfree(dbs_data);
285 return rc;
288 if (!have_governor_per_policy())
289 WARN_ON(cpufreq_get_global_kobject());
291 rc = sysfs_create_group(get_governor_parent_kobj(policy),
292 get_sysfs_attr(dbs_data));
293 if (rc) {
294 cdata->exit(dbs_data);
295 kfree(dbs_data);
296 return rc;
299 policy->governor_data = dbs_data;
301 /* policy latency is in ns. Convert it to us first */
302 latency = policy->cpuinfo.transition_latency / 1000;
303 if (latency == 0)
304 latency = 1;
306 /* Bring kernel and HW constraints together */
307 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
308 MIN_LATENCY_MULTIPLIER * latency);
309 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
310 latency * LATENCY_MULTIPLIER));
312 if ((cdata->governor == GOV_CONSERVATIVE) &&
313 (!policy->governor->initialized)) {
314 struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
316 cpufreq_register_notifier(cs_ops->notifier_block,
317 CPUFREQ_TRANSITION_NOTIFIER);
320 if (!have_governor_per_policy())
321 cdata->gdbs_data = dbs_data;
323 return 0;
324 case CPUFREQ_GOV_POLICY_EXIT:
325 if (!--dbs_data->usage_count) {
326 sysfs_remove_group(get_governor_parent_kobj(policy),
327 get_sysfs_attr(dbs_data));
329 if (!have_governor_per_policy())
330 cpufreq_put_global_kobject();
332 if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
333 (policy->governor->initialized == 1)) {
334 struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
336 cpufreq_unregister_notifier(cs_ops->notifier_block,
337 CPUFREQ_TRANSITION_NOTIFIER);
340 cdata->exit(dbs_data);
341 kfree(dbs_data);
342 cdata->gdbs_data = NULL;
345 policy->governor_data = NULL;
346 return 0;
349 cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
351 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
352 cs_tuners = dbs_data->tuners;
353 cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
354 sampling_rate = cs_tuners->sampling_rate;
355 ignore_nice = cs_tuners->ignore_nice_load;
356 } else {
357 od_tuners = dbs_data->tuners;
358 od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
359 sampling_rate = od_tuners->sampling_rate;
360 ignore_nice = od_tuners->ignore_nice_load;
361 od_ops = dbs_data->cdata->gov_ops;
362 io_busy = od_tuners->io_is_busy;
365 switch (event) {
366 case CPUFREQ_GOV_START:
367 if (!policy->cur)
368 return -EINVAL;
370 mutex_lock(&dbs_data->mutex);
372 for_each_cpu(j, policy->cpus) {
373 struct cpu_dbs_common_info *j_cdbs =
374 dbs_data->cdata->get_cpu_cdbs(j);
375 unsigned int prev_load;
377 j_cdbs->cpu = j;
378 j_cdbs->cur_policy = policy;
379 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
380 &j_cdbs->prev_cpu_wall, io_busy);
382 prev_load = (unsigned int)
383 (j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle);
384 j_cdbs->prev_load = 100 * prev_load /
385 (unsigned int) j_cdbs->prev_cpu_wall;
387 if (ignore_nice)
388 j_cdbs->prev_cpu_nice =
389 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
391 mutex_init(&j_cdbs->timer_mutex);
392 INIT_DEFERRABLE_WORK(&j_cdbs->work,
393 dbs_data->cdata->gov_dbs_timer);
396 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
397 cs_dbs_info->down_skip = 0;
398 cs_dbs_info->enable = 1;
399 cs_dbs_info->requested_freq = policy->cur;
400 } else {
401 od_dbs_info->rate_mult = 1;
402 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
403 od_ops->powersave_bias_init_cpu(cpu);
406 mutex_unlock(&dbs_data->mutex);
408 /* Initiate timer time stamp */
409 cpu_cdbs->time_stamp = ktime_get();
411 gov_queue_work(dbs_data, policy,
412 delay_for_sampling_rate(sampling_rate), true);
413 break;
415 case CPUFREQ_GOV_STOP:
416 if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
417 cs_dbs_info->enable = 0;
419 gov_cancel_work(dbs_data, policy);
421 mutex_lock(&dbs_data->mutex);
422 mutex_destroy(&cpu_cdbs->timer_mutex);
423 cpu_cdbs->cur_policy = NULL;
425 mutex_unlock(&dbs_data->mutex);
427 break;
429 case CPUFREQ_GOV_LIMITS:
430 mutex_lock(&dbs_data->mutex);
431 if (!cpu_cdbs->cur_policy) {
432 mutex_unlock(&dbs_data->mutex);
433 break;
435 mutex_lock(&cpu_cdbs->timer_mutex);
436 if (policy->max < cpu_cdbs->cur_policy->cur)
437 __cpufreq_driver_target(cpu_cdbs->cur_policy,
438 policy->max, CPUFREQ_RELATION_H);
439 else if (policy->min > cpu_cdbs->cur_policy->cur)
440 __cpufreq_driver_target(cpu_cdbs->cur_policy,
441 policy->min, CPUFREQ_RELATION_L);
442 dbs_check_cpu(dbs_data, cpu);
443 mutex_unlock(&cpu_cdbs->timer_mutex);
444 mutex_unlock(&dbs_data->mutex);
445 break;
447 return 0;
449 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);