2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
23 #include "cpufreq_governor.h"
25 static struct attribute_group
*get_sysfs_attr(struct dbs_data
*dbs_data
)
27 if (have_governor_per_policy())
28 return dbs_data
->cdata
->attr_group_gov_pol
;
30 return dbs_data
->cdata
->attr_group_gov_sys
;
33 void dbs_check_cpu(struct dbs_data
*dbs_data
, int cpu
)
35 struct cpu_dbs_common_info
*cdbs
= dbs_data
->cdata
->get_cpu_cdbs(cpu
);
36 struct od_dbs_tuners
*od_tuners
= dbs_data
->tuners
;
37 struct cs_dbs_tuners
*cs_tuners
= dbs_data
->tuners
;
38 struct cpufreq_policy
*policy
;
39 unsigned int sampling_rate
;
40 unsigned int max_load
= 0;
41 unsigned int ignore_nice
;
44 if (dbs_data
->cdata
->governor
== GOV_ONDEMAND
) {
45 struct od_cpu_dbs_info_s
*od_dbs_info
=
46 dbs_data
->cdata
->get_cpu_dbs_info_s(cpu
);
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
54 sampling_rate
= od_tuners
->sampling_rate
;
55 sampling_rate
*= od_dbs_info
->rate_mult
;
57 ignore_nice
= od_tuners
->ignore_nice_load
;
59 sampling_rate
= cs_tuners
->sampling_rate
;
60 ignore_nice
= cs_tuners
->ignore_nice_load
;
63 policy
= cdbs
->cur_policy
;
65 /* Get Absolute Load */
66 for_each_cpu(j
, policy
->cpus
) {
67 struct cpu_dbs_common_info
*j_cdbs
;
68 u64 cur_wall_time
, cur_idle_time
;
69 unsigned int idle_time
, wall_time
;
73 j_cdbs
= dbs_data
->cdata
->get_cpu_cdbs(j
);
76 * For the purpose of ondemand, waiting for disk IO is
77 * an indication that you're performance critical, and
78 * not that the system is actually idle. So do not add
79 * the iowait time to the cpu idle time.
81 if (dbs_data
->cdata
->governor
== GOV_ONDEMAND
)
82 io_busy
= od_tuners
->io_is_busy
;
83 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
, io_busy
);
85 wall_time
= (unsigned int)
86 (cur_wall_time
- j_cdbs
->prev_cpu_wall
);
87 j_cdbs
->prev_cpu_wall
= cur_wall_time
;
89 idle_time
= (unsigned int)
90 (cur_idle_time
- j_cdbs
->prev_cpu_idle
);
91 j_cdbs
->prev_cpu_idle
= cur_idle_time
;
95 unsigned long cur_nice_jiffies
;
97 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
] -
100 * Assumption: nice time between sampling periods will
101 * be less than 2^32 jiffies for 32 bit sys
103 cur_nice_jiffies
= (unsigned long)
104 cputime64_to_jiffies64(cur_nice
);
106 cdbs
->prev_cpu_nice
=
107 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
108 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
111 if (unlikely(!wall_time
|| wall_time
< idle_time
))
115 * If the CPU had gone completely idle, and a task just woke up
116 * on this CPU now, it would be unfair to calculate 'load' the
117 * usual way for this elapsed time-window, because it will show
118 * near-zero load, irrespective of how CPU intensive that task
119 * actually is. This is undesirable for latency-sensitive bursty
122 * To avoid this, we reuse the 'load' from the previous
123 * time-window and give this task a chance to start with a
124 * reasonably high CPU frequency. (However, we shouldn't over-do
125 * this copy, lest we get stuck at a high load (high frequency)
126 * for too long, even when the current system load has actually
127 * dropped down. So we perform the copy only once, upon the
128 * first wake-up from idle.)
130 * Detecting this situation is easy: the governor's deferrable
131 * timer would not have fired during CPU-idle periods. Hence
132 * an unusually large 'wall_time' (as compared to the sampling
133 * rate) indicates this scenario.
135 * prev_load can be zero in two cases and we must recalculate it
137 * - during long idle intervals
138 * - explicitly set to zero
140 if (unlikely(wall_time
> (2 * sampling_rate
) &&
141 j_cdbs
->prev_load
)) {
142 load
= j_cdbs
->prev_load
;
145 * Perform a destructive copy, to ensure that we copy
146 * the previous load only once, upon the first wake-up
149 j_cdbs
->prev_load
= 0;
151 load
= 100 * (wall_time
- idle_time
) / wall_time
;
152 j_cdbs
->prev_load
= load
;
159 dbs_data
->cdata
->gov_check_cpu(cpu
, max_load
);
161 EXPORT_SYMBOL_GPL(dbs_check_cpu
);
163 static inline void __gov_queue_work(int cpu
, struct dbs_data
*dbs_data
,
166 struct cpu_dbs_common_info
*cdbs
= dbs_data
->cdata
->get_cpu_cdbs(cpu
);
168 mod_delayed_work_on(cpu
, system_wq
, &cdbs
->work
, delay
);
171 void gov_queue_work(struct dbs_data
*dbs_data
, struct cpufreq_policy
*policy
,
172 unsigned int delay
, bool all_cpus
)
176 mutex_lock(&cpufreq_governor_lock
);
177 if (!policy
->governor_enabled
)
182 * Use raw_smp_processor_id() to avoid preemptible warnings.
183 * We know that this is only called with all_cpus == false from
184 * works that have been queued with *_work_on() functions and
185 * those works are canceled during CPU_DOWN_PREPARE so they
186 * can't possibly run on any other CPU.
188 __gov_queue_work(raw_smp_processor_id(), dbs_data
, delay
);
190 for_each_cpu(i
, policy
->cpus
)
191 __gov_queue_work(i
, dbs_data
, delay
);
195 mutex_unlock(&cpufreq_governor_lock
);
197 EXPORT_SYMBOL_GPL(gov_queue_work
);
199 static inline void gov_cancel_work(struct dbs_data
*dbs_data
,
200 struct cpufreq_policy
*policy
)
202 struct cpu_dbs_common_info
*cdbs
;
205 for_each_cpu(i
, policy
->cpus
) {
206 cdbs
= dbs_data
->cdata
->get_cpu_cdbs(i
);
207 cancel_delayed_work_sync(&cdbs
->work
);
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_common_info
*cdbs
,
213 unsigned int sampling_rate
)
215 if (policy_is_shared(cdbs
->cur_policy
)) {
216 ktime_t time_now
= ktime_get();
217 s64 delta_us
= ktime_us_delta(time_now
, cdbs
->time_stamp
);
219 /* Do nothing if we recently have sampled */
220 if (delta_us
< (s64
)(sampling_rate
/ 2))
223 cdbs
->time_stamp
= time_now
;
228 EXPORT_SYMBOL_GPL(need_load_eval
);
230 static void set_sampling_rate(struct dbs_data
*dbs_data
,
231 unsigned int sampling_rate
)
233 if (dbs_data
->cdata
->governor
== GOV_CONSERVATIVE
) {
234 struct cs_dbs_tuners
*cs_tuners
= dbs_data
->tuners
;
235 cs_tuners
->sampling_rate
= sampling_rate
;
237 struct od_dbs_tuners
*od_tuners
= dbs_data
->tuners
;
238 od_tuners
->sampling_rate
= sampling_rate
;
242 int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
243 struct common_dbs_data
*cdata
, unsigned int event
)
245 struct dbs_data
*dbs_data
;
246 struct od_cpu_dbs_info_s
*od_dbs_info
= NULL
;
247 struct cs_cpu_dbs_info_s
*cs_dbs_info
= NULL
;
248 struct od_ops
*od_ops
= NULL
;
249 struct od_dbs_tuners
*od_tuners
= NULL
;
250 struct cs_dbs_tuners
*cs_tuners
= NULL
;
251 struct cpu_dbs_common_info
*cpu_cdbs
;
252 unsigned int sampling_rate
, latency
, ignore_nice
, j
, cpu
= policy
->cpu
;
256 if (have_governor_per_policy())
257 dbs_data
= policy
->governor_data
;
259 dbs_data
= cdata
->gdbs_data
;
261 WARN_ON(!dbs_data
&& (event
!= CPUFREQ_GOV_POLICY_INIT
));
264 case CPUFREQ_GOV_POLICY_INIT
:
265 if (have_governor_per_policy()) {
267 } else if (dbs_data
) {
268 dbs_data
->usage_count
++;
269 policy
->governor_data
= dbs_data
;
273 dbs_data
= kzalloc(sizeof(*dbs_data
), GFP_KERNEL
);
275 pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__
);
279 dbs_data
->cdata
= cdata
;
280 dbs_data
->usage_count
= 1;
281 rc
= cdata
->init(dbs_data
);
283 pr_err("%s: POLICY_INIT: init() failed\n", __func__
);
288 if (!have_governor_per_policy())
289 WARN_ON(cpufreq_get_global_kobject());
291 rc
= sysfs_create_group(get_governor_parent_kobj(policy
),
292 get_sysfs_attr(dbs_data
));
294 cdata
->exit(dbs_data
);
299 policy
->governor_data
= dbs_data
;
301 /* policy latency is in ns. Convert it to us first */
302 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
306 /* Bring kernel and HW constraints together */
307 dbs_data
->min_sampling_rate
= max(dbs_data
->min_sampling_rate
,
308 MIN_LATENCY_MULTIPLIER
* latency
);
309 set_sampling_rate(dbs_data
, max(dbs_data
->min_sampling_rate
,
310 latency
* LATENCY_MULTIPLIER
));
312 if ((cdata
->governor
== GOV_CONSERVATIVE
) &&
313 (!policy
->governor
->initialized
)) {
314 struct cs_ops
*cs_ops
= dbs_data
->cdata
->gov_ops
;
316 cpufreq_register_notifier(cs_ops
->notifier_block
,
317 CPUFREQ_TRANSITION_NOTIFIER
);
320 if (!have_governor_per_policy())
321 cdata
->gdbs_data
= dbs_data
;
324 case CPUFREQ_GOV_POLICY_EXIT
:
325 if (!--dbs_data
->usage_count
) {
326 sysfs_remove_group(get_governor_parent_kobj(policy
),
327 get_sysfs_attr(dbs_data
));
329 if (!have_governor_per_policy())
330 cpufreq_put_global_kobject();
332 if ((dbs_data
->cdata
->governor
== GOV_CONSERVATIVE
) &&
333 (policy
->governor
->initialized
== 1)) {
334 struct cs_ops
*cs_ops
= dbs_data
->cdata
->gov_ops
;
336 cpufreq_unregister_notifier(cs_ops
->notifier_block
,
337 CPUFREQ_TRANSITION_NOTIFIER
);
340 cdata
->exit(dbs_data
);
342 cdata
->gdbs_data
= NULL
;
345 policy
->governor_data
= NULL
;
349 cpu_cdbs
= dbs_data
->cdata
->get_cpu_cdbs(cpu
);
351 if (dbs_data
->cdata
->governor
== GOV_CONSERVATIVE
) {
352 cs_tuners
= dbs_data
->tuners
;
353 cs_dbs_info
= dbs_data
->cdata
->get_cpu_dbs_info_s(cpu
);
354 sampling_rate
= cs_tuners
->sampling_rate
;
355 ignore_nice
= cs_tuners
->ignore_nice_load
;
357 od_tuners
= dbs_data
->tuners
;
358 od_dbs_info
= dbs_data
->cdata
->get_cpu_dbs_info_s(cpu
);
359 sampling_rate
= od_tuners
->sampling_rate
;
360 ignore_nice
= od_tuners
->ignore_nice_load
;
361 od_ops
= dbs_data
->cdata
->gov_ops
;
362 io_busy
= od_tuners
->io_is_busy
;
366 case CPUFREQ_GOV_START
:
370 mutex_lock(&dbs_data
->mutex
);
372 for_each_cpu(j
, policy
->cpus
) {
373 struct cpu_dbs_common_info
*j_cdbs
=
374 dbs_data
->cdata
->get_cpu_cdbs(j
);
375 unsigned int prev_load
;
378 j_cdbs
->cur_policy
= policy
;
379 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
,
380 &j_cdbs
->prev_cpu_wall
, io_busy
);
382 prev_load
= (unsigned int)
383 (j_cdbs
->prev_cpu_wall
- j_cdbs
->prev_cpu_idle
);
384 j_cdbs
->prev_load
= 100 * prev_load
/
385 (unsigned int) j_cdbs
->prev_cpu_wall
;
388 j_cdbs
->prev_cpu_nice
=
389 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
391 mutex_init(&j_cdbs
->timer_mutex
);
392 INIT_DEFERRABLE_WORK(&j_cdbs
->work
,
393 dbs_data
->cdata
->gov_dbs_timer
);
396 if (dbs_data
->cdata
->governor
== GOV_CONSERVATIVE
) {
397 cs_dbs_info
->down_skip
= 0;
398 cs_dbs_info
->enable
= 1;
399 cs_dbs_info
->requested_freq
= policy
->cur
;
401 od_dbs_info
->rate_mult
= 1;
402 od_dbs_info
->sample_type
= OD_NORMAL_SAMPLE
;
403 od_ops
->powersave_bias_init_cpu(cpu
);
406 mutex_unlock(&dbs_data
->mutex
);
408 /* Initiate timer time stamp */
409 cpu_cdbs
->time_stamp
= ktime_get();
411 gov_queue_work(dbs_data
, policy
,
412 delay_for_sampling_rate(sampling_rate
), true);
415 case CPUFREQ_GOV_STOP
:
416 if (dbs_data
->cdata
->governor
== GOV_CONSERVATIVE
)
417 cs_dbs_info
->enable
= 0;
419 gov_cancel_work(dbs_data
, policy
);
421 mutex_lock(&dbs_data
->mutex
);
422 mutex_destroy(&cpu_cdbs
->timer_mutex
);
423 cpu_cdbs
->cur_policy
= NULL
;
425 mutex_unlock(&dbs_data
->mutex
);
429 case CPUFREQ_GOV_LIMITS
:
430 mutex_lock(&dbs_data
->mutex
);
431 if (!cpu_cdbs
->cur_policy
) {
432 mutex_unlock(&dbs_data
->mutex
);
435 mutex_lock(&cpu_cdbs
->timer_mutex
);
436 if (policy
->max
< cpu_cdbs
->cur_policy
->cur
)
437 __cpufreq_driver_target(cpu_cdbs
->cur_policy
,
438 policy
->max
, CPUFREQ_RELATION_H
);
439 else if (policy
->min
> cpu_cdbs
->cur_policy
->cur
)
440 __cpufreq_driver_target(cpu_cdbs
->cur_policy
,
441 policy
->min
, CPUFREQ_RELATION_L
);
442 dbs_check_cpu(dbs_data
, cpu
);
443 mutex_unlock(&cpu_cdbs
->timer_mutex
);
444 mutex_unlock(&dbs_data
->mutex
);
449 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs
);