gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / dma / dmaengine.c
blob3ddfd1f6c23c0f0f891ed11d6f68cbcaaa3c6e03
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
28 * LOCKING:
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
41 * See Documentation/dmaengine.txt for more details
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/dma-mapping.h>
47 #include <linux/init.h>
48 #include <linux/module.h>
49 #include <linux/mm.h>
50 #include <linux/device.h>
51 #include <linux/dmaengine.h>
52 #include <linux/hardirq.h>
53 #include <linux/spinlock.h>
54 #include <linux/percpu.h>
55 #include <linux/rcupdate.h>
56 #include <linux/mutex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rculist.h>
59 #include <linux/idr.h>
60 #include <linux/slab.h>
61 #include <linux/acpi.h>
62 #include <linux/acpi_dma.h>
63 #include <linux/of_dma.h>
64 #include <linux/mempool.h>
66 static DEFINE_MUTEX(dma_list_mutex);
67 static DEFINE_IDR(dma_idr);
68 static LIST_HEAD(dma_device_list);
69 static long dmaengine_ref_count;
71 /* --- sysfs implementation --- */
73 /**
74 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
75 * @dev - device node
77 * Must be called under dma_list_mutex
79 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 struct dma_chan_dev *chan_dev;
83 chan_dev = container_of(dev, typeof(*chan_dev), device);
84 return chan_dev->chan;
87 static ssize_t memcpy_count_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
90 struct dma_chan *chan;
91 unsigned long count = 0;
92 int i;
93 int err;
95 mutex_lock(&dma_list_mutex);
96 chan = dev_to_dma_chan(dev);
97 if (chan) {
98 for_each_possible_cpu(i)
99 count += per_cpu_ptr(chan->local, i)->memcpy_count;
100 err = sprintf(buf, "%lu\n", count);
101 } else
102 err = -ENODEV;
103 mutex_unlock(&dma_list_mutex);
105 return err;
107 static DEVICE_ATTR_RO(memcpy_count);
109 static ssize_t bytes_transferred_show(struct device *dev,
110 struct device_attribute *attr, char *buf)
112 struct dma_chan *chan;
113 unsigned long count = 0;
114 int i;
115 int err;
117 mutex_lock(&dma_list_mutex);
118 chan = dev_to_dma_chan(dev);
119 if (chan) {
120 for_each_possible_cpu(i)
121 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
122 err = sprintf(buf, "%lu\n", count);
123 } else
124 err = -ENODEV;
125 mutex_unlock(&dma_list_mutex);
127 return err;
129 static DEVICE_ATTR_RO(bytes_transferred);
131 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
132 char *buf)
134 struct dma_chan *chan;
135 int err;
137 mutex_lock(&dma_list_mutex);
138 chan = dev_to_dma_chan(dev);
139 if (chan)
140 err = sprintf(buf, "%d\n", chan->client_count);
141 else
142 err = -ENODEV;
143 mutex_unlock(&dma_list_mutex);
145 return err;
147 static DEVICE_ATTR_RO(in_use);
149 static struct attribute *dma_dev_attrs[] = {
150 &dev_attr_memcpy_count.attr,
151 &dev_attr_bytes_transferred.attr,
152 &dev_attr_in_use.attr,
153 NULL,
155 ATTRIBUTE_GROUPS(dma_dev);
157 static void chan_dev_release(struct device *dev)
159 struct dma_chan_dev *chan_dev;
161 chan_dev = container_of(dev, typeof(*chan_dev), device);
162 if (atomic_dec_and_test(chan_dev->idr_ref)) {
163 mutex_lock(&dma_list_mutex);
164 idr_remove(&dma_idr, chan_dev->dev_id);
165 mutex_unlock(&dma_list_mutex);
166 kfree(chan_dev->idr_ref);
168 kfree(chan_dev);
171 static struct class dma_devclass = {
172 .name = "dma",
173 .dev_groups = dma_dev_groups,
174 .dev_release = chan_dev_release,
177 /* --- client and device registration --- */
179 #define dma_device_satisfies_mask(device, mask) \
180 __dma_device_satisfies_mask((device), &(mask))
181 static int
182 __dma_device_satisfies_mask(struct dma_device *device,
183 const dma_cap_mask_t *want)
185 dma_cap_mask_t has;
187 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 DMA_TX_TYPE_END);
189 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
192 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 return chan->device->dev->driver->owner;
198 * balance_ref_count - catch up the channel reference count
199 * @chan - channel to balance ->client_count versus dmaengine_ref_count
201 * balance_ref_count must be called under dma_list_mutex
203 static void balance_ref_count(struct dma_chan *chan)
205 struct module *owner = dma_chan_to_owner(chan);
207 while (chan->client_count < dmaengine_ref_count) {
208 __module_get(owner);
209 chan->client_count++;
214 * dma_chan_get - try to grab a dma channel's parent driver module
215 * @chan - channel to grab
217 * Must be called under dma_list_mutex
219 static int dma_chan_get(struct dma_chan *chan)
221 struct module *owner = dma_chan_to_owner(chan);
222 int ret;
224 /* The channel is already in use, update client count */
225 if (chan->client_count) {
226 __module_get(owner);
227 goto out;
230 if (!try_module_get(owner))
231 return -ENODEV;
233 /* allocate upon first client reference */
234 if (chan->device->device_alloc_chan_resources) {
235 ret = chan->device->device_alloc_chan_resources(chan);
236 if (ret < 0)
237 goto err_out;
240 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 balance_ref_count(chan);
243 out:
244 chan->client_count++;
245 return 0;
247 err_out:
248 module_put(owner);
249 return ret;
253 * dma_chan_put - drop a reference to a dma channel's parent driver module
254 * @chan - channel to release
256 * Must be called under dma_list_mutex
258 static void dma_chan_put(struct dma_chan *chan)
260 /* This channel is not in use, bail out */
261 if (!chan->client_count)
262 return;
264 chan->client_count--;
265 module_put(dma_chan_to_owner(chan));
267 /* This channel is not in use anymore, free it */
268 if (!chan->client_count && chan->device->device_free_chan_resources)
269 chan->device->device_free_chan_resources(chan);
272 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
274 enum dma_status status;
275 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
277 dma_async_issue_pending(chan);
278 do {
279 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
280 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
281 pr_err("%s: timeout!\n", __func__);
282 return DMA_ERROR;
284 if (status != DMA_IN_PROGRESS)
285 break;
286 cpu_relax();
287 } while (1);
289 return status;
291 EXPORT_SYMBOL(dma_sync_wait);
294 * dma_cap_mask_all - enable iteration over all operation types
296 static dma_cap_mask_t dma_cap_mask_all;
299 * dma_chan_tbl_ent - tracks channel allocations per core/operation
300 * @chan - associated channel for this entry
302 struct dma_chan_tbl_ent {
303 struct dma_chan *chan;
307 * channel_table - percpu lookup table for memory-to-memory offload providers
309 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
311 static int __init dma_channel_table_init(void)
313 enum dma_transaction_type cap;
314 int err = 0;
316 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
318 /* 'interrupt', 'private', and 'slave' are channel capabilities,
319 * but are not associated with an operation so they do not need
320 * an entry in the channel_table
322 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
323 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
324 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
326 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
327 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
328 if (!channel_table[cap]) {
329 err = -ENOMEM;
330 break;
334 if (err) {
335 pr_err("initialization failure\n");
336 for_each_dma_cap_mask(cap, dma_cap_mask_all)
337 free_percpu(channel_table[cap]);
340 return err;
342 arch_initcall(dma_channel_table_init);
345 * dma_find_channel - find a channel to carry out the operation
346 * @tx_type: transaction type
348 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
350 return this_cpu_read(channel_table[tx_type]->chan);
352 EXPORT_SYMBOL(dma_find_channel);
355 * dma_issue_pending_all - flush all pending operations across all channels
357 void dma_issue_pending_all(void)
359 struct dma_device *device;
360 struct dma_chan *chan;
362 rcu_read_lock();
363 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
364 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
365 continue;
366 list_for_each_entry(chan, &device->channels, device_node)
367 if (chan->client_count)
368 device->device_issue_pending(chan);
370 rcu_read_unlock();
372 EXPORT_SYMBOL(dma_issue_pending_all);
375 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
377 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
379 int node = dev_to_node(chan->device->dev);
380 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
384 * min_chan - returns the channel with min count and in the same numa-node as the cpu
385 * @cap: capability to match
386 * @cpu: cpu index which the channel should be close to
388 * If some channels are close to the given cpu, the one with the lowest
389 * reference count is returned. Otherwise, cpu is ignored and only the
390 * reference count is taken into account.
391 * Must be called under dma_list_mutex.
393 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
395 struct dma_device *device;
396 struct dma_chan *chan;
397 struct dma_chan *min = NULL;
398 struct dma_chan *localmin = NULL;
400 list_for_each_entry(device, &dma_device_list, global_node) {
401 if (!dma_has_cap(cap, device->cap_mask) ||
402 dma_has_cap(DMA_PRIVATE, device->cap_mask))
403 continue;
404 list_for_each_entry(chan, &device->channels, device_node) {
405 if (!chan->client_count)
406 continue;
407 if (!min || chan->table_count < min->table_count)
408 min = chan;
410 if (dma_chan_is_local(chan, cpu))
411 if (!localmin ||
412 chan->table_count < localmin->table_count)
413 localmin = chan;
417 chan = localmin ? localmin : min;
419 if (chan)
420 chan->table_count++;
422 return chan;
426 * dma_channel_rebalance - redistribute the available channels
428 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
429 * operation type) in the SMP case, and operation isolation (avoid
430 * multi-tasking channels) in the non-SMP case. Must be called under
431 * dma_list_mutex.
433 static void dma_channel_rebalance(void)
435 struct dma_chan *chan;
436 struct dma_device *device;
437 int cpu;
438 int cap;
440 /* undo the last distribution */
441 for_each_dma_cap_mask(cap, dma_cap_mask_all)
442 for_each_possible_cpu(cpu)
443 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
445 list_for_each_entry(device, &dma_device_list, global_node) {
446 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
447 continue;
448 list_for_each_entry(chan, &device->channels, device_node)
449 chan->table_count = 0;
452 /* don't populate the channel_table if no clients are available */
453 if (!dmaengine_ref_count)
454 return;
456 /* redistribute available channels */
457 for_each_dma_cap_mask(cap, dma_cap_mask_all)
458 for_each_online_cpu(cpu) {
459 chan = min_chan(cap, cpu);
460 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
464 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
466 struct dma_device *device;
468 if (!chan || !caps)
469 return -EINVAL;
471 device = chan->device;
473 /* check if the channel supports slave transactions */
474 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
475 return -ENXIO;
478 * Check whether it reports it uses the generic slave
479 * capabilities, if not, that means it doesn't support any
480 * kind of slave capabilities reporting.
482 if (!device->directions)
483 return -ENXIO;
485 caps->src_addr_widths = device->src_addr_widths;
486 caps->dst_addr_widths = device->dst_addr_widths;
487 caps->directions = device->directions;
488 caps->residue_granularity = device->residue_granularity;
491 * Some devices implement only pause (e.g. to get residuum) but no
492 * resume. However cmd_pause is advertised as pause AND resume.
494 caps->cmd_pause = !!(device->device_pause && device->device_resume);
495 caps->cmd_terminate = !!device->device_terminate_all;
497 return 0;
499 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
501 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
502 struct dma_device *dev,
503 dma_filter_fn fn, void *fn_param)
505 struct dma_chan *chan;
507 if (!__dma_device_satisfies_mask(dev, mask)) {
508 pr_debug("%s: wrong capabilities\n", __func__);
509 return NULL;
511 /* devices with multiple channels need special handling as we need to
512 * ensure that all channels are either private or public.
514 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
515 list_for_each_entry(chan, &dev->channels, device_node) {
516 /* some channels are already publicly allocated */
517 if (chan->client_count)
518 return NULL;
521 list_for_each_entry(chan, &dev->channels, device_node) {
522 if (chan->client_count) {
523 pr_debug("%s: %s busy\n",
524 __func__, dma_chan_name(chan));
525 continue;
527 if (fn && !fn(chan, fn_param)) {
528 pr_debug("%s: %s filter said false\n",
529 __func__, dma_chan_name(chan));
530 continue;
532 return chan;
535 return NULL;
539 * dma_request_slave_channel - try to get specific channel exclusively
540 * @chan: target channel
542 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
544 int err = -EBUSY;
546 /* lock against __dma_request_channel */
547 mutex_lock(&dma_list_mutex);
549 if (chan->client_count == 0) {
550 err = dma_chan_get(chan);
551 if (err)
552 pr_debug("%s: failed to get %s: (%d)\n",
553 __func__, dma_chan_name(chan), err);
554 } else
555 chan = NULL;
557 mutex_unlock(&dma_list_mutex);
560 return chan;
562 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
564 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
566 dma_cap_mask_t mask;
567 struct dma_chan *chan;
568 int err;
570 dma_cap_zero(mask);
571 dma_cap_set(DMA_SLAVE, mask);
573 /* lock against __dma_request_channel */
574 mutex_lock(&dma_list_mutex);
576 chan = private_candidate(&mask, device, NULL, NULL);
577 if (chan) {
578 dma_cap_set(DMA_PRIVATE, device->cap_mask);
579 device->privatecnt++;
580 err = dma_chan_get(chan);
581 if (err) {
582 pr_debug("%s: failed to get %s: (%d)\n",
583 __func__, dma_chan_name(chan), err);
584 chan = NULL;
585 if (--device->privatecnt == 0)
586 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
590 mutex_unlock(&dma_list_mutex);
592 return chan;
594 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
597 * __dma_request_channel - try to allocate an exclusive channel
598 * @mask: capabilities that the channel must satisfy
599 * @fn: optional callback to disposition available channels
600 * @fn_param: opaque parameter to pass to dma_filter_fn
602 * Returns pointer to appropriate DMA channel on success or NULL.
604 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
605 dma_filter_fn fn, void *fn_param)
607 struct dma_device *device, *_d;
608 struct dma_chan *chan = NULL;
609 int err;
611 /* Find a channel */
612 mutex_lock(&dma_list_mutex);
613 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
614 chan = private_candidate(mask, device, fn, fn_param);
615 if (chan) {
616 /* Found a suitable channel, try to grab, prep, and
617 * return it. We first set DMA_PRIVATE to disable
618 * balance_ref_count as this channel will not be
619 * published in the general-purpose allocator
621 dma_cap_set(DMA_PRIVATE, device->cap_mask);
622 device->privatecnt++;
623 err = dma_chan_get(chan);
625 if (err == -ENODEV) {
626 pr_debug("%s: %s module removed\n",
627 __func__, dma_chan_name(chan));
628 list_del_rcu(&device->global_node);
629 } else if (err)
630 pr_debug("%s: failed to get %s: (%d)\n",
631 __func__, dma_chan_name(chan), err);
632 else
633 break;
634 if (--device->privatecnt == 0)
635 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
636 chan = NULL;
639 mutex_unlock(&dma_list_mutex);
641 pr_debug("%s: %s (%s)\n",
642 __func__,
643 chan ? "success" : "fail",
644 chan ? dma_chan_name(chan) : NULL);
646 return chan;
648 EXPORT_SYMBOL_GPL(__dma_request_channel);
651 * dma_request_slave_channel - try to allocate an exclusive slave channel
652 * @dev: pointer to client device structure
653 * @name: slave channel name
655 * Returns pointer to appropriate DMA channel on success or an error pointer.
657 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
658 const char *name)
660 /* If device-tree is present get slave info from here */
661 if (dev->of_node)
662 return of_dma_request_slave_channel(dev->of_node, name);
664 /* If device was enumerated by ACPI get slave info from here */
665 if (ACPI_HANDLE(dev))
666 return acpi_dma_request_slave_chan_by_name(dev, name);
668 return ERR_PTR(-ENODEV);
670 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
673 * dma_request_slave_channel - try to allocate an exclusive slave channel
674 * @dev: pointer to client device structure
675 * @name: slave channel name
677 * Returns pointer to appropriate DMA channel on success or NULL.
679 struct dma_chan *dma_request_slave_channel(struct device *dev,
680 const char *name)
682 struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
683 if (IS_ERR(ch))
684 return NULL;
685 return ch;
687 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
689 void dma_release_channel(struct dma_chan *chan)
691 mutex_lock(&dma_list_mutex);
692 WARN_ONCE(chan->client_count != 1,
693 "chan reference count %d != 1\n", chan->client_count);
694 dma_chan_put(chan);
695 /* drop PRIVATE cap enabled by __dma_request_channel() */
696 if (--chan->device->privatecnt == 0)
697 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
698 mutex_unlock(&dma_list_mutex);
700 EXPORT_SYMBOL_GPL(dma_release_channel);
703 * dmaengine_get - register interest in dma_channels
705 void dmaengine_get(void)
707 struct dma_device *device, *_d;
708 struct dma_chan *chan;
709 int err;
711 mutex_lock(&dma_list_mutex);
712 dmaengine_ref_count++;
714 /* try to grab channels */
715 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
716 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
717 continue;
718 list_for_each_entry(chan, &device->channels, device_node) {
719 err = dma_chan_get(chan);
720 if (err == -ENODEV) {
721 /* module removed before we could use it */
722 list_del_rcu(&device->global_node);
723 break;
724 } else if (err)
725 pr_debug("%s: failed to get %s: (%d)\n",
726 __func__, dma_chan_name(chan), err);
730 /* if this is the first reference and there were channels
731 * waiting we need to rebalance to get those channels
732 * incorporated into the channel table
734 if (dmaengine_ref_count == 1)
735 dma_channel_rebalance();
736 mutex_unlock(&dma_list_mutex);
738 EXPORT_SYMBOL(dmaengine_get);
741 * dmaengine_put - let dma drivers be removed when ref_count == 0
743 void dmaengine_put(void)
745 struct dma_device *device;
746 struct dma_chan *chan;
748 mutex_lock(&dma_list_mutex);
749 dmaengine_ref_count--;
750 BUG_ON(dmaengine_ref_count < 0);
751 /* drop channel references */
752 list_for_each_entry(device, &dma_device_list, global_node) {
753 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
754 continue;
755 list_for_each_entry(chan, &device->channels, device_node)
756 dma_chan_put(chan);
758 mutex_unlock(&dma_list_mutex);
760 EXPORT_SYMBOL(dmaengine_put);
762 static bool device_has_all_tx_types(struct dma_device *device)
764 /* A device that satisfies this test has channels that will never cause
765 * an async_tx channel switch event as all possible operation types can
766 * be handled.
768 #ifdef CONFIG_ASYNC_TX_DMA
769 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
770 return false;
771 #endif
773 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
774 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
775 return false;
776 #endif
778 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
779 if (!dma_has_cap(DMA_XOR, device->cap_mask))
780 return false;
782 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
783 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
784 return false;
785 #endif
786 #endif
788 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
789 if (!dma_has_cap(DMA_PQ, device->cap_mask))
790 return false;
792 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
793 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
794 return false;
795 #endif
796 #endif
798 return true;
801 static int get_dma_id(struct dma_device *device)
803 int rc;
805 mutex_lock(&dma_list_mutex);
807 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
808 if (rc >= 0)
809 device->dev_id = rc;
811 mutex_unlock(&dma_list_mutex);
812 return rc < 0 ? rc : 0;
816 * dma_async_device_register - registers DMA devices found
817 * @device: &dma_device
819 int dma_async_device_register(struct dma_device *device)
821 int chancnt = 0, rc;
822 struct dma_chan* chan;
823 atomic_t *idr_ref;
825 if (!device)
826 return -ENODEV;
828 /* validate device routines */
829 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
830 !device->device_prep_dma_memcpy);
831 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
832 !device->device_prep_dma_xor);
833 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
834 !device->device_prep_dma_xor_val);
835 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
836 !device->device_prep_dma_pq);
837 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
838 !device->device_prep_dma_pq_val);
839 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
840 !device->device_prep_dma_interrupt);
841 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
842 !device->device_prep_dma_sg);
843 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
844 !device->device_prep_dma_cyclic);
845 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
846 !device->device_prep_interleaved_dma);
848 BUG_ON(!device->device_tx_status);
849 BUG_ON(!device->device_issue_pending);
850 BUG_ON(!device->dev);
852 /* note: this only matters in the
853 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
855 if (device_has_all_tx_types(device))
856 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
858 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
859 if (!idr_ref)
860 return -ENOMEM;
861 rc = get_dma_id(device);
862 if (rc != 0) {
863 kfree(idr_ref);
864 return rc;
867 atomic_set(idr_ref, 0);
869 /* represent channels in sysfs. Probably want devs too */
870 list_for_each_entry(chan, &device->channels, device_node) {
871 rc = -ENOMEM;
872 chan->local = alloc_percpu(typeof(*chan->local));
873 if (chan->local == NULL)
874 goto err_out;
875 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
876 if (chan->dev == NULL) {
877 free_percpu(chan->local);
878 chan->local = NULL;
879 goto err_out;
882 chan->chan_id = chancnt++;
883 chan->dev->device.class = &dma_devclass;
884 chan->dev->device.parent = device->dev;
885 chan->dev->chan = chan;
886 chan->dev->idr_ref = idr_ref;
887 chan->dev->dev_id = device->dev_id;
888 atomic_inc(idr_ref);
889 dev_set_name(&chan->dev->device, "dma%dchan%d",
890 device->dev_id, chan->chan_id);
892 rc = device_register(&chan->dev->device);
893 if (rc) {
894 free_percpu(chan->local);
895 chan->local = NULL;
896 kfree(chan->dev);
897 atomic_dec(idr_ref);
898 goto err_out;
900 chan->client_count = 0;
902 device->chancnt = chancnt;
904 mutex_lock(&dma_list_mutex);
905 /* take references on public channels */
906 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
907 list_for_each_entry(chan, &device->channels, device_node) {
908 /* if clients are already waiting for channels we need
909 * to take references on their behalf
911 if (dma_chan_get(chan) == -ENODEV) {
912 /* note we can only get here for the first
913 * channel as the remaining channels are
914 * guaranteed to get a reference
916 rc = -ENODEV;
917 mutex_unlock(&dma_list_mutex);
918 goto err_out;
921 list_add_tail_rcu(&device->global_node, &dma_device_list);
922 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
923 device->privatecnt++; /* Always private */
924 dma_channel_rebalance();
925 mutex_unlock(&dma_list_mutex);
927 return 0;
929 err_out:
930 /* if we never registered a channel just release the idr */
931 if (atomic_read(idr_ref) == 0) {
932 mutex_lock(&dma_list_mutex);
933 idr_remove(&dma_idr, device->dev_id);
934 mutex_unlock(&dma_list_mutex);
935 kfree(idr_ref);
936 return rc;
939 list_for_each_entry(chan, &device->channels, device_node) {
940 if (chan->local == NULL)
941 continue;
942 mutex_lock(&dma_list_mutex);
943 chan->dev->chan = NULL;
944 mutex_unlock(&dma_list_mutex);
945 device_unregister(&chan->dev->device);
946 free_percpu(chan->local);
948 return rc;
950 EXPORT_SYMBOL(dma_async_device_register);
953 * dma_async_device_unregister - unregister a DMA device
954 * @device: &dma_device
956 * This routine is called by dma driver exit routines, dmaengine holds module
957 * references to prevent it being called while channels are in use.
959 void dma_async_device_unregister(struct dma_device *device)
961 struct dma_chan *chan;
963 mutex_lock(&dma_list_mutex);
964 list_del_rcu(&device->global_node);
965 dma_channel_rebalance();
966 mutex_unlock(&dma_list_mutex);
968 list_for_each_entry(chan, &device->channels, device_node) {
969 WARN_ONCE(chan->client_count,
970 "%s called while %d clients hold a reference\n",
971 __func__, chan->client_count);
972 mutex_lock(&dma_list_mutex);
973 chan->dev->chan = NULL;
974 mutex_unlock(&dma_list_mutex);
975 device_unregister(&chan->dev->device);
976 free_percpu(chan->local);
979 EXPORT_SYMBOL(dma_async_device_unregister);
981 struct dmaengine_unmap_pool {
982 struct kmem_cache *cache;
983 const char *name;
984 mempool_t *pool;
985 size_t size;
988 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
989 static struct dmaengine_unmap_pool unmap_pool[] = {
990 __UNMAP_POOL(2),
991 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
992 __UNMAP_POOL(16),
993 __UNMAP_POOL(128),
994 __UNMAP_POOL(256),
995 #endif
998 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1000 int order = get_count_order(nr);
1002 switch (order) {
1003 case 0 ... 1:
1004 return &unmap_pool[0];
1005 case 2 ... 4:
1006 return &unmap_pool[1];
1007 case 5 ... 7:
1008 return &unmap_pool[2];
1009 case 8:
1010 return &unmap_pool[3];
1011 default:
1012 BUG();
1013 return NULL;
1017 static void dmaengine_unmap(struct kref *kref)
1019 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1020 struct device *dev = unmap->dev;
1021 int cnt, i;
1023 cnt = unmap->to_cnt;
1024 for (i = 0; i < cnt; i++)
1025 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1026 DMA_TO_DEVICE);
1027 cnt += unmap->from_cnt;
1028 for (; i < cnt; i++)
1029 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1030 DMA_FROM_DEVICE);
1031 cnt += unmap->bidi_cnt;
1032 for (; i < cnt; i++) {
1033 if (unmap->addr[i] == 0)
1034 continue;
1035 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1036 DMA_BIDIRECTIONAL);
1038 cnt = unmap->map_cnt;
1039 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1042 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1044 if (unmap)
1045 kref_put(&unmap->kref, dmaengine_unmap);
1047 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1049 static void dmaengine_destroy_unmap_pool(void)
1051 int i;
1053 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1054 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1056 if (p->pool)
1057 mempool_destroy(p->pool);
1058 p->pool = NULL;
1059 if (p->cache)
1060 kmem_cache_destroy(p->cache);
1061 p->cache = NULL;
1065 static int __init dmaengine_init_unmap_pool(void)
1067 int i;
1069 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1070 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1071 size_t size;
1073 size = sizeof(struct dmaengine_unmap_data) +
1074 sizeof(dma_addr_t) * p->size;
1076 p->cache = kmem_cache_create(p->name, size, 0,
1077 SLAB_HWCACHE_ALIGN, NULL);
1078 if (!p->cache)
1079 break;
1080 p->pool = mempool_create_slab_pool(1, p->cache);
1081 if (!p->pool)
1082 break;
1085 if (i == ARRAY_SIZE(unmap_pool))
1086 return 0;
1088 dmaengine_destroy_unmap_pool();
1089 return -ENOMEM;
1092 struct dmaengine_unmap_data *
1093 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1095 struct dmaengine_unmap_data *unmap;
1097 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1098 if (!unmap)
1099 return NULL;
1101 memset(unmap, 0, sizeof(*unmap));
1102 kref_init(&unmap->kref);
1103 unmap->dev = dev;
1104 unmap->map_cnt = nr;
1106 return unmap;
1108 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1110 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1111 struct dma_chan *chan)
1113 tx->chan = chan;
1114 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1115 spin_lock_init(&tx->lock);
1116 #endif
1118 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1120 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1121 * @tx: in-flight transaction to wait on
1123 enum dma_status
1124 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1126 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1128 if (!tx)
1129 return DMA_COMPLETE;
1131 while (tx->cookie == -EBUSY) {
1132 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1133 pr_err("%s timeout waiting for descriptor submission\n",
1134 __func__);
1135 return DMA_ERROR;
1137 cpu_relax();
1139 return dma_sync_wait(tx->chan, tx->cookie);
1141 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1143 /* dma_run_dependencies - helper routine for dma drivers to process
1144 * (start) dependent operations on their target channel
1145 * @tx: transaction with dependencies
1147 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1149 struct dma_async_tx_descriptor *dep = txd_next(tx);
1150 struct dma_async_tx_descriptor *dep_next;
1151 struct dma_chan *chan;
1153 if (!dep)
1154 return;
1156 /* we'll submit tx->next now, so clear the link */
1157 txd_clear_next(tx);
1158 chan = dep->chan;
1160 /* keep submitting up until a channel switch is detected
1161 * in that case we will be called again as a result of
1162 * processing the interrupt from async_tx_channel_switch
1164 for (; dep; dep = dep_next) {
1165 txd_lock(dep);
1166 txd_clear_parent(dep);
1167 dep_next = txd_next(dep);
1168 if (dep_next && dep_next->chan == chan)
1169 txd_clear_next(dep); /* ->next will be submitted */
1170 else
1171 dep_next = NULL; /* submit current dep and terminate */
1172 txd_unlock(dep);
1174 dep->tx_submit(dep);
1177 chan->device->device_issue_pending(chan);
1179 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1181 static int __init dma_bus_init(void)
1183 int err = dmaengine_init_unmap_pool();
1185 if (err)
1186 return err;
1187 return class_register(&dma_devclass);
1189 arch_initcall(dma_bus_init);