2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <linux/platform_data/edma.h>
31 #include "dmaengine.h"
35 * This will go away when the private EDMA API is folded
36 * into this driver and the platform device(s) are
37 * instantiated in the arch code. We can only get away
38 * with this simplification because DA8XX may not be built
39 * in the same kernel image with other DaVinci parts. This
40 * avoids having to sprinkle dmaengine driver platform devices
41 * and data throughout all the existing board files.
43 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
49 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
52 * Max of 20 segments per channel to conserve PaRAM slots
53 * Also note that MAX_NR_SG should be atleast the no.of periods
54 * that are required for ASoC, otherwise DMA prep calls will
55 * fail. Today davinci-pcm is the only user of this driver and
56 * requires atleast 17 slots, so we setup the default to 20.
59 #define EDMA_MAX_SLOTS MAX_NR_SG
60 #define EDMA_DESCRIPTORS 16
65 struct edmacc_param param
;
69 struct virt_dma_desc vdesc
;
70 struct list_head node
;
71 enum dma_transfer_direction direction
;
75 struct edma_chan
*echan
;
79 * The following 4 elements are used for residue accounting.
81 * - processed_stat: the number of SG elements we have traversed
82 * so far to cover accounting. This is updated directly to processed
83 * during edma_callback and is always <= processed, because processed
84 * refers to the number of pending transfer (programmed to EDMA
85 * controller), where as processed_stat tracks number of transfers
86 * accounted for so far.
88 * - residue: The amount of bytes we have left to transfer for this desc
90 * - residue_stat: The residue in bytes of data we have covered
91 * so far for accounting. This is updated directly to residue
92 * during callbacks to keep it current.
94 * - sg_len: Tracks the length of the current intermediate transfer,
95 * this is required to update the residue during intermediate transfer
96 * completion callback.
103 struct edma_pset pset
[0];
109 struct virt_dma_chan vchan
;
110 struct list_head node
;
111 struct edma_desc
*edesc
;
115 int slot
[EDMA_MAX_SLOTS
];
117 struct dma_slave_config cfg
;
122 struct dma_device dma_slave
;
123 struct edma_chan slave_chans
[EDMA_CHANS
];
128 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
130 return container_of(d
, struct edma_cc
, dma_slave
);
133 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
135 return container_of(c
, struct edma_chan
, vchan
.chan
);
138 static inline struct edma_desc
139 *to_edma_desc(struct dma_async_tx_descriptor
*tx
)
141 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
144 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
146 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
149 /* Dispatch a queued descriptor to the controller (caller holds lock) */
150 static void edma_execute(struct edma_chan
*echan
)
152 struct virt_dma_desc
*vdesc
;
153 struct edma_desc
*edesc
;
154 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
155 int i
, j
, left
, nslots
;
157 /* If either we processed all psets or we're still not started */
159 echan
->edesc
->pset_nr
== echan
->edesc
->processed
) {
161 vdesc
= vchan_next_desc(&echan
->vchan
);
166 list_del(&vdesc
->node
);
167 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
170 edesc
= echan
->edesc
;
172 /* Find out how many left */
173 left
= edesc
->pset_nr
- edesc
->processed
;
174 nslots
= min(MAX_NR_SG
, left
);
177 /* Write descriptor PaRAM set(s) */
178 for (i
= 0; i
< nslots
; i
++) {
179 j
= i
+ edesc
->processed
;
180 edma_write_slot(echan
->slot
[i
], &edesc
->pset
[j
].param
);
181 edesc
->sg_len
+= edesc
->pset
[j
].len
;
182 dev_vdbg(echan
->vchan
.chan
.device
->dev
,
194 j
, echan
->ch_num
, echan
->slot
[i
],
195 edesc
->pset
[j
].param
.opt
,
196 edesc
->pset
[j
].param
.src
,
197 edesc
->pset
[j
].param
.dst
,
198 edesc
->pset
[j
].param
.a_b_cnt
,
199 edesc
->pset
[j
].param
.ccnt
,
200 edesc
->pset
[j
].param
.src_dst_bidx
,
201 edesc
->pset
[j
].param
.src_dst_cidx
,
202 edesc
->pset
[j
].param
.link_bcntrld
);
203 /* Link to the previous slot if not the last set */
204 if (i
!= (nslots
- 1))
205 edma_link(echan
->slot
[i
], echan
->slot
[i
+1]);
208 edesc
->processed
+= nslots
;
211 * If this is either the last set in a set of SG-list transactions
212 * then setup a link to the dummy slot, this results in all future
213 * events being absorbed and that's OK because we're done
215 if (edesc
->processed
== edesc
->pset_nr
) {
217 edma_link(echan
->slot
[nslots
-1], echan
->slot
[1]);
219 edma_link(echan
->slot
[nslots
-1],
220 echan
->ecc
->dummy_slot
);
223 if (edesc
->processed
<= MAX_NR_SG
) {
224 dev_dbg(dev
, "first transfer starting on channel %d\n",
226 edma_start(echan
->ch_num
);
228 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
229 echan
->ch_num
, edesc
->processed
);
230 edma_resume(echan
->ch_num
);
234 * This happens due to setup times between intermediate transfers
235 * in long SG lists which have to be broken up into transfers of
239 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
240 edma_clean_channel(echan
->ch_num
);
241 edma_stop(echan
->ch_num
);
242 edma_start(echan
->ch_num
);
243 edma_trigger_channel(echan
->ch_num
);
248 static int edma_terminate_all(struct dma_chan
*chan
)
250 struct edma_chan
*echan
= to_edma_chan(chan
);
254 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
257 * Stop DMA activity: we assume the callback will not be called
258 * after edma_dma() returns (even if it does, it will see
259 * echan->edesc is NULL and exit.)
262 int cyclic
= echan
->edesc
->cyclic
;
265 * free the running request descriptor
266 * since it is not in any of the vdesc lists
268 edma_desc_free(&echan
->edesc
->vdesc
);
271 edma_stop(echan
->ch_num
);
272 /* Move the cyclic channel back to default queue */
274 edma_assign_channel_eventq(echan
->ch_num
,
278 vchan_get_all_descriptors(&echan
->vchan
, &head
);
279 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
280 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
285 static int edma_slave_config(struct dma_chan
*chan
,
286 struct dma_slave_config
*cfg
)
288 struct edma_chan
*echan
= to_edma_chan(chan
);
290 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
291 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
294 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
299 static int edma_dma_pause(struct dma_chan
*chan
)
301 struct edma_chan
*echan
= to_edma_chan(chan
);
303 /* Pause/Resume only allowed with cyclic mode */
304 if (!echan
->edesc
|| !echan
->edesc
->cyclic
)
307 edma_pause(echan
->ch_num
);
311 static int edma_dma_resume(struct dma_chan
*chan
)
313 struct edma_chan
*echan
= to_edma_chan(chan
);
315 /* Pause/Resume only allowed with cyclic mode */
316 if (!echan
->edesc
->cyclic
)
319 edma_resume(echan
->ch_num
);
324 * A PaRAM set configuration abstraction used by other modes
325 * @chan: Channel who's PaRAM set we're configuring
326 * @pset: PaRAM set to initialize and setup.
327 * @src_addr: Source address of the DMA
328 * @dst_addr: Destination address of the DMA
329 * @burst: In units of dev_width, how much to send
330 * @dev_width: How much is the dev_width
331 * @dma_length: Total length of the DMA transfer
332 * @direction: Direction of the transfer
334 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
335 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
336 enum dma_slave_buswidth dev_width
, unsigned int dma_length
,
337 enum dma_transfer_direction direction
)
339 struct edma_chan
*echan
= to_edma_chan(chan
);
340 struct device
*dev
= chan
->device
->dev
;
341 struct edmacc_param
*param
= &epset
->param
;
342 int acnt
, bcnt
, ccnt
, cidx
;
343 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
348 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
352 * If the maxburst is equal to the fifo width, use
353 * A-synced transfers. This allows for large contiguous
354 * buffer transfers using only one PaRAM set.
358 * For the A-sync case, bcnt and ccnt are the remainder
359 * and quotient respectively of the division of:
360 * (dma_length / acnt) by (SZ_64K -1). This is so
361 * that in case bcnt over flows, we have ccnt to use.
362 * Note: In A-sync tranfer only, bcntrld is used, but it
363 * only applies for sg_dma_len(sg) >= SZ_64K.
364 * In this case, the best way adopted is- bccnt for the
365 * first frame will be the remainder below. Then for
366 * every successive frame, bcnt will be SZ_64K-1. This
367 * is assured as bcntrld = 0xffff in end of function.
370 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
371 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
373 * If bcnt is non-zero, we have a remainder and hence an
374 * extra frame to transfer, so increment ccnt.
383 * If maxburst is greater than the fifo address_width,
384 * use AB-synced transfers where A count is the fifo
385 * address_width and B count is the maxburst. In this
386 * case, we are limited to transfers of C count frames
387 * of (address_width * maxburst) where C count is limited
388 * to SZ_64K-1. This places an upper bound on the length
389 * of an SG segment that can be handled.
393 ccnt
= dma_length
/ (acnt
* bcnt
);
394 if (ccnt
> (SZ_64K
- 1)) {
395 dev_err(dev
, "Exceeded max SG segment size\n");
401 epset
->len
= dma_length
;
403 if (direction
== DMA_MEM_TO_DEV
) {
408 epset
->addr
= src_addr
;
409 } else if (direction
== DMA_DEV_TO_MEM
) {
414 epset
->addr
= dst_addr
;
415 } else if (direction
== DMA_MEM_TO_MEM
) {
421 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
425 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
426 /* Configure A or AB synchronized transfers */
428 param
->opt
|= SYNCDIM
;
430 param
->src
= src_addr
;
431 param
->dst
= dst_addr
;
433 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
434 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
436 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
439 * Only time when (bcntrld) auto reload is required is for
440 * A-sync case, and in this case, a requirement of reload value
441 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
442 * and then later will be populated by edma_execute.
444 param
->link_bcntrld
= 0xffffffff;
448 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
449 struct dma_chan
*chan
, struct scatterlist
*sgl
,
450 unsigned int sg_len
, enum dma_transfer_direction direction
,
451 unsigned long tx_flags
, void *context
)
453 struct edma_chan
*echan
= to_edma_chan(chan
);
454 struct device
*dev
= chan
->device
->dev
;
455 struct edma_desc
*edesc
;
456 dma_addr_t src_addr
= 0, dst_addr
= 0;
457 enum dma_slave_buswidth dev_width
;
459 struct scatterlist
*sg
;
462 if (unlikely(!echan
|| !sgl
|| !sg_len
))
465 if (direction
== DMA_DEV_TO_MEM
) {
466 src_addr
= echan
->cfg
.src_addr
;
467 dev_width
= echan
->cfg
.src_addr_width
;
468 burst
= echan
->cfg
.src_maxburst
;
469 } else if (direction
== DMA_MEM_TO_DEV
) {
470 dst_addr
= echan
->cfg
.dst_addr
;
471 dev_width
= echan
->cfg
.dst_addr_width
;
472 burst
= echan
->cfg
.dst_maxburst
;
474 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
478 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
479 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
483 edesc
= kzalloc(sizeof(*edesc
) + sg_len
*
484 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
486 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
490 edesc
->pset_nr
= sg_len
;
492 edesc
->direction
= direction
;
493 edesc
->echan
= echan
;
495 /* Allocate a PaRAM slot, if needed */
496 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
498 for (i
= 0; i
< nslots
; i
++) {
499 if (echan
->slot
[i
] < 0) {
501 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
503 if (echan
->slot
[i
] < 0) {
505 dev_err(dev
, "%s: Failed to allocate slot\n",
512 /* Configure PaRAM sets for each SG */
513 for_each_sg(sgl
, sg
, sg_len
, i
) {
514 /* Get address for each SG */
515 if (direction
== DMA_DEV_TO_MEM
)
516 dst_addr
= sg_dma_address(sg
);
518 src_addr
= sg_dma_address(sg
);
520 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
521 dst_addr
, burst
, dev_width
,
522 sg_dma_len(sg
), direction
);
529 edesc
->residue
+= sg_dma_len(sg
);
531 /* If this is the last in a current SG set of transactions,
532 enable interrupts so that next set is processed */
533 if (!((i
+1) % MAX_NR_SG
))
534 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
536 /* If this is the last set, enable completion interrupt flag */
538 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
540 edesc
->residue_stat
= edesc
->residue
;
542 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
545 static struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
546 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
547 size_t len
, unsigned long tx_flags
)
550 struct edma_desc
*edesc
;
551 struct device
*dev
= chan
->device
->dev
;
552 struct edma_chan
*echan
= to_edma_chan(chan
);
554 if (unlikely(!echan
|| !len
))
557 edesc
= kzalloc(sizeof(*edesc
) + sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
559 dev_dbg(dev
, "Failed to allocate a descriptor\n");
565 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
566 DMA_SLAVE_BUSWIDTH_4_BYTES
, len
, DMA_MEM_TO_MEM
);
573 * Enable intermediate transfer chaining to re-trigger channel
574 * on completion of every TR, and enable transfer-completion
575 * interrupt on completion of the whole transfer.
577 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
578 edesc
->pset
[0].param
.opt
|= TCINTEN
;
580 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
583 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
584 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
585 size_t period_len
, enum dma_transfer_direction direction
,
586 unsigned long tx_flags
)
588 struct edma_chan
*echan
= to_edma_chan(chan
);
589 struct device
*dev
= chan
->device
->dev
;
590 struct edma_desc
*edesc
;
591 dma_addr_t src_addr
, dst_addr
;
592 enum dma_slave_buswidth dev_width
;
596 if (unlikely(!echan
|| !buf_len
|| !period_len
))
599 if (direction
== DMA_DEV_TO_MEM
) {
600 src_addr
= echan
->cfg
.src_addr
;
602 dev_width
= echan
->cfg
.src_addr_width
;
603 burst
= echan
->cfg
.src_maxburst
;
604 } else if (direction
== DMA_MEM_TO_DEV
) {
606 dst_addr
= echan
->cfg
.dst_addr
;
607 dev_width
= echan
->cfg
.dst_addr_width
;
608 burst
= echan
->cfg
.dst_maxburst
;
610 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
614 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
615 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
619 if (unlikely(buf_len
% period_len
)) {
620 dev_err(dev
, "Period should be multiple of Buffer length\n");
624 nslots
= (buf_len
/ period_len
) + 1;
627 * Cyclic DMA users such as audio cannot tolerate delays introduced
628 * by cases where the number of periods is more than the maximum
629 * number of SGs the EDMA driver can handle at a time. For DMA types
630 * such as Slave SGs, such delays are tolerable and synchronized,
631 * but the synchronization is difficult to achieve with Cyclic and
632 * cannot be guaranteed, so we error out early.
634 if (nslots
> MAX_NR_SG
)
637 edesc
= kzalloc(sizeof(*edesc
) + nslots
*
638 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
640 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
645 edesc
->pset_nr
= nslots
;
646 edesc
->residue
= edesc
->residue_stat
= buf_len
;
647 edesc
->direction
= direction
;
648 edesc
->echan
= echan
;
650 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
651 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
653 for (i
= 0; i
< nslots
; i
++) {
654 /* Allocate a PaRAM slot, if needed */
655 if (echan
->slot
[i
] < 0) {
657 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
659 if (echan
->slot
[i
] < 0) {
661 dev_err(dev
, "%s: Failed to allocate slot\n",
667 if (i
== nslots
- 1) {
668 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
669 sizeof(edesc
->pset
[0]));
673 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
674 dst_addr
, burst
, dev_width
, period_len
,
681 if (direction
== DMA_DEV_TO_MEM
)
682 dst_addr
+= period_len
;
684 src_addr
+= period_len
;
686 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
699 i
, echan
->ch_num
, echan
->slot
[i
],
700 edesc
->pset
[i
].param
.opt
,
701 edesc
->pset
[i
].param
.src
,
702 edesc
->pset
[i
].param
.dst
,
703 edesc
->pset
[i
].param
.a_b_cnt
,
704 edesc
->pset
[i
].param
.ccnt
,
705 edesc
->pset
[i
].param
.src_dst_bidx
,
706 edesc
->pset
[i
].param
.src_dst_cidx
,
707 edesc
->pset
[i
].param
.link_bcntrld
);
712 * Enable period interrupt only if it is requested
714 if (tx_flags
& DMA_PREP_INTERRUPT
)
715 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
718 /* Place the cyclic channel to highest priority queue */
719 edma_assign_channel_eventq(echan
->ch_num
, EVENTQ_0
);
721 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
724 static void edma_callback(unsigned ch_num
, u16 ch_status
, void *data
)
726 struct edma_chan
*echan
= data
;
727 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
728 struct edma_desc
*edesc
;
729 struct edmacc_param p
;
731 edesc
= echan
->edesc
;
733 /* Pause the channel for non-cyclic */
734 if (!edesc
|| (edesc
&& !edesc
->cyclic
))
735 edma_pause(echan
->ch_num
);
738 case EDMA_DMA_COMPLETE
:
739 spin_lock(&echan
->vchan
.lock
);
743 vchan_cyclic_callback(&edesc
->vdesc
);
744 } else if (edesc
->processed
== edesc
->pset_nr
) {
745 dev_dbg(dev
, "Transfer complete, stopping channel %d\n", ch_num
);
747 edma_stop(echan
->ch_num
);
748 vchan_cookie_complete(&edesc
->vdesc
);
751 dev_dbg(dev
, "Intermediate transfer complete on channel %d\n", ch_num
);
753 /* Update statistics for tx_status */
754 edesc
->residue
-= edesc
->sg_len
;
755 edesc
->residue_stat
= edesc
->residue
;
756 edesc
->processed_stat
= edesc
->processed
;
762 spin_unlock(&echan
->vchan
.lock
);
765 case EDMA_DMA_CC_ERROR
:
766 spin_lock(&echan
->vchan
.lock
);
768 edma_read_slot(EDMA_CHAN_SLOT(echan
->slot
[0]), &p
);
771 * Issue later based on missed flag which will be sure
773 * (1) we finished transmitting an intermediate slot and
774 * edma_execute is coming up.
775 * (2) or we finished current transfer and issue will
778 * Important note: issuing can be dangerous here and
779 * lead to some nasty recursion when we are in a NULL
780 * slot. So we avoid doing so and set the missed flag.
782 if (p
.a_b_cnt
== 0 && p
.ccnt
== 0) {
783 dev_dbg(dev
, "Error occurred, looks like slot is null, just setting miss\n");
787 * The slot is already programmed but the event got
788 * missed, so its safe to issue it here.
790 dev_dbg(dev
, "Error occurred but slot is non-null, TRIGGERING\n");
791 edma_clean_channel(echan
->ch_num
);
792 edma_stop(echan
->ch_num
);
793 edma_start(echan
->ch_num
);
794 edma_trigger_channel(echan
->ch_num
);
797 spin_unlock(&echan
->vchan
.lock
);
805 /* Alloc channel resources */
806 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
808 struct edma_chan
*echan
= to_edma_chan(chan
);
809 struct device
*dev
= chan
->device
->dev
;
814 a_ch_num
= edma_alloc_channel(echan
->ch_num
, edma_callback
,
815 echan
, EVENTQ_DEFAULT
);
822 if (a_ch_num
!= echan
->ch_num
) {
823 dev_err(dev
, "failed to allocate requested channel %u:%u\n",
824 EDMA_CTLR(echan
->ch_num
),
825 EDMA_CHAN_SLOT(echan
->ch_num
));
830 echan
->alloced
= true;
831 echan
->slot
[0] = echan
->ch_num
;
833 dev_dbg(dev
, "allocated channel %d for %u:%u\n", echan
->ch_num
,
834 EDMA_CTLR(echan
->ch_num
), EDMA_CHAN_SLOT(echan
->ch_num
));
839 edma_free_channel(a_ch_num
);
844 /* Free channel resources */
845 static void edma_free_chan_resources(struct dma_chan
*chan
)
847 struct edma_chan
*echan
= to_edma_chan(chan
);
848 struct device
*dev
= chan
->device
->dev
;
851 /* Terminate transfers */
852 edma_stop(echan
->ch_num
);
854 vchan_free_chan_resources(&echan
->vchan
);
856 /* Free EDMA PaRAM slots */
857 for (i
= 1; i
< EDMA_MAX_SLOTS
; i
++) {
858 if (echan
->slot
[i
] >= 0) {
859 edma_free_slot(echan
->slot
[i
]);
864 /* Free EDMA channel */
865 if (echan
->alloced
) {
866 edma_free_channel(echan
->ch_num
);
867 echan
->alloced
= false;
870 dev_dbg(dev
, "freeing channel for %u\n", echan
->ch_num
);
873 /* Send pending descriptor to hardware */
874 static void edma_issue_pending(struct dma_chan
*chan
)
876 struct edma_chan
*echan
= to_edma_chan(chan
);
879 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
880 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
882 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
885 static u32
edma_residue(struct edma_desc
*edesc
)
887 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
888 struct edma_pset
*pset
= edesc
->pset
;
889 dma_addr_t done
, pos
;
893 * We always read the dst/src position from the first RamPar
894 * pset. That's the one which is active now.
896 pos
= edma_get_position(edesc
->echan
->slot
[0], dst
);
899 * Cyclic is simple. Just subtract pset[0].addr from pos.
901 * We never update edesc->residue in the cyclic case, so we
902 * can tell the remaining room to the end of the circular
906 done
= pos
- pset
->addr
;
907 edesc
->residue_stat
= edesc
->residue
- done
;
908 return edesc
->residue_stat
;
912 * For SG operation we catch up with the last processed
915 pset
+= edesc
->processed_stat
;
917 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
919 * If we are inside this pset address range, we know
920 * this is the active one. Get the current delta and
921 * stop walking the psets.
923 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
924 return edesc
->residue_stat
- (pos
- pset
->addr
);
926 /* Otherwise mark it done and update residue_stat. */
927 edesc
->processed_stat
++;
928 edesc
->residue_stat
-= pset
->len
;
930 return edesc
->residue_stat
;
933 /* Check request completion status */
934 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
936 struct dma_tx_state
*txstate
)
938 struct edma_chan
*echan
= to_edma_chan(chan
);
939 struct virt_dma_desc
*vdesc
;
943 ret
= dma_cookie_status(chan
, cookie
, txstate
);
944 if (ret
== DMA_COMPLETE
|| !txstate
)
947 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
948 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
949 txstate
->residue
= edma_residue(echan
->edesc
);
950 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
951 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
952 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
957 static void __init
edma_chan_init(struct edma_cc
*ecc
,
958 struct dma_device
*dma
,
959 struct edma_chan
*echans
)
963 for (i
= 0; i
< EDMA_CHANS
; i
++) {
964 struct edma_chan
*echan
= &echans
[i
];
965 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->ctlr
, i
);
967 echan
->vchan
.desc_free
= edma_desc_free
;
969 vchan_init(&echan
->vchan
, dma
);
971 INIT_LIST_HEAD(&echan
->node
);
972 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
977 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
978 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
979 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
980 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
982 static void edma_dma_init(struct edma_cc
*ecc
, struct dma_device
*dma
,
985 dma
->device_prep_slave_sg
= edma_prep_slave_sg
;
986 dma
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
987 dma
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
988 dma
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
989 dma
->device_free_chan_resources
= edma_free_chan_resources
;
990 dma
->device_issue_pending
= edma_issue_pending
;
991 dma
->device_tx_status
= edma_tx_status
;
992 dma
->device_config
= edma_slave_config
;
993 dma
->device_pause
= edma_dma_pause
;
994 dma
->device_resume
= edma_dma_resume
;
995 dma
->device_terminate_all
= edma_terminate_all
;
997 dma
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
998 dma
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
999 dma
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1000 dma
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1005 * code using dma memcpy must make sure alignment of
1006 * length is at dma->copy_align boundary.
1008 dma
->copy_align
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1010 INIT_LIST_HEAD(&dma
->channels
);
1013 static int edma_probe(struct platform_device
*pdev
)
1015 struct edma_cc
*ecc
;
1018 ret
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1022 ecc
= devm_kzalloc(&pdev
->dev
, sizeof(*ecc
), GFP_KERNEL
);
1024 dev_err(&pdev
->dev
, "Can't allocate controller\n");
1028 ecc
->ctlr
= pdev
->id
;
1029 ecc
->dummy_slot
= edma_alloc_slot(ecc
->ctlr
, EDMA_SLOT_ANY
);
1030 if (ecc
->dummy_slot
< 0) {
1031 dev_err(&pdev
->dev
, "Can't allocate PaRAM dummy slot\n");
1032 return ecc
->dummy_slot
;
1035 dma_cap_zero(ecc
->dma_slave
.cap_mask
);
1036 dma_cap_set(DMA_SLAVE
, ecc
->dma_slave
.cap_mask
);
1037 dma_cap_set(DMA_CYCLIC
, ecc
->dma_slave
.cap_mask
);
1038 dma_cap_set(DMA_MEMCPY
, ecc
->dma_slave
.cap_mask
);
1040 edma_dma_init(ecc
, &ecc
->dma_slave
, &pdev
->dev
);
1042 edma_chan_init(ecc
, &ecc
->dma_slave
, ecc
->slave_chans
);
1044 ret
= dma_async_device_register(&ecc
->dma_slave
);
1048 platform_set_drvdata(pdev
, ecc
);
1050 dev_info(&pdev
->dev
, "TI EDMA DMA engine driver\n");
1055 edma_free_slot(ecc
->dummy_slot
);
1059 static int edma_remove(struct platform_device
*pdev
)
1061 struct device
*dev
= &pdev
->dev
;
1062 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
1064 dma_async_device_unregister(&ecc
->dma_slave
);
1065 edma_free_slot(ecc
->dummy_slot
);
1070 static struct platform_driver edma_driver
= {
1071 .probe
= edma_probe
,
1072 .remove
= edma_remove
,
1074 .name
= "edma-dma-engine",
1078 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
1080 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
1081 struct edma_chan
*echan
= to_edma_chan(chan
);
1082 unsigned ch_req
= *(unsigned *)param
;
1083 return ch_req
== echan
->ch_num
;
1087 EXPORT_SYMBOL(edma_filter_fn
);
1089 static int edma_init(void)
1091 return platform_driver_register(&edma_driver
);
1093 subsys_initcall(edma_init
);
1095 static void __exit
edma_exit(void)
1097 platform_driver_unregister(&edma_driver
);
1099 module_exit(edma_exit
);
1101 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1102 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1103 MODULE_LICENSE("GPL v2");