gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-at91.c
blob9bd10a9b4b50bafaa674dcf6b11c05093422343f
1 /*
2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
42 /* AT91 TWI register definitions */
43 #define AT91_TWI_CR 0x0000 /* Control Register */
44 #define AT91_TWI_START 0x0001 /* Send a Start Condition */
45 #define AT91_TWI_STOP 0x0002 /* Send a Stop Condition */
46 #define AT91_TWI_MSEN 0x0004 /* Master Transfer Enable */
47 #define AT91_TWI_SVDIS 0x0020 /* Slave Transfer Disable */
48 #define AT91_TWI_QUICK 0x0040 /* SMBus quick command */
49 #define AT91_TWI_SWRST 0x0080 /* Software Reset */
51 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
52 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
53 #define AT91_TWI_MREAD 0x1000 /* Master Read Direction */
55 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
57 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
59 #define AT91_TWI_SR 0x0020 /* Status Register */
60 #define AT91_TWI_TXCOMP 0x0001 /* Transmission Complete */
61 #define AT91_TWI_RXRDY 0x0002 /* Receive Holding Register Ready */
62 #define AT91_TWI_TXRDY 0x0004 /* Transmit Holding Register Ready */
64 #define AT91_TWI_OVRE 0x0040 /* Overrun Error */
65 #define AT91_TWI_UNRE 0x0080 /* Underrun Error */
66 #define AT91_TWI_NACK 0x0100 /* Not Acknowledged */
68 #define AT91_TWI_INT_MASK \
69 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
71 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
72 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
73 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
74 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
75 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
77 struct at91_twi_pdata {
78 unsigned clk_max_div;
79 unsigned clk_offset;
80 bool has_unre_flag;
81 struct at_dma_slave dma_slave;
84 struct at91_twi_dma {
85 struct dma_chan *chan_rx;
86 struct dma_chan *chan_tx;
87 struct scatterlist sg;
88 struct dma_async_tx_descriptor *data_desc;
89 enum dma_data_direction direction;
90 bool buf_mapped;
91 bool xfer_in_progress;
94 struct at91_twi_dev {
95 struct device *dev;
96 void __iomem *base;
97 struct completion cmd_complete;
98 struct clk *clk;
99 u8 *buf;
100 size_t buf_len;
101 struct i2c_msg *msg;
102 int irq;
103 unsigned imr;
104 unsigned transfer_status;
105 struct i2c_adapter adapter;
106 unsigned twi_cwgr_reg;
107 struct at91_twi_pdata *pdata;
108 bool use_dma;
109 bool recv_len_abort;
110 struct at91_twi_dma dma;
113 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
115 return readl_relaxed(dev->base + reg);
118 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
120 writel_relaxed(val, dev->base + reg);
123 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
125 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
128 static void at91_twi_irq_save(struct at91_twi_dev *dev)
130 dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
131 at91_disable_twi_interrupts(dev);
134 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
136 at91_twi_write(dev, AT91_TWI_IER, dev->imr);
139 static void at91_init_twi_bus(struct at91_twi_dev *dev)
141 at91_disable_twi_interrupts(dev);
142 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
143 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
144 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
145 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
149 * Calculate symmetric clock as stated in datasheet:
150 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
152 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
154 int ckdiv, cdiv, div;
155 struct at91_twi_pdata *pdata = dev->pdata;
156 int offset = pdata->clk_offset;
157 int max_ckdiv = pdata->clk_max_div;
159 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
160 2 * twi_clk) - offset);
161 ckdiv = fls(div >> 8);
162 cdiv = div >> ckdiv;
164 if (ckdiv > max_ckdiv) {
165 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
166 ckdiv, max_ckdiv);
167 ckdiv = max_ckdiv;
168 cdiv = 255;
171 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv;
172 dev_dbg(dev->dev, "cdiv %d ckdiv %d\n", cdiv, ckdiv);
175 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
177 struct at91_twi_dma *dma = &dev->dma;
179 at91_twi_irq_save(dev);
181 if (dma->xfer_in_progress) {
182 if (dma->direction == DMA_FROM_DEVICE)
183 dmaengine_terminate_all(dma->chan_rx);
184 else
185 dmaengine_terminate_all(dma->chan_tx);
186 dma->xfer_in_progress = false;
188 if (dma->buf_mapped) {
189 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg),
190 dev->buf_len, dma->direction);
191 dma->buf_mapped = false;
194 at91_twi_irq_restore(dev);
197 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
199 if (dev->buf_len <= 0)
200 return;
202 at91_twi_write(dev, AT91_TWI_THR, *dev->buf);
204 /* send stop when last byte has been written */
205 if (--dev->buf_len == 0)
206 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
208 dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
210 ++dev->buf;
213 static void at91_twi_write_data_dma_callback(void *data)
215 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
217 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
218 dev->buf_len, DMA_TO_DEVICE);
221 * When this callback is called, THR/TX FIFO is likely not to be empty
222 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
223 * Status Register to be sure that the STOP bit has been sent and the
224 * transfer is completed. The NACK interrupt has already been enabled,
225 * we just have to enable TXCOMP one.
227 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
228 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
231 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
233 dma_addr_t dma_addr;
234 struct dma_async_tx_descriptor *txdesc;
235 struct at91_twi_dma *dma = &dev->dma;
236 struct dma_chan *chan_tx = dma->chan_tx;
238 if (dev->buf_len <= 0)
239 return;
241 dma->direction = DMA_TO_DEVICE;
243 at91_twi_irq_save(dev);
244 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
245 DMA_TO_DEVICE);
246 if (dma_mapping_error(dev->dev, dma_addr)) {
247 dev_err(dev->dev, "dma map failed\n");
248 return;
250 dma->buf_mapped = true;
251 at91_twi_irq_restore(dev);
252 sg_dma_len(&dma->sg) = dev->buf_len;
253 sg_dma_address(&dma->sg) = dma_addr;
255 txdesc = dmaengine_prep_slave_sg(chan_tx, &dma->sg, 1, DMA_MEM_TO_DEV,
256 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
257 if (!txdesc) {
258 dev_err(dev->dev, "dma prep slave sg failed\n");
259 goto error;
262 txdesc->callback = at91_twi_write_data_dma_callback;
263 txdesc->callback_param = dev;
265 dma->xfer_in_progress = true;
266 dmaengine_submit(txdesc);
267 dma_async_issue_pending(chan_tx);
269 return;
271 error:
272 at91_twi_dma_cleanup(dev);
275 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
277 if (dev->buf_len <= 0)
278 return;
280 *dev->buf = at91_twi_read(dev, AT91_TWI_RHR) & 0xff;
281 --dev->buf_len;
283 /* return if aborting, we only needed to read RHR to clear RXRDY*/
284 if (dev->recv_len_abort)
285 return;
287 /* handle I2C_SMBUS_BLOCK_DATA */
288 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
289 /* ensure length byte is a valid value */
290 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
291 dev->msg->flags &= ~I2C_M_RECV_LEN;
292 dev->buf_len += *dev->buf;
293 dev->msg->len = dev->buf_len + 1;
294 dev_dbg(dev->dev, "received block length %d\n",
295 dev->buf_len);
296 } else {
297 /* abort and send the stop by reading one more byte */
298 dev->recv_len_abort = true;
299 dev->buf_len = 1;
303 /* send stop if second but last byte has been read */
304 if (dev->buf_len == 1)
305 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
307 dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
309 ++dev->buf;
312 static void at91_twi_read_data_dma_callback(void *data)
314 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
316 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
317 dev->buf_len, DMA_FROM_DEVICE);
319 /* The last two bytes have to be read without using dma */
320 dev->buf += dev->buf_len - 2;
321 dev->buf_len = 2;
322 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_RXRDY | AT91_TWI_TXCOMP);
325 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
327 dma_addr_t dma_addr;
328 struct dma_async_tx_descriptor *rxdesc;
329 struct at91_twi_dma *dma = &dev->dma;
330 struct dma_chan *chan_rx = dma->chan_rx;
332 dma->direction = DMA_FROM_DEVICE;
334 /* Keep in mind that we won't use dma to read the last two bytes */
335 at91_twi_irq_save(dev);
336 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len - 2,
337 DMA_FROM_DEVICE);
338 if (dma_mapping_error(dev->dev, dma_addr)) {
339 dev_err(dev->dev, "dma map failed\n");
340 return;
342 dma->buf_mapped = true;
343 at91_twi_irq_restore(dev);
344 dma->sg.dma_address = dma_addr;
345 sg_dma_len(&dma->sg) = dev->buf_len - 2;
347 rxdesc = dmaengine_prep_slave_sg(chan_rx, &dma->sg, 1, DMA_DEV_TO_MEM,
348 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
349 if (!rxdesc) {
350 dev_err(dev->dev, "dma prep slave sg failed\n");
351 goto error;
354 rxdesc->callback = at91_twi_read_data_dma_callback;
355 rxdesc->callback_param = dev;
357 dma->xfer_in_progress = true;
358 dmaengine_submit(rxdesc);
359 dma_async_issue_pending(dma->chan_rx);
361 return;
363 error:
364 at91_twi_dma_cleanup(dev);
367 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
369 struct at91_twi_dev *dev = dev_id;
370 const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
371 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
373 if (!irqstatus)
374 return IRQ_NONE;
375 else if (irqstatus & AT91_TWI_RXRDY)
376 at91_twi_read_next_byte(dev);
377 else if (irqstatus & AT91_TWI_TXRDY)
378 at91_twi_write_next_byte(dev);
380 /* catch error flags */
381 dev->transfer_status |= status;
383 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
384 at91_disable_twi_interrupts(dev);
385 complete(&dev->cmd_complete);
388 return IRQ_HANDLED;
391 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
393 int ret;
394 unsigned long time_left;
395 bool has_unre_flag = dev->pdata->has_unre_flag;
398 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
399 * read flag but shows the state of the transmission at the time the
400 * Status Register is read. According to the programmer datasheet,
401 * TXCOMP is set when both holding register and internal shifter are
402 * empty and STOP condition has been sent.
403 * Consequently, we should enable NACK interrupt rather than TXCOMP to
404 * detect transmission failure.
406 * Besides, the TXCOMP bit is already set before the i2c transaction
407 * has been started. For read transactions, this bit is cleared when
408 * writing the START bit into the Control Register. So the
409 * corresponding interrupt can safely be enabled just after.
410 * However for write transactions managed by the CPU, we first write
411 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
412 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
413 * the interrupt handler would be called immediately and the i2c command
414 * would be reported as completed.
415 * Also when a write transaction is managed by the DMA controller,
416 * enabling the TXCOMP interrupt in this function may lead to a race
417 * condition since we don't know whether the TXCOMP interrupt is enabled
418 * before or after the DMA has started to write into THR. So the TXCOMP
419 * interrupt is enabled later by at91_twi_write_data_dma_callback().
420 * Immediately after in that DMA callback, we still need to send the
421 * STOP condition manually writing the corresponding bit into the
422 * Control Register.
425 dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
426 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
428 reinit_completion(&dev->cmd_complete);
429 dev->transfer_status = 0;
431 if (!dev->buf_len) {
432 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
433 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
434 } else if (dev->msg->flags & I2C_M_RD) {
435 unsigned start_flags = AT91_TWI_START;
437 if (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY) {
438 dev_err(dev->dev, "RXRDY still set!");
439 at91_twi_read(dev, AT91_TWI_RHR);
442 /* if only one byte is to be read, immediately stop transfer */
443 if (dev->buf_len <= 1 && !(dev->msg->flags & I2C_M_RECV_LEN))
444 start_flags |= AT91_TWI_STOP;
445 at91_twi_write(dev, AT91_TWI_CR, start_flags);
447 * When using dma, the last byte has to be read manually in
448 * order to not send the stop command too late and then
449 * to receive extra data. In practice, there are some issues
450 * if you use the dma to read n-1 bytes because of latency.
451 * Reading n-2 bytes with dma and the two last ones manually
452 * seems to be the best solution.
454 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
455 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
456 at91_twi_read_data_dma(dev);
457 } else {
458 at91_twi_write(dev, AT91_TWI_IER,
459 AT91_TWI_TXCOMP |
460 AT91_TWI_NACK |
461 AT91_TWI_RXRDY);
463 } else {
464 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
465 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
466 at91_twi_write_data_dma(dev);
467 } else {
468 at91_twi_write_next_byte(dev);
469 at91_twi_write(dev, AT91_TWI_IER,
470 AT91_TWI_TXCOMP |
471 AT91_TWI_NACK |
472 AT91_TWI_TXRDY);
476 time_left = wait_for_completion_timeout(&dev->cmd_complete,
477 dev->adapter.timeout);
478 if (time_left == 0) {
479 dev_err(dev->dev, "controller timed out\n");
480 at91_init_twi_bus(dev);
481 ret = -ETIMEDOUT;
482 goto error;
484 if (dev->transfer_status & AT91_TWI_NACK) {
485 dev_dbg(dev->dev, "received nack\n");
486 ret = -EREMOTEIO;
487 goto error;
489 if (dev->transfer_status & AT91_TWI_OVRE) {
490 dev_err(dev->dev, "overrun while reading\n");
491 ret = -EIO;
492 goto error;
494 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
495 dev_err(dev->dev, "underrun while writing\n");
496 ret = -EIO;
497 goto error;
499 if (dev->recv_len_abort) {
500 dev_err(dev->dev, "invalid smbus block length recvd\n");
501 ret = -EPROTO;
502 goto error;
505 dev_dbg(dev->dev, "transfer complete\n");
507 return 0;
509 error:
510 at91_twi_dma_cleanup(dev);
511 return ret;
514 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
516 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
517 int ret;
518 unsigned int_addr_flag = 0;
519 struct i2c_msg *m_start = msg;
521 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
523 ret = pm_runtime_get_sync(dev->dev);
524 if (ret < 0)
525 goto out;
527 if (num == 2) {
528 int internal_address = 0;
529 int i;
531 /* 1st msg is put into the internal address, start with 2nd */
532 m_start = &msg[1];
533 for (i = 0; i < msg->len; ++i) {
534 const unsigned addr = msg->buf[msg->len - 1 - i];
536 internal_address |= addr << (8 * i);
537 int_addr_flag += AT91_TWI_IADRSZ_1;
539 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
542 at91_twi_write(dev, AT91_TWI_MMR, (m_start->addr << 16) | int_addr_flag
543 | ((m_start->flags & I2C_M_RD) ? AT91_TWI_MREAD : 0));
545 dev->buf_len = m_start->len;
546 dev->buf = m_start->buf;
547 dev->msg = m_start;
548 dev->recv_len_abort = false;
550 ret = at91_do_twi_transfer(dev);
552 ret = (ret < 0) ? ret : num;
553 out:
554 pm_runtime_mark_last_busy(dev->dev);
555 pm_runtime_put_autosuspend(dev->dev);
557 return ret;
561 * The hardware can handle at most two messages concatenated by a
562 * repeated start via it's internal address feature.
564 static struct i2c_adapter_quirks at91_twi_quirks = {
565 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
566 .max_comb_1st_msg_len = 3,
569 static u32 at91_twi_func(struct i2c_adapter *adapter)
571 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
572 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
575 static struct i2c_algorithm at91_twi_algorithm = {
576 .master_xfer = at91_twi_xfer,
577 .functionality = at91_twi_func,
580 static struct at91_twi_pdata at91rm9200_config = {
581 .clk_max_div = 5,
582 .clk_offset = 3,
583 .has_unre_flag = true,
586 static struct at91_twi_pdata at91sam9261_config = {
587 .clk_max_div = 5,
588 .clk_offset = 4,
589 .has_unre_flag = false,
592 static struct at91_twi_pdata at91sam9260_config = {
593 .clk_max_div = 7,
594 .clk_offset = 4,
595 .has_unre_flag = false,
598 static struct at91_twi_pdata at91sam9g20_config = {
599 .clk_max_div = 7,
600 .clk_offset = 4,
601 .has_unre_flag = false,
604 static struct at91_twi_pdata at91sam9g10_config = {
605 .clk_max_div = 7,
606 .clk_offset = 4,
607 .has_unre_flag = false,
610 static const struct platform_device_id at91_twi_devtypes[] = {
612 .name = "i2c-at91rm9200",
613 .driver_data = (unsigned long) &at91rm9200_config,
614 }, {
615 .name = "i2c-at91sam9261",
616 .driver_data = (unsigned long) &at91sam9261_config,
617 }, {
618 .name = "i2c-at91sam9260",
619 .driver_data = (unsigned long) &at91sam9260_config,
620 }, {
621 .name = "i2c-at91sam9g20",
622 .driver_data = (unsigned long) &at91sam9g20_config,
623 }, {
624 .name = "i2c-at91sam9g10",
625 .driver_data = (unsigned long) &at91sam9g10_config,
626 }, {
627 /* sentinel */
631 #if defined(CONFIG_OF)
632 static struct at91_twi_pdata at91sam9x5_config = {
633 .clk_max_div = 7,
634 .clk_offset = 4,
635 .has_unre_flag = false,
638 static const struct of_device_id atmel_twi_dt_ids[] = {
640 .compatible = "atmel,at91rm9200-i2c",
641 .data = &at91rm9200_config,
642 } , {
643 .compatible = "atmel,at91sam9260-i2c",
644 .data = &at91sam9260_config,
645 } , {
646 .compatible = "atmel,at91sam9261-i2c",
647 .data = &at91sam9261_config,
648 } , {
649 .compatible = "atmel,at91sam9g20-i2c",
650 .data = &at91sam9g20_config,
651 } , {
652 .compatible = "atmel,at91sam9g10-i2c",
653 .data = &at91sam9g10_config,
654 }, {
655 .compatible = "atmel,at91sam9x5-i2c",
656 .data = &at91sam9x5_config,
657 }, {
658 /* sentinel */
661 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
662 #endif
664 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
666 int ret = 0;
667 struct dma_slave_config slave_config;
668 struct at91_twi_dma *dma = &dev->dma;
670 memset(&slave_config, 0, sizeof(slave_config));
671 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
672 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
673 slave_config.src_maxburst = 1;
674 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
675 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
676 slave_config.dst_maxburst = 1;
677 slave_config.device_fc = false;
679 dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
680 if (IS_ERR(dma->chan_tx)) {
681 ret = PTR_ERR(dma->chan_tx);
682 dma->chan_tx = NULL;
683 goto error;
686 dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
687 if (IS_ERR(dma->chan_rx)) {
688 ret = PTR_ERR(dma->chan_rx);
689 dma->chan_rx = NULL;
690 goto error;
693 slave_config.direction = DMA_MEM_TO_DEV;
694 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
695 dev_err(dev->dev, "failed to configure tx channel\n");
696 ret = -EINVAL;
697 goto error;
700 slave_config.direction = DMA_DEV_TO_MEM;
701 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
702 dev_err(dev->dev, "failed to configure rx channel\n");
703 ret = -EINVAL;
704 goto error;
707 sg_init_table(&dma->sg, 1);
708 dma->buf_mapped = false;
709 dma->xfer_in_progress = false;
710 dev->use_dma = true;
712 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
713 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
715 return ret;
717 error:
718 if (ret != -EPROBE_DEFER)
719 dev_info(dev->dev, "can't use DMA, error %d\n", ret);
720 if (dma->chan_rx)
721 dma_release_channel(dma->chan_rx);
722 if (dma->chan_tx)
723 dma_release_channel(dma->chan_tx);
724 return ret;
727 static struct at91_twi_pdata *at91_twi_get_driver_data(
728 struct platform_device *pdev)
730 if (pdev->dev.of_node) {
731 const struct of_device_id *match;
732 match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
733 if (!match)
734 return NULL;
735 return (struct at91_twi_pdata *)match->data;
737 return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
740 static int at91_twi_probe(struct platform_device *pdev)
742 struct at91_twi_dev *dev;
743 struct resource *mem;
744 int rc;
745 u32 phy_addr;
746 u32 bus_clk_rate;
748 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
749 if (!dev)
750 return -ENOMEM;
751 init_completion(&dev->cmd_complete);
752 dev->dev = &pdev->dev;
754 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
755 if (!mem)
756 return -ENODEV;
757 phy_addr = mem->start;
759 dev->pdata = at91_twi_get_driver_data(pdev);
760 if (!dev->pdata)
761 return -ENODEV;
763 dev->base = devm_ioremap_resource(&pdev->dev, mem);
764 if (IS_ERR(dev->base))
765 return PTR_ERR(dev->base);
767 dev->irq = platform_get_irq(pdev, 0);
768 if (dev->irq < 0)
769 return dev->irq;
771 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
772 dev_name(dev->dev), dev);
773 if (rc) {
774 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
775 return rc;
778 platform_set_drvdata(pdev, dev);
780 dev->clk = devm_clk_get(dev->dev, NULL);
781 if (IS_ERR(dev->clk)) {
782 dev_err(dev->dev, "no clock defined\n");
783 return -ENODEV;
785 clk_prepare_enable(dev->clk);
787 if (dev->dev->of_node) {
788 rc = at91_twi_configure_dma(dev, phy_addr);
789 if (rc == -EPROBE_DEFER)
790 return rc;
793 rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
794 &bus_clk_rate);
795 if (rc)
796 bus_clk_rate = DEFAULT_TWI_CLK_HZ;
798 at91_calc_twi_clock(dev, bus_clk_rate);
799 at91_init_twi_bus(dev);
801 snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
802 i2c_set_adapdata(&dev->adapter, dev);
803 dev->adapter.owner = THIS_MODULE;
804 dev->adapter.class = I2C_CLASS_DEPRECATED;
805 dev->adapter.algo = &at91_twi_algorithm;
806 dev->adapter.quirks = &at91_twi_quirks;
807 dev->adapter.dev.parent = dev->dev;
808 dev->adapter.nr = pdev->id;
809 dev->adapter.timeout = AT91_I2C_TIMEOUT;
810 dev->adapter.dev.of_node = pdev->dev.of_node;
812 pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
813 pm_runtime_use_autosuspend(dev->dev);
814 pm_runtime_set_active(dev->dev);
815 pm_runtime_enable(dev->dev);
817 rc = i2c_add_numbered_adapter(&dev->adapter);
818 if (rc) {
819 dev_err(dev->dev, "Adapter %s registration failed\n",
820 dev->adapter.name);
821 clk_disable_unprepare(dev->clk);
823 pm_runtime_disable(dev->dev);
824 pm_runtime_set_suspended(dev->dev);
826 return rc;
829 dev_info(dev->dev, "AT91 i2c bus driver.\n");
830 return 0;
833 static int at91_twi_remove(struct platform_device *pdev)
835 struct at91_twi_dev *dev = platform_get_drvdata(pdev);
837 i2c_del_adapter(&dev->adapter);
838 clk_disable_unprepare(dev->clk);
840 pm_runtime_disable(dev->dev);
841 pm_runtime_set_suspended(dev->dev);
843 return 0;
846 #ifdef CONFIG_PM
848 static int at91_twi_runtime_suspend(struct device *dev)
850 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
852 clk_disable_unprepare(twi_dev->clk);
854 pinctrl_pm_select_sleep_state(dev);
856 return 0;
859 static int at91_twi_runtime_resume(struct device *dev)
861 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
863 pinctrl_pm_select_default_state(dev);
865 return clk_prepare_enable(twi_dev->clk);
868 static int at91_twi_suspend_noirq(struct device *dev)
870 if (!pm_runtime_status_suspended(dev))
871 at91_twi_runtime_suspend(dev);
873 return 0;
876 static int at91_twi_resume_noirq(struct device *dev)
878 int ret;
880 if (!pm_runtime_status_suspended(dev)) {
881 ret = at91_twi_runtime_resume(dev);
882 if (ret)
883 return ret;
886 pm_runtime_mark_last_busy(dev);
887 pm_request_autosuspend(dev);
889 return 0;
892 static const struct dev_pm_ops at91_twi_pm = {
893 .suspend_noirq = at91_twi_suspend_noirq,
894 .resume_noirq = at91_twi_resume_noirq,
895 .runtime_suspend = at91_twi_runtime_suspend,
896 .runtime_resume = at91_twi_runtime_resume,
899 #define at91_twi_pm_ops (&at91_twi_pm)
900 #else
901 #define at91_twi_pm_ops NULL
902 #endif
904 static struct platform_driver at91_twi_driver = {
905 .probe = at91_twi_probe,
906 .remove = at91_twi_remove,
907 .id_table = at91_twi_devtypes,
908 .driver = {
909 .name = "at91_i2c",
910 .of_match_table = of_match_ptr(atmel_twi_dt_ids),
911 .pm = at91_twi_pm_ops,
915 static int __init at91_twi_init(void)
917 return platform_driver_register(&at91_twi_driver);
920 static void __exit at91_twi_exit(void)
922 platform_driver_unregister(&at91_twi_driver);
925 subsys_initcall(at91_twi_init);
926 module_exit(at91_twi_exit);
928 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
929 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
930 MODULE_LICENSE("GPL");
931 MODULE_ALIAS("platform:at91_i2c");