gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / md / bcache / btree.c
blob43829d9493f7065c4943b0fe4d9ceaa7315e466f
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
39 * Todo:
40 * register_bcache: Return errors out to userspace correctly
42 * Writeback: don't undirty key until after a cache flush
44 * Create an iterator for key pointers
46 * On btree write error, mark bucket such that it won't be freed from the cache
48 * Journalling:
49 * Check for bad keys in replay
50 * Propagate barriers
51 * Refcount journal entries in journal_replay
53 * Garbage collection:
54 * Finish incremental gc
55 * Gc should free old UUIDs, data for invalid UUIDs
57 * Provide a way to list backing device UUIDs we have data cached for, and
58 * probably how long it's been since we've seen them, and a way to invalidate
59 * dirty data for devices that will never be attached again
61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62 * that based on that and how much dirty data we have we can keep writeback
63 * from being starved
65 * Add a tracepoint or somesuch to watch for writeback starvation
67 * When btree depth > 1 and splitting an interior node, we have to make sure
68 * alloc_bucket() cannot fail. This should be true but is not completely
69 * obvious.
71 * Plugging?
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
76 * Superblock needs to be fleshed out for multiple cache devices
78 * Add a sysfs tunable for the number of writeback IOs in flight
80 * Add a sysfs tunable for the number of open data buckets
82 * IO tracking: Can we track when one process is doing io on behalf of another?
83 * IO tracking: Don't use just an average, weigh more recent stuff higher
85 * Test module load/unload
88 #define MAX_NEED_GC 64
89 #define MAX_SAVE_PRIO 72
91 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
93 #define PTR_HASH(c, k) \
94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
96 #define insert_lock(s, b) ((b)->level <= (s)->lock)
99 * These macros are for recursing down the btree - they handle the details of
100 * locking and looking up nodes in the cache for you. They're best treated as
101 * mere syntax when reading code that uses them.
103 * op->lock determines whether we take a read or a write lock at a given depth.
104 * If you've got a read lock and find that you need a write lock (i.e. you're
105 * going to have to split), set op->lock and return -EINTR; btree_root() will
106 * call you again and you'll have the correct lock.
110 * btree - recurse down the btree on a specified key
111 * @fn: function to call, which will be passed the child node
112 * @key: key to recurse on
113 * @b: parent btree node
114 * @op: pointer to struct btree_op
116 #define btree(fn, key, b, op, ...) \
117 ({ \
118 int _r, l = (b)->level - 1; \
119 bool _w = l <= (op)->lock; \
120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
121 _w, b); \
122 if (!IS_ERR(_child)) { \
123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
124 rw_unlock(_w, _child); \
125 } else \
126 _r = PTR_ERR(_child); \
127 _r; \
131 * btree_root - call a function on the root of the btree
132 * @fn: function to call, which will be passed the child node
133 * @c: cache set
134 * @op: pointer to struct btree_op
136 #define btree_root(fn, c, op, ...) \
137 ({ \
138 int _r = -EINTR; \
139 do { \
140 struct btree *_b = (c)->root; \
141 bool _w = insert_lock(op, _b); \
142 rw_lock(_w, _b, _b->level); \
143 if (_b == (c)->root && \
144 _w == insert_lock(op, _b)) { \
145 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
147 rw_unlock(_w, _b); \
148 bch_cannibalize_unlock(c); \
149 if (_r == -EINTR) \
150 schedule(); \
151 } while (_r == -EINTR); \
153 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
154 _r; \
157 static inline struct bset *write_block(struct btree *b)
159 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
162 static void bch_btree_init_next(struct btree *b)
164 /* If not a leaf node, always sort */
165 if (b->level && b->keys.nsets)
166 bch_btree_sort(&b->keys, &b->c->sort);
167 else
168 bch_btree_sort_lazy(&b->keys, &b->c->sort);
170 if (b->written < btree_blocks(b))
171 bch_bset_init_next(&b->keys, write_block(b),
172 bset_magic(&b->c->sb));
176 /* Btree key manipulation */
178 void bkey_put(struct cache_set *c, struct bkey *k)
180 unsigned i;
182 for (i = 0; i < KEY_PTRS(k); i++)
183 if (ptr_available(c, k, i))
184 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
187 /* Btree IO */
189 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
191 uint64_t crc = b->key.ptr[0];
192 void *data = (void *) i + 8, *end = bset_bkey_last(i);
194 crc = bch_crc64_update(crc, data, end - data);
195 return crc ^ 0xffffffffffffffffULL;
198 void bch_btree_node_read_done(struct btree *b)
200 const char *err = "bad btree header";
201 struct bset *i = btree_bset_first(b);
202 struct btree_iter *iter;
204 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
205 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
206 iter->used = 0;
208 #ifdef CONFIG_BCACHE_DEBUG
209 iter->b = &b->keys;
210 #endif
212 if (!i->seq)
213 goto err;
215 for (;
216 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
217 i = write_block(b)) {
218 err = "unsupported bset version";
219 if (i->version > BCACHE_BSET_VERSION)
220 goto err;
222 err = "bad btree header";
223 if (b->written + set_blocks(i, block_bytes(b->c)) >
224 btree_blocks(b))
225 goto err;
227 err = "bad magic";
228 if (i->magic != bset_magic(&b->c->sb))
229 goto err;
231 err = "bad checksum";
232 switch (i->version) {
233 case 0:
234 if (i->csum != csum_set(i))
235 goto err;
236 break;
237 case BCACHE_BSET_VERSION:
238 if (i->csum != btree_csum_set(b, i))
239 goto err;
240 break;
243 err = "empty set";
244 if (i != b->keys.set[0].data && !i->keys)
245 goto err;
247 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
249 b->written += set_blocks(i, block_bytes(b->c));
252 err = "corrupted btree";
253 for (i = write_block(b);
254 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
255 i = ((void *) i) + block_bytes(b->c))
256 if (i->seq == b->keys.set[0].data->seq)
257 goto err;
259 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
261 i = b->keys.set[0].data;
262 err = "short btree key";
263 if (b->keys.set[0].size &&
264 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
265 goto err;
267 if (b->written < btree_blocks(b))
268 bch_bset_init_next(&b->keys, write_block(b),
269 bset_magic(&b->c->sb));
270 out:
271 mempool_free(iter, b->c->fill_iter);
272 return;
273 err:
274 set_btree_node_io_error(b);
275 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
276 err, PTR_BUCKET_NR(b->c, &b->key, 0),
277 bset_block_offset(b, i), i->keys);
278 goto out;
281 static void btree_node_read_endio(struct bio *bio, int error)
283 struct closure *cl = bio->bi_private;
284 closure_put(cl);
287 static void bch_btree_node_read(struct btree *b)
289 uint64_t start_time = local_clock();
290 struct closure cl;
291 struct bio *bio;
293 trace_bcache_btree_read(b);
295 closure_init_stack(&cl);
297 bio = bch_bbio_alloc(b->c);
298 bio->bi_rw = REQ_META|READ_SYNC;
299 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
300 bio->bi_end_io = btree_node_read_endio;
301 bio->bi_private = &cl;
303 bch_bio_map(bio, b->keys.set[0].data);
305 bch_submit_bbio(bio, b->c, &b->key, 0);
306 closure_sync(&cl);
308 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
309 set_btree_node_io_error(b);
311 bch_bbio_free(bio, b->c);
313 if (btree_node_io_error(b))
314 goto err;
316 bch_btree_node_read_done(b);
317 bch_time_stats_update(&b->c->btree_read_time, start_time);
319 return;
320 err:
321 bch_cache_set_error(b->c, "io error reading bucket %zu",
322 PTR_BUCKET_NR(b->c, &b->key, 0));
325 static void btree_complete_write(struct btree *b, struct btree_write *w)
327 if (w->prio_blocked &&
328 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
329 wake_up_allocators(b->c);
331 if (w->journal) {
332 atomic_dec_bug(w->journal);
333 __closure_wake_up(&b->c->journal.wait);
336 w->prio_blocked = 0;
337 w->journal = NULL;
340 static void btree_node_write_unlock(struct closure *cl)
342 struct btree *b = container_of(cl, struct btree, io);
344 up(&b->io_mutex);
347 static void __btree_node_write_done(struct closure *cl)
349 struct btree *b = container_of(cl, struct btree, io);
350 struct btree_write *w = btree_prev_write(b);
352 bch_bbio_free(b->bio, b->c);
353 b->bio = NULL;
354 btree_complete_write(b, w);
356 if (btree_node_dirty(b))
357 schedule_delayed_work(&b->work, 30 * HZ);
359 closure_return_with_destructor(cl, btree_node_write_unlock);
362 static void btree_node_write_done(struct closure *cl)
364 struct btree *b = container_of(cl, struct btree, io);
365 struct bio_vec *bv;
366 int n;
368 bio_for_each_segment_all(bv, b->bio, n)
369 __free_page(bv->bv_page);
371 __btree_node_write_done(cl);
374 static void btree_node_write_endio(struct bio *bio, int error)
376 struct closure *cl = bio->bi_private;
377 struct btree *b = container_of(cl, struct btree, io);
379 if (error)
380 set_btree_node_io_error(b);
382 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
383 closure_put(cl);
386 static void do_btree_node_write(struct btree *b)
388 struct closure *cl = &b->io;
389 struct bset *i = btree_bset_last(b);
390 BKEY_PADDED(key) k;
392 i->version = BCACHE_BSET_VERSION;
393 i->csum = btree_csum_set(b, i);
395 BUG_ON(b->bio);
396 b->bio = bch_bbio_alloc(b->c);
398 b->bio->bi_end_io = btree_node_write_endio;
399 b->bio->bi_private = cl;
400 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
401 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
402 bch_bio_map(b->bio, i);
405 * If we're appending to a leaf node, we don't technically need FUA -
406 * this write just needs to be persisted before the next journal write,
407 * which will be marked FLUSH|FUA.
409 * Similarly if we're writing a new btree root - the pointer is going to
410 * be in the next journal entry.
412 * But if we're writing a new btree node (that isn't a root) or
413 * appending to a non leaf btree node, we need either FUA or a flush
414 * when we write the parent with the new pointer. FUA is cheaper than a
415 * flush, and writes appending to leaf nodes aren't blocking anything so
416 * just make all btree node writes FUA to keep things sane.
419 bkey_copy(&k.key, &b->key);
420 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
421 bset_sector_offset(&b->keys, i));
423 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
424 int j;
425 struct bio_vec *bv;
426 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
428 bio_for_each_segment_all(bv, b->bio, j)
429 memcpy(page_address(bv->bv_page),
430 base + j * PAGE_SIZE, PAGE_SIZE);
432 bch_submit_bbio(b->bio, b->c, &k.key, 0);
434 continue_at(cl, btree_node_write_done, NULL);
435 } else {
436 b->bio->bi_vcnt = 0;
437 bch_bio_map(b->bio, i);
439 bch_submit_bbio(b->bio, b->c, &k.key, 0);
441 closure_sync(cl);
442 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
448 struct bset *i = btree_bset_last(b);
450 lockdep_assert_held(&b->write_lock);
452 trace_bcache_btree_write(b);
454 BUG_ON(current->bio_list);
455 BUG_ON(b->written >= btree_blocks(b));
456 BUG_ON(b->written && !i->keys);
457 BUG_ON(btree_bset_first(b)->seq != i->seq);
458 bch_check_keys(&b->keys, "writing");
460 cancel_delayed_work(&b->work);
462 /* If caller isn't waiting for write, parent refcount is cache set */
463 down(&b->io_mutex);
464 closure_init(&b->io, parent ?: &b->c->cl);
466 clear_bit(BTREE_NODE_dirty, &b->flags);
467 change_bit(BTREE_NODE_write_idx, &b->flags);
469 do_btree_node_write(b);
471 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
474 b->written += set_blocks(i, block_bytes(b->c));
477 void bch_btree_node_write(struct btree *b, struct closure *parent)
479 unsigned nsets = b->keys.nsets;
481 lockdep_assert_held(&b->lock);
483 __bch_btree_node_write(b, parent);
486 * do verify if there was more than one set initially (i.e. we did a
487 * sort) and we sorted down to a single set:
489 if (nsets && !b->keys.nsets)
490 bch_btree_verify(b);
492 bch_btree_init_next(b);
495 static void bch_btree_node_write_sync(struct btree *b)
497 struct closure cl;
499 closure_init_stack(&cl);
501 mutex_lock(&b->write_lock);
502 bch_btree_node_write(b, &cl);
503 mutex_unlock(&b->write_lock);
505 closure_sync(&cl);
508 static void btree_node_write_work(struct work_struct *w)
510 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
512 mutex_lock(&b->write_lock);
513 if (btree_node_dirty(b))
514 __bch_btree_node_write(b, NULL);
515 mutex_unlock(&b->write_lock);
518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
520 struct bset *i = btree_bset_last(b);
521 struct btree_write *w = btree_current_write(b);
523 lockdep_assert_held(&b->write_lock);
525 BUG_ON(!b->written);
526 BUG_ON(!i->keys);
528 if (!btree_node_dirty(b))
529 schedule_delayed_work(&b->work, 30 * HZ);
531 set_btree_node_dirty(b);
533 if (journal_ref) {
534 if (w->journal &&
535 journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 atomic_dec_bug(w->journal);
537 w->journal = NULL;
540 if (!w->journal) {
541 w->journal = journal_ref;
542 atomic_inc(w->journal);
546 /* Force write if set is too big */
547 if (set_bytes(i) > PAGE_SIZE - 48 &&
548 !current->bio_list)
549 bch_btree_node_write(b, NULL);
553 * Btree in memory cache - allocation/freeing
554 * mca -> memory cache
557 #define mca_reserve(c) (((c->root && c->root->level) \
558 ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c) \
560 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
562 static void mca_data_free(struct btree *b)
564 BUG_ON(b->io_mutex.count != 1);
566 bch_btree_keys_free(&b->keys);
568 b->c->btree_cache_used--;
569 list_move(&b->list, &b->c->btree_cache_freed);
572 static void mca_bucket_free(struct btree *b)
574 BUG_ON(btree_node_dirty(b));
576 b->key.ptr[0] = 0;
577 hlist_del_init_rcu(&b->hash);
578 list_move(&b->list, &b->c->btree_cache_freeable);
581 static unsigned btree_order(struct bkey *k)
583 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
588 if (!bch_btree_keys_alloc(&b->keys,
589 max_t(unsigned,
590 ilog2(b->c->btree_pages),
591 btree_order(k)),
592 gfp)) {
593 b->c->btree_cache_used++;
594 list_move(&b->list, &b->c->btree_cache);
595 } else {
596 list_move(&b->list, &b->c->btree_cache_freed);
600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 struct bkey *k, gfp_t gfp)
603 struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 if (!b)
605 return NULL;
607 init_rwsem(&b->lock);
608 lockdep_set_novalidate_class(&b->lock);
609 mutex_init(&b->write_lock);
610 lockdep_set_novalidate_class(&b->write_lock);
611 INIT_LIST_HEAD(&b->list);
612 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 b->c = c;
614 sema_init(&b->io_mutex, 1);
616 mca_data_alloc(b, k, gfp);
617 return b;
620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
622 struct closure cl;
624 closure_init_stack(&cl);
625 lockdep_assert_held(&b->c->bucket_lock);
627 if (!down_write_trylock(&b->lock))
628 return -ENOMEM;
630 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
632 if (b->keys.page_order < min_order)
633 goto out_unlock;
635 if (!flush) {
636 if (btree_node_dirty(b))
637 goto out_unlock;
639 if (down_trylock(&b->io_mutex))
640 goto out_unlock;
641 up(&b->io_mutex);
644 mutex_lock(&b->write_lock);
645 if (btree_node_dirty(b))
646 __bch_btree_node_write(b, &cl);
647 mutex_unlock(&b->write_lock);
649 closure_sync(&cl);
651 /* wait for any in flight btree write */
652 down(&b->io_mutex);
653 up(&b->io_mutex);
655 return 0;
656 out_unlock:
657 rw_unlock(true, b);
658 return -ENOMEM;
661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 struct shrink_control *sc)
664 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 struct btree *b, *t;
666 unsigned long i, nr = sc->nr_to_scan;
667 unsigned long freed = 0;
669 if (c->shrinker_disabled)
670 return SHRINK_STOP;
672 if (c->btree_cache_alloc_lock)
673 return SHRINK_STOP;
675 /* Return -1 if we can't do anything right now */
676 if (sc->gfp_mask & __GFP_IO)
677 mutex_lock(&c->bucket_lock);
678 else if (!mutex_trylock(&c->bucket_lock))
679 return -1;
682 * It's _really_ critical that we don't free too many btree nodes - we
683 * have to always leave ourselves a reserve. The reserve is how we
684 * guarantee that allocating memory for a new btree node can always
685 * succeed, so that inserting keys into the btree can always succeed and
686 * IO can always make forward progress:
688 nr /= c->btree_pages;
689 nr = min_t(unsigned long, nr, mca_can_free(c));
691 i = 0;
692 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
693 if (freed >= nr)
694 break;
696 if (++i > 3 &&
697 !mca_reap(b, 0, false)) {
698 mca_data_free(b);
699 rw_unlock(true, b);
700 freed++;
704 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
705 if (list_empty(&c->btree_cache))
706 goto out;
708 b = list_first_entry(&c->btree_cache, struct btree, list);
709 list_rotate_left(&c->btree_cache);
711 if (!b->accessed &&
712 !mca_reap(b, 0, false)) {
713 mca_bucket_free(b);
714 mca_data_free(b);
715 rw_unlock(true, b);
716 freed++;
717 } else
718 b->accessed = 0;
720 out:
721 mutex_unlock(&c->bucket_lock);
722 return freed;
725 static unsigned long bch_mca_count(struct shrinker *shrink,
726 struct shrink_control *sc)
728 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
730 if (c->shrinker_disabled)
731 return 0;
733 if (c->btree_cache_alloc_lock)
734 return 0;
736 return mca_can_free(c) * c->btree_pages;
739 void bch_btree_cache_free(struct cache_set *c)
741 struct btree *b;
742 struct closure cl;
743 closure_init_stack(&cl);
745 if (c->shrink.list.next)
746 unregister_shrinker(&c->shrink);
748 mutex_lock(&c->bucket_lock);
750 #ifdef CONFIG_BCACHE_DEBUG
751 if (c->verify_data)
752 list_move(&c->verify_data->list, &c->btree_cache);
754 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
755 #endif
757 list_splice(&c->btree_cache_freeable,
758 &c->btree_cache);
760 while (!list_empty(&c->btree_cache)) {
761 b = list_first_entry(&c->btree_cache, struct btree, list);
763 if (btree_node_dirty(b))
764 btree_complete_write(b, btree_current_write(b));
765 clear_bit(BTREE_NODE_dirty, &b->flags);
767 mca_data_free(b);
770 while (!list_empty(&c->btree_cache_freed)) {
771 b = list_first_entry(&c->btree_cache_freed,
772 struct btree, list);
773 list_del(&b->list);
774 cancel_delayed_work_sync(&b->work);
775 kfree(b);
778 mutex_unlock(&c->bucket_lock);
781 int bch_btree_cache_alloc(struct cache_set *c)
783 unsigned i;
785 for (i = 0; i < mca_reserve(c); i++)
786 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
787 return -ENOMEM;
789 list_splice_init(&c->btree_cache,
790 &c->btree_cache_freeable);
792 #ifdef CONFIG_BCACHE_DEBUG
793 mutex_init(&c->verify_lock);
795 c->verify_ondisk = (void *)
796 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
798 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800 if (c->verify_data &&
801 c->verify_data->keys.set->data)
802 list_del_init(&c->verify_data->list);
803 else
804 c->verify_data = NULL;
805 #endif
807 c->shrink.count_objects = bch_mca_count;
808 c->shrink.scan_objects = bch_mca_scan;
809 c->shrink.seeks = 4;
810 c->shrink.batch = c->btree_pages * 2;
811 register_shrinker(&c->shrink);
813 return 0;
816 /* Btree in memory cache - hash table */
818 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
820 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
823 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
825 struct btree *b;
827 rcu_read_lock();
828 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
829 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
830 goto out;
831 b = NULL;
832 out:
833 rcu_read_unlock();
834 return b;
837 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
839 struct task_struct *old;
841 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
842 if (old && old != current) {
843 if (op)
844 prepare_to_wait(&c->btree_cache_wait, &op->wait,
845 TASK_UNINTERRUPTIBLE);
846 return -EINTR;
849 return 0;
852 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
853 struct bkey *k)
855 struct btree *b;
857 trace_bcache_btree_cache_cannibalize(c);
859 if (mca_cannibalize_lock(c, op))
860 return ERR_PTR(-EINTR);
862 list_for_each_entry_reverse(b, &c->btree_cache, list)
863 if (!mca_reap(b, btree_order(k), false))
864 return b;
866 list_for_each_entry_reverse(b, &c->btree_cache, list)
867 if (!mca_reap(b, btree_order(k), true))
868 return b;
870 WARN(1, "btree cache cannibalize failed\n");
871 return ERR_PTR(-ENOMEM);
875 * We can only have one thread cannibalizing other cached btree nodes at a time,
876 * or we'll deadlock. We use an open coded mutex to ensure that, which a
877 * cannibalize_bucket() will take. This means every time we unlock the root of
878 * the btree, we need to release this lock if we have it held.
880 static void bch_cannibalize_unlock(struct cache_set *c)
882 if (c->btree_cache_alloc_lock == current) {
883 c->btree_cache_alloc_lock = NULL;
884 wake_up(&c->btree_cache_wait);
888 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
889 struct bkey *k, int level)
891 struct btree *b;
893 BUG_ON(current->bio_list);
895 lockdep_assert_held(&c->bucket_lock);
897 if (mca_find(c, k))
898 return NULL;
900 /* btree_free() doesn't free memory; it sticks the node on the end of
901 * the list. Check if there's any freed nodes there:
903 list_for_each_entry(b, &c->btree_cache_freeable, list)
904 if (!mca_reap(b, btree_order(k), false))
905 goto out;
907 /* We never free struct btree itself, just the memory that holds the on
908 * disk node. Check the freed list before allocating a new one:
910 list_for_each_entry(b, &c->btree_cache_freed, list)
911 if (!mca_reap(b, 0, false)) {
912 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
913 if (!b->keys.set[0].data)
914 goto err;
915 else
916 goto out;
919 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
920 if (!b)
921 goto err;
923 BUG_ON(!down_write_trylock(&b->lock));
924 if (!b->keys.set->data)
925 goto err;
926 out:
927 BUG_ON(b->io_mutex.count != 1);
929 bkey_copy(&b->key, k);
930 list_move(&b->list, &c->btree_cache);
931 hlist_del_init_rcu(&b->hash);
932 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
934 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
935 b->parent = (void *) ~0UL;
936 b->flags = 0;
937 b->written = 0;
938 b->level = level;
940 if (!b->level)
941 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
942 &b->c->expensive_debug_checks);
943 else
944 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
945 &b->c->expensive_debug_checks);
947 return b;
948 err:
949 if (b)
950 rw_unlock(true, b);
952 b = mca_cannibalize(c, op, k);
953 if (!IS_ERR(b))
954 goto out;
956 return b;
960 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
961 * in from disk if necessary.
963 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
965 * The btree node will have either a read or a write lock held, depending on
966 * level and op->lock.
968 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
969 struct bkey *k, int level, bool write,
970 struct btree *parent)
972 int i = 0;
973 struct btree *b;
975 BUG_ON(level < 0);
976 retry:
977 b = mca_find(c, k);
979 if (!b) {
980 if (current->bio_list)
981 return ERR_PTR(-EAGAIN);
983 mutex_lock(&c->bucket_lock);
984 b = mca_alloc(c, op, k, level);
985 mutex_unlock(&c->bucket_lock);
987 if (!b)
988 goto retry;
989 if (IS_ERR(b))
990 return b;
992 bch_btree_node_read(b);
994 if (!write)
995 downgrade_write(&b->lock);
996 } else {
997 rw_lock(write, b, level);
998 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
999 rw_unlock(write, b);
1000 goto retry;
1002 BUG_ON(b->level != level);
1005 b->parent = parent;
1006 b->accessed = 1;
1008 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1009 prefetch(b->keys.set[i].tree);
1010 prefetch(b->keys.set[i].data);
1013 for (; i <= b->keys.nsets; i++)
1014 prefetch(b->keys.set[i].data);
1016 if (btree_node_io_error(b)) {
1017 rw_unlock(write, b);
1018 return ERR_PTR(-EIO);
1021 BUG_ON(!b->written);
1023 return b;
1026 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1028 struct btree *b;
1030 mutex_lock(&parent->c->bucket_lock);
1031 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1032 mutex_unlock(&parent->c->bucket_lock);
1034 if (!IS_ERR_OR_NULL(b)) {
1035 b->parent = parent;
1036 bch_btree_node_read(b);
1037 rw_unlock(true, b);
1041 /* Btree alloc */
1043 static void btree_node_free(struct btree *b)
1045 trace_bcache_btree_node_free(b);
1047 BUG_ON(b == b->c->root);
1049 mutex_lock(&b->write_lock);
1051 if (btree_node_dirty(b))
1052 btree_complete_write(b, btree_current_write(b));
1053 clear_bit(BTREE_NODE_dirty, &b->flags);
1055 mutex_unlock(&b->write_lock);
1057 cancel_delayed_work(&b->work);
1059 mutex_lock(&b->c->bucket_lock);
1060 bch_bucket_free(b->c, &b->key);
1061 mca_bucket_free(b);
1062 mutex_unlock(&b->c->bucket_lock);
1065 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1066 int level, bool wait,
1067 struct btree *parent)
1069 BKEY_PADDED(key) k;
1070 struct btree *b = ERR_PTR(-EAGAIN);
1072 mutex_lock(&c->bucket_lock);
1073 retry:
1074 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1075 goto err;
1077 bkey_put(c, &k.key);
1078 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1080 b = mca_alloc(c, op, &k.key, level);
1081 if (IS_ERR(b))
1082 goto err_free;
1084 if (!b) {
1085 cache_bug(c,
1086 "Tried to allocate bucket that was in btree cache");
1087 goto retry;
1090 b->accessed = 1;
1091 b->parent = parent;
1092 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1094 mutex_unlock(&c->bucket_lock);
1096 trace_bcache_btree_node_alloc(b);
1097 return b;
1098 err_free:
1099 bch_bucket_free(c, &k.key);
1100 err:
1101 mutex_unlock(&c->bucket_lock);
1103 trace_bcache_btree_node_alloc_fail(c);
1104 return b;
1107 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1108 struct btree_op *op, int level,
1109 struct btree *parent)
1111 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1114 static struct btree *btree_node_alloc_replacement(struct btree *b,
1115 struct btree_op *op)
1117 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1118 if (!IS_ERR_OR_NULL(n)) {
1119 mutex_lock(&n->write_lock);
1120 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1121 bkey_copy_key(&n->key, &b->key);
1122 mutex_unlock(&n->write_lock);
1125 return n;
1128 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1130 unsigned i;
1132 mutex_lock(&b->c->bucket_lock);
1134 atomic_inc(&b->c->prio_blocked);
1136 bkey_copy(k, &b->key);
1137 bkey_copy_key(k, &ZERO_KEY);
1139 for (i = 0; i < KEY_PTRS(k); i++)
1140 SET_PTR_GEN(k, i,
1141 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1142 PTR_BUCKET(b->c, &b->key, i)));
1144 mutex_unlock(&b->c->bucket_lock);
1147 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1149 struct cache_set *c = b->c;
1150 struct cache *ca;
1151 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1153 mutex_lock(&c->bucket_lock);
1155 for_each_cache(ca, c, i)
1156 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1157 if (op)
1158 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1159 TASK_UNINTERRUPTIBLE);
1160 mutex_unlock(&c->bucket_lock);
1161 return -EINTR;
1164 mutex_unlock(&c->bucket_lock);
1166 return mca_cannibalize_lock(b->c, op);
1169 /* Garbage collection */
1171 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1172 struct bkey *k)
1174 uint8_t stale = 0;
1175 unsigned i;
1176 struct bucket *g;
1179 * ptr_invalid() can't return true for the keys that mark btree nodes as
1180 * freed, but since ptr_bad() returns true we'll never actually use them
1181 * for anything and thus we don't want mark their pointers here
1183 if (!bkey_cmp(k, &ZERO_KEY))
1184 return stale;
1186 for (i = 0; i < KEY_PTRS(k); i++) {
1187 if (!ptr_available(c, k, i))
1188 continue;
1190 g = PTR_BUCKET(c, k, i);
1192 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1193 g->last_gc = PTR_GEN(k, i);
1195 if (ptr_stale(c, k, i)) {
1196 stale = max(stale, ptr_stale(c, k, i));
1197 continue;
1200 cache_bug_on(GC_MARK(g) &&
1201 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1202 c, "inconsistent ptrs: mark = %llu, level = %i",
1203 GC_MARK(g), level);
1205 if (level)
1206 SET_GC_MARK(g, GC_MARK_METADATA);
1207 else if (KEY_DIRTY(k))
1208 SET_GC_MARK(g, GC_MARK_DIRTY);
1209 else if (!GC_MARK(g))
1210 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1212 /* guard against overflow */
1213 SET_GC_SECTORS_USED(g, min_t(unsigned,
1214 GC_SECTORS_USED(g) + KEY_SIZE(k),
1215 MAX_GC_SECTORS_USED));
1217 BUG_ON(!GC_SECTORS_USED(g));
1220 return stale;
1223 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1225 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1227 unsigned i;
1229 for (i = 0; i < KEY_PTRS(k); i++)
1230 if (ptr_available(c, k, i) &&
1231 !ptr_stale(c, k, i)) {
1232 struct bucket *b = PTR_BUCKET(c, k, i);
1234 b->gen = PTR_GEN(k, i);
1236 if (level && bkey_cmp(k, &ZERO_KEY))
1237 b->prio = BTREE_PRIO;
1238 else if (!level && b->prio == BTREE_PRIO)
1239 b->prio = INITIAL_PRIO;
1242 __bch_btree_mark_key(c, level, k);
1245 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1247 uint8_t stale = 0;
1248 unsigned keys = 0, good_keys = 0;
1249 struct bkey *k;
1250 struct btree_iter iter;
1251 struct bset_tree *t;
1253 gc->nodes++;
1255 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1256 stale = max(stale, btree_mark_key(b, k));
1257 keys++;
1259 if (bch_ptr_bad(&b->keys, k))
1260 continue;
1262 gc->key_bytes += bkey_u64s(k);
1263 gc->nkeys++;
1264 good_keys++;
1266 gc->data += KEY_SIZE(k);
1269 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1270 btree_bug_on(t->size &&
1271 bset_written(&b->keys, t) &&
1272 bkey_cmp(&b->key, &t->end) < 0,
1273 b, "found short btree key in gc");
1275 if (b->c->gc_always_rewrite)
1276 return true;
1278 if (stale > 10)
1279 return true;
1281 if ((keys - good_keys) * 2 > keys)
1282 return true;
1284 return false;
1287 #define GC_MERGE_NODES 4U
1289 struct gc_merge_info {
1290 struct btree *b;
1291 unsigned keys;
1294 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1295 struct keylist *, atomic_t *, struct bkey *);
1297 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1298 struct gc_stat *gc, struct gc_merge_info *r)
1300 unsigned i, nodes = 0, keys = 0, blocks;
1301 struct btree *new_nodes[GC_MERGE_NODES];
1302 struct keylist keylist;
1303 struct closure cl;
1304 struct bkey *k;
1306 bch_keylist_init(&keylist);
1308 if (btree_check_reserve(b, NULL))
1309 return 0;
1311 memset(new_nodes, 0, sizeof(new_nodes));
1312 closure_init_stack(&cl);
1314 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1315 keys += r[nodes++].keys;
1317 blocks = btree_default_blocks(b->c) * 2 / 3;
1319 if (nodes < 2 ||
1320 __set_blocks(b->keys.set[0].data, keys,
1321 block_bytes(b->c)) > blocks * (nodes - 1))
1322 return 0;
1324 for (i = 0; i < nodes; i++) {
1325 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1326 if (IS_ERR_OR_NULL(new_nodes[i]))
1327 goto out_nocoalesce;
1331 * We have to check the reserve here, after we've allocated our new
1332 * nodes, to make sure the insert below will succeed - we also check
1333 * before as an optimization to potentially avoid a bunch of expensive
1334 * allocs/sorts
1336 if (btree_check_reserve(b, NULL))
1337 goto out_nocoalesce;
1339 for (i = 0; i < nodes; i++)
1340 mutex_lock(&new_nodes[i]->write_lock);
1342 for (i = nodes - 1; i > 0; --i) {
1343 struct bset *n1 = btree_bset_first(new_nodes[i]);
1344 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1345 struct bkey *k, *last = NULL;
1347 keys = 0;
1349 if (i > 1) {
1350 for (k = n2->start;
1351 k < bset_bkey_last(n2);
1352 k = bkey_next(k)) {
1353 if (__set_blocks(n1, n1->keys + keys +
1354 bkey_u64s(k),
1355 block_bytes(b->c)) > blocks)
1356 break;
1358 last = k;
1359 keys += bkey_u64s(k);
1361 } else {
1363 * Last node we're not getting rid of - we're getting
1364 * rid of the node at r[0]. Have to try and fit all of
1365 * the remaining keys into this node; we can't ensure
1366 * they will always fit due to rounding and variable
1367 * length keys (shouldn't be possible in practice,
1368 * though)
1370 if (__set_blocks(n1, n1->keys + n2->keys,
1371 block_bytes(b->c)) >
1372 btree_blocks(new_nodes[i]))
1373 goto out_nocoalesce;
1375 keys = n2->keys;
1376 /* Take the key of the node we're getting rid of */
1377 last = &r->b->key;
1380 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1381 btree_blocks(new_nodes[i]));
1383 if (last)
1384 bkey_copy_key(&new_nodes[i]->key, last);
1386 memcpy(bset_bkey_last(n1),
1387 n2->start,
1388 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1390 n1->keys += keys;
1391 r[i].keys = n1->keys;
1393 memmove(n2->start,
1394 bset_bkey_idx(n2, keys),
1395 (void *) bset_bkey_last(n2) -
1396 (void *) bset_bkey_idx(n2, keys));
1398 n2->keys -= keys;
1400 if (__bch_keylist_realloc(&keylist,
1401 bkey_u64s(&new_nodes[i]->key)))
1402 goto out_nocoalesce;
1404 bch_btree_node_write(new_nodes[i], &cl);
1405 bch_keylist_add(&keylist, &new_nodes[i]->key);
1408 for (i = 0; i < nodes; i++)
1409 mutex_unlock(&new_nodes[i]->write_lock);
1411 closure_sync(&cl);
1413 /* We emptied out this node */
1414 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1415 btree_node_free(new_nodes[0]);
1416 rw_unlock(true, new_nodes[0]);
1417 new_nodes[0] = NULL;
1419 for (i = 0; i < nodes; i++) {
1420 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1421 goto out_nocoalesce;
1423 make_btree_freeing_key(r[i].b, keylist.top);
1424 bch_keylist_push(&keylist);
1427 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1428 BUG_ON(!bch_keylist_empty(&keylist));
1430 for (i = 0; i < nodes; i++) {
1431 btree_node_free(r[i].b);
1432 rw_unlock(true, r[i].b);
1434 r[i].b = new_nodes[i];
1437 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1438 r[nodes - 1].b = ERR_PTR(-EINTR);
1440 trace_bcache_btree_gc_coalesce(nodes);
1441 gc->nodes--;
1443 bch_keylist_free(&keylist);
1445 /* Invalidated our iterator */
1446 return -EINTR;
1448 out_nocoalesce:
1449 closure_sync(&cl);
1450 bch_keylist_free(&keylist);
1452 while ((k = bch_keylist_pop(&keylist)))
1453 if (!bkey_cmp(k, &ZERO_KEY))
1454 atomic_dec(&b->c->prio_blocked);
1456 for (i = 0; i < nodes; i++)
1457 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1458 btree_node_free(new_nodes[i]);
1459 rw_unlock(true, new_nodes[i]);
1461 return 0;
1464 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1465 struct btree *replace)
1467 struct keylist keys;
1468 struct btree *n;
1470 if (btree_check_reserve(b, NULL))
1471 return 0;
1473 n = btree_node_alloc_replacement(replace, NULL);
1475 /* recheck reserve after allocating replacement node */
1476 if (btree_check_reserve(b, NULL)) {
1477 btree_node_free(n);
1478 rw_unlock(true, n);
1479 return 0;
1482 bch_btree_node_write_sync(n);
1484 bch_keylist_init(&keys);
1485 bch_keylist_add(&keys, &n->key);
1487 make_btree_freeing_key(replace, keys.top);
1488 bch_keylist_push(&keys);
1490 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1491 BUG_ON(!bch_keylist_empty(&keys));
1493 btree_node_free(replace);
1494 rw_unlock(true, n);
1496 /* Invalidated our iterator */
1497 return -EINTR;
1500 static unsigned btree_gc_count_keys(struct btree *b)
1502 struct bkey *k;
1503 struct btree_iter iter;
1504 unsigned ret = 0;
1506 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1507 ret += bkey_u64s(k);
1509 return ret;
1512 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1513 struct closure *writes, struct gc_stat *gc)
1515 int ret = 0;
1516 bool should_rewrite;
1517 struct bkey *k;
1518 struct btree_iter iter;
1519 struct gc_merge_info r[GC_MERGE_NODES];
1520 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1522 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1524 for (i = r; i < r + ARRAY_SIZE(r); i++)
1525 i->b = ERR_PTR(-EINTR);
1527 while (1) {
1528 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1529 if (k) {
1530 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1531 true, b);
1532 if (IS_ERR(r->b)) {
1533 ret = PTR_ERR(r->b);
1534 break;
1537 r->keys = btree_gc_count_keys(r->b);
1539 ret = btree_gc_coalesce(b, op, gc, r);
1540 if (ret)
1541 break;
1544 if (!last->b)
1545 break;
1547 if (!IS_ERR(last->b)) {
1548 should_rewrite = btree_gc_mark_node(last->b, gc);
1549 if (should_rewrite) {
1550 ret = btree_gc_rewrite_node(b, op, last->b);
1551 if (ret)
1552 break;
1555 if (last->b->level) {
1556 ret = btree_gc_recurse(last->b, op, writes, gc);
1557 if (ret)
1558 break;
1561 bkey_copy_key(&b->c->gc_done, &last->b->key);
1564 * Must flush leaf nodes before gc ends, since replace
1565 * operations aren't journalled
1567 mutex_lock(&last->b->write_lock);
1568 if (btree_node_dirty(last->b))
1569 bch_btree_node_write(last->b, writes);
1570 mutex_unlock(&last->b->write_lock);
1571 rw_unlock(true, last->b);
1574 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1575 r->b = NULL;
1577 if (need_resched()) {
1578 ret = -EAGAIN;
1579 break;
1583 for (i = r; i < r + ARRAY_SIZE(r); i++)
1584 if (!IS_ERR_OR_NULL(i->b)) {
1585 mutex_lock(&i->b->write_lock);
1586 if (btree_node_dirty(i->b))
1587 bch_btree_node_write(i->b, writes);
1588 mutex_unlock(&i->b->write_lock);
1589 rw_unlock(true, i->b);
1592 return ret;
1595 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1596 struct closure *writes, struct gc_stat *gc)
1598 struct btree *n = NULL;
1599 int ret = 0;
1600 bool should_rewrite;
1602 should_rewrite = btree_gc_mark_node(b, gc);
1603 if (should_rewrite) {
1604 n = btree_node_alloc_replacement(b, NULL);
1606 if (!IS_ERR_OR_NULL(n)) {
1607 bch_btree_node_write_sync(n);
1609 bch_btree_set_root(n);
1610 btree_node_free(b);
1611 rw_unlock(true, n);
1613 return -EINTR;
1617 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1619 if (b->level) {
1620 ret = btree_gc_recurse(b, op, writes, gc);
1621 if (ret)
1622 return ret;
1625 bkey_copy_key(&b->c->gc_done, &b->key);
1627 return ret;
1630 static void btree_gc_start(struct cache_set *c)
1632 struct cache *ca;
1633 struct bucket *b;
1634 unsigned i;
1636 if (!c->gc_mark_valid)
1637 return;
1639 mutex_lock(&c->bucket_lock);
1641 c->gc_mark_valid = 0;
1642 c->gc_done = ZERO_KEY;
1644 for_each_cache(ca, c, i)
1645 for_each_bucket(b, ca) {
1646 b->last_gc = b->gen;
1647 if (!atomic_read(&b->pin)) {
1648 SET_GC_MARK(b, 0);
1649 SET_GC_SECTORS_USED(b, 0);
1653 mutex_unlock(&c->bucket_lock);
1656 static size_t bch_btree_gc_finish(struct cache_set *c)
1658 size_t available = 0;
1659 struct bucket *b;
1660 struct cache *ca;
1661 unsigned i;
1663 mutex_lock(&c->bucket_lock);
1665 set_gc_sectors(c);
1666 c->gc_mark_valid = 1;
1667 c->need_gc = 0;
1669 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1670 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1671 GC_MARK_METADATA);
1673 /* don't reclaim buckets to which writeback keys point */
1674 rcu_read_lock();
1675 for (i = 0; i < c->nr_uuids; i++) {
1676 struct bcache_device *d = c->devices[i];
1677 struct cached_dev *dc;
1678 struct keybuf_key *w, *n;
1679 unsigned j;
1681 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1682 continue;
1683 dc = container_of(d, struct cached_dev, disk);
1685 spin_lock(&dc->writeback_keys.lock);
1686 rbtree_postorder_for_each_entry_safe(w, n,
1687 &dc->writeback_keys.keys, node)
1688 for (j = 0; j < KEY_PTRS(&w->key); j++)
1689 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1690 GC_MARK_DIRTY);
1691 spin_unlock(&dc->writeback_keys.lock);
1693 rcu_read_unlock();
1695 for_each_cache(ca, c, i) {
1696 uint64_t *i;
1698 ca->invalidate_needs_gc = 0;
1700 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1701 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1703 for (i = ca->prio_buckets;
1704 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1705 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1707 for_each_bucket(b, ca) {
1708 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1710 if (atomic_read(&b->pin))
1711 continue;
1713 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1715 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1716 available++;
1720 mutex_unlock(&c->bucket_lock);
1721 return available;
1724 static void bch_btree_gc(struct cache_set *c)
1726 int ret;
1727 unsigned long available;
1728 struct gc_stat stats;
1729 struct closure writes;
1730 struct btree_op op;
1731 uint64_t start_time = local_clock();
1733 trace_bcache_gc_start(c);
1735 memset(&stats, 0, sizeof(struct gc_stat));
1736 closure_init_stack(&writes);
1737 bch_btree_op_init(&op, SHRT_MAX);
1739 btree_gc_start(c);
1741 do {
1742 ret = btree_root(gc_root, c, &op, &writes, &stats);
1743 closure_sync(&writes);
1744 cond_resched();
1746 if (ret && ret != -EAGAIN)
1747 pr_warn("gc failed!");
1748 } while (ret);
1750 available = bch_btree_gc_finish(c);
1751 wake_up_allocators(c);
1753 bch_time_stats_update(&c->btree_gc_time, start_time);
1755 stats.key_bytes *= sizeof(uint64_t);
1756 stats.data <<= 9;
1757 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1758 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1760 trace_bcache_gc_end(c);
1762 bch_moving_gc(c);
1765 static int bch_gc_thread(void *arg)
1767 struct cache_set *c = arg;
1768 struct cache *ca;
1769 unsigned i;
1771 while (1) {
1772 again:
1773 bch_btree_gc(c);
1775 set_current_state(TASK_INTERRUPTIBLE);
1776 if (kthread_should_stop())
1777 break;
1779 mutex_lock(&c->bucket_lock);
1781 for_each_cache(ca, c, i)
1782 if (ca->invalidate_needs_gc) {
1783 mutex_unlock(&c->bucket_lock);
1784 set_current_state(TASK_RUNNING);
1785 goto again;
1788 mutex_unlock(&c->bucket_lock);
1790 try_to_freeze();
1791 schedule();
1794 return 0;
1797 int bch_gc_thread_start(struct cache_set *c)
1799 c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1800 if (IS_ERR(c->gc_thread))
1801 return PTR_ERR(c->gc_thread);
1803 set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1804 return 0;
1807 /* Initial partial gc */
1809 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1811 int ret = 0;
1812 struct bkey *k, *p = NULL;
1813 struct btree_iter iter;
1815 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1816 bch_initial_mark_key(b->c, b->level, k);
1818 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1820 if (b->level) {
1821 bch_btree_iter_init(&b->keys, &iter, NULL);
1823 do {
1824 k = bch_btree_iter_next_filter(&iter, &b->keys,
1825 bch_ptr_bad);
1826 if (k)
1827 btree_node_prefetch(b, k);
1829 if (p)
1830 ret = btree(check_recurse, p, b, op);
1832 p = k;
1833 } while (p && !ret);
1836 return ret;
1839 int bch_btree_check(struct cache_set *c)
1841 struct btree_op op;
1843 bch_btree_op_init(&op, SHRT_MAX);
1845 return btree_root(check_recurse, c, &op);
1848 void bch_initial_gc_finish(struct cache_set *c)
1850 struct cache *ca;
1851 struct bucket *b;
1852 unsigned i;
1854 bch_btree_gc_finish(c);
1856 mutex_lock(&c->bucket_lock);
1859 * We need to put some unused buckets directly on the prio freelist in
1860 * order to get the allocator thread started - it needs freed buckets in
1861 * order to rewrite the prios and gens, and it needs to rewrite prios
1862 * and gens in order to free buckets.
1864 * This is only safe for buckets that have no live data in them, which
1865 * there should always be some of.
1867 for_each_cache(ca, c, i) {
1868 for_each_bucket(b, ca) {
1869 if (fifo_full(&ca->free[RESERVE_PRIO]))
1870 break;
1872 if (bch_can_invalidate_bucket(ca, b) &&
1873 !GC_MARK(b)) {
1874 __bch_invalidate_one_bucket(ca, b);
1875 fifo_push(&ca->free[RESERVE_PRIO],
1876 b - ca->buckets);
1881 mutex_unlock(&c->bucket_lock);
1884 /* Btree insertion */
1886 static bool btree_insert_key(struct btree *b, struct bkey *k,
1887 struct bkey *replace_key)
1889 unsigned status;
1891 BUG_ON(bkey_cmp(k, &b->key) > 0);
1893 status = bch_btree_insert_key(&b->keys, k, replace_key);
1894 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1895 bch_check_keys(&b->keys, "%u for %s", status,
1896 replace_key ? "replace" : "insert");
1898 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1899 status);
1900 return true;
1901 } else
1902 return false;
1905 static size_t insert_u64s_remaining(struct btree *b)
1907 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1910 * Might land in the middle of an existing extent and have to split it
1912 if (b->keys.ops->is_extents)
1913 ret -= KEY_MAX_U64S;
1915 return max(ret, 0L);
1918 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1919 struct keylist *insert_keys,
1920 struct bkey *replace_key)
1922 bool ret = false;
1923 int oldsize = bch_count_data(&b->keys);
1925 while (!bch_keylist_empty(insert_keys)) {
1926 struct bkey *k = insert_keys->keys;
1928 if (bkey_u64s(k) > insert_u64s_remaining(b))
1929 break;
1931 if (bkey_cmp(k, &b->key) <= 0) {
1932 if (!b->level)
1933 bkey_put(b->c, k);
1935 ret |= btree_insert_key(b, k, replace_key);
1936 bch_keylist_pop_front(insert_keys);
1937 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1938 BKEY_PADDED(key) temp;
1939 bkey_copy(&temp.key, insert_keys->keys);
1941 bch_cut_back(&b->key, &temp.key);
1942 bch_cut_front(&b->key, insert_keys->keys);
1944 ret |= btree_insert_key(b, &temp.key, replace_key);
1945 break;
1946 } else {
1947 break;
1951 if (!ret)
1952 op->insert_collision = true;
1954 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1956 BUG_ON(bch_count_data(&b->keys) < oldsize);
1957 return ret;
1960 static int btree_split(struct btree *b, struct btree_op *op,
1961 struct keylist *insert_keys,
1962 struct bkey *replace_key)
1964 bool split;
1965 struct btree *n1, *n2 = NULL, *n3 = NULL;
1966 uint64_t start_time = local_clock();
1967 struct closure cl;
1968 struct keylist parent_keys;
1970 closure_init_stack(&cl);
1971 bch_keylist_init(&parent_keys);
1973 if (btree_check_reserve(b, op)) {
1974 if (!b->level)
1975 return -EINTR;
1976 else
1977 WARN(1, "insufficient reserve for split\n");
1980 n1 = btree_node_alloc_replacement(b, op);
1981 if (IS_ERR(n1))
1982 goto err;
1984 split = set_blocks(btree_bset_first(n1),
1985 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1987 if (split) {
1988 unsigned keys = 0;
1990 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1992 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1993 if (IS_ERR(n2))
1994 goto err_free1;
1996 if (!b->parent) {
1997 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1998 if (IS_ERR(n3))
1999 goto err_free2;
2002 mutex_lock(&n1->write_lock);
2003 mutex_lock(&n2->write_lock);
2005 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2008 * Has to be a linear search because we don't have an auxiliary
2009 * search tree yet
2012 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2013 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2014 keys));
2016 bkey_copy_key(&n1->key,
2017 bset_bkey_idx(btree_bset_first(n1), keys));
2018 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2020 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2021 btree_bset_first(n1)->keys = keys;
2023 memcpy(btree_bset_first(n2)->start,
2024 bset_bkey_last(btree_bset_first(n1)),
2025 btree_bset_first(n2)->keys * sizeof(uint64_t));
2027 bkey_copy_key(&n2->key, &b->key);
2029 bch_keylist_add(&parent_keys, &n2->key);
2030 bch_btree_node_write(n2, &cl);
2031 mutex_unlock(&n2->write_lock);
2032 rw_unlock(true, n2);
2033 } else {
2034 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2036 mutex_lock(&n1->write_lock);
2037 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2040 bch_keylist_add(&parent_keys, &n1->key);
2041 bch_btree_node_write(n1, &cl);
2042 mutex_unlock(&n1->write_lock);
2044 if (n3) {
2045 /* Depth increases, make a new root */
2046 mutex_lock(&n3->write_lock);
2047 bkey_copy_key(&n3->key, &MAX_KEY);
2048 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2049 bch_btree_node_write(n3, &cl);
2050 mutex_unlock(&n3->write_lock);
2052 closure_sync(&cl);
2053 bch_btree_set_root(n3);
2054 rw_unlock(true, n3);
2055 } else if (!b->parent) {
2056 /* Root filled up but didn't need to be split */
2057 closure_sync(&cl);
2058 bch_btree_set_root(n1);
2059 } else {
2060 /* Split a non root node */
2061 closure_sync(&cl);
2062 make_btree_freeing_key(b, parent_keys.top);
2063 bch_keylist_push(&parent_keys);
2065 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2066 BUG_ON(!bch_keylist_empty(&parent_keys));
2069 btree_node_free(b);
2070 rw_unlock(true, n1);
2072 bch_time_stats_update(&b->c->btree_split_time, start_time);
2074 return 0;
2075 err_free2:
2076 bkey_put(b->c, &n2->key);
2077 btree_node_free(n2);
2078 rw_unlock(true, n2);
2079 err_free1:
2080 bkey_put(b->c, &n1->key);
2081 btree_node_free(n1);
2082 rw_unlock(true, n1);
2083 err:
2084 WARN(1, "bcache: btree split failed (level %u)", b->level);
2086 if (n3 == ERR_PTR(-EAGAIN) ||
2087 n2 == ERR_PTR(-EAGAIN) ||
2088 n1 == ERR_PTR(-EAGAIN))
2089 return -EAGAIN;
2091 return -ENOMEM;
2094 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2095 struct keylist *insert_keys,
2096 atomic_t *journal_ref,
2097 struct bkey *replace_key)
2099 struct closure cl;
2101 BUG_ON(b->level && replace_key);
2103 closure_init_stack(&cl);
2105 mutex_lock(&b->write_lock);
2107 if (write_block(b) != btree_bset_last(b) &&
2108 b->keys.last_set_unwritten)
2109 bch_btree_init_next(b); /* just wrote a set */
2111 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2112 mutex_unlock(&b->write_lock);
2113 goto split;
2116 BUG_ON(write_block(b) != btree_bset_last(b));
2118 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2119 if (!b->level)
2120 bch_btree_leaf_dirty(b, journal_ref);
2121 else
2122 bch_btree_node_write(b, &cl);
2125 mutex_unlock(&b->write_lock);
2127 /* wait for btree node write if necessary, after unlock */
2128 closure_sync(&cl);
2130 return 0;
2131 split:
2132 if (current->bio_list) {
2133 op->lock = b->c->root->level + 1;
2134 return -EAGAIN;
2135 } else if (op->lock <= b->c->root->level) {
2136 op->lock = b->c->root->level + 1;
2137 return -EINTR;
2138 } else {
2139 /* Invalidated all iterators */
2140 int ret = btree_split(b, op, insert_keys, replace_key);
2142 if (bch_keylist_empty(insert_keys))
2143 return 0;
2144 else if (!ret)
2145 return -EINTR;
2146 return ret;
2150 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2151 struct bkey *check_key)
2153 int ret = -EINTR;
2154 uint64_t btree_ptr = b->key.ptr[0];
2155 unsigned long seq = b->seq;
2156 struct keylist insert;
2157 bool upgrade = op->lock == -1;
2159 bch_keylist_init(&insert);
2161 if (upgrade) {
2162 rw_unlock(false, b);
2163 rw_lock(true, b, b->level);
2165 if (b->key.ptr[0] != btree_ptr ||
2166 b->seq != seq + 1) {
2167 op->lock = b->level;
2168 goto out;
2172 SET_KEY_PTRS(check_key, 1);
2173 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2175 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2177 bch_keylist_add(&insert, check_key);
2179 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2181 BUG_ON(!ret && !bch_keylist_empty(&insert));
2182 out:
2183 if (upgrade)
2184 downgrade_write(&b->lock);
2185 return ret;
2188 struct btree_insert_op {
2189 struct btree_op op;
2190 struct keylist *keys;
2191 atomic_t *journal_ref;
2192 struct bkey *replace_key;
2195 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2197 struct btree_insert_op *op = container_of(b_op,
2198 struct btree_insert_op, op);
2200 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2201 op->journal_ref, op->replace_key);
2202 if (ret && !bch_keylist_empty(op->keys))
2203 return ret;
2204 else
2205 return MAP_DONE;
2208 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2209 atomic_t *journal_ref, struct bkey *replace_key)
2211 struct btree_insert_op op;
2212 int ret = 0;
2214 BUG_ON(current->bio_list);
2215 BUG_ON(bch_keylist_empty(keys));
2217 bch_btree_op_init(&op.op, 0);
2218 op.keys = keys;
2219 op.journal_ref = journal_ref;
2220 op.replace_key = replace_key;
2222 while (!ret && !bch_keylist_empty(keys)) {
2223 op.op.lock = 0;
2224 ret = bch_btree_map_leaf_nodes(&op.op, c,
2225 &START_KEY(keys->keys),
2226 btree_insert_fn);
2229 if (ret) {
2230 struct bkey *k;
2232 pr_err("error %i", ret);
2234 while ((k = bch_keylist_pop(keys)))
2235 bkey_put(c, k);
2236 } else if (op.op.insert_collision)
2237 ret = -ESRCH;
2239 return ret;
2242 void bch_btree_set_root(struct btree *b)
2244 unsigned i;
2245 struct closure cl;
2247 closure_init_stack(&cl);
2249 trace_bcache_btree_set_root(b);
2251 BUG_ON(!b->written);
2253 for (i = 0; i < KEY_PTRS(&b->key); i++)
2254 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2256 mutex_lock(&b->c->bucket_lock);
2257 list_del_init(&b->list);
2258 mutex_unlock(&b->c->bucket_lock);
2260 b->c->root = b;
2262 bch_journal_meta(b->c, &cl);
2263 closure_sync(&cl);
2266 /* Map across nodes or keys */
2268 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2269 struct bkey *from,
2270 btree_map_nodes_fn *fn, int flags)
2272 int ret = MAP_CONTINUE;
2274 if (b->level) {
2275 struct bkey *k;
2276 struct btree_iter iter;
2278 bch_btree_iter_init(&b->keys, &iter, from);
2280 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2281 bch_ptr_bad))) {
2282 ret = btree(map_nodes_recurse, k, b,
2283 op, from, fn, flags);
2284 from = NULL;
2286 if (ret != MAP_CONTINUE)
2287 return ret;
2291 if (!b->level || flags == MAP_ALL_NODES)
2292 ret = fn(op, b);
2294 return ret;
2297 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2298 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2300 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2303 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2304 struct bkey *from, btree_map_keys_fn *fn,
2305 int flags)
2307 int ret = MAP_CONTINUE;
2308 struct bkey *k;
2309 struct btree_iter iter;
2311 bch_btree_iter_init(&b->keys, &iter, from);
2313 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2314 ret = !b->level
2315 ? fn(op, b, k)
2316 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2317 from = NULL;
2319 if (ret != MAP_CONTINUE)
2320 return ret;
2323 if (!b->level && (flags & MAP_END_KEY))
2324 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2325 KEY_OFFSET(&b->key), 0));
2327 return ret;
2330 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2331 struct bkey *from, btree_map_keys_fn *fn, int flags)
2333 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2336 /* Keybuf code */
2338 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2340 /* Overlapping keys compare equal */
2341 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2342 return -1;
2343 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2344 return 1;
2345 return 0;
2348 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2349 struct keybuf_key *r)
2351 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2354 struct refill {
2355 struct btree_op op;
2356 unsigned nr_found;
2357 struct keybuf *buf;
2358 struct bkey *end;
2359 keybuf_pred_fn *pred;
2362 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2363 struct bkey *k)
2365 struct refill *refill = container_of(op, struct refill, op);
2366 struct keybuf *buf = refill->buf;
2367 int ret = MAP_CONTINUE;
2369 if (bkey_cmp(k, refill->end) >= 0) {
2370 ret = MAP_DONE;
2371 goto out;
2374 if (!KEY_SIZE(k)) /* end key */
2375 goto out;
2377 if (refill->pred(buf, k)) {
2378 struct keybuf_key *w;
2380 spin_lock(&buf->lock);
2382 w = array_alloc(&buf->freelist);
2383 if (!w) {
2384 spin_unlock(&buf->lock);
2385 return MAP_DONE;
2388 w->private = NULL;
2389 bkey_copy(&w->key, k);
2391 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2392 array_free(&buf->freelist, w);
2393 else
2394 refill->nr_found++;
2396 if (array_freelist_empty(&buf->freelist))
2397 ret = MAP_DONE;
2399 spin_unlock(&buf->lock);
2401 out:
2402 buf->last_scanned = *k;
2403 return ret;
2406 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2407 struct bkey *end, keybuf_pred_fn *pred)
2409 struct bkey start = buf->last_scanned;
2410 struct refill refill;
2412 cond_resched();
2414 bch_btree_op_init(&refill.op, -1);
2415 refill.nr_found = 0;
2416 refill.buf = buf;
2417 refill.end = end;
2418 refill.pred = pred;
2420 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2421 refill_keybuf_fn, MAP_END_KEY);
2423 trace_bcache_keyscan(refill.nr_found,
2424 KEY_INODE(&start), KEY_OFFSET(&start),
2425 KEY_INODE(&buf->last_scanned),
2426 KEY_OFFSET(&buf->last_scanned));
2428 spin_lock(&buf->lock);
2430 if (!RB_EMPTY_ROOT(&buf->keys)) {
2431 struct keybuf_key *w;
2432 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2433 buf->start = START_KEY(&w->key);
2435 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2436 buf->end = w->key;
2437 } else {
2438 buf->start = MAX_KEY;
2439 buf->end = MAX_KEY;
2442 spin_unlock(&buf->lock);
2445 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2447 rb_erase(&w->node, &buf->keys);
2448 array_free(&buf->freelist, w);
2451 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2453 spin_lock(&buf->lock);
2454 __bch_keybuf_del(buf, w);
2455 spin_unlock(&buf->lock);
2458 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2459 struct bkey *end)
2461 bool ret = false;
2462 struct keybuf_key *p, *w, s;
2463 s.key = *start;
2465 if (bkey_cmp(end, &buf->start) <= 0 ||
2466 bkey_cmp(start, &buf->end) >= 0)
2467 return false;
2469 spin_lock(&buf->lock);
2470 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2472 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2473 p = w;
2474 w = RB_NEXT(w, node);
2476 if (p->private)
2477 ret = true;
2478 else
2479 __bch_keybuf_del(buf, p);
2482 spin_unlock(&buf->lock);
2483 return ret;
2486 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2488 struct keybuf_key *w;
2489 spin_lock(&buf->lock);
2491 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2493 while (w && w->private)
2494 w = RB_NEXT(w, node);
2496 if (w)
2497 w->private = ERR_PTR(-EINTR);
2499 spin_unlock(&buf->lock);
2500 return w;
2503 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2504 struct keybuf *buf,
2505 struct bkey *end,
2506 keybuf_pred_fn *pred)
2508 struct keybuf_key *ret;
2510 while (1) {
2511 ret = bch_keybuf_next(buf);
2512 if (ret)
2513 break;
2515 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2516 pr_debug("scan finished");
2517 break;
2520 bch_refill_keybuf(c, buf, end, pred);
2523 return ret;
2526 void bch_keybuf_init(struct keybuf *buf)
2528 buf->last_scanned = MAX_KEY;
2529 buf->keys = RB_ROOT;
2531 spin_lock_init(&buf->lock);
2532 array_allocator_init(&buf->freelist);