2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
13 #include "writeback.h"
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
19 #include <trace/events/bcache.h>
21 #define CUTOFF_CACHE_ADD 95
22 #define CUTOFF_CACHE_READA 90
24 struct kmem_cache
*bch_search_cache
;
26 static void bch_data_insert_start(struct closure
*);
28 static unsigned cache_mode(struct cached_dev
*dc
, struct bio
*bio
)
30 return BDEV_CACHE_MODE(&dc
->sb
);
33 static bool verify(struct cached_dev
*dc
, struct bio
*bio
)
38 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
41 struct bvec_iter iter
;
44 bio_for_each_segment(bv
, bio
, iter
) {
45 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
46 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
50 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
53 /* Insert data into cache */
55 static void bch_data_insert_keys(struct closure
*cl
)
57 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
58 atomic_t
*journal_ref
= NULL
;
59 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
63 * If we're looping, might already be waiting on
64 * another journal write - can't wait on more than one journal write at
67 * XXX: this looks wrong
70 while (atomic_read(&s
->cl
.remaining
) & CLOSURE_WAITING
)
75 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
76 op
->flush_journal
? cl
: NULL
);
78 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
79 journal_ref
, replace_key
);
81 op
->replace_collision
= true;
84 op
->insert_data_done
= true;
88 atomic_dec_bug(journal_ref
);
90 if (!op
->insert_data_done
)
91 continue_at(cl
, bch_data_insert_start
, op
->wq
);
93 bch_keylist_free(&op
->insert_keys
);
97 static int bch_keylist_realloc(struct keylist
*l
, unsigned u64s
,
100 size_t oldsize
= bch_keylist_nkeys(l
);
101 size_t newsize
= oldsize
+ u64s
;
104 * The journalling code doesn't handle the case where the keys to insert
105 * is bigger than an empty write: If we just return -ENOMEM here,
106 * bio_insert() and bio_invalidate() will insert the keys created so far
107 * and finish the rest when the keylist is empty.
109 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
112 return __bch_keylist_realloc(l
, u64s
);
115 static void bch_data_invalidate(struct closure
*cl
)
117 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
118 struct bio
*bio
= op
->bio
;
120 pr_debug("invalidating %i sectors from %llu",
121 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
123 while (bio_sectors(bio
)) {
124 unsigned sectors
= min(bio_sectors(bio
),
125 1U << (KEY_SIZE_BITS
- 1));
127 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
130 bio
->bi_iter
.bi_sector
+= sectors
;
131 bio
->bi_iter
.bi_size
-= sectors
<< 9;
133 bch_keylist_add(&op
->insert_keys
,
134 &KEY(op
->inode
, bio
->bi_iter
.bi_sector
, sectors
));
137 op
->insert_data_done
= true;
140 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
143 static void bch_data_insert_error(struct closure
*cl
)
145 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
148 * Our data write just errored, which means we've got a bunch of keys to
149 * insert that point to data that wasn't succesfully written.
151 * We don't have to insert those keys but we still have to invalidate
152 * that region of the cache - so, if we just strip off all the pointers
153 * from the keys we'll accomplish just that.
156 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
158 while (src
!= op
->insert_keys
.top
) {
159 struct bkey
*n
= bkey_next(src
);
161 SET_KEY_PTRS(src
, 0);
162 memmove(dst
, src
, bkey_bytes(src
));
164 dst
= bkey_next(dst
);
168 op
->insert_keys
.top
= dst
;
170 bch_data_insert_keys(cl
);
173 static void bch_data_insert_endio(struct bio
*bio
, int error
)
175 struct closure
*cl
= bio
->bi_private
;
176 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
179 /* TODO: We could try to recover from this. */
182 else if (!op
->replace
)
183 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
185 set_closure_fn(cl
, NULL
, NULL
);
188 bch_bbio_endio(op
->c
, bio
, error
, "writing data to cache");
191 static void bch_data_insert_start(struct closure
*cl
)
193 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
194 struct bio
*bio
= op
->bio
, *n
;
196 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0) {
197 set_gc_sectors(op
->c
);
202 return bch_data_invalidate(cl
);
205 * Journal writes are marked REQ_FLUSH; if the original write was a
206 * flush, it'll wait on the journal write.
208 bio
->bi_rw
&= ~(REQ_FLUSH
|REQ_FUA
);
213 struct bio_set
*split
= op
->c
->bio_split
;
215 /* 1 for the device pointer and 1 for the chksum */
216 if (bch_keylist_realloc(&op
->insert_keys
,
217 3 + (op
->csum
? 1 : 0),
219 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
221 k
= op
->insert_keys
.top
;
223 SET_KEY_INODE(k
, op
->inode
);
224 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
226 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
227 op
->write_point
, op
->write_prio
,
231 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
233 n
->bi_end_io
= bch_data_insert_endio
;
237 SET_KEY_DIRTY(k
, true);
239 for (i
= 0; i
< KEY_PTRS(k
); i
++)
240 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
244 SET_KEY_CSUM(k
, op
->csum
);
248 trace_bcache_cache_insert(k
);
249 bch_keylist_push(&op
->insert_keys
);
251 n
->bi_rw
|= REQ_WRITE
;
252 bch_submit_bbio(n
, op
->c
, k
, 0);
255 op
->insert_data_done
= true;
256 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
258 /* bch_alloc_sectors() blocks if s->writeback = true */
259 BUG_ON(op
->writeback
);
262 * But if it's not a writeback write we'd rather just bail out if
263 * there aren't any buckets ready to write to - it might take awhile and
264 * we might be starving btree writes for gc or something.
269 * Writethrough write: We can't complete the write until we've
270 * updated the index. But we don't want to delay the write while
271 * we wait for buckets to be freed up, so just invalidate the
275 return bch_data_invalidate(cl
);
278 * From a cache miss, we can just insert the keys for the data
279 * we have written or bail out if we didn't do anything.
281 op
->insert_data_done
= true;
284 if (!bch_keylist_empty(&op
->insert_keys
))
285 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
292 * bch_data_insert - stick some data in the cache
294 * This is the starting point for any data to end up in a cache device; it could
295 * be from a normal write, or a writeback write, or a write to a flash only
296 * volume - it's also used by the moving garbage collector to compact data in
297 * mostly empty buckets.
299 * It first writes the data to the cache, creating a list of keys to be inserted
300 * (if the data had to be fragmented there will be multiple keys); after the
301 * data is written it calls bch_journal, and after the keys have been added to
302 * the next journal write they're inserted into the btree.
304 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
305 * and op->inode is used for the key inode.
307 * If s->bypass is true, instead of inserting the data it invalidates the
308 * region of the cache represented by s->cache_bio and op->inode.
310 void bch_data_insert(struct closure
*cl
)
312 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
314 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
315 op
->writeback
, op
->bypass
);
317 bch_keylist_init(&op
->insert_keys
);
319 bch_data_insert_start(cl
);
324 unsigned bch_get_congested(struct cache_set
*c
)
329 if (!c
->congested_read_threshold_us
&&
330 !c
->congested_write_threshold_us
)
333 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
337 i
+= atomic_read(&c
->congested
);
344 i
= fract_exp_two(i
, 6);
346 rand
= get_random_int();
347 i
-= bitmap_weight(&rand
, BITS_PER_LONG
);
349 return i
> 0 ? i
: 1;
352 static void add_sequential(struct task_struct
*t
)
354 ewma_add(t
->sequential_io_avg
,
355 t
->sequential_io
, 8, 0);
357 t
->sequential_io
= 0;
360 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
362 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
365 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
367 struct cache_set
*c
= dc
->disk
.c
;
368 unsigned mode
= cache_mode(dc
, bio
);
369 unsigned sectors
, congested
= bch_get_congested(c
);
370 struct task_struct
*task
= current
;
373 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
374 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
375 (bio
->bi_rw
& REQ_DISCARD
))
378 if (mode
== CACHE_MODE_NONE
||
379 (mode
== CACHE_MODE_WRITEAROUND
&&
380 (bio
->bi_rw
& REQ_WRITE
)))
383 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
384 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
385 pr_debug("skipping unaligned io");
389 if (bypass_torture_test(dc
)) {
390 if ((get_random_int() & 3) == 3)
396 if (!congested
&& !dc
->sequential_cutoff
)
400 mode
== CACHE_MODE_WRITEBACK
&&
401 (bio
->bi_rw
& REQ_WRITE
) &&
402 (bio
->bi_rw
& REQ_SYNC
))
405 spin_lock(&dc
->io_lock
);
407 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
408 if (i
->last
== bio
->bi_iter
.bi_sector
&&
409 time_before(jiffies
, i
->jiffies
))
412 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
414 add_sequential(task
);
417 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
418 i
->sequential
+= bio
->bi_iter
.bi_size
;
420 i
->last
= bio_end_sector(bio
);
421 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
422 task
->sequential_io
= i
->sequential
;
425 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
426 list_move_tail(&i
->lru
, &dc
->io_lru
);
428 spin_unlock(&dc
->io_lock
);
430 sectors
= max(task
->sequential_io
,
431 task
->sequential_io_avg
) >> 9;
433 if (dc
->sequential_cutoff
&&
434 sectors
>= dc
->sequential_cutoff
>> 9) {
435 trace_bcache_bypass_sequential(bio
);
439 if (congested
&& sectors
>= congested
) {
440 trace_bcache_bypass_congested(bio
);
445 bch_rescale_priorities(c
, bio_sectors(bio
));
448 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
455 /* Stack frame for bio_complete */
459 struct bio
*orig_bio
;
460 struct bio
*cache_miss
;
461 struct bcache_device
*d
;
463 unsigned insert_bio_sectors
;
464 unsigned recoverable
:1;
466 unsigned read_dirty_data
:1;
468 unsigned long start_time
;
471 struct data_insert_op iop
;
474 static void bch_cache_read_endio(struct bio
*bio
, int error
)
476 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
477 struct closure
*cl
= bio
->bi_private
;
478 struct search
*s
= container_of(cl
, struct search
, cl
);
481 * If the bucket was reused while our bio was in flight, we might have
482 * read the wrong data. Set s->error but not error so it doesn't get
483 * counted against the cache device, but we'll still reread the data
484 * from the backing device.
488 s
->iop
.error
= error
;
489 else if (!KEY_DIRTY(&b
->key
) &&
490 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
491 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
492 s
->iop
.error
= -EINTR
;
495 bch_bbio_endio(s
->iop
.c
, bio
, error
, "reading from cache");
499 * Read from a single key, handling the initial cache miss if the key starts in
500 * the middle of the bio
502 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
504 struct search
*s
= container_of(op
, struct search
, op
);
505 struct bio
*n
, *bio
= &s
->bio
.bio
;
506 struct bkey
*bio_key
;
509 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
512 if (KEY_INODE(k
) != s
->iop
.inode
||
513 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
514 unsigned bio_sectors
= bio_sectors(bio
);
515 unsigned sectors
= KEY_INODE(k
) == s
->iop
.inode
516 ? min_t(uint64_t, INT_MAX
,
517 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
520 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
521 if (ret
!= MAP_CONTINUE
)
524 /* if this was a complete miss we shouldn't get here */
525 BUG_ON(bio_sectors
<= sectors
);
531 /* XXX: figure out best pointer - for multiple cache devices */
534 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
537 s
->read_dirty_data
= true;
539 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
540 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
541 GFP_NOIO
, s
->d
->bio_split
);
543 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
544 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
546 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
547 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
549 n
->bi_end_io
= bch_cache_read_endio
;
550 n
->bi_private
= &s
->cl
;
553 * The bucket we're reading from might be reused while our bio
554 * is in flight, and we could then end up reading the wrong
557 * We guard against this by checking (in cache_read_endio()) if
558 * the pointer is stale again; if so, we treat it as an error
559 * and reread from the backing device (but we don't pass that
560 * error up anywhere).
563 __bch_submit_bbio(n
, b
->c
);
564 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
567 static void cache_lookup(struct closure
*cl
)
569 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
570 struct bio
*bio
= &s
->bio
.bio
;
573 bch_btree_op_init(&s
->op
, -1);
575 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
576 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
577 cache_lookup_fn
, MAP_END_KEY
);
579 continue_at(cl
, cache_lookup
, bcache_wq
);
584 /* Common code for the make_request functions */
586 static void request_endio(struct bio
*bio
, int error
)
588 struct closure
*cl
= bio
->bi_private
;
591 struct search
*s
= container_of(cl
, struct search
, cl
);
592 s
->iop
.error
= error
;
593 /* Only cache read errors are recoverable */
594 s
->recoverable
= false;
601 static void bio_complete(struct search
*s
)
604 generic_end_io_acct(bio_data_dir(s
->orig_bio
),
605 &s
->d
->disk
->part0
, s
->start_time
);
607 trace_bcache_request_end(s
->d
, s
->orig_bio
);
608 bio_endio(s
->orig_bio
, s
->iop
.error
);
613 static void do_bio_hook(struct search
*s
, struct bio
*orig_bio
)
615 struct bio
*bio
= &s
->bio
.bio
;
618 __bio_clone_fast(bio
, orig_bio
);
619 bio
->bi_end_io
= request_endio
;
620 bio
->bi_private
= &s
->cl
;
622 atomic_set(&bio
->bi_cnt
, 3);
625 static void search_free(struct closure
*cl
)
627 struct search
*s
= container_of(cl
, struct search
, cl
);
633 closure_debug_destroy(cl
);
634 mempool_free(s
, s
->d
->c
->search
);
637 static inline struct search
*search_alloc(struct bio
*bio
,
638 struct bcache_device
*d
)
642 s
= mempool_alloc(d
->c
->search
, GFP_NOIO
);
644 closure_init(&s
->cl
, NULL
);
648 s
->cache_miss
= NULL
;
651 s
->write
= (bio
->bi_rw
& REQ_WRITE
) != 0;
652 s
->read_dirty_data
= 0;
653 s
->start_time
= jiffies
;
657 s
->iop
.inode
= d
->id
;
658 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
659 s
->iop
.write_prio
= 0;
662 s
->iop
.flush_journal
= (bio
->bi_rw
& (REQ_FLUSH
|REQ_FUA
)) != 0;
663 s
->iop
.wq
= bcache_wq
;
670 static void cached_dev_bio_complete(struct closure
*cl
)
672 struct search
*s
= container_of(cl
, struct search
, cl
);
673 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
681 static void cached_dev_cache_miss_done(struct closure
*cl
)
683 struct search
*s
= container_of(cl
, struct search
, cl
);
685 if (s
->iop
.replace_collision
)
686 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
692 bio_for_each_segment_all(bv
, s
->iop
.bio
, i
)
693 __free_page(bv
->bv_page
);
696 cached_dev_bio_complete(cl
);
699 static void cached_dev_read_error(struct closure
*cl
)
701 struct search
*s
= container_of(cl
, struct search
, cl
);
702 struct bio
*bio
= &s
->bio
.bio
;
704 if (s
->recoverable
) {
705 /* Retry from the backing device: */
706 trace_bcache_read_retry(s
->orig_bio
);
709 do_bio_hook(s
, s
->orig_bio
);
711 /* XXX: invalidate cache */
713 closure_bio_submit(bio
, cl
, s
->d
);
716 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
719 static void cached_dev_read_done(struct closure
*cl
)
721 struct search
*s
= container_of(cl
, struct search
, cl
);
722 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
725 * We had a cache miss; cache_bio now contains data ready to be inserted
728 * First, we copy the data we just read from cache_bio's bounce buffers
729 * to the buffers the original bio pointed to:
733 bio_reset(s
->iop
.bio
);
734 s
->iop
.bio
->bi_iter
.bi_sector
= s
->cache_miss
->bi_iter
.bi_sector
;
735 s
->iop
.bio
->bi_bdev
= s
->cache_miss
->bi_bdev
;
736 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
737 bch_bio_map(s
->iop
.bio
, NULL
);
739 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
741 bio_put(s
->cache_miss
);
742 s
->cache_miss
= NULL
;
745 if (verify(dc
, &s
->bio
.bio
) && s
->recoverable
&& !s
->read_dirty_data
)
746 bch_data_verify(dc
, s
->orig_bio
);
751 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
752 BUG_ON(!s
->iop
.replace
);
753 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
756 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
759 static void cached_dev_read_done_bh(struct closure
*cl
)
761 struct search
*s
= container_of(cl
, struct search
, cl
);
762 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
764 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
765 !s
->cache_miss
, s
->iop
.bypass
);
766 trace_bcache_read(s
->orig_bio
, !s
->cache_miss
, s
->iop
.bypass
);
769 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
770 else if (s
->iop
.bio
|| verify(dc
, &s
->bio
.bio
))
771 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
773 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
776 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
777 struct bio
*bio
, unsigned sectors
)
779 int ret
= MAP_CONTINUE
;
781 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
782 struct bio
*miss
, *cache_bio
;
784 if (s
->cache_miss
|| s
->iop
.bypass
) {
785 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
786 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
790 if (!(bio
->bi_rw
& REQ_RAHEAD
) &&
791 !(bio
->bi_rw
& REQ_META
) &&
792 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
793 reada
= min_t(sector_t
, dc
->readahead
>> 9,
794 bdev_sectors(bio
->bi_bdev
) - bio_end_sector(bio
));
796 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
798 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
799 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
800 s
->insert_bio_sectors
);
802 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
806 s
->iop
.replace
= true;
808 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
810 /* btree_search_recurse()'s btree iterator is no good anymore */
811 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
813 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
814 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
819 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
820 cache_bio
->bi_bdev
= miss
->bi_bdev
;
821 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
823 cache_bio
->bi_end_io
= request_endio
;
824 cache_bio
->bi_private
= &s
->cl
;
826 bch_bio_map(cache_bio
, NULL
);
827 if (bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
831 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
833 s
->cache_miss
= miss
;
834 s
->iop
.bio
= cache_bio
;
836 closure_bio_submit(cache_bio
, &s
->cl
, s
->d
);
842 miss
->bi_end_io
= request_endio
;
843 miss
->bi_private
= &s
->cl
;
844 closure_bio_submit(miss
, &s
->cl
, s
->d
);
848 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
850 struct closure
*cl
= &s
->cl
;
852 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
853 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
858 static void cached_dev_write_complete(struct closure
*cl
)
860 struct search
*s
= container_of(cl
, struct search
, cl
);
861 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
863 up_read_non_owner(&dc
->writeback_lock
);
864 cached_dev_bio_complete(cl
);
867 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
869 struct closure
*cl
= &s
->cl
;
870 struct bio
*bio
= &s
->bio
.bio
;
871 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
872 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
874 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
876 down_read_non_owner(&dc
->writeback_lock
);
877 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
879 * We overlap with some dirty data undergoing background
880 * writeback, force this write to writeback
882 s
->iop
.bypass
= false;
883 s
->iop
.writeback
= true;
887 * Discards aren't _required_ to do anything, so skipping if
888 * check_overlapping returned true is ok
890 * But check_overlapping drops dirty keys for which io hasn't started,
891 * so we still want to call it.
893 if (bio
->bi_rw
& REQ_DISCARD
)
894 s
->iop
.bypass
= true;
896 if (should_writeback(dc
, s
->orig_bio
,
899 s
->iop
.bypass
= false;
900 s
->iop
.writeback
= true;
904 s
->iop
.bio
= s
->orig_bio
;
907 if (!(bio
->bi_rw
& REQ_DISCARD
) ||
908 blk_queue_discard(bdev_get_queue(dc
->bdev
)))
909 closure_bio_submit(bio
, cl
, s
->d
);
910 } else if (s
->iop
.writeback
) {
911 bch_writeback_add(dc
);
914 if (bio
->bi_rw
& REQ_FLUSH
) {
915 /* Also need to send a flush to the backing device */
916 struct bio
*flush
= bio_alloc_bioset(GFP_NOIO
, 0,
919 flush
->bi_rw
= WRITE_FLUSH
;
920 flush
->bi_bdev
= bio
->bi_bdev
;
921 flush
->bi_end_io
= request_endio
;
922 flush
->bi_private
= cl
;
924 closure_bio_submit(flush
, cl
, s
->d
);
927 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, dc
->disk
.bio_split
);
929 closure_bio_submit(bio
, cl
, s
->d
);
932 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
933 continue_at(cl
, cached_dev_write_complete
, NULL
);
936 static void cached_dev_nodata(struct closure
*cl
)
938 struct search
*s
= container_of(cl
, struct search
, cl
);
939 struct bio
*bio
= &s
->bio
.bio
;
941 if (s
->iop
.flush_journal
)
942 bch_journal_meta(s
->iop
.c
, cl
);
944 /* If it's a flush, we send the flush to the backing device too */
945 closure_bio_submit(bio
, cl
, s
->d
);
947 continue_at(cl
, cached_dev_bio_complete
, NULL
);
950 /* Cached devices - read & write stuff */
952 static void cached_dev_make_request(struct request_queue
*q
, struct bio
*bio
)
955 struct bcache_device
*d
= bio
->bi_bdev
->bd_disk
->private_data
;
956 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
957 int rw
= bio_data_dir(bio
);
959 generic_start_io_acct(rw
, bio_sectors(bio
), &d
->disk
->part0
);
961 bio
->bi_bdev
= dc
->bdev
;
962 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
964 if (cached_dev_get(dc
)) {
965 s
= search_alloc(bio
, d
);
966 trace_bcache_request_start(s
->d
, bio
);
968 if (!bio
->bi_iter
.bi_size
) {
970 * can't call bch_journal_meta from under
971 * generic_make_request
973 continue_at_nobarrier(&s
->cl
,
977 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
980 cached_dev_write(dc
, s
);
982 cached_dev_read(dc
, s
);
985 if ((bio
->bi_rw
& REQ_DISCARD
) &&
986 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
989 bch_generic_make_request(bio
, &d
->bio_split_hook
);
993 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
994 unsigned int cmd
, unsigned long arg
)
996 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
997 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1000 static int cached_dev_congested(void *data
, int bits
)
1002 struct bcache_device
*d
= data
;
1003 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1004 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1007 if (bdi_congested(&q
->backing_dev_info
, bits
))
1010 if (cached_dev_get(dc
)) {
1014 for_each_cache(ca
, d
->c
, i
) {
1015 q
= bdev_get_queue(ca
->bdev
);
1016 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
1025 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1027 struct gendisk
*g
= dc
->disk
.disk
;
1029 g
->queue
->make_request_fn
= cached_dev_make_request
;
1030 g
->queue
->backing_dev_info
.congested_fn
= cached_dev_congested
;
1031 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1032 dc
->disk
.ioctl
= cached_dev_ioctl
;
1035 /* Flash backed devices */
1037 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1038 struct bio
*bio
, unsigned sectors
)
1040 unsigned bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1042 swap(bio
->bi_iter
.bi_size
, bytes
);
1044 swap(bio
->bi_iter
.bi_size
, bytes
);
1046 bio_advance(bio
, bytes
);
1048 if (!bio
->bi_iter
.bi_size
)
1051 return MAP_CONTINUE
;
1054 static void flash_dev_nodata(struct closure
*cl
)
1056 struct search
*s
= container_of(cl
, struct search
, cl
);
1058 if (s
->iop
.flush_journal
)
1059 bch_journal_meta(s
->iop
.c
, cl
);
1061 continue_at(cl
, search_free
, NULL
);
1064 static void flash_dev_make_request(struct request_queue
*q
, struct bio
*bio
)
1068 struct bcache_device
*d
= bio
->bi_bdev
->bd_disk
->private_data
;
1069 int rw
= bio_data_dir(bio
);
1071 generic_start_io_acct(rw
, bio_sectors(bio
), &d
->disk
->part0
);
1073 s
= search_alloc(bio
, d
);
1077 trace_bcache_request_start(s
->d
, bio
);
1079 if (!bio
->bi_iter
.bi_size
) {
1081 * can't call bch_journal_meta from under
1082 * generic_make_request
1084 continue_at_nobarrier(&s
->cl
,
1088 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1089 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1090 &KEY(d
->id
, bio_end_sector(bio
), 0));
1092 s
->iop
.bypass
= (bio
->bi_rw
& REQ_DISCARD
) != 0;
1093 s
->iop
.writeback
= true;
1096 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1098 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1101 continue_at(cl
, search_free
, NULL
);
1104 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1105 unsigned int cmd
, unsigned long arg
)
1110 static int flash_dev_congested(void *data
, int bits
)
1112 struct bcache_device
*d
= data
;
1113 struct request_queue
*q
;
1118 for_each_cache(ca
, d
->c
, i
) {
1119 q
= bdev_get_queue(ca
->bdev
);
1120 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
1126 void bch_flash_dev_request_init(struct bcache_device
*d
)
1128 struct gendisk
*g
= d
->disk
;
1130 g
->queue
->make_request_fn
= flash_dev_make_request
;
1131 g
->queue
->backing_dev_info
.congested_fn
= flash_dev_congested
;
1132 d
->cache_miss
= flash_dev_cache_miss
;
1133 d
->ioctl
= flash_dev_ioctl
;
1136 void bch_request_exit(void)
1138 if (bch_search_cache
)
1139 kmem_cache_destroy(bch_search_cache
);
1142 int __init
bch_request_init(void)
1144 bch_search_cache
= KMEM_CACHE(search
, 0);
1145 if (!bch_search_cache
)