gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / md / dm-thin.c
blobcb58bb3187824bfd065c1b517e75cfc063ff3b19
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
28 * Tunable constants
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
113 * Key building.
115 static void build_data_key(struct dm_thin_device *td,
116 dm_block_t b, struct dm_cell_key *key)
118 key->virtual = 0;
119 key->dev = dm_thin_dev_id(td);
120 key->block_begin = b;
121 key->block_end = b + 1ULL;
124 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
125 struct dm_cell_key *key)
127 key->virtual = 1;
128 key->dev = dm_thin_dev_id(td);
129 key->block_begin = b;
130 key->block_end = b + 1ULL;
133 /*----------------------------------------------------------------*/
135 #define THROTTLE_THRESHOLD (1 * HZ)
137 struct throttle {
138 struct rw_semaphore lock;
139 unsigned long threshold;
140 bool throttle_applied;
143 static void throttle_init(struct throttle *t)
145 init_rwsem(&t->lock);
146 t->throttle_applied = false;
149 static void throttle_work_start(struct throttle *t)
151 t->threshold = jiffies + THROTTLE_THRESHOLD;
154 static void throttle_work_update(struct throttle *t)
156 if (!t->throttle_applied && jiffies > t->threshold) {
157 down_write(&t->lock);
158 t->throttle_applied = true;
162 static void throttle_work_complete(struct throttle *t)
164 if (t->throttle_applied) {
165 t->throttle_applied = false;
166 up_write(&t->lock);
170 static void throttle_lock(struct throttle *t)
172 down_read(&t->lock);
175 static void throttle_unlock(struct throttle *t)
177 up_read(&t->lock);
180 /*----------------------------------------------------------------*/
183 * A pool device ties together a metadata device and a data device. It
184 * also provides the interface for creating and destroying internal
185 * devices.
187 struct dm_thin_new_mapping;
190 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
192 enum pool_mode {
193 PM_WRITE, /* metadata may be changed */
194 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
195 PM_READ_ONLY, /* metadata may not be changed */
196 PM_FAIL, /* all I/O fails */
199 struct pool_features {
200 enum pool_mode mode;
202 bool zero_new_blocks:1;
203 bool discard_enabled:1;
204 bool discard_passdown:1;
205 bool error_if_no_space:1;
208 struct thin_c;
209 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
210 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
211 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
213 #define CELL_SORT_ARRAY_SIZE 8192
215 struct pool {
216 struct list_head list;
217 struct dm_target *ti; /* Only set if a pool target is bound */
219 struct mapped_device *pool_md;
220 struct block_device *md_dev;
221 struct dm_pool_metadata *pmd;
223 dm_block_t low_water_blocks;
224 uint32_t sectors_per_block;
225 int sectors_per_block_shift;
227 struct pool_features pf;
228 bool low_water_triggered:1; /* A dm event has been sent */
229 bool suspended:1;
231 struct dm_bio_prison *prison;
232 struct dm_kcopyd_client *copier;
234 struct workqueue_struct *wq;
235 struct throttle throttle;
236 struct work_struct worker;
237 struct delayed_work waker;
238 struct delayed_work no_space_timeout;
240 unsigned long last_commit_jiffies;
241 unsigned ref_count;
243 spinlock_t lock;
244 struct bio_list deferred_flush_bios;
245 struct list_head prepared_mappings;
246 struct list_head prepared_discards;
247 struct list_head active_thins;
249 struct dm_deferred_set *shared_read_ds;
250 struct dm_deferred_set *all_io_ds;
252 struct dm_thin_new_mapping *next_mapping;
253 mempool_t *mapping_pool;
255 process_bio_fn process_bio;
256 process_bio_fn process_discard;
258 process_cell_fn process_cell;
259 process_cell_fn process_discard_cell;
261 process_mapping_fn process_prepared_mapping;
262 process_mapping_fn process_prepared_discard;
264 struct dm_bio_prison_cell **cell_sort_array;
267 static enum pool_mode get_pool_mode(struct pool *pool);
268 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
271 * Target context for a pool.
273 struct pool_c {
274 struct dm_target *ti;
275 struct pool *pool;
276 struct dm_dev *data_dev;
277 struct dm_dev *metadata_dev;
278 struct dm_target_callbacks callbacks;
280 dm_block_t low_water_blocks;
281 struct pool_features requested_pf; /* Features requested during table load */
282 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
286 * Target context for a thin.
288 struct thin_c {
289 struct list_head list;
290 struct dm_dev *pool_dev;
291 struct dm_dev *origin_dev;
292 sector_t origin_size;
293 dm_thin_id dev_id;
295 struct pool *pool;
296 struct dm_thin_device *td;
297 struct mapped_device *thin_md;
299 bool requeue_mode:1;
300 spinlock_t lock;
301 struct list_head deferred_cells;
302 struct bio_list deferred_bio_list;
303 struct bio_list retry_on_resume_list;
304 struct rb_root sort_bio_list; /* sorted list of deferred bios */
307 * Ensures the thin is not destroyed until the worker has finished
308 * iterating the active_thins list.
310 atomic_t refcount;
311 struct completion can_destroy;
314 /*----------------------------------------------------------------*/
317 * wake_worker() is used when new work is queued and when pool_resume is
318 * ready to continue deferred IO processing.
320 static void wake_worker(struct pool *pool)
322 queue_work(pool->wq, &pool->worker);
325 /*----------------------------------------------------------------*/
327 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
328 struct dm_bio_prison_cell **cell_result)
330 int r;
331 struct dm_bio_prison_cell *cell_prealloc;
334 * Allocate a cell from the prison's mempool.
335 * This might block but it can't fail.
337 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
339 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
340 if (r)
342 * We reused an old cell; we can get rid of
343 * the new one.
345 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
347 return r;
350 static void cell_release(struct pool *pool,
351 struct dm_bio_prison_cell *cell,
352 struct bio_list *bios)
354 dm_cell_release(pool->prison, cell, bios);
355 dm_bio_prison_free_cell(pool->prison, cell);
358 static void cell_visit_release(struct pool *pool,
359 void (*fn)(void *, struct dm_bio_prison_cell *),
360 void *context,
361 struct dm_bio_prison_cell *cell)
363 dm_cell_visit_release(pool->prison, fn, context, cell);
364 dm_bio_prison_free_cell(pool->prison, cell);
367 static void cell_release_no_holder(struct pool *pool,
368 struct dm_bio_prison_cell *cell,
369 struct bio_list *bios)
371 dm_cell_release_no_holder(pool->prison, cell, bios);
372 dm_bio_prison_free_cell(pool->prison, cell);
375 static void cell_error_with_code(struct pool *pool,
376 struct dm_bio_prison_cell *cell, int error_code)
378 dm_cell_error(pool->prison, cell, error_code);
379 dm_bio_prison_free_cell(pool->prison, cell);
382 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
384 cell_error_with_code(pool, cell, -EIO);
387 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
389 cell_error_with_code(pool, cell, 0);
392 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
394 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
397 /*----------------------------------------------------------------*/
400 * A global list of pools that uses a struct mapped_device as a key.
402 static struct dm_thin_pool_table {
403 struct mutex mutex;
404 struct list_head pools;
405 } dm_thin_pool_table;
407 static void pool_table_init(void)
409 mutex_init(&dm_thin_pool_table.mutex);
410 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
413 static void __pool_table_insert(struct pool *pool)
415 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
416 list_add(&pool->list, &dm_thin_pool_table.pools);
419 static void __pool_table_remove(struct pool *pool)
421 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
422 list_del(&pool->list);
425 static struct pool *__pool_table_lookup(struct mapped_device *md)
427 struct pool *pool = NULL, *tmp;
429 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
431 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
432 if (tmp->pool_md == md) {
433 pool = tmp;
434 break;
438 return pool;
441 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
443 struct pool *pool = NULL, *tmp;
445 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
447 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
448 if (tmp->md_dev == md_dev) {
449 pool = tmp;
450 break;
454 return pool;
457 /*----------------------------------------------------------------*/
459 struct dm_thin_endio_hook {
460 struct thin_c *tc;
461 struct dm_deferred_entry *shared_read_entry;
462 struct dm_deferred_entry *all_io_entry;
463 struct dm_thin_new_mapping *overwrite_mapping;
464 struct rb_node rb_node;
467 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
469 bio_list_merge(bios, master);
470 bio_list_init(master);
473 static void error_bio_list(struct bio_list *bios, int error)
475 struct bio *bio;
477 while ((bio = bio_list_pop(bios)))
478 bio_endio(bio, error);
481 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
483 struct bio_list bios;
484 unsigned long flags;
486 bio_list_init(&bios);
488 spin_lock_irqsave(&tc->lock, flags);
489 __merge_bio_list(&bios, master);
490 spin_unlock_irqrestore(&tc->lock, flags);
492 error_bio_list(&bios, error);
495 static void requeue_deferred_cells(struct thin_c *tc)
497 struct pool *pool = tc->pool;
498 unsigned long flags;
499 struct list_head cells;
500 struct dm_bio_prison_cell *cell, *tmp;
502 INIT_LIST_HEAD(&cells);
504 spin_lock_irqsave(&tc->lock, flags);
505 list_splice_init(&tc->deferred_cells, &cells);
506 spin_unlock_irqrestore(&tc->lock, flags);
508 list_for_each_entry_safe(cell, tmp, &cells, user_list)
509 cell_requeue(pool, cell);
512 static void requeue_io(struct thin_c *tc)
514 struct bio_list bios;
515 unsigned long flags;
517 bio_list_init(&bios);
519 spin_lock_irqsave(&tc->lock, flags);
520 __merge_bio_list(&bios, &tc->deferred_bio_list);
521 __merge_bio_list(&bios, &tc->retry_on_resume_list);
522 spin_unlock_irqrestore(&tc->lock, flags);
524 error_bio_list(&bios, DM_ENDIO_REQUEUE);
525 requeue_deferred_cells(tc);
528 static void error_retry_list(struct pool *pool)
530 struct thin_c *tc;
532 rcu_read_lock();
533 list_for_each_entry_rcu(tc, &pool->active_thins, list)
534 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
535 rcu_read_unlock();
539 * This section of code contains the logic for processing a thin device's IO.
540 * Much of the code depends on pool object resources (lists, workqueues, etc)
541 * but most is exclusively called from the thin target rather than the thin-pool
542 * target.
545 static bool block_size_is_power_of_two(struct pool *pool)
547 return pool->sectors_per_block_shift >= 0;
550 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
552 struct pool *pool = tc->pool;
553 sector_t block_nr = bio->bi_iter.bi_sector;
555 if (block_size_is_power_of_two(pool))
556 block_nr >>= pool->sectors_per_block_shift;
557 else
558 (void) sector_div(block_nr, pool->sectors_per_block);
560 return block_nr;
563 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
565 struct pool *pool = tc->pool;
566 sector_t bi_sector = bio->bi_iter.bi_sector;
568 bio->bi_bdev = tc->pool_dev->bdev;
569 if (block_size_is_power_of_two(pool))
570 bio->bi_iter.bi_sector =
571 (block << pool->sectors_per_block_shift) |
572 (bi_sector & (pool->sectors_per_block - 1));
573 else
574 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
575 sector_div(bi_sector, pool->sectors_per_block);
578 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
580 bio->bi_bdev = tc->origin_dev->bdev;
583 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
585 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
586 dm_thin_changed_this_transaction(tc->td);
589 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
591 struct dm_thin_endio_hook *h;
593 if (bio->bi_rw & REQ_DISCARD)
594 return;
596 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
597 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
600 static void issue(struct thin_c *tc, struct bio *bio)
602 struct pool *pool = tc->pool;
603 unsigned long flags;
605 if (!bio_triggers_commit(tc, bio)) {
606 generic_make_request(bio);
607 return;
611 * Complete bio with an error if earlier I/O caused changes to
612 * the metadata that can't be committed e.g, due to I/O errors
613 * on the metadata device.
615 if (dm_thin_aborted_changes(tc->td)) {
616 bio_io_error(bio);
617 return;
621 * Batch together any bios that trigger commits and then issue a
622 * single commit for them in process_deferred_bios().
624 spin_lock_irqsave(&pool->lock, flags);
625 bio_list_add(&pool->deferred_flush_bios, bio);
626 spin_unlock_irqrestore(&pool->lock, flags);
629 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
631 remap_to_origin(tc, bio);
632 issue(tc, bio);
635 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
636 dm_block_t block)
638 remap(tc, bio, block);
639 issue(tc, bio);
642 /*----------------------------------------------------------------*/
645 * Bio endio functions.
647 struct dm_thin_new_mapping {
648 struct list_head list;
650 bool pass_discard:1;
651 bool definitely_not_shared:1;
654 * Track quiescing, copying and zeroing preparation actions. When this
655 * counter hits zero the block is prepared and can be inserted into the
656 * btree.
658 atomic_t prepare_actions;
660 int err;
661 struct thin_c *tc;
662 dm_block_t virt_block;
663 dm_block_t data_block;
664 struct dm_bio_prison_cell *cell, *cell2;
667 * If the bio covers the whole area of a block then we can avoid
668 * zeroing or copying. Instead this bio is hooked. The bio will
669 * still be in the cell, so care has to be taken to avoid issuing
670 * the bio twice.
672 struct bio *bio;
673 bio_end_io_t *saved_bi_end_io;
676 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
678 struct pool *pool = m->tc->pool;
680 if (atomic_dec_and_test(&m->prepare_actions)) {
681 list_add_tail(&m->list, &pool->prepared_mappings);
682 wake_worker(pool);
686 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
688 unsigned long flags;
689 struct pool *pool = m->tc->pool;
691 spin_lock_irqsave(&pool->lock, flags);
692 __complete_mapping_preparation(m);
693 spin_unlock_irqrestore(&pool->lock, flags);
696 static void copy_complete(int read_err, unsigned long write_err, void *context)
698 struct dm_thin_new_mapping *m = context;
700 m->err = read_err || write_err ? -EIO : 0;
701 complete_mapping_preparation(m);
704 static void overwrite_endio(struct bio *bio, int err)
706 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
707 struct dm_thin_new_mapping *m = h->overwrite_mapping;
709 m->err = err;
710 complete_mapping_preparation(m);
713 /*----------------------------------------------------------------*/
716 * Workqueue.
720 * Prepared mapping jobs.
724 * This sends the bios in the cell, except the original holder, back
725 * to the deferred_bios list.
727 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
729 struct pool *pool = tc->pool;
730 unsigned long flags;
732 spin_lock_irqsave(&tc->lock, flags);
733 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
734 spin_unlock_irqrestore(&tc->lock, flags);
736 wake_worker(pool);
739 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
741 struct remap_info {
742 struct thin_c *tc;
743 struct bio_list defer_bios;
744 struct bio_list issue_bios;
747 static void __inc_remap_and_issue_cell(void *context,
748 struct dm_bio_prison_cell *cell)
750 struct remap_info *info = context;
751 struct bio *bio;
753 while ((bio = bio_list_pop(&cell->bios))) {
754 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
755 bio_list_add(&info->defer_bios, bio);
756 else {
757 inc_all_io_entry(info->tc->pool, bio);
760 * We can't issue the bios with the bio prison lock
761 * held, so we add them to a list to issue on
762 * return from this function.
764 bio_list_add(&info->issue_bios, bio);
769 static void inc_remap_and_issue_cell(struct thin_c *tc,
770 struct dm_bio_prison_cell *cell,
771 dm_block_t block)
773 struct bio *bio;
774 struct remap_info info;
776 info.tc = tc;
777 bio_list_init(&info.defer_bios);
778 bio_list_init(&info.issue_bios);
781 * We have to be careful to inc any bios we're about to issue
782 * before the cell is released, and avoid a race with new bios
783 * being added to the cell.
785 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
786 &info, cell);
788 while ((bio = bio_list_pop(&info.defer_bios)))
789 thin_defer_bio(tc, bio);
791 while ((bio = bio_list_pop(&info.issue_bios)))
792 remap_and_issue(info.tc, bio, block);
795 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
797 if (m->bio) {
798 m->bio->bi_end_io = m->saved_bi_end_io;
799 atomic_inc(&m->bio->bi_remaining);
801 cell_error(m->tc->pool, m->cell);
802 list_del(&m->list);
803 mempool_free(m, m->tc->pool->mapping_pool);
806 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
808 struct thin_c *tc = m->tc;
809 struct pool *pool = tc->pool;
810 struct bio *bio;
811 int r;
813 bio = m->bio;
814 if (bio) {
815 bio->bi_end_io = m->saved_bi_end_io;
816 atomic_inc(&bio->bi_remaining);
819 if (m->err) {
820 cell_error(pool, m->cell);
821 goto out;
825 * Commit the prepared block into the mapping btree.
826 * Any I/O for this block arriving after this point will get
827 * remapped to it directly.
829 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
830 if (r) {
831 metadata_operation_failed(pool, "dm_thin_insert_block", r);
832 cell_error(pool, m->cell);
833 goto out;
837 * Release any bios held while the block was being provisioned.
838 * If we are processing a write bio that completely covers the block,
839 * we already processed it so can ignore it now when processing
840 * the bios in the cell.
842 if (bio) {
843 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
844 bio_endio(bio, 0);
845 } else {
846 inc_all_io_entry(tc->pool, m->cell->holder);
847 remap_and_issue(tc, m->cell->holder, m->data_block);
848 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
851 out:
852 list_del(&m->list);
853 mempool_free(m, pool->mapping_pool);
856 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
858 struct thin_c *tc = m->tc;
860 bio_io_error(m->bio);
861 cell_defer_no_holder(tc, m->cell);
862 cell_defer_no_holder(tc, m->cell2);
863 mempool_free(m, tc->pool->mapping_pool);
866 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
868 struct thin_c *tc = m->tc;
870 inc_all_io_entry(tc->pool, m->bio);
871 cell_defer_no_holder(tc, m->cell);
872 cell_defer_no_holder(tc, m->cell2);
874 if (m->pass_discard)
875 if (m->definitely_not_shared)
876 remap_and_issue(tc, m->bio, m->data_block);
877 else {
878 bool used = false;
879 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
880 bio_endio(m->bio, 0);
881 else
882 remap_and_issue(tc, m->bio, m->data_block);
884 else
885 bio_endio(m->bio, 0);
887 mempool_free(m, tc->pool->mapping_pool);
890 static void process_prepared_discard(struct dm_thin_new_mapping *m)
892 int r;
893 struct thin_c *tc = m->tc;
895 r = dm_thin_remove_block(tc->td, m->virt_block);
896 if (r)
897 DMERR_LIMIT("dm_thin_remove_block() failed");
899 process_prepared_discard_passdown(m);
902 static void process_prepared(struct pool *pool, struct list_head *head,
903 process_mapping_fn *fn)
905 unsigned long flags;
906 struct list_head maps;
907 struct dm_thin_new_mapping *m, *tmp;
909 INIT_LIST_HEAD(&maps);
910 spin_lock_irqsave(&pool->lock, flags);
911 list_splice_init(head, &maps);
912 spin_unlock_irqrestore(&pool->lock, flags);
914 list_for_each_entry_safe(m, tmp, &maps, list)
915 (*fn)(m);
919 * Deferred bio jobs.
921 static int io_overlaps_block(struct pool *pool, struct bio *bio)
923 return bio->bi_iter.bi_size ==
924 (pool->sectors_per_block << SECTOR_SHIFT);
927 static int io_overwrites_block(struct pool *pool, struct bio *bio)
929 return (bio_data_dir(bio) == WRITE) &&
930 io_overlaps_block(pool, bio);
933 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
934 bio_end_io_t *fn)
936 *save = bio->bi_end_io;
937 bio->bi_end_io = fn;
940 static int ensure_next_mapping(struct pool *pool)
942 if (pool->next_mapping)
943 return 0;
945 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
947 return pool->next_mapping ? 0 : -ENOMEM;
950 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
952 struct dm_thin_new_mapping *m = pool->next_mapping;
954 BUG_ON(!pool->next_mapping);
956 memset(m, 0, sizeof(struct dm_thin_new_mapping));
957 INIT_LIST_HEAD(&m->list);
958 m->bio = NULL;
960 pool->next_mapping = NULL;
962 return m;
965 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
966 sector_t begin, sector_t end)
968 int r;
969 struct dm_io_region to;
971 to.bdev = tc->pool_dev->bdev;
972 to.sector = begin;
973 to.count = end - begin;
975 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
976 if (r < 0) {
977 DMERR_LIMIT("dm_kcopyd_zero() failed");
978 copy_complete(1, 1, m);
982 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
983 dm_block_t data_block,
984 struct dm_thin_new_mapping *m)
986 struct pool *pool = tc->pool;
987 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
989 h->overwrite_mapping = m;
990 m->bio = bio;
991 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
992 inc_all_io_entry(pool, bio);
993 remap_and_issue(tc, bio, data_block);
997 * A partial copy also needs to zero the uncopied region.
999 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1000 struct dm_dev *origin, dm_block_t data_origin,
1001 dm_block_t data_dest,
1002 struct dm_bio_prison_cell *cell, struct bio *bio,
1003 sector_t len)
1005 int r;
1006 struct pool *pool = tc->pool;
1007 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1009 m->tc = tc;
1010 m->virt_block = virt_block;
1011 m->data_block = data_dest;
1012 m->cell = cell;
1015 * quiesce action + copy action + an extra reference held for the
1016 * duration of this function (we may need to inc later for a
1017 * partial zero).
1019 atomic_set(&m->prepare_actions, 3);
1021 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1022 complete_mapping_preparation(m); /* already quiesced */
1025 * IO to pool_dev remaps to the pool target's data_dev.
1027 * If the whole block of data is being overwritten, we can issue the
1028 * bio immediately. Otherwise we use kcopyd to clone the data first.
1030 if (io_overwrites_block(pool, bio))
1031 remap_and_issue_overwrite(tc, bio, data_dest, m);
1032 else {
1033 struct dm_io_region from, to;
1035 from.bdev = origin->bdev;
1036 from.sector = data_origin * pool->sectors_per_block;
1037 from.count = len;
1039 to.bdev = tc->pool_dev->bdev;
1040 to.sector = data_dest * pool->sectors_per_block;
1041 to.count = len;
1043 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1044 0, copy_complete, m);
1045 if (r < 0) {
1046 DMERR_LIMIT("dm_kcopyd_copy() failed");
1047 copy_complete(1, 1, m);
1050 * We allow the zero to be issued, to simplify the
1051 * error path. Otherwise we'd need to start
1052 * worrying about decrementing the prepare_actions
1053 * counter.
1058 * Do we need to zero a tail region?
1060 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1061 atomic_inc(&m->prepare_actions);
1062 ll_zero(tc, m,
1063 data_dest * pool->sectors_per_block + len,
1064 (data_dest + 1) * pool->sectors_per_block);
1068 complete_mapping_preparation(m); /* drop our ref */
1071 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1072 dm_block_t data_origin, dm_block_t data_dest,
1073 struct dm_bio_prison_cell *cell, struct bio *bio)
1075 schedule_copy(tc, virt_block, tc->pool_dev,
1076 data_origin, data_dest, cell, bio,
1077 tc->pool->sectors_per_block);
1080 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1081 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1082 struct bio *bio)
1084 struct pool *pool = tc->pool;
1085 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1087 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1088 m->tc = tc;
1089 m->virt_block = virt_block;
1090 m->data_block = data_block;
1091 m->cell = cell;
1094 * If the whole block of data is being overwritten or we are not
1095 * zeroing pre-existing data, we can issue the bio immediately.
1096 * Otherwise we use kcopyd to zero the data first.
1098 if (!pool->pf.zero_new_blocks)
1099 process_prepared_mapping(m);
1101 else if (io_overwrites_block(pool, bio))
1102 remap_and_issue_overwrite(tc, bio, data_block, m);
1104 else
1105 ll_zero(tc, m,
1106 data_block * pool->sectors_per_block,
1107 (data_block + 1) * pool->sectors_per_block);
1110 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1111 dm_block_t data_dest,
1112 struct dm_bio_prison_cell *cell, struct bio *bio)
1114 struct pool *pool = tc->pool;
1115 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1116 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1118 if (virt_block_end <= tc->origin_size)
1119 schedule_copy(tc, virt_block, tc->origin_dev,
1120 virt_block, data_dest, cell, bio,
1121 pool->sectors_per_block);
1123 else if (virt_block_begin < tc->origin_size)
1124 schedule_copy(tc, virt_block, tc->origin_dev,
1125 virt_block, data_dest, cell, bio,
1126 tc->origin_size - virt_block_begin);
1128 else
1129 schedule_zero(tc, virt_block, data_dest, cell, bio);
1132 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1134 static void check_for_space(struct pool *pool)
1136 int r;
1137 dm_block_t nr_free;
1139 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1140 return;
1142 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1143 if (r)
1144 return;
1146 if (nr_free)
1147 set_pool_mode(pool, PM_WRITE);
1151 * A non-zero return indicates read_only or fail_io mode.
1152 * Many callers don't care about the return value.
1154 static int commit(struct pool *pool)
1156 int r;
1158 if (get_pool_mode(pool) >= PM_READ_ONLY)
1159 return -EINVAL;
1161 r = dm_pool_commit_metadata(pool->pmd);
1162 if (r)
1163 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1164 else
1165 check_for_space(pool);
1167 return r;
1170 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1172 unsigned long flags;
1174 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1175 DMWARN("%s: reached low water mark for data device: sending event.",
1176 dm_device_name(pool->pool_md));
1177 spin_lock_irqsave(&pool->lock, flags);
1178 pool->low_water_triggered = true;
1179 spin_unlock_irqrestore(&pool->lock, flags);
1180 dm_table_event(pool->ti->table);
1184 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1186 int r;
1187 dm_block_t free_blocks;
1188 struct pool *pool = tc->pool;
1190 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1191 return -EINVAL;
1193 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1194 if (r) {
1195 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1196 return r;
1199 check_low_water_mark(pool, free_blocks);
1201 if (!free_blocks) {
1203 * Try to commit to see if that will free up some
1204 * more space.
1206 r = commit(pool);
1207 if (r)
1208 return r;
1210 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1211 if (r) {
1212 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1213 return r;
1216 if (!free_blocks) {
1217 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1218 return -ENOSPC;
1222 r = dm_pool_alloc_data_block(pool->pmd, result);
1223 if (r) {
1224 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1225 return r;
1228 return 0;
1232 * If we have run out of space, queue bios until the device is
1233 * resumed, presumably after having been reloaded with more space.
1235 static void retry_on_resume(struct bio *bio)
1237 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1238 struct thin_c *tc = h->tc;
1239 unsigned long flags;
1241 spin_lock_irqsave(&tc->lock, flags);
1242 bio_list_add(&tc->retry_on_resume_list, bio);
1243 spin_unlock_irqrestore(&tc->lock, flags);
1246 static int should_error_unserviceable_bio(struct pool *pool)
1248 enum pool_mode m = get_pool_mode(pool);
1250 switch (m) {
1251 case PM_WRITE:
1252 /* Shouldn't get here */
1253 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1254 return -EIO;
1256 case PM_OUT_OF_DATA_SPACE:
1257 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1259 case PM_READ_ONLY:
1260 case PM_FAIL:
1261 return -EIO;
1262 default:
1263 /* Shouldn't get here */
1264 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1265 return -EIO;
1269 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1271 int error = should_error_unserviceable_bio(pool);
1273 if (error)
1274 bio_endio(bio, error);
1275 else
1276 retry_on_resume(bio);
1279 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1281 struct bio *bio;
1282 struct bio_list bios;
1283 int error;
1285 error = should_error_unserviceable_bio(pool);
1286 if (error) {
1287 cell_error_with_code(pool, cell, error);
1288 return;
1291 bio_list_init(&bios);
1292 cell_release(pool, cell, &bios);
1294 while ((bio = bio_list_pop(&bios)))
1295 retry_on_resume(bio);
1298 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1300 int r;
1301 struct bio *bio = cell->holder;
1302 struct pool *pool = tc->pool;
1303 struct dm_bio_prison_cell *cell2;
1304 struct dm_cell_key key2;
1305 dm_block_t block = get_bio_block(tc, bio);
1306 struct dm_thin_lookup_result lookup_result;
1307 struct dm_thin_new_mapping *m;
1309 if (tc->requeue_mode) {
1310 cell_requeue(pool, cell);
1311 return;
1314 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1315 switch (r) {
1316 case 0:
1318 * Check nobody is fiddling with this pool block. This can
1319 * happen if someone's in the process of breaking sharing
1320 * on this block.
1322 build_data_key(tc->td, lookup_result.block, &key2);
1323 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1324 cell_defer_no_holder(tc, cell);
1325 break;
1328 if (io_overlaps_block(pool, bio)) {
1330 * IO may still be going to the destination block. We must
1331 * quiesce before we can do the removal.
1333 m = get_next_mapping(pool);
1334 m->tc = tc;
1335 m->pass_discard = pool->pf.discard_passdown;
1336 m->definitely_not_shared = !lookup_result.shared;
1337 m->virt_block = block;
1338 m->data_block = lookup_result.block;
1339 m->cell = cell;
1340 m->cell2 = cell2;
1341 m->bio = bio;
1343 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1344 pool->process_prepared_discard(m);
1346 } else {
1347 inc_all_io_entry(pool, bio);
1348 cell_defer_no_holder(tc, cell);
1349 cell_defer_no_holder(tc, cell2);
1352 * The DM core makes sure that the discard doesn't span
1353 * a block boundary. So we submit the discard of a
1354 * partial block appropriately.
1356 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1357 remap_and_issue(tc, bio, lookup_result.block);
1358 else
1359 bio_endio(bio, 0);
1361 break;
1363 case -ENODATA:
1365 * It isn't provisioned, just forget it.
1367 cell_defer_no_holder(tc, cell);
1368 bio_endio(bio, 0);
1369 break;
1371 default:
1372 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1373 __func__, r);
1374 cell_defer_no_holder(tc, cell);
1375 bio_io_error(bio);
1376 break;
1380 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1382 struct dm_bio_prison_cell *cell;
1383 struct dm_cell_key key;
1384 dm_block_t block = get_bio_block(tc, bio);
1386 build_virtual_key(tc->td, block, &key);
1387 if (bio_detain(tc->pool, &key, bio, &cell))
1388 return;
1390 process_discard_cell(tc, cell);
1393 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1394 struct dm_cell_key *key,
1395 struct dm_thin_lookup_result *lookup_result,
1396 struct dm_bio_prison_cell *cell)
1398 int r;
1399 dm_block_t data_block;
1400 struct pool *pool = tc->pool;
1402 r = alloc_data_block(tc, &data_block);
1403 switch (r) {
1404 case 0:
1405 schedule_internal_copy(tc, block, lookup_result->block,
1406 data_block, cell, bio);
1407 break;
1409 case -ENOSPC:
1410 retry_bios_on_resume(pool, cell);
1411 break;
1413 default:
1414 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1415 __func__, r);
1416 cell_error(pool, cell);
1417 break;
1421 static void __remap_and_issue_shared_cell(void *context,
1422 struct dm_bio_prison_cell *cell)
1424 struct remap_info *info = context;
1425 struct bio *bio;
1427 while ((bio = bio_list_pop(&cell->bios))) {
1428 if ((bio_data_dir(bio) == WRITE) ||
1429 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1430 bio_list_add(&info->defer_bios, bio);
1431 else {
1432 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1434 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1435 inc_all_io_entry(info->tc->pool, bio);
1436 bio_list_add(&info->issue_bios, bio);
1441 static void remap_and_issue_shared_cell(struct thin_c *tc,
1442 struct dm_bio_prison_cell *cell,
1443 dm_block_t block)
1445 struct bio *bio;
1446 struct remap_info info;
1448 info.tc = tc;
1449 bio_list_init(&info.defer_bios);
1450 bio_list_init(&info.issue_bios);
1452 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1453 &info, cell);
1455 while ((bio = bio_list_pop(&info.defer_bios)))
1456 thin_defer_bio(tc, bio);
1458 while ((bio = bio_list_pop(&info.issue_bios)))
1459 remap_and_issue(tc, bio, block);
1462 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1463 dm_block_t block,
1464 struct dm_thin_lookup_result *lookup_result,
1465 struct dm_bio_prison_cell *virt_cell)
1467 struct dm_bio_prison_cell *data_cell;
1468 struct pool *pool = tc->pool;
1469 struct dm_cell_key key;
1472 * If cell is already occupied, then sharing is already in the process
1473 * of being broken so we have nothing further to do here.
1475 build_data_key(tc->td, lookup_result->block, &key);
1476 if (bio_detain(pool, &key, bio, &data_cell)) {
1477 cell_defer_no_holder(tc, virt_cell);
1478 return;
1481 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1482 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1483 cell_defer_no_holder(tc, virt_cell);
1484 } else {
1485 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1487 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1488 inc_all_io_entry(pool, bio);
1489 remap_and_issue(tc, bio, lookup_result->block);
1491 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1492 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1496 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1497 struct dm_bio_prison_cell *cell)
1499 int r;
1500 dm_block_t data_block;
1501 struct pool *pool = tc->pool;
1504 * Remap empty bios (flushes) immediately, without provisioning.
1506 if (!bio->bi_iter.bi_size) {
1507 inc_all_io_entry(pool, bio);
1508 cell_defer_no_holder(tc, cell);
1510 remap_and_issue(tc, bio, 0);
1511 return;
1515 * Fill read bios with zeroes and complete them immediately.
1517 if (bio_data_dir(bio) == READ) {
1518 zero_fill_bio(bio);
1519 cell_defer_no_holder(tc, cell);
1520 bio_endio(bio, 0);
1521 return;
1524 r = alloc_data_block(tc, &data_block);
1525 switch (r) {
1526 case 0:
1527 if (tc->origin_dev)
1528 schedule_external_copy(tc, block, data_block, cell, bio);
1529 else
1530 schedule_zero(tc, block, data_block, cell, bio);
1531 break;
1533 case -ENOSPC:
1534 retry_bios_on_resume(pool, cell);
1535 break;
1537 default:
1538 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1539 __func__, r);
1540 cell_error(pool, cell);
1541 break;
1545 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1547 int r;
1548 struct pool *pool = tc->pool;
1549 struct bio *bio = cell->holder;
1550 dm_block_t block = get_bio_block(tc, bio);
1551 struct dm_thin_lookup_result lookup_result;
1553 if (tc->requeue_mode) {
1554 cell_requeue(pool, cell);
1555 return;
1558 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1559 switch (r) {
1560 case 0:
1561 if (lookup_result.shared)
1562 process_shared_bio(tc, bio, block, &lookup_result, cell);
1563 else {
1564 inc_all_io_entry(pool, bio);
1565 remap_and_issue(tc, bio, lookup_result.block);
1566 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1568 break;
1570 case -ENODATA:
1571 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1572 inc_all_io_entry(pool, bio);
1573 cell_defer_no_holder(tc, cell);
1575 if (bio_end_sector(bio) <= tc->origin_size)
1576 remap_to_origin_and_issue(tc, bio);
1578 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1579 zero_fill_bio(bio);
1580 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1581 remap_to_origin_and_issue(tc, bio);
1583 } else {
1584 zero_fill_bio(bio);
1585 bio_endio(bio, 0);
1587 } else
1588 provision_block(tc, bio, block, cell);
1589 break;
1591 default:
1592 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1593 __func__, r);
1594 cell_defer_no_holder(tc, cell);
1595 bio_io_error(bio);
1596 break;
1600 static void process_bio(struct thin_c *tc, struct bio *bio)
1602 struct pool *pool = tc->pool;
1603 dm_block_t block = get_bio_block(tc, bio);
1604 struct dm_bio_prison_cell *cell;
1605 struct dm_cell_key key;
1608 * If cell is already occupied, then the block is already
1609 * being provisioned so we have nothing further to do here.
1611 build_virtual_key(tc->td, block, &key);
1612 if (bio_detain(pool, &key, bio, &cell))
1613 return;
1615 process_cell(tc, cell);
1618 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1619 struct dm_bio_prison_cell *cell)
1621 int r;
1622 int rw = bio_data_dir(bio);
1623 dm_block_t block = get_bio_block(tc, bio);
1624 struct dm_thin_lookup_result lookup_result;
1626 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1627 switch (r) {
1628 case 0:
1629 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1630 handle_unserviceable_bio(tc->pool, bio);
1631 if (cell)
1632 cell_defer_no_holder(tc, cell);
1633 } else {
1634 inc_all_io_entry(tc->pool, bio);
1635 remap_and_issue(tc, bio, lookup_result.block);
1636 if (cell)
1637 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1639 break;
1641 case -ENODATA:
1642 if (cell)
1643 cell_defer_no_holder(tc, cell);
1644 if (rw != READ) {
1645 handle_unserviceable_bio(tc->pool, bio);
1646 break;
1649 if (tc->origin_dev) {
1650 inc_all_io_entry(tc->pool, bio);
1651 remap_to_origin_and_issue(tc, bio);
1652 break;
1655 zero_fill_bio(bio);
1656 bio_endio(bio, 0);
1657 break;
1659 default:
1660 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1661 __func__, r);
1662 if (cell)
1663 cell_defer_no_holder(tc, cell);
1664 bio_io_error(bio);
1665 break;
1669 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1671 __process_bio_read_only(tc, bio, NULL);
1674 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1676 __process_bio_read_only(tc, cell->holder, cell);
1679 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1681 bio_endio(bio, 0);
1684 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1686 bio_io_error(bio);
1689 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1691 cell_success(tc->pool, cell);
1694 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1696 cell_error(tc->pool, cell);
1700 * FIXME: should we also commit due to size of transaction, measured in
1701 * metadata blocks?
1703 static int need_commit_due_to_time(struct pool *pool)
1705 return !time_in_range(jiffies, pool->last_commit_jiffies,
1706 pool->last_commit_jiffies + COMMIT_PERIOD);
1709 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1710 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1712 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1714 struct rb_node **rbp, *parent;
1715 struct dm_thin_endio_hook *pbd;
1716 sector_t bi_sector = bio->bi_iter.bi_sector;
1718 rbp = &tc->sort_bio_list.rb_node;
1719 parent = NULL;
1720 while (*rbp) {
1721 parent = *rbp;
1722 pbd = thin_pbd(parent);
1724 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1725 rbp = &(*rbp)->rb_left;
1726 else
1727 rbp = &(*rbp)->rb_right;
1730 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1731 rb_link_node(&pbd->rb_node, parent, rbp);
1732 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1735 static void __extract_sorted_bios(struct thin_c *tc)
1737 struct rb_node *node;
1738 struct dm_thin_endio_hook *pbd;
1739 struct bio *bio;
1741 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1742 pbd = thin_pbd(node);
1743 bio = thin_bio(pbd);
1745 bio_list_add(&tc->deferred_bio_list, bio);
1746 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1749 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1752 static void __sort_thin_deferred_bios(struct thin_c *tc)
1754 struct bio *bio;
1755 struct bio_list bios;
1757 bio_list_init(&bios);
1758 bio_list_merge(&bios, &tc->deferred_bio_list);
1759 bio_list_init(&tc->deferred_bio_list);
1761 /* Sort deferred_bio_list using rb-tree */
1762 while ((bio = bio_list_pop(&bios)))
1763 __thin_bio_rb_add(tc, bio);
1766 * Transfer the sorted bios in sort_bio_list back to
1767 * deferred_bio_list to allow lockless submission of
1768 * all bios.
1770 __extract_sorted_bios(tc);
1773 static void process_thin_deferred_bios(struct thin_c *tc)
1775 struct pool *pool = tc->pool;
1776 unsigned long flags;
1777 struct bio *bio;
1778 struct bio_list bios;
1779 struct blk_plug plug;
1780 unsigned count = 0;
1782 if (tc->requeue_mode) {
1783 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1784 return;
1787 bio_list_init(&bios);
1789 spin_lock_irqsave(&tc->lock, flags);
1791 if (bio_list_empty(&tc->deferred_bio_list)) {
1792 spin_unlock_irqrestore(&tc->lock, flags);
1793 return;
1796 __sort_thin_deferred_bios(tc);
1798 bio_list_merge(&bios, &tc->deferred_bio_list);
1799 bio_list_init(&tc->deferred_bio_list);
1801 spin_unlock_irqrestore(&tc->lock, flags);
1803 blk_start_plug(&plug);
1804 while ((bio = bio_list_pop(&bios))) {
1806 * If we've got no free new_mapping structs, and processing
1807 * this bio might require one, we pause until there are some
1808 * prepared mappings to process.
1810 if (ensure_next_mapping(pool)) {
1811 spin_lock_irqsave(&tc->lock, flags);
1812 bio_list_add(&tc->deferred_bio_list, bio);
1813 bio_list_merge(&tc->deferred_bio_list, &bios);
1814 spin_unlock_irqrestore(&tc->lock, flags);
1815 break;
1818 if (bio->bi_rw & REQ_DISCARD)
1819 pool->process_discard(tc, bio);
1820 else
1821 pool->process_bio(tc, bio);
1823 if ((count++ & 127) == 0) {
1824 throttle_work_update(&pool->throttle);
1825 dm_pool_issue_prefetches(pool->pmd);
1828 blk_finish_plug(&plug);
1831 static int cmp_cells(const void *lhs, const void *rhs)
1833 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1834 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1836 BUG_ON(!lhs_cell->holder);
1837 BUG_ON(!rhs_cell->holder);
1839 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1840 return -1;
1842 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1843 return 1;
1845 return 0;
1848 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1850 unsigned count = 0;
1851 struct dm_bio_prison_cell *cell, *tmp;
1853 list_for_each_entry_safe(cell, tmp, cells, user_list) {
1854 if (count >= CELL_SORT_ARRAY_SIZE)
1855 break;
1857 pool->cell_sort_array[count++] = cell;
1858 list_del(&cell->user_list);
1861 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1863 return count;
1866 static void process_thin_deferred_cells(struct thin_c *tc)
1868 struct pool *pool = tc->pool;
1869 unsigned long flags;
1870 struct list_head cells;
1871 struct dm_bio_prison_cell *cell;
1872 unsigned i, j, count;
1874 INIT_LIST_HEAD(&cells);
1876 spin_lock_irqsave(&tc->lock, flags);
1877 list_splice_init(&tc->deferred_cells, &cells);
1878 spin_unlock_irqrestore(&tc->lock, flags);
1880 if (list_empty(&cells))
1881 return;
1883 do {
1884 count = sort_cells(tc->pool, &cells);
1886 for (i = 0; i < count; i++) {
1887 cell = pool->cell_sort_array[i];
1888 BUG_ON(!cell->holder);
1891 * If we've got no free new_mapping structs, and processing
1892 * this bio might require one, we pause until there are some
1893 * prepared mappings to process.
1895 if (ensure_next_mapping(pool)) {
1896 for (j = i; j < count; j++)
1897 list_add(&pool->cell_sort_array[j]->user_list, &cells);
1899 spin_lock_irqsave(&tc->lock, flags);
1900 list_splice(&cells, &tc->deferred_cells);
1901 spin_unlock_irqrestore(&tc->lock, flags);
1902 return;
1905 if (cell->holder->bi_rw & REQ_DISCARD)
1906 pool->process_discard_cell(tc, cell);
1907 else
1908 pool->process_cell(tc, cell);
1910 } while (!list_empty(&cells));
1913 static void thin_get(struct thin_c *tc);
1914 static void thin_put(struct thin_c *tc);
1917 * We can't hold rcu_read_lock() around code that can block. So we
1918 * find a thin with the rcu lock held; bump a refcount; then drop
1919 * the lock.
1921 static struct thin_c *get_first_thin(struct pool *pool)
1923 struct thin_c *tc = NULL;
1925 rcu_read_lock();
1926 if (!list_empty(&pool->active_thins)) {
1927 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1928 thin_get(tc);
1930 rcu_read_unlock();
1932 return tc;
1935 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1937 struct thin_c *old_tc = tc;
1939 rcu_read_lock();
1940 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1941 thin_get(tc);
1942 thin_put(old_tc);
1943 rcu_read_unlock();
1944 return tc;
1946 thin_put(old_tc);
1947 rcu_read_unlock();
1949 return NULL;
1952 static void process_deferred_bios(struct pool *pool)
1954 unsigned long flags;
1955 struct bio *bio;
1956 struct bio_list bios;
1957 struct thin_c *tc;
1959 tc = get_first_thin(pool);
1960 while (tc) {
1961 process_thin_deferred_cells(tc);
1962 process_thin_deferred_bios(tc);
1963 tc = get_next_thin(pool, tc);
1967 * If there are any deferred flush bios, we must commit
1968 * the metadata before issuing them.
1970 bio_list_init(&bios);
1971 spin_lock_irqsave(&pool->lock, flags);
1972 bio_list_merge(&bios, &pool->deferred_flush_bios);
1973 bio_list_init(&pool->deferred_flush_bios);
1974 spin_unlock_irqrestore(&pool->lock, flags);
1976 if (bio_list_empty(&bios) &&
1977 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1978 return;
1980 if (commit(pool)) {
1981 while ((bio = bio_list_pop(&bios)))
1982 bio_io_error(bio);
1983 return;
1985 pool->last_commit_jiffies = jiffies;
1987 while ((bio = bio_list_pop(&bios)))
1988 generic_make_request(bio);
1991 static void do_worker(struct work_struct *ws)
1993 struct pool *pool = container_of(ws, struct pool, worker);
1995 throttle_work_start(&pool->throttle);
1996 dm_pool_issue_prefetches(pool->pmd);
1997 throttle_work_update(&pool->throttle);
1998 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1999 throttle_work_update(&pool->throttle);
2000 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2001 throttle_work_update(&pool->throttle);
2002 process_deferred_bios(pool);
2003 throttle_work_complete(&pool->throttle);
2007 * We want to commit periodically so that not too much
2008 * unwritten data builds up.
2010 static void do_waker(struct work_struct *ws)
2012 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2013 wake_worker(pool);
2014 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2018 * We're holding onto IO to allow userland time to react. After the
2019 * timeout either the pool will have been resized (and thus back in
2020 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2022 static void do_no_space_timeout(struct work_struct *ws)
2024 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2025 no_space_timeout);
2027 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2028 set_pool_mode(pool, PM_READ_ONLY);
2031 /*----------------------------------------------------------------*/
2033 struct pool_work {
2034 struct work_struct worker;
2035 struct completion complete;
2038 static struct pool_work *to_pool_work(struct work_struct *ws)
2040 return container_of(ws, struct pool_work, worker);
2043 static void pool_work_complete(struct pool_work *pw)
2045 complete(&pw->complete);
2048 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2049 void (*fn)(struct work_struct *))
2051 INIT_WORK_ONSTACK(&pw->worker, fn);
2052 init_completion(&pw->complete);
2053 queue_work(pool->wq, &pw->worker);
2054 wait_for_completion(&pw->complete);
2057 /*----------------------------------------------------------------*/
2059 struct noflush_work {
2060 struct pool_work pw;
2061 struct thin_c *tc;
2064 static struct noflush_work *to_noflush(struct work_struct *ws)
2066 return container_of(to_pool_work(ws), struct noflush_work, pw);
2069 static void do_noflush_start(struct work_struct *ws)
2071 struct noflush_work *w = to_noflush(ws);
2072 w->tc->requeue_mode = true;
2073 requeue_io(w->tc);
2074 pool_work_complete(&w->pw);
2077 static void do_noflush_stop(struct work_struct *ws)
2079 struct noflush_work *w = to_noflush(ws);
2080 w->tc->requeue_mode = false;
2081 pool_work_complete(&w->pw);
2084 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2086 struct noflush_work w;
2088 w.tc = tc;
2089 pool_work_wait(&w.pw, tc->pool, fn);
2092 /*----------------------------------------------------------------*/
2094 static enum pool_mode get_pool_mode(struct pool *pool)
2096 return pool->pf.mode;
2099 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2101 dm_table_event(pool->ti->table);
2102 DMINFO("%s: switching pool to %s mode",
2103 dm_device_name(pool->pool_md), new_mode);
2106 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2108 struct pool_c *pt = pool->ti->private;
2109 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2110 enum pool_mode old_mode = get_pool_mode(pool);
2111 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2114 * Never allow the pool to transition to PM_WRITE mode if user
2115 * intervention is required to verify metadata and data consistency.
2117 if (new_mode == PM_WRITE && needs_check) {
2118 DMERR("%s: unable to switch pool to write mode until repaired.",
2119 dm_device_name(pool->pool_md));
2120 if (old_mode != new_mode)
2121 new_mode = old_mode;
2122 else
2123 new_mode = PM_READ_ONLY;
2126 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2127 * not going to recover without a thin_repair. So we never let the
2128 * pool move out of the old mode.
2130 if (old_mode == PM_FAIL)
2131 new_mode = old_mode;
2133 switch (new_mode) {
2134 case PM_FAIL:
2135 if (old_mode != new_mode)
2136 notify_of_pool_mode_change(pool, "failure");
2137 dm_pool_metadata_read_only(pool->pmd);
2138 pool->process_bio = process_bio_fail;
2139 pool->process_discard = process_bio_fail;
2140 pool->process_cell = process_cell_fail;
2141 pool->process_discard_cell = process_cell_fail;
2142 pool->process_prepared_mapping = process_prepared_mapping_fail;
2143 pool->process_prepared_discard = process_prepared_discard_fail;
2145 error_retry_list(pool);
2146 break;
2148 case PM_READ_ONLY:
2149 if (old_mode != new_mode)
2150 notify_of_pool_mode_change(pool, "read-only");
2151 dm_pool_metadata_read_only(pool->pmd);
2152 pool->process_bio = process_bio_read_only;
2153 pool->process_discard = process_bio_success;
2154 pool->process_cell = process_cell_read_only;
2155 pool->process_discard_cell = process_cell_success;
2156 pool->process_prepared_mapping = process_prepared_mapping_fail;
2157 pool->process_prepared_discard = process_prepared_discard_passdown;
2159 error_retry_list(pool);
2160 break;
2162 case PM_OUT_OF_DATA_SPACE:
2164 * Ideally we'd never hit this state; the low water mark
2165 * would trigger userland to extend the pool before we
2166 * completely run out of data space. However, many small
2167 * IOs to unprovisioned space can consume data space at an
2168 * alarming rate. Adjust your low water mark if you're
2169 * frequently seeing this mode.
2171 if (old_mode != new_mode)
2172 notify_of_pool_mode_change(pool, "out-of-data-space");
2173 pool->process_bio = process_bio_read_only;
2174 pool->process_discard = process_discard_bio;
2175 pool->process_cell = process_cell_read_only;
2176 pool->process_discard_cell = process_discard_cell;
2177 pool->process_prepared_mapping = process_prepared_mapping;
2178 pool->process_prepared_discard = process_prepared_discard;
2180 if (!pool->pf.error_if_no_space && no_space_timeout)
2181 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2182 break;
2184 case PM_WRITE:
2185 if (old_mode != new_mode)
2186 notify_of_pool_mode_change(pool, "write");
2187 dm_pool_metadata_read_write(pool->pmd);
2188 pool->process_bio = process_bio;
2189 pool->process_discard = process_discard_bio;
2190 pool->process_cell = process_cell;
2191 pool->process_discard_cell = process_discard_cell;
2192 pool->process_prepared_mapping = process_prepared_mapping;
2193 pool->process_prepared_discard = process_prepared_discard;
2194 break;
2197 pool->pf.mode = new_mode;
2199 * The pool mode may have changed, sync it so bind_control_target()
2200 * doesn't cause an unexpected mode transition on resume.
2202 pt->adjusted_pf.mode = new_mode;
2205 static void abort_transaction(struct pool *pool)
2207 const char *dev_name = dm_device_name(pool->pool_md);
2209 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2210 if (dm_pool_abort_metadata(pool->pmd)) {
2211 DMERR("%s: failed to abort metadata transaction", dev_name);
2212 set_pool_mode(pool, PM_FAIL);
2215 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2216 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2217 set_pool_mode(pool, PM_FAIL);
2221 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2223 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2224 dm_device_name(pool->pool_md), op, r);
2226 abort_transaction(pool);
2227 set_pool_mode(pool, PM_READ_ONLY);
2230 /*----------------------------------------------------------------*/
2233 * Mapping functions.
2237 * Called only while mapping a thin bio to hand it over to the workqueue.
2239 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2241 unsigned long flags;
2242 struct pool *pool = tc->pool;
2244 spin_lock_irqsave(&tc->lock, flags);
2245 bio_list_add(&tc->deferred_bio_list, bio);
2246 spin_unlock_irqrestore(&tc->lock, flags);
2248 wake_worker(pool);
2251 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2253 struct pool *pool = tc->pool;
2255 throttle_lock(&pool->throttle);
2256 thin_defer_bio(tc, bio);
2257 throttle_unlock(&pool->throttle);
2260 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2262 unsigned long flags;
2263 struct pool *pool = tc->pool;
2265 throttle_lock(&pool->throttle);
2266 spin_lock_irqsave(&tc->lock, flags);
2267 list_add_tail(&cell->user_list, &tc->deferred_cells);
2268 spin_unlock_irqrestore(&tc->lock, flags);
2269 throttle_unlock(&pool->throttle);
2271 wake_worker(pool);
2274 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2276 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2278 h->tc = tc;
2279 h->shared_read_entry = NULL;
2280 h->all_io_entry = NULL;
2281 h->overwrite_mapping = NULL;
2285 * Non-blocking function called from the thin target's map function.
2287 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2289 int r;
2290 struct thin_c *tc = ti->private;
2291 dm_block_t block = get_bio_block(tc, bio);
2292 struct dm_thin_device *td = tc->td;
2293 struct dm_thin_lookup_result result;
2294 struct dm_bio_prison_cell *virt_cell, *data_cell;
2295 struct dm_cell_key key;
2297 thin_hook_bio(tc, bio);
2299 if (tc->requeue_mode) {
2300 bio_endio(bio, DM_ENDIO_REQUEUE);
2301 return DM_MAPIO_SUBMITTED;
2304 if (get_pool_mode(tc->pool) == PM_FAIL) {
2305 bio_io_error(bio);
2306 return DM_MAPIO_SUBMITTED;
2309 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2310 thin_defer_bio_with_throttle(tc, bio);
2311 return DM_MAPIO_SUBMITTED;
2315 * We must hold the virtual cell before doing the lookup, otherwise
2316 * there's a race with discard.
2318 build_virtual_key(tc->td, block, &key);
2319 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2320 return DM_MAPIO_SUBMITTED;
2322 r = dm_thin_find_block(td, block, 0, &result);
2325 * Note that we defer readahead too.
2327 switch (r) {
2328 case 0:
2329 if (unlikely(result.shared)) {
2331 * We have a race condition here between the
2332 * result.shared value returned by the lookup and
2333 * snapshot creation, which may cause new
2334 * sharing.
2336 * To avoid this always quiesce the origin before
2337 * taking the snap. You want to do this anyway to
2338 * ensure a consistent application view
2339 * (i.e. lockfs).
2341 * More distant ancestors are irrelevant. The
2342 * shared flag will be set in their case.
2344 thin_defer_cell(tc, virt_cell);
2345 return DM_MAPIO_SUBMITTED;
2348 build_data_key(tc->td, result.block, &key);
2349 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2350 cell_defer_no_holder(tc, virt_cell);
2351 return DM_MAPIO_SUBMITTED;
2354 inc_all_io_entry(tc->pool, bio);
2355 cell_defer_no_holder(tc, data_cell);
2356 cell_defer_no_holder(tc, virt_cell);
2358 remap(tc, bio, result.block);
2359 return DM_MAPIO_REMAPPED;
2361 case -ENODATA:
2362 case -EWOULDBLOCK:
2363 thin_defer_cell(tc, virt_cell);
2364 return DM_MAPIO_SUBMITTED;
2366 default:
2368 * Must always call bio_io_error on failure.
2369 * dm_thin_find_block can fail with -EINVAL if the
2370 * pool is switched to fail-io mode.
2372 bio_io_error(bio);
2373 cell_defer_no_holder(tc, virt_cell);
2374 return DM_MAPIO_SUBMITTED;
2378 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2380 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2381 struct request_queue *q;
2383 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2384 return 1;
2386 q = bdev_get_queue(pt->data_dev->bdev);
2387 return bdi_congested(&q->backing_dev_info, bdi_bits);
2390 static void requeue_bios(struct pool *pool)
2392 unsigned long flags;
2393 struct thin_c *tc;
2395 rcu_read_lock();
2396 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2397 spin_lock_irqsave(&tc->lock, flags);
2398 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2399 bio_list_init(&tc->retry_on_resume_list);
2400 spin_unlock_irqrestore(&tc->lock, flags);
2402 rcu_read_unlock();
2405 /*----------------------------------------------------------------
2406 * Binding of control targets to a pool object
2407 *--------------------------------------------------------------*/
2408 static bool data_dev_supports_discard(struct pool_c *pt)
2410 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2412 return q && blk_queue_discard(q);
2415 static bool is_factor(sector_t block_size, uint32_t n)
2417 return !sector_div(block_size, n);
2421 * If discard_passdown was enabled verify that the data device
2422 * supports discards. Disable discard_passdown if not.
2424 static void disable_passdown_if_not_supported(struct pool_c *pt)
2426 struct pool *pool = pt->pool;
2427 struct block_device *data_bdev = pt->data_dev->bdev;
2428 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2429 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2430 const char *reason = NULL;
2431 char buf[BDEVNAME_SIZE];
2433 if (!pt->adjusted_pf.discard_passdown)
2434 return;
2436 if (!data_dev_supports_discard(pt))
2437 reason = "discard unsupported";
2439 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2440 reason = "max discard sectors smaller than a block";
2442 else if (data_limits->discard_granularity > block_size)
2443 reason = "discard granularity larger than a block";
2445 else if (!is_factor(block_size, data_limits->discard_granularity))
2446 reason = "discard granularity not a factor of block size";
2448 if (reason) {
2449 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2450 pt->adjusted_pf.discard_passdown = false;
2454 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2456 struct pool_c *pt = ti->private;
2459 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2461 enum pool_mode old_mode = get_pool_mode(pool);
2462 enum pool_mode new_mode = pt->adjusted_pf.mode;
2465 * Don't change the pool's mode until set_pool_mode() below.
2466 * Otherwise the pool's process_* function pointers may
2467 * not match the desired pool mode.
2469 pt->adjusted_pf.mode = old_mode;
2471 pool->ti = ti;
2472 pool->pf = pt->adjusted_pf;
2473 pool->low_water_blocks = pt->low_water_blocks;
2475 set_pool_mode(pool, new_mode);
2477 return 0;
2480 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2482 if (pool->ti == ti)
2483 pool->ti = NULL;
2486 /*----------------------------------------------------------------
2487 * Pool creation
2488 *--------------------------------------------------------------*/
2489 /* Initialize pool features. */
2490 static void pool_features_init(struct pool_features *pf)
2492 pf->mode = PM_WRITE;
2493 pf->zero_new_blocks = true;
2494 pf->discard_enabled = true;
2495 pf->discard_passdown = true;
2496 pf->error_if_no_space = false;
2499 static void __pool_destroy(struct pool *pool)
2501 __pool_table_remove(pool);
2503 vfree(pool->cell_sort_array);
2504 if (dm_pool_metadata_close(pool->pmd) < 0)
2505 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2507 dm_bio_prison_destroy(pool->prison);
2508 dm_kcopyd_client_destroy(pool->copier);
2510 if (pool->wq)
2511 destroy_workqueue(pool->wq);
2513 if (pool->next_mapping)
2514 mempool_free(pool->next_mapping, pool->mapping_pool);
2515 mempool_destroy(pool->mapping_pool);
2516 dm_deferred_set_destroy(pool->shared_read_ds);
2517 dm_deferred_set_destroy(pool->all_io_ds);
2518 kfree(pool);
2521 static struct kmem_cache *_new_mapping_cache;
2523 static struct pool *pool_create(struct mapped_device *pool_md,
2524 struct block_device *metadata_dev,
2525 unsigned long block_size,
2526 int read_only, char **error)
2528 int r;
2529 void *err_p;
2530 struct pool *pool;
2531 struct dm_pool_metadata *pmd;
2532 bool format_device = read_only ? false : true;
2534 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2535 if (IS_ERR(pmd)) {
2536 *error = "Error creating metadata object";
2537 return (struct pool *)pmd;
2540 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2541 if (!pool) {
2542 *error = "Error allocating memory for pool";
2543 err_p = ERR_PTR(-ENOMEM);
2544 goto bad_pool;
2547 pool->pmd = pmd;
2548 pool->sectors_per_block = block_size;
2549 if (block_size & (block_size - 1))
2550 pool->sectors_per_block_shift = -1;
2551 else
2552 pool->sectors_per_block_shift = __ffs(block_size);
2553 pool->low_water_blocks = 0;
2554 pool_features_init(&pool->pf);
2555 pool->prison = dm_bio_prison_create();
2556 if (!pool->prison) {
2557 *error = "Error creating pool's bio prison";
2558 err_p = ERR_PTR(-ENOMEM);
2559 goto bad_prison;
2562 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2563 if (IS_ERR(pool->copier)) {
2564 r = PTR_ERR(pool->copier);
2565 *error = "Error creating pool's kcopyd client";
2566 err_p = ERR_PTR(r);
2567 goto bad_kcopyd_client;
2571 * Create singlethreaded workqueue that will service all devices
2572 * that use this metadata.
2574 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2575 if (!pool->wq) {
2576 *error = "Error creating pool's workqueue";
2577 err_p = ERR_PTR(-ENOMEM);
2578 goto bad_wq;
2581 throttle_init(&pool->throttle);
2582 INIT_WORK(&pool->worker, do_worker);
2583 INIT_DELAYED_WORK(&pool->waker, do_waker);
2584 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2585 spin_lock_init(&pool->lock);
2586 bio_list_init(&pool->deferred_flush_bios);
2587 INIT_LIST_HEAD(&pool->prepared_mappings);
2588 INIT_LIST_HEAD(&pool->prepared_discards);
2589 INIT_LIST_HEAD(&pool->active_thins);
2590 pool->low_water_triggered = false;
2591 pool->suspended = true;
2593 pool->shared_read_ds = dm_deferred_set_create();
2594 if (!pool->shared_read_ds) {
2595 *error = "Error creating pool's shared read deferred set";
2596 err_p = ERR_PTR(-ENOMEM);
2597 goto bad_shared_read_ds;
2600 pool->all_io_ds = dm_deferred_set_create();
2601 if (!pool->all_io_ds) {
2602 *error = "Error creating pool's all io deferred set";
2603 err_p = ERR_PTR(-ENOMEM);
2604 goto bad_all_io_ds;
2607 pool->next_mapping = NULL;
2608 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2609 _new_mapping_cache);
2610 if (!pool->mapping_pool) {
2611 *error = "Error creating pool's mapping mempool";
2612 err_p = ERR_PTR(-ENOMEM);
2613 goto bad_mapping_pool;
2616 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2617 if (!pool->cell_sort_array) {
2618 *error = "Error allocating cell sort array";
2619 err_p = ERR_PTR(-ENOMEM);
2620 goto bad_sort_array;
2623 pool->ref_count = 1;
2624 pool->last_commit_jiffies = jiffies;
2625 pool->pool_md = pool_md;
2626 pool->md_dev = metadata_dev;
2627 __pool_table_insert(pool);
2629 return pool;
2631 bad_sort_array:
2632 mempool_destroy(pool->mapping_pool);
2633 bad_mapping_pool:
2634 dm_deferred_set_destroy(pool->all_io_ds);
2635 bad_all_io_ds:
2636 dm_deferred_set_destroy(pool->shared_read_ds);
2637 bad_shared_read_ds:
2638 destroy_workqueue(pool->wq);
2639 bad_wq:
2640 dm_kcopyd_client_destroy(pool->copier);
2641 bad_kcopyd_client:
2642 dm_bio_prison_destroy(pool->prison);
2643 bad_prison:
2644 kfree(pool);
2645 bad_pool:
2646 if (dm_pool_metadata_close(pmd))
2647 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2649 return err_p;
2652 static void __pool_inc(struct pool *pool)
2654 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2655 pool->ref_count++;
2658 static void __pool_dec(struct pool *pool)
2660 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2661 BUG_ON(!pool->ref_count);
2662 if (!--pool->ref_count)
2663 __pool_destroy(pool);
2666 static struct pool *__pool_find(struct mapped_device *pool_md,
2667 struct block_device *metadata_dev,
2668 unsigned long block_size, int read_only,
2669 char **error, int *created)
2671 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2673 if (pool) {
2674 if (pool->pool_md != pool_md) {
2675 *error = "metadata device already in use by a pool";
2676 return ERR_PTR(-EBUSY);
2678 __pool_inc(pool);
2680 } else {
2681 pool = __pool_table_lookup(pool_md);
2682 if (pool) {
2683 if (pool->md_dev != metadata_dev) {
2684 *error = "different pool cannot replace a pool";
2685 return ERR_PTR(-EINVAL);
2687 __pool_inc(pool);
2689 } else {
2690 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2691 *created = 1;
2695 return pool;
2698 /*----------------------------------------------------------------
2699 * Pool target methods
2700 *--------------------------------------------------------------*/
2701 static void pool_dtr(struct dm_target *ti)
2703 struct pool_c *pt = ti->private;
2705 mutex_lock(&dm_thin_pool_table.mutex);
2707 unbind_control_target(pt->pool, ti);
2708 __pool_dec(pt->pool);
2709 dm_put_device(ti, pt->metadata_dev);
2710 dm_put_device(ti, pt->data_dev);
2711 kfree(pt);
2713 mutex_unlock(&dm_thin_pool_table.mutex);
2716 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2717 struct dm_target *ti)
2719 int r;
2720 unsigned argc;
2721 const char *arg_name;
2723 static struct dm_arg _args[] = {
2724 {0, 4, "Invalid number of pool feature arguments"},
2728 * No feature arguments supplied.
2730 if (!as->argc)
2731 return 0;
2733 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2734 if (r)
2735 return -EINVAL;
2737 while (argc && !r) {
2738 arg_name = dm_shift_arg(as);
2739 argc--;
2741 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2742 pf->zero_new_blocks = false;
2744 else if (!strcasecmp(arg_name, "ignore_discard"))
2745 pf->discard_enabled = false;
2747 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2748 pf->discard_passdown = false;
2750 else if (!strcasecmp(arg_name, "read_only"))
2751 pf->mode = PM_READ_ONLY;
2753 else if (!strcasecmp(arg_name, "error_if_no_space"))
2754 pf->error_if_no_space = true;
2756 else {
2757 ti->error = "Unrecognised pool feature requested";
2758 r = -EINVAL;
2759 break;
2763 return r;
2766 static void metadata_low_callback(void *context)
2768 struct pool *pool = context;
2770 DMWARN("%s: reached low water mark for metadata device: sending event.",
2771 dm_device_name(pool->pool_md));
2773 dm_table_event(pool->ti->table);
2776 static sector_t get_dev_size(struct block_device *bdev)
2778 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2781 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2783 sector_t metadata_dev_size = get_dev_size(bdev);
2784 char buffer[BDEVNAME_SIZE];
2786 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2787 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2788 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2791 static sector_t get_metadata_dev_size(struct block_device *bdev)
2793 sector_t metadata_dev_size = get_dev_size(bdev);
2795 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2796 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2798 return metadata_dev_size;
2801 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2803 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2805 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2807 return metadata_dev_size;
2811 * When a metadata threshold is crossed a dm event is triggered, and
2812 * userland should respond by growing the metadata device. We could let
2813 * userland set the threshold, like we do with the data threshold, but I'm
2814 * not sure they know enough to do this well.
2816 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2819 * 4M is ample for all ops with the possible exception of thin
2820 * device deletion which is harmless if it fails (just retry the
2821 * delete after you've grown the device).
2823 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2824 return min((dm_block_t)1024ULL /* 4M */, quarter);
2828 * thin-pool <metadata dev> <data dev>
2829 * <data block size (sectors)>
2830 * <low water mark (blocks)>
2831 * [<#feature args> [<arg>]*]
2833 * Optional feature arguments are:
2834 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2835 * ignore_discard: disable discard
2836 * no_discard_passdown: don't pass discards down to the data device
2837 * read_only: Don't allow any changes to be made to the pool metadata.
2838 * error_if_no_space: error IOs, instead of queueing, if no space.
2840 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2842 int r, pool_created = 0;
2843 struct pool_c *pt;
2844 struct pool *pool;
2845 struct pool_features pf;
2846 struct dm_arg_set as;
2847 struct dm_dev *data_dev;
2848 unsigned long block_size;
2849 dm_block_t low_water_blocks;
2850 struct dm_dev *metadata_dev;
2851 fmode_t metadata_mode;
2854 * FIXME Remove validation from scope of lock.
2856 mutex_lock(&dm_thin_pool_table.mutex);
2858 if (argc < 4) {
2859 ti->error = "Invalid argument count";
2860 r = -EINVAL;
2861 goto out_unlock;
2864 as.argc = argc;
2865 as.argv = argv;
2868 * Set default pool features.
2870 pool_features_init(&pf);
2872 dm_consume_args(&as, 4);
2873 r = parse_pool_features(&as, &pf, ti);
2874 if (r)
2875 goto out_unlock;
2877 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2878 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2879 if (r) {
2880 ti->error = "Error opening metadata block device";
2881 goto out_unlock;
2883 warn_if_metadata_device_too_big(metadata_dev->bdev);
2885 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2886 if (r) {
2887 ti->error = "Error getting data device";
2888 goto out_metadata;
2891 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2892 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2893 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2894 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2895 ti->error = "Invalid block size";
2896 r = -EINVAL;
2897 goto out;
2900 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2901 ti->error = "Invalid low water mark";
2902 r = -EINVAL;
2903 goto out;
2906 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2907 if (!pt) {
2908 r = -ENOMEM;
2909 goto out;
2912 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2913 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2914 if (IS_ERR(pool)) {
2915 r = PTR_ERR(pool);
2916 goto out_free_pt;
2920 * 'pool_created' reflects whether this is the first table load.
2921 * Top level discard support is not allowed to be changed after
2922 * initial load. This would require a pool reload to trigger thin
2923 * device changes.
2925 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2926 ti->error = "Discard support cannot be disabled once enabled";
2927 r = -EINVAL;
2928 goto out_flags_changed;
2931 pt->pool = pool;
2932 pt->ti = ti;
2933 pt->metadata_dev = metadata_dev;
2934 pt->data_dev = data_dev;
2935 pt->low_water_blocks = low_water_blocks;
2936 pt->adjusted_pf = pt->requested_pf = pf;
2937 ti->num_flush_bios = 1;
2940 * Only need to enable discards if the pool should pass
2941 * them down to the data device. The thin device's discard
2942 * processing will cause mappings to be removed from the btree.
2944 ti->discard_zeroes_data_unsupported = true;
2945 if (pf.discard_enabled && pf.discard_passdown) {
2946 ti->num_discard_bios = 1;
2949 * Setting 'discards_supported' circumvents the normal
2950 * stacking of discard limits (this keeps the pool and
2951 * thin devices' discard limits consistent).
2953 ti->discards_supported = true;
2955 ti->private = pt;
2957 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2958 calc_metadata_threshold(pt),
2959 metadata_low_callback,
2960 pool);
2961 if (r)
2962 goto out_flags_changed;
2964 pt->callbacks.congested_fn = pool_is_congested;
2965 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2967 mutex_unlock(&dm_thin_pool_table.mutex);
2969 return 0;
2971 out_flags_changed:
2972 __pool_dec(pool);
2973 out_free_pt:
2974 kfree(pt);
2975 out:
2976 dm_put_device(ti, data_dev);
2977 out_metadata:
2978 dm_put_device(ti, metadata_dev);
2979 out_unlock:
2980 mutex_unlock(&dm_thin_pool_table.mutex);
2982 return r;
2985 static int pool_map(struct dm_target *ti, struct bio *bio)
2987 int r;
2988 struct pool_c *pt = ti->private;
2989 struct pool *pool = pt->pool;
2990 unsigned long flags;
2993 * As this is a singleton target, ti->begin is always zero.
2995 spin_lock_irqsave(&pool->lock, flags);
2996 bio->bi_bdev = pt->data_dev->bdev;
2997 r = DM_MAPIO_REMAPPED;
2998 spin_unlock_irqrestore(&pool->lock, flags);
3000 return r;
3003 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3005 int r;
3006 struct pool_c *pt = ti->private;
3007 struct pool *pool = pt->pool;
3008 sector_t data_size = ti->len;
3009 dm_block_t sb_data_size;
3011 *need_commit = false;
3013 (void) sector_div(data_size, pool->sectors_per_block);
3015 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3016 if (r) {
3017 DMERR("%s: failed to retrieve data device size",
3018 dm_device_name(pool->pool_md));
3019 return r;
3022 if (data_size < sb_data_size) {
3023 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3024 dm_device_name(pool->pool_md),
3025 (unsigned long long)data_size, sb_data_size);
3026 return -EINVAL;
3028 } else if (data_size > sb_data_size) {
3029 if (dm_pool_metadata_needs_check(pool->pmd)) {
3030 DMERR("%s: unable to grow the data device until repaired.",
3031 dm_device_name(pool->pool_md));
3032 return 0;
3035 if (sb_data_size)
3036 DMINFO("%s: growing the data device from %llu to %llu blocks",
3037 dm_device_name(pool->pool_md),
3038 sb_data_size, (unsigned long long)data_size);
3039 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3040 if (r) {
3041 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3042 return r;
3045 *need_commit = true;
3048 return 0;
3051 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3053 int r;
3054 struct pool_c *pt = ti->private;
3055 struct pool *pool = pt->pool;
3056 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3058 *need_commit = false;
3060 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3062 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3063 if (r) {
3064 DMERR("%s: failed to retrieve metadata device size",
3065 dm_device_name(pool->pool_md));
3066 return r;
3069 if (metadata_dev_size < sb_metadata_dev_size) {
3070 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3071 dm_device_name(pool->pool_md),
3072 metadata_dev_size, sb_metadata_dev_size);
3073 return -EINVAL;
3075 } else if (metadata_dev_size > sb_metadata_dev_size) {
3076 if (dm_pool_metadata_needs_check(pool->pmd)) {
3077 DMERR("%s: unable to grow the metadata device until repaired.",
3078 dm_device_name(pool->pool_md));
3079 return 0;
3082 warn_if_metadata_device_too_big(pool->md_dev);
3083 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3084 dm_device_name(pool->pool_md),
3085 sb_metadata_dev_size, metadata_dev_size);
3086 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3087 if (r) {
3088 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3089 return r;
3092 *need_commit = true;
3095 return 0;
3099 * Retrieves the number of blocks of the data device from
3100 * the superblock and compares it to the actual device size,
3101 * thus resizing the data device in case it has grown.
3103 * This both copes with opening preallocated data devices in the ctr
3104 * being followed by a resume
3105 * -and-
3106 * calling the resume method individually after userspace has
3107 * grown the data device in reaction to a table event.
3109 static int pool_preresume(struct dm_target *ti)
3111 int r;
3112 bool need_commit1, need_commit2;
3113 struct pool_c *pt = ti->private;
3114 struct pool *pool = pt->pool;
3117 * Take control of the pool object.
3119 r = bind_control_target(pool, ti);
3120 if (r)
3121 return r;
3123 r = maybe_resize_data_dev(ti, &need_commit1);
3124 if (r)
3125 return r;
3127 r = maybe_resize_metadata_dev(ti, &need_commit2);
3128 if (r)
3129 return r;
3131 if (need_commit1 || need_commit2)
3132 (void) commit(pool);
3134 return 0;
3137 static void pool_suspend_active_thins(struct pool *pool)
3139 struct thin_c *tc;
3141 /* Suspend all active thin devices */
3142 tc = get_first_thin(pool);
3143 while (tc) {
3144 dm_internal_suspend_noflush(tc->thin_md);
3145 tc = get_next_thin(pool, tc);
3149 static void pool_resume_active_thins(struct pool *pool)
3151 struct thin_c *tc;
3153 /* Resume all active thin devices */
3154 tc = get_first_thin(pool);
3155 while (tc) {
3156 dm_internal_resume(tc->thin_md);
3157 tc = get_next_thin(pool, tc);
3161 static void pool_resume(struct dm_target *ti)
3163 struct pool_c *pt = ti->private;
3164 struct pool *pool = pt->pool;
3165 unsigned long flags;
3168 * Must requeue active_thins' bios and then resume
3169 * active_thins _before_ clearing 'suspend' flag.
3171 requeue_bios(pool);
3172 pool_resume_active_thins(pool);
3174 spin_lock_irqsave(&pool->lock, flags);
3175 pool->low_water_triggered = false;
3176 pool->suspended = false;
3177 spin_unlock_irqrestore(&pool->lock, flags);
3179 do_waker(&pool->waker.work);
3182 static void pool_presuspend(struct dm_target *ti)
3184 struct pool_c *pt = ti->private;
3185 struct pool *pool = pt->pool;
3186 unsigned long flags;
3188 spin_lock_irqsave(&pool->lock, flags);
3189 pool->suspended = true;
3190 spin_unlock_irqrestore(&pool->lock, flags);
3192 pool_suspend_active_thins(pool);
3195 static void pool_presuspend_undo(struct dm_target *ti)
3197 struct pool_c *pt = ti->private;
3198 struct pool *pool = pt->pool;
3199 unsigned long flags;
3201 pool_resume_active_thins(pool);
3203 spin_lock_irqsave(&pool->lock, flags);
3204 pool->suspended = false;
3205 spin_unlock_irqrestore(&pool->lock, flags);
3208 static void pool_postsuspend(struct dm_target *ti)
3210 struct pool_c *pt = ti->private;
3211 struct pool *pool = pt->pool;
3213 cancel_delayed_work_sync(&pool->waker);
3214 cancel_delayed_work_sync(&pool->no_space_timeout);
3215 flush_workqueue(pool->wq);
3216 (void) commit(pool);
3219 static int check_arg_count(unsigned argc, unsigned args_required)
3221 if (argc != args_required) {
3222 DMWARN("Message received with %u arguments instead of %u.",
3223 argc, args_required);
3224 return -EINVAL;
3227 return 0;
3230 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3232 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3233 *dev_id <= MAX_DEV_ID)
3234 return 0;
3236 if (warning)
3237 DMWARN("Message received with invalid device id: %s", arg);
3239 return -EINVAL;
3242 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3244 dm_thin_id dev_id;
3245 int r;
3247 r = check_arg_count(argc, 2);
3248 if (r)
3249 return r;
3251 r = read_dev_id(argv[1], &dev_id, 1);
3252 if (r)
3253 return r;
3255 r = dm_pool_create_thin(pool->pmd, dev_id);
3256 if (r) {
3257 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3258 argv[1]);
3259 return r;
3262 return 0;
3265 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3267 dm_thin_id dev_id;
3268 dm_thin_id origin_dev_id;
3269 int r;
3271 r = check_arg_count(argc, 3);
3272 if (r)
3273 return r;
3275 r = read_dev_id(argv[1], &dev_id, 1);
3276 if (r)
3277 return r;
3279 r = read_dev_id(argv[2], &origin_dev_id, 1);
3280 if (r)
3281 return r;
3283 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3284 if (r) {
3285 DMWARN("Creation of new snapshot %s of device %s failed.",
3286 argv[1], argv[2]);
3287 return r;
3290 return 0;
3293 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3295 dm_thin_id dev_id;
3296 int r;
3298 r = check_arg_count(argc, 2);
3299 if (r)
3300 return r;
3302 r = read_dev_id(argv[1], &dev_id, 1);
3303 if (r)
3304 return r;
3306 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3307 if (r)
3308 DMWARN("Deletion of thin device %s failed.", argv[1]);
3310 return r;
3313 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3315 dm_thin_id old_id, new_id;
3316 int r;
3318 r = check_arg_count(argc, 3);
3319 if (r)
3320 return r;
3322 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3323 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3324 return -EINVAL;
3327 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3328 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3329 return -EINVAL;
3332 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3333 if (r) {
3334 DMWARN("Failed to change transaction id from %s to %s.",
3335 argv[1], argv[2]);
3336 return r;
3339 return 0;
3342 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3344 int r;
3346 r = check_arg_count(argc, 1);
3347 if (r)
3348 return r;
3350 (void) commit(pool);
3352 r = dm_pool_reserve_metadata_snap(pool->pmd);
3353 if (r)
3354 DMWARN("reserve_metadata_snap message failed.");
3356 return r;
3359 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3361 int r;
3363 r = check_arg_count(argc, 1);
3364 if (r)
3365 return r;
3367 r = dm_pool_release_metadata_snap(pool->pmd);
3368 if (r)
3369 DMWARN("release_metadata_snap message failed.");
3371 return r;
3375 * Messages supported:
3376 * create_thin <dev_id>
3377 * create_snap <dev_id> <origin_id>
3378 * delete <dev_id>
3379 * set_transaction_id <current_trans_id> <new_trans_id>
3380 * reserve_metadata_snap
3381 * release_metadata_snap
3383 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3385 int r = -EINVAL;
3386 struct pool_c *pt = ti->private;
3387 struct pool *pool = pt->pool;
3389 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3390 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3391 dm_device_name(pool->pool_md));
3392 return -EINVAL;
3395 if (!strcasecmp(argv[0], "create_thin"))
3396 r = process_create_thin_mesg(argc, argv, pool);
3398 else if (!strcasecmp(argv[0], "create_snap"))
3399 r = process_create_snap_mesg(argc, argv, pool);
3401 else if (!strcasecmp(argv[0], "delete"))
3402 r = process_delete_mesg(argc, argv, pool);
3404 else if (!strcasecmp(argv[0], "set_transaction_id"))
3405 r = process_set_transaction_id_mesg(argc, argv, pool);
3407 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3408 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3410 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3411 r = process_release_metadata_snap_mesg(argc, argv, pool);
3413 else
3414 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3416 if (!r)
3417 (void) commit(pool);
3419 return r;
3422 static void emit_flags(struct pool_features *pf, char *result,
3423 unsigned sz, unsigned maxlen)
3425 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3426 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3427 pf->error_if_no_space;
3428 DMEMIT("%u ", count);
3430 if (!pf->zero_new_blocks)
3431 DMEMIT("skip_block_zeroing ");
3433 if (!pf->discard_enabled)
3434 DMEMIT("ignore_discard ");
3436 if (!pf->discard_passdown)
3437 DMEMIT("no_discard_passdown ");
3439 if (pf->mode == PM_READ_ONLY)
3440 DMEMIT("read_only ");
3442 if (pf->error_if_no_space)
3443 DMEMIT("error_if_no_space ");
3447 * Status line is:
3448 * <transaction id> <used metadata sectors>/<total metadata sectors>
3449 * <used data sectors>/<total data sectors> <held metadata root>
3451 static void pool_status(struct dm_target *ti, status_type_t type,
3452 unsigned status_flags, char *result, unsigned maxlen)
3454 int r;
3455 unsigned sz = 0;
3456 uint64_t transaction_id;
3457 dm_block_t nr_free_blocks_data;
3458 dm_block_t nr_free_blocks_metadata;
3459 dm_block_t nr_blocks_data;
3460 dm_block_t nr_blocks_metadata;
3461 dm_block_t held_root;
3462 char buf[BDEVNAME_SIZE];
3463 char buf2[BDEVNAME_SIZE];
3464 struct pool_c *pt = ti->private;
3465 struct pool *pool = pt->pool;
3467 switch (type) {
3468 case STATUSTYPE_INFO:
3469 if (get_pool_mode(pool) == PM_FAIL) {
3470 DMEMIT("Fail");
3471 break;
3474 /* Commit to ensure statistics aren't out-of-date */
3475 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3476 (void) commit(pool);
3478 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3479 if (r) {
3480 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3481 dm_device_name(pool->pool_md), r);
3482 goto err;
3485 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3486 if (r) {
3487 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3488 dm_device_name(pool->pool_md), r);
3489 goto err;
3492 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3493 if (r) {
3494 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3495 dm_device_name(pool->pool_md), r);
3496 goto err;
3499 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3500 if (r) {
3501 DMERR("%s: dm_pool_get_free_block_count returned %d",
3502 dm_device_name(pool->pool_md), r);
3503 goto err;
3506 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3507 if (r) {
3508 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3509 dm_device_name(pool->pool_md), r);
3510 goto err;
3513 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3514 if (r) {
3515 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3516 dm_device_name(pool->pool_md), r);
3517 goto err;
3520 DMEMIT("%llu %llu/%llu %llu/%llu ",
3521 (unsigned long long)transaction_id,
3522 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3523 (unsigned long long)nr_blocks_metadata,
3524 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3525 (unsigned long long)nr_blocks_data);
3527 if (held_root)
3528 DMEMIT("%llu ", held_root);
3529 else
3530 DMEMIT("- ");
3532 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3533 DMEMIT("out_of_data_space ");
3534 else if (pool->pf.mode == PM_READ_ONLY)
3535 DMEMIT("ro ");
3536 else
3537 DMEMIT("rw ");
3539 if (!pool->pf.discard_enabled)
3540 DMEMIT("ignore_discard ");
3541 else if (pool->pf.discard_passdown)
3542 DMEMIT("discard_passdown ");
3543 else
3544 DMEMIT("no_discard_passdown ");
3546 if (pool->pf.error_if_no_space)
3547 DMEMIT("error_if_no_space ");
3548 else
3549 DMEMIT("queue_if_no_space ");
3551 break;
3553 case STATUSTYPE_TABLE:
3554 DMEMIT("%s %s %lu %llu ",
3555 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3556 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3557 (unsigned long)pool->sectors_per_block,
3558 (unsigned long long)pt->low_water_blocks);
3559 emit_flags(&pt->requested_pf, result, sz, maxlen);
3560 break;
3562 return;
3564 err:
3565 DMEMIT("Error");
3568 static int pool_iterate_devices(struct dm_target *ti,
3569 iterate_devices_callout_fn fn, void *data)
3571 struct pool_c *pt = ti->private;
3573 return fn(ti, pt->data_dev, 0, ti->len, data);
3576 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3577 struct bio_vec *biovec, int max_size)
3579 struct pool_c *pt = ti->private;
3580 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3582 if (!q->merge_bvec_fn)
3583 return max_size;
3585 bvm->bi_bdev = pt->data_dev->bdev;
3587 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3590 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3592 struct pool *pool = pt->pool;
3593 struct queue_limits *data_limits;
3595 limits->max_discard_sectors = pool->sectors_per_block;
3598 * discard_granularity is just a hint, and not enforced.
3600 if (pt->adjusted_pf.discard_passdown) {
3601 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3602 limits->discard_granularity = max(data_limits->discard_granularity,
3603 pool->sectors_per_block << SECTOR_SHIFT);
3604 } else
3605 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3608 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3610 struct pool_c *pt = ti->private;
3611 struct pool *pool = pt->pool;
3612 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3615 * If max_sectors is smaller than pool->sectors_per_block adjust it
3616 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3617 * This is especially beneficial when the pool's data device is a RAID
3618 * device that has a full stripe width that matches pool->sectors_per_block
3619 * -- because even though partial RAID stripe-sized IOs will be issued to a
3620 * single RAID stripe; when aggregated they will end on a full RAID stripe
3621 * boundary.. which avoids additional partial RAID stripe writes cascading
3623 if (limits->max_sectors < pool->sectors_per_block) {
3624 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3625 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3626 limits->max_sectors--;
3627 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3632 * If the system-determined stacked limits are compatible with the
3633 * pool's blocksize (io_opt is a factor) do not override them.
3635 if (io_opt_sectors < pool->sectors_per_block ||
3636 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3637 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3638 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3639 else
3640 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3641 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3645 * pt->adjusted_pf is a staging area for the actual features to use.
3646 * They get transferred to the live pool in bind_control_target()
3647 * called from pool_preresume().
3649 if (!pt->adjusted_pf.discard_enabled) {
3651 * Must explicitly disallow stacking discard limits otherwise the
3652 * block layer will stack them if pool's data device has support.
3653 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3654 * user to see that, so make sure to set all discard limits to 0.
3656 limits->discard_granularity = 0;
3657 return;
3660 disable_passdown_if_not_supported(pt);
3662 set_discard_limits(pt, limits);
3665 static struct target_type pool_target = {
3666 .name = "thin-pool",
3667 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3668 DM_TARGET_IMMUTABLE,
3669 .version = {1, 14, 0},
3670 .module = THIS_MODULE,
3671 .ctr = pool_ctr,
3672 .dtr = pool_dtr,
3673 .map = pool_map,
3674 .presuspend = pool_presuspend,
3675 .presuspend_undo = pool_presuspend_undo,
3676 .postsuspend = pool_postsuspend,
3677 .preresume = pool_preresume,
3678 .resume = pool_resume,
3679 .message = pool_message,
3680 .status = pool_status,
3681 .merge = pool_merge,
3682 .iterate_devices = pool_iterate_devices,
3683 .io_hints = pool_io_hints,
3686 /*----------------------------------------------------------------
3687 * Thin target methods
3688 *--------------------------------------------------------------*/
3689 static void thin_get(struct thin_c *tc)
3691 atomic_inc(&tc->refcount);
3694 static void thin_put(struct thin_c *tc)
3696 if (atomic_dec_and_test(&tc->refcount))
3697 complete(&tc->can_destroy);
3700 static void thin_dtr(struct dm_target *ti)
3702 struct thin_c *tc = ti->private;
3703 unsigned long flags;
3705 spin_lock_irqsave(&tc->pool->lock, flags);
3706 list_del_rcu(&tc->list);
3707 spin_unlock_irqrestore(&tc->pool->lock, flags);
3708 synchronize_rcu();
3710 thin_put(tc);
3711 wait_for_completion(&tc->can_destroy);
3713 mutex_lock(&dm_thin_pool_table.mutex);
3715 __pool_dec(tc->pool);
3716 dm_pool_close_thin_device(tc->td);
3717 dm_put_device(ti, tc->pool_dev);
3718 if (tc->origin_dev)
3719 dm_put_device(ti, tc->origin_dev);
3720 kfree(tc);
3722 mutex_unlock(&dm_thin_pool_table.mutex);
3726 * Thin target parameters:
3728 * <pool_dev> <dev_id> [origin_dev]
3730 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3731 * dev_id: the internal device identifier
3732 * origin_dev: a device external to the pool that should act as the origin
3734 * If the pool device has discards disabled, they get disabled for the thin
3735 * device as well.
3737 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3739 int r;
3740 struct thin_c *tc;
3741 struct dm_dev *pool_dev, *origin_dev;
3742 struct mapped_device *pool_md;
3743 unsigned long flags;
3745 mutex_lock(&dm_thin_pool_table.mutex);
3747 if (argc != 2 && argc != 3) {
3748 ti->error = "Invalid argument count";
3749 r = -EINVAL;
3750 goto out_unlock;
3753 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3754 if (!tc) {
3755 ti->error = "Out of memory";
3756 r = -ENOMEM;
3757 goto out_unlock;
3759 tc->thin_md = dm_table_get_md(ti->table);
3760 spin_lock_init(&tc->lock);
3761 INIT_LIST_HEAD(&tc->deferred_cells);
3762 bio_list_init(&tc->deferred_bio_list);
3763 bio_list_init(&tc->retry_on_resume_list);
3764 tc->sort_bio_list = RB_ROOT;
3766 if (argc == 3) {
3767 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3768 if (r) {
3769 ti->error = "Error opening origin device";
3770 goto bad_origin_dev;
3772 tc->origin_dev = origin_dev;
3775 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3776 if (r) {
3777 ti->error = "Error opening pool device";
3778 goto bad_pool_dev;
3780 tc->pool_dev = pool_dev;
3782 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3783 ti->error = "Invalid device id";
3784 r = -EINVAL;
3785 goto bad_common;
3788 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3789 if (!pool_md) {
3790 ti->error = "Couldn't get pool mapped device";
3791 r = -EINVAL;
3792 goto bad_common;
3795 tc->pool = __pool_table_lookup(pool_md);
3796 if (!tc->pool) {
3797 ti->error = "Couldn't find pool object";
3798 r = -EINVAL;
3799 goto bad_pool_lookup;
3801 __pool_inc(tc->pool);
3803 if (get_pool_mode(tc->pool) == PM_FAIL) {
3804 ti->error = "Couldn't open thin device, Pool is in fail mode";
3805 r = -EINVAL;
3806 goto bad_pool;
3809 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3810 if (r) {
3811 ti->error = "Couldn't open thin internal device";
3812 goto bad_pool;
3815 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3816 if (r)
3817 goto bad;
3819 ti->num_flush_bios = 1;
3820 ti->flush_supported = true;
3821 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3823 /* In case the pool supports discards, pass them on. */
3824 ti->discard_zeroes_data_unsupported = true;
3825 if (tc->pool->pf.discard_enabled) {
3826 ti->discards_supported = true;
3827 ti->num_discard_bios = 1;
3828 /* Discard bios must be split on a block boundary */
3829 ti->split_discard_bios = true;
3832 mutex_unlock(&dm_thin_pool_table.mutex);
3834 spin_lock_irqsave(&tc->pool->lock, flags);
3835 if (tc->pool->suspended) {
3836 spin_unlock_irqrestore(&tc->pool->lock, flags);
3837 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3838 ti->error = "Unable to activate thin device while pool is suspended";
3839 r = -EINVAL;
3840 goto bad;
3842 atomic_set(&tc->refcount, 1);
3843 init_completion(&tc->can_destroy);
3844 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3845 spin_unlock_irqrestore(&tc->pool->lock, flags);
3847 * This synchronize_rcu() call is needed here otherwise we risk a
3848 * wake_worker() call finding no bios to process (because the newly
3849 * added tc isn't yet visible). So this reduces latency since we
3850 * aren't then dependent on the periodic commit to wake_worker().
3852 synchronize_rcu();
3854 dm_put(pool_md);
3856 return 0;
3858 bad:
3859 dm_pool_close_thin_device(tc->td);
3860 bad_pool:
3861 __pool_dec(tc->pool);
3862 bad_pool_lookup:
3863 dm_put(pool_md);
3864 bad_common:
3865 dm_put_device(ti, tc->pool_dev);
3866 bad_pool_dev:
3867 if (tc->origin_dev)
3868 dm_put_device(ti, tc->origin_dev);
3869 bad_origin_dev:
3870 kfree(tc);
3871 out_unlock:
3872 mutex_unlock(&dm_thin_pool_table.mutex);
3874 return r;
3877 static int thin_map(struct dm_target *ti, struct bio *bio)
3879 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3881 return thin_bio_map(ti, bio);
3884 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3886 unsigned long flags;
3887 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3888 struct list_head work;
3889 struct dm_thin_new_mapping *m, *tmp;
3890 struct pool *pool = h->tc->pool;
3892 if (h->shared_read_entry) {
3893 INIT_LIST_HEAD(&work);
3894 dm_deferred_entry_dec(h->shared_read_entry, &work);
3896 spin_lock_irqsave(&pool->lock, flags);
3897 list_for_each_entry_safe(m, tmp, &work, list) {
3898 list_del(&m->list);
3899 __complete_mapping_preparation(m);
3901 spin_unlock_irqrestore(&pool->lock, flags);
3904 if (h->all_io_entry) {
3905 INIT_LIST_HEAD(&work);
3906 dm_deferred_entry_dec(h->all_io_entry, &work);
3907 if (!list_empty(&work)) {
3908 spin_lock_irqsave(&pool->lock, flags);
3909 list_for_each_entry_safe(m, tmp, &work, list)
3910 list_add_tail(&m->list, &pool->prepared_discards);
3911 spin_unlock_irqrestore(&pool->lock, flags);
3912 wake_worker(pool);
3916 return 0;
3919 static void thin_presuspend(struct dm_target *ti)
3921 struct thin_c *tc = ti->private;
3923 if (dm_noflush_suspending(ti))
3924 noflush_work(tc, do_noflush_start);
3927 static void thin_postsuspend(struct dm_target *ti)
3929 struct thin_c *tc = ti->private;
3932 * The dm_noflush_suspending flag has been cleared by now, so
3933 * unfortunately we must always run this.
3935 noflush_work(tc, do_noflush_stop);
3938 static int thin_preresume(struct dm_target *ti)
3940 struct thin_c *tc = ti->private;
3942 if (tc->origin_dev)
3943 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3945 return 0;
3949 * <nr mapped sectors> <highest mapped sector>
3951 static void thin_status(struct dm_target *ti, status_type_t type,
3952 unsigned status_flags, char *result, unsigned maxlen)
3954 int r;
3955 ssize_t sz = 0;
3956 dm_block_t mapped, highest;
3957 char buf[BDEVNAME_SIZE];
3958 struct thin_c *tc = ti->private;
3960 if (get_pool_mode(tc->pool) == PM_FAIL) {
3961 DMEMIT("Fail");
3962 return;
3965 if (!tc->td)
3966 DMEMIT("-");
3967 else {
3968 switch (type) {
3969 case STATUSTYPE_INFO:
3970 r = dm_thin_get_mapped_count(tc->td, &mapped);
3971 if (r) {
3972 DMERR("dm_thin_get_mapped_count returned %d", r);
3973 goto err;
3976 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3977 if (r < 0) {
3978 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3979 goto err;
3982 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3983 if (r)
3984 DMEMIT("%llu", ((highest + 1) *
3985 tc->pool->sectors_per_block) - 1);
3986 else
3987 DMEMIT("-");
3988 break;
3990 case STATUSTYPE_TABLE:
3991 DMEMIT("%s %lu",
3992 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3993 (unsigned long) tc->dev_id);
3994 if (tc->origin_dev)
3995 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3996 break;
4000 return;
4002 err:
4003 DMEMIT("Error");
4006 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4007 struct bio_vec *biovec, int max_size)
4009 struct thin_c *tc = ti->private;
4010 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4012 if (!q->merge_bvec_fn)
4013 return max_size;
4015 bvm->bi_bdev = tc->pool_dev->bdev;
4016 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4018 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4021 static int thin_iterate_devices(struct dm_target *ti,
4022 iterate_devices_callout_fn fn, void *data)
4024 sector_t blocks;
4025 struct thin_c *tc = ti->private;
4026 struct pool *pool = tc->pool;
4029 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4030 * we follow a more convoluted path through to the pool's target.
4032 if (!pool->ti)
4033 return 0; /* nothing is bound */
4035 blocks = pool->ti->len;
4036 (void) sector_div(blocks, pool->sectors_per_block);
4037 if (blocks)
4038 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4040 return 0;
4043 static struct target_type thin_target = {
4044 .name = "thin",
4045 .version = {1, 14, 0},
4046 .module = THIS_MODULE,
4047 .ctr = thin_ctr,
4048 .dtr = thin_dtr,
4049 .map = thin_map,
4050 .end_io = thin_endio,
4051 .preresume = thin_preresume,
4052 .presuspend = thin_presuspend,
4053 .postsuspend = thin_postsuspend,
4054 .status = thin_status,
4055 .merge = thin_merge,
4056 .iterate_devices = thin_iterate_devices,
4059 /*----------------------------------------------------------------*/
4061 static int __init dm_thin_init(void)
4063 int r;
4065 pool_table_init();
4067 r = dm_register_target(&thin_target);
4068 if (r)
4069 return r;
4071 r = dm_register_target(&pool_target);
4072 if (r)
4073 goto bad_pool_target;
4075 r = -ENOMEM;
4077 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4078 if (!_new_mapping_cache)
4079 goto bad_new_mapping_cache;
4081 return 0;
4083 bad_new_mapping_cache:
4084 dm_unregister_target(&pool_target);
4085 bad_pool_target:
4086 dm_unregister_target(&thin_target);
4088 return r;
4091 static void dm_thin_exit(void)
4093 dm_unregister_target(&thin_target);
4094 dm_unregister_target(&pool_target);
4096 kmem_cache_destroy(_new_mapping_cache);
4099 module_init(dm_thin_init);
4100 module_exit(dm_thin_exit);
4102 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4103 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4105 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4106 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4107 MODULE_LICENSE("GPL");