gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / md / raid1.c
blobbff6c1c7fecbaa0dc455cfd72d0f980abe822535
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 r1_bio->master_bio = NULL;
143 return r1_bio;
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
160 static void r1buf_pool_free(void *__r1_bio, void *data)
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
176 r1bio_pool_free(r1bio, data);
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
181 int i;
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
191 static void free_r1bio(struct r1bio *r1_bio)
193 struct r1conf *conf = r1_bio->mddev->private;
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
199 static void put_buf(struct r1bio *r1_bio)
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 mempool_free(r1_bio, conf->r1buf_pool);
212 lower_barrier(conf);
215 static void reschedule_retry(struct r1bio *r1_bio)
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
235 static void call_bio_endio(struct r1bio *r1_bio)
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
265 allow_barrier(conf, start_next_window, bi_sector);
269 static void raid_end_bio_io(struct r1bio *r1_bio)
271 struct bio *bio = r1_bio->master_bio;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
280 call_bio_endio(r1_bio);
282 free_r1bio(r1_bio);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 struct r1conf *conf = r1_bio->mddev->private;
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
312 return mirror;
315 static void raid1_end_read_request(struct bio *bio, int error)
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
322 mirror = r1_bio->read_disk;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror, r1_bio);
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
349 * oops, read error:
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio *r1_bio)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
384 static void r1_bio_write_done(struct r1bio *r1_bio)
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
400 static void raid1_end_write_request(struct bio *bio, int error)
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
408 mirror = find_bio_disk(r1_bio, bio);
411 * 'one mirror IO has finished' event handler:
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
433 sector_t first_bad;
434 int bad_sectors;
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
488 * Let's see if all mirrored write operations have finished
489 * already.
491 r1_bio_write_done(r1_bio);
493 if (to_put)
494 bio_put(to_put);
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
509 * The rdev for the device selected will have nr_pending incremented.
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 const sector_t this_sector = r1_bio->sector;
514 int sectors;
515 int best_good_sectors;
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
518 int disk;
519 sector_t best_dist;
520 unsigned int min_pending;
521 struct md_rdev *rdev;
522 int choose_first;
523 int choose_next_idle;
525 rcu_read_lock();
527 * Check if we can balance. We can balance on the whole
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
531 retry:
532 sectors = r1_bio->sectors;
533 best_disk = -1;
534 best_dist_disk = -1;
535 best_dist = MaxSector;
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
538 best_good_sectors = 0;
539 has_nonrot_disk = 0;
540 choose_next_idle = 0;
542 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 (mddev_is_clustered(conf->mddev) &&
544 md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545 this_sector + sectors)))
546 choose_first = 1;
547 else
548 choose_first = 0;
550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551 sector_t dist;
552 sector_t first_bad;
553 int bad_sectors;
554 unsigned int pending;
555 bool nonrot;
557 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 if (r1_bio->bios[disk] == IO_BLOCKED
559 || rdev == NULL
560 || test_bit(Unmerged, &rdev->flags)
561 || test_bit(Faulty, &rdev->flags))
562 continue;
563 if (!test_bit(In_sync, &rdev->flags) &&
564 rdev->recovery_offset < this_sector + sectors)
565 continue;
566 if (test_bit(WriteMostly, &rdev->flags)) {
567 /* Don't balance among write-mostly, just
568 * use the first as a last resort */
569 if (best_dist_disk < 0) {
570 if (is_badblock(rdev, this_sector, sectors,
571 &first_bad, &bad_sectors)) {
572 if (first_bad < this_sector)
573 /* Cannot use this */
574 continue;
575 best_good_sectors = first_bad - this_sector;
576 } else
577 best_good_sectors = sectors;
578 best_dist_disk = disk;
579 best_pending_disk = disk;
581 continue;
583 /* This is a reasonable device to use. It might
584 * even be best.
586 if (is_badblock(rdev, this_sector, sectors,
587 &first_bad, &bad_sectors)) {
588 if (best_dist < MaxSector)
589 /* already have a better device */
590 continue;
591 if (first_bad <= this_sector) {
592 /* cannot read here. If this is the 'primary'
593 * device, then we must not read beyond
594 * bad_sectors from another device..
596 bad_sectors -= (this_sector - first_bad);
597 if (choose_first && sectors > bad_sectors)
598 sectors = bad_sectors;
599 if (best_good_sectors > sectors)
600 best_good_sectors = sectors;
602 } else {
603 sector_t good_sectors = first_bad - this_sector;
604 if (good_sectors > best_good_sectors) {
605 best_good_sectors = good_sectors;
606 best_disk = disk;
608 if (choose_first)
609 break;
611 continue;
612 } else
613 best_good_sectors = sectors;
615 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616 has_nonrot_disk |= nonrot;
617 pending = atomic_read(&rdev->nr_pending);
618 dist = abs(this_sector - conf->mirrors[disk].head_position);
619 if (choose_first) {
620 best_disk = disk;
621 break;
623 /* Don't change to another disk for sequential reads */
624 if (conf->mirrors[disk].next_seq_sect == this_sector
625 || dist == 0) {
626 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627 struct raid1_info *mirror = &conf->mirrors[disk];
629 best_disk = disk;
631 * If buffered sequential IO size exceeds optimal
632 * iosize, check if there is idle disk. If yes, choose
633 * the idle disk. read_balance could already choose an
634 * idle disk before noticing it's a sequential IO in
635 * this disk. This doesn't matter because this disk
636 * will idle, next time it will be utilized after the
637 * first disk has IO size exceeds optimal iosize. In
638 * this way, iosize of the first disk will be optimal
639 * iosize at least. iosize of the second disk might be
640 * small, but not a big deal since when the second disk
641 * starts IO, the first disk is likely still busy.
643 if (nonrot && opt_iosize > 0 &&
644 mirror->seq_start != MaxSector &&
645 mirror->next_seq_sect > opt_iosize &&
646 mirror->next_seq_sect - opt_iosize >=
647 mirror->seq_start) {
648 choose_next_idle = 1;
649 continue;
651 break;
653 /* If device is idle, use it */
654 if (pending == 0) {
655 best_disk = disk;
656 break;
659 if (choose_next_idle)
660 continue;
662 if (min_pending > pending) {
663 min_pending = pending;
664 best_pending_disk = disk;
667 if (dist < best_dist) {
668 best_dist = dist;
669 best_dist_disk = disk;
674 * If all disks are rotational, choose the closest disk. If any disk is
675 * non-rotational, choose the disk with less pending request even the
676 * disk is rotational, which might/might not be optimal for raids with
677 * mixed ratation/non-rotational disks depending on workload.
679 if (best_disk == -1) {
680 if (has_nonrot_disk)
681 best_disk = best_pending_disk;
682 else
683 best_disk = best_dist_disk;
686 if (best_disk >= 0) {
687 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
688 if (!rdev)
689 goto retry;
690 atomic_inc(&rdev->nr_pending);
691 if (test_bit(Faulty, &rdev->flags)) {
692 /* cannot risk returning a device that failed
693 * before we inc'ed nr_pending
695 rdev_dec_pending(rdev, conf->mddev);
696 goto retry;
698 sectors = best_good_sectors;
700 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701 conf->mirrors[best_disk].seq_start = this_sector;
703 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705 rcu_read_unlock();
706 *max_sectors = sectors;
708 return best_disk;
711 static int raid1_mergeable_bvec(struct mddev *mddev,
712 struct bvec_merge_data *bvm,
713 struct bio_vec *biovec)
715 struct r1conf *conf = mddev->private;
716 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717 int max = biovec->bv_len;
719 if (mddev->merge_check_needed) {
720 int disk;
721 rcu_read_lock();
722 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723 struct md_rdev *rdev = rcu_dereference(
724 conf->mirrors[disk].rdev);
725 if (rdev && !test_bit(Faulty, &rdev->flags)) {
726 struct request_queue *q =
727 bdev_get_queue(rdev->bdev);
728 if (q->merge_bvec_fn) {
729 bvm->bi_sector = sector +
730 rdev->data_offset;
731 bvm->bi_bdev = rdev->bdev;
732 max = min(max, q->merge_bvec_fn(
733 q, bvm, biovec));
737 rcu_read_unlock();
739 return max;
743 static int raid1_congested(struct mddev *mddev, int bits)
745 struct r1conf *conf = mddev->private;
746 int i, ret = 0;
748 if ((bits & (1 << BDI_async_congested)) &&
749 conf->pending_count >= max_queued_requests)
750 return 1;
752 rcu_read_lock();
753 for (i = 0; i < conf->raid_disks * 2; i++) {
754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755 if (rdev && !test_bit(Faulty, &rdev->flags)) {
756 struct request_queue *q = bdev_get_queue(rdev->bdev);
758 BUG_ON(!q);
760 /* Note the '|| 1' - when read_balance prefers
761 * non-congested targets, it can be removed
763 if ((bits & (1<<BDI_async_congested)) || 1)
764 ret |= bdi_congested(&q->backing_dev_info, bits);
765 else
766 ret &= bdi_congested(&q->backing_dev_info, bits);
769 rcu_read_unlock();
770 return ret;
773 static void flush_pending_writes(struct r1conf *conf)
775 /* Any writes that have been queued but are awaiting
776 * bitmap updates get flushed here.
778 spin_lock_irq(&conf->device_lock);
780 if (conf->pending_bio_list.head) {
781 struct bio *bio;
782 bio = bio_list_get(&conf->pending_bio_list);
783 conf->pending_count = 0;
784 spin_unlock_irq(&conf->device_lock);
785 /* flush any pending bitmap writes to
786 * disk before proceeding w/ I/O */
787 bitmap_unplug(conf->mddev->bitmap);
788 wake_up(&conf->wait_barrier);
790 while (bio) { /* submit pending writes */
791 struct bio *next = bio->bi_next;
792 bio->bi_next = NULL;
793 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795 /* Just ignore it */
796 bio_endio(bio, 0);
797 else
798 generic_make_request(bio);
799 bio = next;
801 } else
802 spin_unlock_irq(&conf->device_lock);
805 /* Barriers....
806 * Sometimes we need to suspend IO while we do something else,
807 * either some resync/recovery, or reconfigure the array.
808 * To do this we raise a 'barrier'.
809 * The 'barrier' is a counter that can be raised multiple times
810 * to count how many activities are happening which preclude
811 * normal IO.
812 * We can only raise the barrier if there is no pending IO.
813 * i.e. if nr_pending == 0.
814 * We choose only to raise the barrier if no-one is waiting for the
815 * barrier to go down. This means that as soon as an IO request
816 * is ready, no other operations which require a barrier will start
817 * until the IO request has had a chance.
819 * So: regular IO calls 'wait_barrier'. When that returns there
820 * is no backgroup IO happening, It must arrange to call
821 * allow_barrier when it has finished its IO.
822 * backgroup IO calls must call raise_barrier. Once that returns
823 * there is no normal IO happeing. It must arrange to call
824 * lower_barrier when the particular background IO completes.
826 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
828 spin_lock_irq(&conf->resync_lock);
830 /* Wait until no block IO is waiting */
831 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
832 conf->resync_lock);
834 /* block any new IO from starting */
835 conf->barrier++;
836 conf->next_resync = sector_nr;
838 /* For these conditions we must wait:
839 * A: while the array is in frozen state
840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 * the max count which allowed.
842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 * next resync will reach to the window which normal bios are
844 * handling.
845 * D: while there are any active requests in the current window.
847 wait_event_lock_irq(conf->wait_barrier,
848 !conf->array_frozen &&
849 conf->barrier < RESYNC_DEPTH &&
850 conf->current_window_requests == 0 &&
851 (conf->start_next_window >=
852 conf->next_resync + RESYNC_SECTORS),
853 conf->resync_lock);
855 conf->nr_pending++;
856 spin_unlock_irq(&conf->resync_lock);
859 static void lower_barrier(struct r1conf *conf)
861 unsigned long flags;
862 BUG_ON(conf->barrier <= 0);
863 spin_lock_irqsave(&conf->resync_lock, flags);
864 conf->barrier--;
865 conf->nr_pending--;
866 spin_unlock_irqrestore(&conf->resync_lock, flags);
867 wake_up(&conf->wait_barrier);
870 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
872 bool wait = false;
874 if (conf->array_frozen || !bio)
875 wait = true;
876 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
877 if ((conf->mddev->curr_resync_completed
878 >= bio_end_sector(bio)) ||
879 (conf->next_resync + NEXT_NORMALIO_DISTANCE
880 <= bio->bi_iter.bi_sector))
881 wait = false;
882 else
883 wait = true;
886 return wait;
889 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
891 sector_t sector = 0;
893 spin_lock_irq(&conf->resync_lock);
894 if (need_to_wait_for_sync(conf, bio)) {
895 conf->nr_waiting++;
896 /* Wait for the barrier to drop.
897 * However if there are already pending
898 * requests (preventing the barrier from
899 * rising completely), and the
900 * per-process bio queue isn't empty,
901 * then don't wait, as we need to empty
902 * that queue to allow conf->start_next_window
903 * to increase.
905 wait_event_lock_irq(conf->wait_barrier,
906 !conf->array_frozen &&
907 (!conf->barrier ||
908 ((conf->start_next_window <
909 conf->next_resync + RESYNC_SECTORS) &&
910 current->bio_list &&
911 !bio_list_empty(current->bio_list))),
912 conf->resync_lock);
913 conf->nr_waiting--;
916 if (bio && bio_data_dir(bio) == WRITE) {
917 if (bio->bi_iter.bi_sector >=
918 conf->mddev->curr_resync_completed) {
919 if (conf->start_next_window == MaxSector)
920 conf->start_next_window =
921 conf->next_resync +
922 NEXT_NORMALIO_DISTANCE;
924 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
925 <= bio->bi_iter.bi_sector)
926 conf->next_window_requests++;
927 else
928 conf->current_window_requests++;
929 sector = conf->start_next_window;
933 conf->nr_pending++;
934 spin_unlock_irq(&conf->resync_lock);
935 return sector;
938 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939 sector_t bi_sector)
941 unsigned long flags;
943 spin_lock_irqsave(&conf->resync_lock, flags);
944 conf->nr_pending--;
945 if (start_next_window) {
946 if (start_next_window == conf->start_next_window) {
947 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948 <= bi_sector)
949 conf->next_window_requests--;
950 else
951 conf->current_window_requests--;
952 } else
953 conf->current_window_requests--;
955 if (!conf->current_window_requests) {
956 if (conf->next_window_requests) {
957 conf->current_window_requests =
958 conf->next_window_requests;
959 conf->next_window_requests = 0;
960 conf->start_next_window +=
961 NEXT_NORMALIO_DISTANCE;
962 } else
963 conf->start_next_window = MaxSector;
966 spin_unlock_irqrestore(&conf->resync_lock, flags);
967 wake_up(&conf->wait_barrier);
970 static void freeze_array(struct r1conf *conf, int extra)
972 /* stop syncio and normal IO and wait for everything to
973 * go quite.
974 * We wait until nr_pending match nr_queued+extra
975 * This is called in the context of one normal IO request
976 * that has failed. Thus any sync request that might be pending
977 * will be blocked by nr_pending, and we need to wait for
978 * pending IO requests to complete or be queued for re-try.
979 * Thus the number queued (nr_queued) plus this request (extra)
980 * must match the number of pending IOs (nr_pending) before
981 * we continue.
983 spin_lock_irq(&conf->resync_lock);
984 conf->array_frozen = 1;
985 wait_event_lock_irq_cmd(conf->wait_barrier,
986 conf->nr_pending == conf->nr_queued+extra,
987 conf->resync_lock,
988 flush_pending_writes(conf));
989 spin_unlock_irq(&conf->resync_lock);
991 static void unfreeze_array(struct r1conf *conf)
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
995 conf->array_frozen = 0;
996 wake_up(&conf->wait_barrier);
997 spin_unlock_irq(&conf->resync_lock);
1000 /* duplicate the data pages for behind I/O
1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1004 int i;
1005 struct bio_vec *bvec;
1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1007 GFP_NOIO);
1008 if (unlikely(!bvecs))
1009 return;
1011 bio_for_each_segment_all(bvec, bio, i) {
1012 bvecs[i] = *bvec;
1013 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014 if (unlikely(!bvecs[i].bv_page))
1015 goto do_sync_io;
1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018 kunmap(bvecs[i].bv_page);
1019 kunmap(bvec->bv_page);
1021 r1_bio->behind_bvecs = bvecs;
1022 r1_bio->behind_page_count = bio->bi_vcnt;
1023 set_bit(R1BIO_BehindIO, &r1_bio->state);
1024 return;
1026 do_sync_io:
1027 for (i = 0; i < bio->bi_vcnt; i++)
1028 if (bvecs[i].bv_page)
1029 put_page(bvecs[i].bv_page);
1030 kfree(bvecs);
1031 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032 bio->bi_iter.bi_size);
1035 struct raid1_plug_cb {
1036 struct blk_plug_cb cb;
1037 struct bio_list pending;
1038 int pending_cnt;
1041 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1043 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044 cb);
1045 struct mddev *mddev = plug->cb.data;
1046 struct r1conf *conf = mddev->private;
1047 struct bio *bio;
1049 if (from_schedule || current->bio_list) {
1050 spin_lock_irq(&conf->device_lock);
1051 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052 conf->pending_count += plug->pending_cnt;
1053 spin_unlock_irq(&conf->device_lock);
1054 wake_up(&conf->wait_barrier);
1055 md_wakeup_thread(mddev->thread);
1056 kfree(plug);
1057 return;
1060 /* we aren't scheduling, so we can do the write-out directly. */
1061 bio = bio_list_get(&plug->pending);
1062 bitmap_unplug(mddev->bitmap);
1063 wake_up(&conf->wait_barrier);
1065 while (bio) { /* submit pending writes */
1066 struct bio *next = bio->bi_next;
1067 bio->bi_next = NULL;
1068 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070 /* Just ignore it */
1071 bio_endio(bio, 0);
1072 else
1073 generic_make_request(bio);
1074 bio = next;
1076 kfree(plug);
1079 static void make_request(struct mddev *mddev, struct bio * bio)
1081 struct r1conf *conf = mddev->private;
1082 struct raid1_info *mirror;
1083 struct r1bio *r1_bio;
1084 struct bio *read_bio;
1085 int i, disks;
1086 struct bitmap *bitmap;
1087 unsigned long flags;
1088 const int rw = bio_data_dir(bio);
1089 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1090 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1091 const unsigned long do_discard = (bio->bi_rw
1092 & (REQ_DISCARD | REQ_SECURE));
1093 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1094 struct md_rdev *blocked_rdev;
1095 struct blk_plug_cb *cb;
1096 struct raid1_plug_cb *plug = NULL;
1097 int first_clone;
1098 int sectors_handled;
1099 int max_sectors;
1100 sector_t start_next_window;
1103 * Register the new request and wait if the reconstruction
1104 * thread has put up a bar for new requests.
1105 * Continue immediately if no resync is active currently.
1108 md_write_start(mddev, bio); /* wait on superblock update early */
1110 if (bio_data_dir(bio) == WRITE &&
1111 ((bio_end_sector(bio) > mddev->suspend_lo &&
1112 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113 (mddev_is_clustered(mddev) &&
1114 md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1115 /* As the suspend_* range is controlled by
1116 * userspace, we want an interruptible
1117 * wait.
1119 DEFINE_WAIT(w);
1120 for (;;) {
1121 flush_signals(current);
1122 prepare_to_wait(&conf->wait_barrier,
1123 &w, TASK_INTERRUPTIBLE);
1124 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1125 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1126 (mddev_is_clustered(mddev) &&
1127 !md_cluster_ops->area_resyncing(mddev,
1128 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1129 break;
1130 schedule();
1132 finish_wait(&conf->wait_barrier, &w);
1135 start_next_window = wait_barrier(conf, bio);
1137 bitmap = mddev->bitmap;
1140 * make_request() can abort the operation when READA is being
1141 * used and no empty request is available.
1144 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146 r1_bio->master_bio = bio;
1147 r1_bio->sectors = bio_sectors(bio);
1148 r1_bio->state = 0;
1149 r1_bio->mddev = mddev;
1150 r1_bio->sector = bio->bi_iter.bi_sector;
1152 /* We might need to issue multiple reads to different
1153 * devices if there are bad blocks around, so we keep
1154 * track of the number of reads in bio->bi_phys_segments.
1155 * If this is 0, there is only one r1_bio and no locking
1156 * will be needed when requests complete. If it is
1157 * non-zero, then it is the number of not-completed requests.
1159 bio->bi_phys_segments = 0;
1160 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162 if (rw == READ) {
1164 * read balancing logic:
1166 int rdisk;
1168 read_again:
1169 rdisk = read_balance(conf, r1_bio, &max_sectors);
1171 if (rdisk < 0) {
1172 /* couldn't find anywhere to read from */
1173 raid_end_bio_io(r1_bio);
1174 return;
1176 mirror = conf->mirrors + rdisk;
1178 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1179 bitmap) {
1180 /* Reading from a write-mostly device must
1181 * take care not to over-take any writes
1182 * that are 'behind'
1184 wait_event(bitmap->behind_wait,
1185 atomic_read(&bitmap->behind_writes) == 0);
1187 r1_bio->read_disk = rdisk;
1188 r1_bio->start_next_window = 0;
1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192 max_sectors);
1194 r1_bio->bios[rdisk] = read_bio;
1196 read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 mirror->rdev->data_offset;
1198 read_bio->bi_bdev = mirror->rdev->bdev;
1199 read_bio->bi_end_io = raid1_end_read_request;
1200 read_bio->bi_rw = READ | do_sync;
1201 read_bio->bi_private = r1_bio;
1203 if (max_sectors < r1_bio->sectors) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1208 sectors_handled = (r1_bio->sector + max_sectors
1209 - bio->bi_iter.bi_sector);
1210 r1_bio->sectors = max_sectors;
1211 spin_lock_irq(&conf->device_lock);
1212 if (bio->bi_phys_segments == 0)
1213 bio->bi_phys_segments = 2;
1214 else
1215 bio->bi_phys_segments++;
1216 spin_unlock_irq(&conf->device_lock);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1222 reschedule_retry(r1_bio);
1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226 r1_bio->master_bio = bio;
1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228 r1_bio->state = 0;
1229 r1_bio->mddev = mddev;
1230 r1_bio->sector = bio->bi_iter.bi_sector +
1231 sectors_handled;
1232 goto read_again;
1233 } else
1234 generic_make_request(read_bio);
1235 return;
1239 * WRITE:
1241 if (conf->pending_count >= max_queued_requests) {
1242 md_wakeup_thread(mddev->thread);
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1248 * bios[x] to bio
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1251 * blocks.
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1257 disks = conf->raid_disks * 2;
1258 retry_write:
1259 r1_bio->start_next_window = start_next_window;
1260 blocked_rdev = NULL;
1261 rcu_read_lock();
1262 max_sectors = r1_bio->sectors;
1263 for (i = 0; i < disks; i++) {
1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1268 break;
1270 r1_bio->bios[i] = NULL;
1271 if (!rdev || test_bit(Faulty, &rdev->flags)
1272 || test_bit(Unmerged, &rdev->flags)) {
1273 if (i < conf->raid_disks)
1274 set_bit(R1BIO_Degraded, &r1_bio->state);
1275 continue;
1278 atomic_inc(&rdev->nr_pending);
1279 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 sector_t first_bad;
1281 int bad_sectors;
1282 int is_bad;
1284 is_bad = is_badblock(rdev, r1_bio->sector,
1285 max_sectors,
1286 &first_bad, &bad_sectors);
1287 if (is_bad < 0) {
1288 /* mustn't write here until the bad block is
1289 * acknowledged*/
1290 set_bit(BlockedBadBlocks, &rdev->flags);
1291 blocked_rdev = rdev;
1292 break;
1294 if (is_bad && first_bad <= r1_bio->sector) {
1295 /* Cannot write here at all */
1296 bad_sectors -= (r1_bio->sector - first_bad);
1297 if (bad_sectors < max_sectors)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1301 max_sectors = bad_sectors;
1302 rdev_dec_pending(rdev, mddev);
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1307 * chunk.
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1311 * block log
1313 continue;
1315 if (is_bad) {
1316 int good_sectors = first_bad - r1_bio->sector;
1317 if (good_sectors < max_sectors)
1318 max_sectors = good_sectors;
1321 r1_bio->bios[i] = bio;
1323 rcu_read_unlock();
1325 if (unlikely(blocked_rdev)) {
1326 /* Wait for this device to become unblocked */
1327 int j;
1328 sector_t old = start_next_window;
1330 for (j = 0; j < i; j++)
1331 if (r1_bio->bios[j])
1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333 r1_bio->state = 0;
1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 start_next_window = wait_barrier(conf, bio);
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
1346 goto retry_write;
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1357 else
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363 atomic_set(&r1_bio->remaining, 1);
1364 atomic_set(&r1_bio->behind_remaining, 0);
1366 first_clone = 1;
1367 for (i = 0; i < disks; i++) {
1368 struct bio *mbio;
1369 if (!r1_bio->bios[i])
1370 continue;
1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375 if (first_clone) {
1376 /* do behind I/O ?
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1380 if (bitmap &&
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1387 r1_bio->sectors,
1388 test_bit(R1BIO_BehindIO,
1389 &r1_bio->state));
1390 first_clone = 0;
1392 if (r1_bio->behind_bvecs) {
1393 struct bio_vec *bvec;
1394 int j;
1397 * We trimmed the bio, so _all is legit
1399 bio_for_each_segment_all(bvec, mbio, j)
1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1405 r1_bio->bios[i] = mbio;
1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
1411 mbio->bi_rw =
1412 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413 mbio->bi_private = r1_bio;
1415 atomic_inc(&r1_bio->remaining);
1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 if (cb)
1419 plug = container_of(cb, struct raid1_plug_cb, cb);
1420 else
1421 plug = NULL;
1422 spin_lock_irqsave(&conf->device_lock, flags);
1423 if (plug) {
1424 bio_list_add(&plug->pending, mbio);
1425 plug->pending_cnt++;
1426 } else {
1427 bio_list_add(&conf->pending_bio_list, mbio);
1428 conf->pending_count++;
1430 spin_unlock_irqrestore(&conf->device_lock, flags);
1431 if (!plug)
1432 md_wakeup_thread(mddev->thread);
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1437 if (sectors_handled < bio_sectors(bio)) {
1438 r1_bio_write_done(r1_bio);
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 r1_bio->master_bio = bio;
1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445 r1_bio->state = 0;
1446 r1_bio->mddev = mddev;
1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448 goto retry_write;
1451 r1_bio_write_done(r1_bio);
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf->wait_barrier);
1457 static void status(struct seq_file *seq, struct mddev *mddev)
1459 struct r1conf *conf = mddev->private;
1460 int i;
1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463 conf->raid_disks - mddev->degraded);
1464 rcu_read_lock();
1465 for (i = 0; i < conf->raid_disks; i++) {
1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467 seq_printf(seq, "%s",
1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470 rcu_read_unlock();
1471 seq_printf(seq, "]");
1474 static void error(struct mddev *mddev, struct md_rdev *rdev)
1476 char b[BDEVNAME_SIZE];
1477 struct r1conf *conf = mddev->private;
1478 unsigned long flags;
1481 * If it is not operational, then we have already marked it as dead
1482 * else if it is the last working disks, ignore the error, let the
1483 * next level up know.
1484 * else mark the drive as failed
1486 if (test_bit(In_sync, &rdev->flags)
1487 && (conf->raid_disks - mddev->degraded) == 1) {
1489 * Don't fail the drive, act as though we were just a
1490 * normal single drive.
1491 * However don't try a recovery from this drive as
1492 * it is very likely to fail.
1494 conf->recovery_disabled = mddev->recovery_disabled;
1495 return;
1497 set_bit(Blocked, &rdev->flags);
1498 spin_lock_irqsave(&conf->device_lock, flags);
1499 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1500 mddev->degraded++;
1501 set_bit(Faulty, &rdev->flags);
1502 } else
1503 set_bit(Faulty, &rdev->flags);
1504 spin_unlock_irqrestore(&conf->device_lock, flags);
1506 * if recovery is running, make sure it aborts.
1508 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1509 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1510 printk(KERN_ALERT
1511 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1512 "md/raid1:%s: Operation continuing on %d devices.\n",
1513 mdname(mddev), bdevname(rdev->bdev, b),
1514 mdname(mddev), conf->raid_disks - mddev->degraded);
1517 static void print_conf(struct r1conf *conf)
1519 int i;
1521 printk(KERN_DEBUG "RAID1 conf printout:\n");
1522 if (!conf) {
1523 printk(KERN_DEBUG "(!conf)\n");
1524 return;
1526 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1527 conf->raid_disks);
1529 rcu_read_lock();
1530 for (i = 0; i < conf->raid_disks; i++) {
1531 char b[BDEVNAME_SIZE];
1532 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1533 if (rdev)
1534 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1535 i, !test_bit(In_sync, &rdev->flags),
1536 !test_bit(Faulty, &rdev->flags),
1537 bdevname(rdev->bdev,b));
1539 rcu_read_unlock();
1542 static void close_sync(struct r1conf *conf)
1544 wait_barrier(conf, NULL);
1545 allow_barrier(conf, 0, 0);
1547 mempool_destroy(conf->r1buf_pool);
1548 conf->r1buf_pool = NULL;
1550 spin_lock_irq(&conf->resync_lock);
1551 conf->next_resync = 0;
1552 conf->start_next_window = MaxSector;
1553 conf->current_window_requests +=
1554 conf->next_window_requests;
1555 conf->next_window_requests = 0;
1556 spin_unlock_irq(&conf->resync_lock);
1559 static int raid1_spare_active(struct mddev *mddev)
1561 int i;
1562 struct r1conf *conf = mddev->private;
1563 int count = 0;
1564 unsigned long flags;
1567 * Find all failed disks within the RAID1 configuration
1568 * and mark them readable.
1569 * Called under mddev lock, so rcu protection not needed.
1570 * device_lock used to avoid races with raid1_end_read_request
1571 * which expects 'In_sync' flags and ->degraded to be consistent.
1573 spin_lock_irqsave(&conf->device_lock, flags);
1574 for (i = 0; i < conf->raid_disks; i++) {
1575 struct md_rdev *rdev = conf->mirrors[i].rdev;
1576 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1577 if (repl
1578 && !test_bit(Candidate, &repl->flags)
1579 && repl->recovery_offset == MaxSector
1580 && !test_bit(Faulty, &repl->flags)
1581 && !test_and_set_bit(In_sync, &repl->flags)) {
1582 /* replacement has just become active */
1583 if (!rdev ||
1584 !test_and_clear_bit(In_sync, &rdev->flags))
1585 count++;
1586 if (rdev) {
1587 /* Replaced device not technically
1588 * faulty, but we need to be sure
1589 * it gets removed and never re-added
1591 set_bit(Faulty, &rdev->flags);
1592 sysfs_notify_dirent_safe(
1593 rdev->sysfs_state);
1596 if (rdev
1597 && rdev->recovery_offset == MaxSector
1598 && !test_bit(Faulty, &rdev->flags)
1599 && !test_and_set_bit(In_sync, &rdev->flags)) {
1600 count++;
1601 sysfs_notify_dirent_safe(rdev->sysfs_state);
1604 mddev->degraded -= count;
1605 spin_unlock_irqrestore(&conf->device_lock, flags);
1607 print_conf(conf);
1608 return count;
1611 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1613 struct r1conf *conf = mddev->private;
1614 int err = -EEXIST;
1615 int mirror = 0;
1616 struct raid1_info *p;
1617 int first = 0;
1618 int last = conf->raid_disks - 1;
1619 struct request_queue *q = bdev_get_queue(rdev->bdev);
1621 if (mddev->recovery_disabled == conf->recovery_disabled)
1622 return -EBUSY;
1624 if (rdev->raid_disk >= 0)
1625 first = last = rdev->raid_disk;
1627 if (q->merge_bvec_fn) {
1628 set_bit(Unmerged, &rdev->flags);
1629 mddev->merge_check_needed = 1;
1632 for (mirror = first; mirror <= last; mirror++) {
1633 p = conf->mirrors+mirror;
1634 if (!p->rdev) {
1636 if (mddev->gendisk)
1637 disk_stack_limits(mddev->gendisk, rdev->bdev,
1638 rdev->data_offset << 9);
1640 p->head_position = 0;
1641 rdev->raid_disk = mirror;
1642 err = 0;
1643 /* As all devices are equivalent, we don't need a full recovery
1644 * if this was recently any drive of the array
1646 if (rdev->saved_raid_disk < 0)
1647 conf->fullsync = 1;
1648 rcu_assign_pointer(p->rdev, rdev);
1649 break;
1651 if (test_bit(WantReplacement, &p->rdev->flags) &&
1652 p[conf->raid_disks].rdev == NULL) {
1653 /* Add this device as a replacement */
1654 clear_bit(In_sync, &rdev->flags);
1655 set_bit(Replacement, &rdev->flags);
1656 rdev->raid_disk = mirror;
1657 err = 0;
1658 conf->fullsync = 1;
1659 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1660 break;
1663 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1664 /* Some requests might not have seen this new
1665 * merge_bvec_fn. We must wait for them to complete
1666 * before merging the device fully.
1667 * First we make sure any code which has tested
1668 * our function has submitted the request, then
1669 * we wait for all outstanding requests to complete.
1671 synchronize_sched();
1672 freeze_array(conf, 0);
1673 unfreeze_array(conf);
1674 clear_bit(Unmerged, &rdev->flags);
1676 md_integrity_add_rdev(rdev, mddev);
1677 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1678 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1679 print_conf(conf);
1680 return err;
1683 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1685 struct r1conf *conf = mddev->private;
1686 int err = 0;
1687 int number = rdev->raid_disk;
1688 struct raid1_info *p = conf->mirrors + number;
1690 if (rdev != p->rdev)
1691 p = conf->mirrors + conf->raid_disks + number;
1693 print_conf(conf);
1694 if (rdev == p->rdev) {
1695 if (test_bit(In_sync, &rdev->flags) ||
1696 atomic_read(&rdev->nr_pending)) {
1697 err = -EBUSY;
1698 goto abort;
1700 /* Only remove non-faulty devices if recovery
1701 * is not possible.
1703 if (!test_bit(Faulty, &rdev->flags) &&
1704 mddev->recovery_disabled != conf->recovery_disabled &&
1705 mddev->degraded < conf->raid_disks) {
1706 err = -EBUSY;
1707 goto abort;
1709 p->rdev = NULL;
1710 synchronize_rcu();
1711 if (atomic_read(&rdev->nr_pending)) {
1712 /* lost the race, try later */
1713 err = -EBUSY;
1714 p->rdev = rdev;
1715 goto abort;
1716 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1717 /* We just removed a device that is being replaced.
1718 * Move down the replacement. We drain all IO before
1719 * doing this to avoid confusion.
1721 struct md_rdev *repl =
1722 conf->mirrors[conf->raid_disks + number].rdev;
1723 freeze_array(conf, 0);
1724 clear_bit(Replacement, &repl->flags);
1725 p->rdev = repl;
1726 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1727 unfreeze_array(conf);
1728 clear_bit(WantReplacement, &rdev->flags);
1729 } else
1730 clear_bit(WantReplacement, &rdev->flags);
1731 err = md_integrity_register(mddev);
1733 abort:
1735 print_conf(conf);
1736 return err;
1739 static void end_sync_read(struct bio *bio, int error)
1741 struct r1bio *r1_bio = bio->bi_private;
1743 update_head_pos(r1_bio->read_disk, r1_bio);
1746 * we have read a block, now it needs to be re-written,
1747 * or re-read if the read failed.
1748 * We don't do much here, just schedule handling by raid1d
1750 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1751 set_bit(R1BIO_Uptodate, &r1_bio->state);
1753 if (atomic_dec_and_test(&r1_bio->remaining))
1754 reschedule_retry(r1_bio);
1757 static void end_sync_write(struct bio *bio, int error)
1759 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1760 struct r1bio *r1_bio = bio->bi_private;
1761 struct mddev *mddev = r1_bio->mddev;
1762 struct r1conf *conf = mddev->private;
1763 int mirror=0;
1764 sector_t first_bad;
1765 int bad_sectors;
1767 mirror = find_bio_disk(r1_bio, bio);
1769 if (!uptodate) {
1770 sector_t sync_blocks = 0;
1771 sector_t s = r1_bio->sector;
1772 long sectors_to_go = r1_bio->sectors;
1773 /* make sure these bits doesn't get cleared. */
1774 do {
1775 bitmap_end_sync(mddev->bitmap, s,
1776 &sync_blocks, 1);
1777 s += sync_blocks;
1778 sectors_to_go -= sync_blocks;
1779 } while (sectors_to_go > 0);
1780 set_bit(WriteErrorSeen,
1781 &conf->mirrors[mirror].rdev->flags);
1782 if (!test_and_set_bit(WantReplacement,
1783 &conf->mirrors[mirror].rdev->flags))
1784 set_bit(MD_RECOVERY_NEEDED, &
1785 mddev->recovery);
1786 set_bit(R1BIO_WriteError, &r1_bio->state);
1787 } else if (is_badblock(conf->mirrors[mirror].rdev,
1788 r1_bio->sector,
1789 r1_bio->sectors,
1790 &first_bad, &bad_sectors) &&
1791 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1792 r1_bio->sector,
1793 r1_bio->sectors,
1794 &first_bad, &bad_sectors)
1796 set_bit(R1BIO_MadeGood, &r1_bio->state);
1798 if (atomic_dec_and_test(&r1_bio->remaining)) {
1799 int s = r1_bio->sectors;
1800 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1801 test_bit(R1BIO_WriteError, &r1_bio->state))
1802 reschedule_retry(r1_bio);
1803 else {
1804 put_buf(r1_bio);
1805 md_done_sync(mddev, s, uptodate);
1810 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1811 int sectors, struct page *page, int rw)
1813 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1814 /* success */
1815 return 1;
1816 if (rw == WRITE) {
1817 set_bit(WriteErrorSeen, &rdev->flags);
1818 if (!test_and_set_bit(WantReplacement,
1819 &rdev->flags))
1820 set_bit(MD_RECOVERY_NEEDED, &
1821 rdev->mddev->recovery);
1823 /* need to record an error - either for the block or the device */
1824 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1825 md_error(rdev->mddev, rdev);
1826 return 0;
1829 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 /* Try some synchronous reads of other devices to get
1832 * good data, much like with normal read errors. Only
1833 * read into the pages we already have so we don't
1834 * need to re-issue the read request.
1835 * We don't need to freeze the array, because being in an
1836 * active sync request, there is no normal IO, and
1837 * no overlapping syncs.
1838 * We don't need to check is_badblock() again as we
1839 * made sure that anything with a bad block in range
1840 * will have bi_end_io clear.
1842 struct mddev *mddev = r1_bio->mddev;
1843 struct r1conf *conf = mddev->private;
1844 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1845 sector_t sect = r1_bio->sector;
1846 int sectors = r1_bio->sectors;
1847 int idx = 0;
1849 while(sectors) {
1850 int s = sectors;
1851 int d = r1_bio->read_disk;
1852 int success = 0;
1853 struct md_rdev *rdev;
1854 int start;
1856 if (s > (PAGE_SIZE>>9))
1857 s = PAGE_SIZE >> 9;
1858 do {
1859 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1860 /* No rcu protection needed here devices
1861 * can only be removed when no resync is
1862 * active, and resync is currently active
1864 rdev = conf->mirrors[d].rdev;
1865 if (sync_page_io(rdev, sect, s<<9,
1866 bio->bi_io_vec[idx].bv_page,
1867 READ, false)) {
1868 success = 1;
1869 break;
1872 d++;
1873 if (d == conf->raid_disks * 2)
1874 d = 0;
1875 } while (!success && d != r1_bio->read_disk);
1877 if (!success) {
1878 char b[BDEVNAME_SIZE];
1879 int abort = 0;
1880 /* Cannot read from anywhere, this block is lost.
1881 * Record a bad block on each device. If that doesn't
1882 * work just disable and interrupt the recovery.
1883 * Don't fail devices as that won't really help.
1885 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1886 " for block %llu\n",
1887 mdname(mddev),
1888 bdevname(bio->bi_bdev, b),
1889 (unsigned long long)r1_bio->sector);
1890 for (d = 0; d < conf->raid_disks * 2; d++) {
1891 rdev = conf->mirrors[d].rdev;
1892 if (!rdev || test_bit(Faulty, &rdev->flags))
1893 continue;
1894 if (!rdev_set_badblocks(rdev, sect, s, 0))
1895 abort = 1;
1897 if (abort) {
1898 conf->recovery_disabled =
1899 mddev->recovery_disabled;
1900 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1901 md_done_sync(mddev, r1_bio->sectors, 0);
1902 put_buf(r1_bio);
1903 return 0;
1905 /* Try next page */
1906 sectors -= s;
1907 sect += s;
1908 idx++;
1909 continue;
1912 start = d;
1913 /* write it back and re-read */
1914 while (d != r1_bio->read_disk) {
1915 if (d == 0)
1916 d = conf->raid_disks * 2;
1917 d--;
1918 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 continue;
1920 rdev = conf->mirrors[d].rdev;
1921 if (r1_sync_page_io(rdev, sect, s,
1922 bio->bi_io_vec[idx].bv_page,
1923 WRITE) == 0) {
1924 r1_bio->bios[d]->bi_end_io = NULL;
1925 rdev_dec_pending(rdev, mddev);
1928 d = start;
1929 while (d != r1_bio->read_disk) {
1930 if (d == 0)
1931 d = conf->raid_disks * 2;
1932 d--;
1933 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1934 continue;
1935 rdev = conf->mirrors[d].rdev;
1936 if (r1_sync_page_io(rdev, sect, s,
1937 bio->bi_io_vec[idx].bv_page,
1938 READ) != 0)
1939 atomic_add(s, &rdev->corrected_errors);
1941 sectors -= s;
1942 sect += s;
1943 idx ++;
1945 set_bit(R1BIO_Uptodate, &r1_bio->state);
1946 set_bit(BIO_UPTODATE, &bio->bi_flags);
1947 return 1;
1950 static void process_checks(struct r1bio *r1_bio)
1952 /* We have read all readable devices. If we haven't
1953 * got the block, then there is no hope left.
1954 * If we have, then we want to do a comparison
1955 * and skip the write if everything is the same.
1956 * If any blocks failed to read, then we need to
1957 * attempt an over-write
1959 struct mddev *mddev = r1_bio->mddev;
1960 struct r1conf *conf = mddev->private;
1961 int primary;
1962 int i;
1963 int vcnt;
1965 /* Fix variable parts of all bios */
1966 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1967 for (i = 0; i < conf->raid_disks * 2; i++) {
1968 int j;
1969 int size;
1970 int uptodate;
1971 struct bio *b = r1_bio->bios[i];
1972 if (b->bi_end_io != end_sync_read)
1973 continue;
1974 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1975 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1976 bio_reset(b);
1977 if (!uptodate)
1978 clear_bit(BIO_UPTODATE, &b->bi_flags);
1979 b->bi_vcnt = vcnt;
1980 b->bi_iter.bi_size = r1_bio->sectors << 9;
1981 b->bi_iter.bi_sector = r1_bio->sector +
1982 conf->mirrors[i].rdev->data_offset;
1983 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1984 b->bi_end_io = end_sync_read;
1985 b->bi_private = r1_bio;
1987 size = b->bi_iter.bi_size;
1988 for (j = 0; j < vcnt ; j++) {
1989 struct bio_vec *bi;
1990 bi = &b->bi_io_vec[j];
1991 bi->bv_offset = 0;
1992 if (size > PAGE_SIZE)
1993 bi->bv_len = PAGE_SIZE;
1994 else
1995 bi->bv_len = size;
1996 size -= PAGE_SIZE;
1999 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2000 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2001 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2002 r1_bio->bios[primary]->bi_end_io = NULL;
2003 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2004 break;
2006 r1_bio->read_disk = primary;
2007 for (i = 0; i < conf->raid_disks * 2; i++) {
2008 int j;
2009 struct bio *pbio = r1_bio->bios[primary];
2010 struct bio *sbio = r1_bio->bios[i];
2011 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2013 if (sbio->bi_end_io != end_sync_read)
2014 continue;
2015 /* Now we can 'fixup' the BIO_UPTODATE flag */
2016 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2018 if (uptodate) {
2019 for (j = vcnt; j-- ; ) {
2020 struct page *p, *s;
2021 p = pbio->bi_io_vec[j].bv_page;
2022 s = sbio->bi_io_vec[j].bv_page;
2023 if (memcmp(page_address(p),
2024 page_address(s),
2025 sbio->bi_io_vec[j].bv_len))
2026 break;
2028 } else
2029 j = 0;
2030 if (j >= 0)
2031 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2032 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2033 && uptodate)) {
2034 /* No need to write to this device. */
2035 sbio->bi_end_io = NULL;
2036 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2037 continue;
2040 bio_copy_data(sbio, pbio);
2044 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2046 struct r1conf *conf = mddev->private;
2047 int i;
2048 int disks = conf->raid_disks * 2;
2049 struct bio *bio, *wbio;
2051 bio = r1_bio->bios[r1_bio->read_disk];
2053 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2054 /* ouch - failed to read all of that. */
2055 if (!fix_sync_read_error(r1_bio))
2056 return;
2058 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2059 process_checks(r1_bio);
2062 * schedule writes
2064 atomic_set(&r1_bio->remaining, 1);
2065 for (i = 0; i < disks ; i++) {
2066 wbio = r1_bio->bios[i];
2067 if (wbio->bi_end_io == NULL ||
2068 (wbio->bi_end_io == end_sync_read &&
2069 (i == r1_bio->read_disk ||
2070 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2071 continue;
2073 wbio->bi_rw = WRITE;
2074 wbio->bi_end_io = end_sync_write;
2075 atomic_inc(&r1_bio->remaining);
2076 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2078 generic_make_request(wbio);
2081 if (atomic_dec_and_test(&r1_bio->remaining)) {
2082 /* if we're here, all write(s) have completed, so clean up */
2083 int s = r1_bio->sectors;
2084 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2085 test_bit(R1BIO_WriteError, &r1_bio->state))
2086 reschedule_retry(r1_bio);
2087 else {
2088 put_buf(r1_bio);
2089 md_done_sync(mddev, s, 1);
2095 * This is a kernel thread which:
2097 * 1. Retries failed read operations on working mirrors.
2098 * 2. Updates the raid superblock when problems encounter.
2099 * 3. Performs writes following reads for array synchronising.
2102 static void fix_read_error(struct r1conf *conf, int read_disk,
2103 sector_t sect, int sectors)
2105 struct mddev *mddev = conf->mddev;
2106 while(sectors) {
2107 int s = sectors;
2108 int d = read_disk;
2109 int success = 0;
2110 int start;
2111 struct md_rdev *rdev;
2113 if (s > (PAGE_SIZE>>9))
2114 s = PAGE_SIZE >> 9;
2116 do {
2117 /* Note: no rcu protection needed here
2118 * as this is synchronous in the raid1d thread
2119 * which is the thread that might remove
2120 * a device. If raid1d ever becomes multi-threaded....
2122 sector_t first_bad;
2123 int bad_sectors;
2125 rdev = conf->mirrors[d].rdev;
2126 if (rdev &&
2127 (test_bit(In_sync, &rdev->flags) ||
2128 (!test_bit(Faulty, &rdev->flags) &&
2129 rdev->recovery_offset >= sect + s)) &&
2130 is_badblock(rdev, sect, s,
2131 &first_bad, &bad_sectors) == 0 &&
2132 sync_page_io(rdev, sect, s<<9,
2133 conf->tmppage, READ, false))
2134 success = 1;
2135 else {
2136 d++;
2137 if (d == conf->raid_disks * 2)
2138 d = 0;
2140 } while (!success && d != read_disk);
2142 if (!success) {
2143 /* Cannot read from anywhere - mark it bad */
2144 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2145 if (!rdev_set_badblocks(rdev, sect, s, 0))
2146 md_error(mddev, rdev);
2147 break;
2149 /* write it back and re-read */
2150 start = d;
2151 while (d != read_disk) {
2152 if (d==0)
2153 d = conf->raid_disks * 2;
2154 d--;
2155 rdev = conf->mirrors[d].rdev;
2156 if (rdev &&
2157 !test_bit(Faulty, &rdev->flags))
2158 r1_sync_page_io(rdev, sect, s,
2159 conf->tmppage, WRITE);
2161 d = start;
2162 while (d != read_disk) {
2163 char b[BDEVNAME_SIZE];
2164 if (d==0)
2165 d = conf->raid_disks * 2;
2166 d--;
2167 rdev = conf->mirrors[d].rdev;
2168 if (rdev &&
2169 !test_bit(Faulty, &rdev->flags)) {
2170 if (r1_sync_page_io(rdev, sect, s,
2171 conf->tmppage, READ)) {
2172 atomic_add(s, &rdev->corrected_errors);
2173 printk(KERN_INFO
2174 "md/raid1:%s: read error corrected "
2175 "(%d sectors at %llu on %s)\n",
2176 mdname(mddev), s,
2177 (unsigned long long)(sect +
2178 rdev->data_offset),
2179 bdevname(rdev->bdev, b));
2183 sectors -= s;
2184 sect += s;
2188 static int narrow_write_error(struct r1bio *r1_bio, int i)
2190 struct mddev *mddev = r1_bio->mddev;
2191 struct r1conf *conf = mddev->private;
2192 struct md_rdev *rdev = conf->mirrors[i].rdev;
2194 /* bio has the data to be written to device 'i' where
2195 * we just recently had a write error.
2196 * We repeatedly clone the bio and trim down to one block,
2197 * then try the write. Where the write fails we record
2198 * a bad block.
2199 * It is conceivable that the bio doesn't exactly align with
2200 * blocks. We must handle this somehow.
2202 * We currently own a reference on the rdev.
2205 int block_sectors;
2206 sector_t sector;
2207 int sectors;
2208 int sect_to_write = r1_bio->sectors;
2209 int ok = 1;
2211 if (rdev->badblocks.shift < 0)
2212 return 0;
2214 block_sectors = roundup(1 << rdev->badblocks.shift,
2215 bdev_logical_block_size(rdev->bdev) >> 9);
2216 sector = r1_bio->sector;
2217 sectors = ((sector + block_sectors)
2218 & ~(sector_t)(block_sectors - 1))
2219 - sector;
2221 while (sect_to_write) {
2222 struct bio *wbio;
2223 if (sectors > sect_to_write)
2224 sectors = sect_to_write;
2225 /* Write at 'sector' for 'sectors'*/
2227 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2228 unsigned vcnt = r1_bio->behind_page_count;
2229 struct bio_vec *vec = r1_bio->behind_bvecs;
2231 while (!vec->bv_page) {
2232 vec++;
2233 vcnt--;
2236 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2237 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2239 wbio->bi_vcnt = vcnt;
2240 } else {
2241 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244 wbio->bi_rw = WRITE;
2245 wbio->bi_iter.bi_sector = r1_bio->sector;
2246 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2248 bio_trim(wbio, sector - r1_bio->sector, sectors);
2249 wbio->bi_iter.bi_sector += rdev->data_offset;
2250 wbio->bi_bdev = rdev->bdev;
2251 if (submit_bio_wait(WRITE, wbio) < 0)
2252 /* failure! */
2253 ok = rdev_set_badblocks(rdev, sector,
2254 sectors, 0)
2255 && ok;
2257 bio_put(wbio);
2258 sect_to_write -= sectors;
2259 sector += sectors;
2260 sectors = block_sectors;
2262 return ok;
2265 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2267 int m;
2268 int s = r1_bio->sectors;
2269 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2270 struct md_rdev *rdev = conf->mirrors[m].rdev;
2271 struct bio *bio = r1_bio->bios[m];
2272 if (bio->bi_end_io == NULL)
2273 continue;
2274 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2276 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2278 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2279 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2280 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2281 md_error(conf->mddev, rdev);
2284 put_buf(r1_bio);
2285 md_done_sync(conf->mddev, s, 1);
2288 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2290 int m;
2291 for (m = 0; m < conf->raid_disks * 2 ; m++)
2292 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2293 struct md_rdev *rdev = conf->mirrors[m].rdev;
2294 rdev_clear_badblocks(rdev,
2295 r1_bio->sector,
2296 r1_bio->sectors, 0);
2297 rdev_dec_pending(rdev, conf->mddev);
2298 } else if (r1_bio->bios[m] != NULL) {
2299 /* This drive got a write error. We need to
2300 * narrow down and record precise write
2301 * errors.
2303 if (!narrow_write_error(r1_bio, m)) {
2304 md_error(conf->mddev,
2305 conf->mirrors[m].rdev);
2306 /* an I/O failed, we can't clear the bitmap */
2307 set_bit(R1BIO_Degraded, &r1_bio->state);
2309 rdev_dec_pending(conf->mirrors[m].rdev,
2310 conf->mddev);
2312 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2313 close_write(r1_bio);
2314 raid_end_bio_io(r1_bio);
2317 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2319 int disk;
2320 int max_sectors;
2321 struct mddev *mddev = conf->mddev;
2322 struct bio *bio;
2323 char b[BDEVNAME_SIZE];
2324 struct md_rdev *rdev;
2326 clear_bit(R1BIO_ReadError, &r1_bio->state);
2327 /* we got a read error. Maybe the drive is bad. Maybe just
2328 * the block and we can fix it.
2329 * We freeze all other IO, and try reading the block from
2330 * other devices. When we find one, we re-write
2331 * and check it that fixes the read error.
2332 * This is all done synchronously while the array is
2333 * frozen
2335 if (mddev->ro == 0) {
2336 freeze_array(conf, 1);
2337 fix_read_error(conf, r1_bio->read_disk,
2338 r1_bio->sector, r1_bio->sectors);
2339 unfreeze_array(conf);
2340 } else
2341 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2342 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2344 bio = r1_bio->bios[r1_bio->read_disk];
2345 bdevname(bio->bi_bdev, b);
2346 read_more:
2347 disk = read_balance(conf, r1_bio, &max_sectors);
2348 if (disk == -1) {
2349 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2350 " read error for block %llu\n",
2351 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2352 raid_end_bio_io(r1_bio);
2353 } else {
2354 const unsigned long do_sync
2355 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2356 if (bio) {
2357 r1_bio->bios[r1_bio->read_disk] =
2358 mddev->ro ? IO_BLOCKED : NULL;
2359 bio_put(bio);
2361 r1_bio->read_disk = disk;
2362 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2363 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2364 max_sectors);
2365 r1_bio->bios[r1_bio->read_disk] = bio;
2366 rdev = conf->mirrors[disk].rdev;
2367 printk_ratelimited(KERN_ERR
2368 "md/raid1:%s: redirecting sector %llu"
2369 " to other mirror: %s\n",
2370 mdname(mddev),
2371 (unsigned long long)r1_bio->sector,
2372 bdevname(rdev->bdev, b));
2373 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2374 bio->bi_bdev = rdev->bdev;
2375 bio->bi_end_io = raid1_end_read_request;
2376 bio->bi_rw = READ | do_sync;
2377 bio->bi_private = r1_bio;
2378 if (max_sectors < r1_bio->sectors) {
2379 /* Drat - have to split this up more */
2380 struct bio *mbio = r1_bio->master_bio;
2381 int sectors_handled = (r1_bio->sector + max_sectors
2382 - mbio->bi_iter.bi_sector);
2383 r1_bio->sectors = max_sectors;
2384 spin_lock_irq(&conf->device_lock);
2385 if (mbio->bi_phys_segments == 0)
2386 mbio->bi_phys_segments = 2;
2387 else
2388 mbio->bi_phys_segments++;
2389 spin_unlock_irq(&conf->device_lock);
2390 generic_make_request(bio);
2391 bio = NULL;
2393 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2395 r1_bio->master_bio = mbio;
2396 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2397 r1_bio->state = 0;
2398 set_bit(R1BIO_ReadError, &r1_bio->state);
2399 r1_bio->mddev = mddev;
2400 r1_bio->sector = mbio->bi_iter.bi_sector +
2401 sectors_handled;
2403 goto read_more;
2404 } else
2405 generic_make_request(bio);
2409 static void raid1d(struct md_thread *thread)
2411 struct mddev *mddev = thread->mddev;
2412 struct r1bio *r1_bio;
2413 unsigned long flags;
2414 struct r1conf *conf = mddev->private;
2415 struct list_head *head = &conf->retry_list;
2416 struct blk_plug plug;
2418 md_check_recovery(mddev);
2420 blk_start_plug(&plug);
2421 for (;;) {
2423 flush_pending_writes(conf);
2425 spin_lock_irqsave(&conf->device_lock, flags);
2426 if (list_empty(head)) {
2427 spin_unlock_irqrestore(&conf->device_lock, flags);
2428 break;
2430 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2431 list_del(head->prev);
2432 conf->nr_queued--;
2433 spin_unlock_irqrestore(&conf->device_lock, flags);
2435 mddev = r1_bio->mddev;
2436 conf = mddev->private;
2437 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2438 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439 test_bit(R1BIO_WriteError, &r1_bio->state))
2440 handle_sync_write_finished(conf, r1_bio);
2441 else
2442 sync_request_write(mddev, r1_bio);
2443 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2444 test_bit(R1BIO_WriteError, &r1_bio->state))
2445 handle_write_finished(conf, r1_bio);
2446 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2447 handle_read_error(conf, r1_bio);
2448 else
2449 /* just a partial read to be scheduled from separate
2450 * context
2452 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2454 cond_resched();
2455 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2456 md_check_recovery(mddev);
2458 blk_finish_plug(&plug);
2461 static int init_resync(struct r1conf *conf)
2463 int buffs;
2465 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2466 BUG_ON(conf->r1buf_pool);
2467 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2468 conf->poolinfo);
2469 if (!conf->r1buf_pool)
2470 return -ENOMEM;
2471 conf->next_resync = 0;
2472 return 0;
2476 * perform a "sync" on one "block"
2478 * We need to make sure that no normal I/O request - particularly write
2479 * requests - conflict with active sync requests.
2481 * This is achieved by tracking pending requests and a 'barrier' concept
2482 * that can be installed to exclude normal IO requests.
2485 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2487 struct r1conf *conf = mddev->private;
2488 struct r1bio *r1_bio;
2489 struct bio *bio;
2490 sector_t max_sector, nr_sectors;
2491 int disk = -1;
2492 int i;
2493 int wonly = -1;
2494 int write_targets = 0, read_targets = 0;
2495 sector_t sync_blocks;
2496 int still_degraded = 0;
2497 int good_sectors = RESYNC_SECTORS;
2498 int min_bad = 0; /* number of sectors that are bad in all devices */
2500 if (!conf->r1buf_pool)
2501 if (init_resync(conf))
2502 return 0;
2504 max_sector = mddev->dev_sectors;
2505 if (sector_nr >= max_sector) {
2506 /* If we aborted, we need to abort the
2507 * sync on the 'current' bitmap chunk (there will
2508 * only be one in raid1 resync.
2509 * We can find the current addess in mddev->curr_resync
2511 if (mddev->curr_resync < max_sector) /* aborted */
2512 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2513 &sync_blocks, 1);
2514 else /* completed sync */
2515 conf->fullsync = 0;
2517 bitmap_close_sync(mddev->bitmap);
2518 close_sync(conf);
2519 return 0;
2522 if (mddev->bitmap == NULL &&
2523 mddev->recovery_cp == MaxSector &&
2524 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2525 conf->fullsync == 0) {
2526 *skipped = 1;
2527 return max_sector - sector_nr;
2529 /* before building a request, check if we can skip these blocks..
2530 * This call the bitmap_start_sync doesn't actually record anything
2532 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2533 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2534 /* We can skip this block, and probably several more */
2535 *skipped = 1;
2536 return sync_blocks;
2539 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2540 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542 raise_barrier(conf, sector_nr);
2544 rcu_read_lock();
2546 * If we get a correctably read error during resync or recovery,
2547 * we might want to read from a different device. So we
2548 * flag all drives that could conceivably be read from for READ,
2549 * and any others (which will be non-In_sync devices) for WRITE.
2550 * If a read fails, we try reading from something else for which READ
2551 * is OK.
2554 r1_bio->mddev = mddev;
2555 r1_bio->sector = sector_nr;
2556 r1_bio->state = 0;
2557 set_bit(R1BIO_IsSync, &r1_bio->state);
2559 for (i = 0; i < conf->raid_disks * 2; i++) {
2560 struct md_rdev *rdev;
2561 bio = r1_bio->bios[i];
2562 bio_reset(bio);
2564 rdev = rcu_dereference(conf->mirrors[i].rdev);
2565 if (rdev == NULL ||
2566 test_bit(Faulty, &rdev->flags)) {
2567 if (i < conf->raid_disks)
2568 still_degraded = 1;
2569 } else if (!test_bit(In_sync, &rdev->flags)) {
2570 bio->bi_rw = WRITE;
2571 bio->bi_end_io = end_sync_write;
2572 write_targets ++;
2573 } else {
2574 /* may need to read from here */
2575 sector_t first_bad = MaxSector;
2576 int bad_sectors;
2578 if (is_badblock(rdev, sector_nr, good_sectors,
2579 &first_bad, &bad_sectors)) {
2580 if (first_bad > sector_nr)
2581 good_sectors = first_bad - sector_nr;
2582 else {
2583 bad_sectors -= (sector_nr - first_bad);
2584 if (min_bad == 0 ||
2585 min_bad > bad_sectors)
2586 min_bad = bad_sectors;
2589 if (sector_nr < first_bad) {
2590 if (test_bit(WriteMostly, &rdev->flags)) {
2591 if (wonly < 0)
2592 wonly = i;
2593 } else {
2594 if (disk < 0)
2595 disk = i;
2597 bio->bi_rw = READ;
2598 bio->bi_end_io = end_sync_read;
2599 read_targets++;
2600 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2601 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2602 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 * The device is suitable for reading (InSync),
2605 * but has bad block(s) here. Let's try to correct them,
2606 * if we are doing resync or repair. Otherwise, leave
2607 * this device alone for this sync request.
2609 bio->bi_rw = WRITE;
2610 bio->bi_end_io = end_sync_write;
2611 write_targets++;
2614 if (bio->bi_end_io) {
2615 atomic_inc(&rdev->nr_pending);
2616 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2617 bio->bi_bdev = rdev->bdev;
2618 bio->bi_private = r1_bio;
2621 rcu_read_unlock();
2622 if (disk < 0)
2623 disk = wonly;
2624 r1_bio->read_disk = disk;
2626 if (read_targets == 0 && min_bad > 0) {
2627 /* These sectors are bad on all InSync devices, so we
2628 * need to mark them bad on all write targets
2630 int ok = 1;
2631 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2632 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2633 struct md_rdev *rdev = conf->mirrors[i].rdev;
2634 ok = rdev_set_badblocks(rdev, sector_nr,
2635 min_bad, 0
2636 ) && ok;
2638 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2639 *skipped = 1;
2640 put_buf(r1_bio);
2642 if (!ok) {
2643 /* Cannot record the badblocks, so need to
2644 * abort the resync.
2645 * If there are multiple read targets, could just
2646 * fail the really bad ones ???
2648 conf->recovery_disabled = mddev->recovery_disabled;
2649 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2650 return 0;
2651 } else
2652 return min_bad;
2655 if (min_bad > 0 && min_bad < good_sectors) {
2656 /* only resync enough to reach the next bad->good
2657 * transition */
2658 good_sectors = min_bad;
2661 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2662 /* extra read targets are also write targets */
2663 write_targets += read_targets-1;
2665 if (write_targets == 0 || read_targets == 0) {
2666 /* There is nowhere to write, so all non-sync
2667 * drives must be failed - so we are finished
2669 sector_t rv;
2670 if (min_bad > 0)
2671 max_sector = sector_nr + min_bad;
2672 rv = max_sector - sector_nr;
2673 *skipped = 1;
2674 put_buf(r1_bio);
2675 return rv;
2678 if (max_sector > mddev->resync_max)
2679 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2680 if (max_sector > sector_nr + good_sectors)
2681 max_sector = sector_nr + good_sectors;
2682 nr_sectors = 0;
2683 sync_blocks = 0;
2684 do {
2685 struct page *page;
2686 int len = PAGE_SIZE;
2687 if (sector_nr + (len>>9) > max_sector)
2688 len = (max_sector - sector_nr) << 9;
2689 if (len == 0)
2690 break;
2691 if (sync_blocks == 0) {
2692 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2693 &sync_blocks, still_degraded) &&
2694 !conf->fullsync &&
2695 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2696 break;
2697 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2698 if ((len >> 9) > sync_blocks)
2699 len = sync_blocks<<9;
2702 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2703 bio = r1_bio->bios[i];
2704 if (bio->bi_end_io) {
2705 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2706 if (bio_add_page(bio, page, len, 0) == 0) {
2707 /* stop here */
2708 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2709 while (i > 0) {
2710 i--;
2711 bio = r1_bio->bios[i];
2712 if (bio->bi_end_io==NULL)
2713 continue;
2714 /* remove last page from this bio */
2715 bio->bi_vcnt--;
2716 bio->bi_iter.bi_size -= len;
2717 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2719 goto bio_full;
2723 nr_sectors += len>>9;
2724 sector_nr += len>>9;
2725 sync_blocks -= (len>>9);
2726 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2727 bio_full:
2728 r1_bio->sectors = nr_sectors;
2730 /* For a user-requested sync, we read all readable devices and do a
2731 * compare
2733 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2734 atomic_set(&r1_bio->remaining, read_targets);
2735 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2736 bio = r1_bio->bios[i];
2737 if (bio->bi_end_io == end_sync_read) {
2738 read_targets--;
2739 md_sync_acct(bio->bi_bdev, nr_sectors);
2740 generic_make_request(bio);
2743 } else {
2744 atomic_set(&r1_bio->remaining, 1);
2745 bio = r1_bio->bios[r1_bio->read_disk];
2746 md_sync_acct(bio->bi_bdev, nr_sectors);
2747 generic_make_request(bio);
2750 return nr_sectors;
2753 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755 if (sectors)
2756 return sectors;
2758 return mddev->dev_sectors;
2761 static struct r1conf *setup_conf(struct mddev *mddev)
2763 struct r1conf *conf;
2764 int i;
2765 struct raid1_info *disk;
2766 struct md_rdev *rdev;
2767 int err = -ENOMEM;
2769 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2770 if (!conf)
2771 goto abort;
2773 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2774 * mddev->raid_disks * 2,
2775 GFP_KERNEL);
2776 if (!conf->mirrors)
2777 goto abort;
2779 conf->tmppage = alloc_page(GFP_KERNEL);
2780 if (!conf->tmppage)
2781 goto abort;
2783 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2784 if (!conf->poolinfo)
2785 goto abort;
2786 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2787 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2788 r1bio_pool_free,
2789 conf->poolinfo);
2790 if (!conf->r1bio_pool)
2791 goto abort;
2793 conf->poolinfo->mddev = mddev;
2795 err = -EINVAL;
2796 spin_lock_init(&conf->device_lock);
2797 rdev_for_each(rdev, mddev) {
2798 struct request_queue *q;
2799 int disk_idx = rdev->raid_disk;
2800 if (disk_idx >= mddev->raid_disks
2801 || disk_idx < 0)
2802 continue;
2803 if (test_bit(Replacement, &rdev->flags))
2804 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2805 else
2806 disk = conf->mirrors + disk_idx;
2808 if (disk->rdev)
2809 goto abort;
2810 disk->rdev = rdev;
2811 q = bdev_get_queue(rdev->bdev);
2812 if (q->merge_bvec_fn)
2813 mddev->merge_check_needed = 1;
2815 disk->head_position = 0;
2816 disk->seq_start = MaxSector;
2818 conf->raid_disks = mddev->raid_disks;
2819 conf->mddev = mddev;
2820 INIT_LIST_HEAD(&conf->retry_list);
2822 spin_lock_init(&conf->resync_lock);
2823 init_waitqueue_head(&conf->wait_barrier);
2825 bio_list_init(&conf->pending_bio_list);
2826 conf->pending_count = 0;
2827 conf->recovery_disabled = mddev->recovery_disabled - 1;
2829 conf->start_next_window = MaxSector;
2830 conf->current_window_requests = conf->next_window_requests = 0;
2832 err = -EIO;
2833 for (i = 0; i < conf->raid_disks * 2; i++) {
2835 disk = conf->mirrors + i;
2837 if (i < conf->raid_disks &&
2838 disk[conf->raid_disks].rdev) {
2839 /* This slot has a replacement. */
2840 if (!disk->rdev) {
2841 /* No original, just make the replacement
2842 * a recovering spare
2844 disk->rdev =
2845 disk[conf->raid_disks].rdev;
2846 disk[conf->raid_disks].rdev = NULL;
2847 } else if (!test_bit(In_sync, &disk->rdev->flags))
2848 /* Original is not in_sync - bad */
2849 goto abort;
2852 if (!disk->rdev ||
2853 !test_bit(In_sync, &disk->rdev->flags)) {
2854 disk->head_position = 0;
2855 if (disk->rdev &&
2856 (disk->rdev->saved_raid_disk < 0))
2857 conf->fullsync = 1;
2861 err = -ENOMEM;
2862 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2863 if (!conf->thread) {
2864 printk(KERN_ERR
2865 "md/raid1:%s: couldn't allocate thread\n",
2866 mdname(mddev));
2867 goto abort;
2870 return conf;
2872 abort:
2873 if (conf) {
2874 if (conf->r1bio_pool)
2875 mempool_destroy(conf->r1bio_pool);
2876 kfree(conf->mirrors);
2877 safe_put_page(conf->tmppage);
2878 kfree(conf->poolinfo);
2879 kfree(conf);
2881 return ERR_PTR(err);
2884 static void raid1_free(struct mddev *mddev, void *priv);
2885 static int run(struct mddev *mddev)
2887 struct r1conf *conf;
2888 int i;
2889 struct md_rdev *rdev;
2890 int ret;
2891 bool discard_supported = false;
2893 if (mddev->level != 1) {
2894 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2895 mdname(mddev), mddev->level);
2896 return -EIO;
2898 if (mddev->reshape_position != MaxSector) {
2899 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2900 mdname(mddev));
2901 return -EIO;
2904 * copy the already verified devices into our private RAID1
2905 * bookkeeping area. [whatever we allocate in run(),
2906 * should be freed in raid1_free()]
2908 if (mddev->private == NULL)
2909 conf = setup_conf(mddev);
2910 else
2911 conf = mddev->private;
2913 if (IS_ERR(conf))
2914 return PTR_ERR(conf);
2916 if (mddev->queue)
2917 blk_queue_max_write_same_sectors(mddev->queue, 0);
2919 rdev_for_each(rdev, mddev) {
2920 if (!mddev->gendisk)
2921 continue;
2922 disk_stack_limits(mddev->gendisk, rdev->bdev,
2923 rdev->data_offset << 9);
2924 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2925 discard_supported = true;
2928 mddev->degraded = 0;
2929 for (i=0; i < conf->raid_disks; i++)
2930 if (conf->mirrors[i].rdev == NULL ||
2931 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2932 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2933 mddev->degraded++;
2935 if (conf->raid_disks - mddev->degraded == 1)
2936 mddev->recovery_cp = MaxSector;
2938 if (mddev->recovery_cp != MaxSector)
2939 printk(KERN_NOTICE "md/raid1:%s: not clean"
2940 " -- starting background reconstruction\n",
2941 mdname(mddev));
2942 printk(KERN_INFO
2943 "md/raid1:%s: active with %d out of %d mirrors\n",
2944 mdname(mddev), mddev->raid_disks - mddev->degraded,
2945 mddev->raid_disks);
2948 * Ok, everything is just fine now
2950 mddev->thread = conf->thread;
2951 conf->thread = NULL;
2952 mddev->private = conf;
2954 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956 if (mddev->queue) {
2957 if (discard_supported)
2958 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2959 mddev->queue);
2960 else
2961 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2962 mddev->queue);
2965 ret = md_integrity_register(mddev);
2966 if (ret) {
2967 md_unregister_thread(&mddev->thread);
2968 raid1_free(mddev, conf);
2970 return ret;
2973 static void raid1_free(struct mddev *mddev, void *priv)
2975 struct r1conf *conf = priv;
2977 if (conf->r1bio_pool)
2978 mempool_destroy(conf->r1bio_pool);
2979 kfree(conf->mirrors);
2980 safe_put_page(conf->tmppage);
2981 kfree(conf->poolinfo);
2982 kfree(conf);
2985 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2987 /* no resync is happening, and there is enough space
2988 * on all devices, so we can resize.
2989 * We need to make sure resync covers any new space.
2990 * If the array is shrinking we should possibly wait until
2991 * any io in the removed space completes, but it hardly seems
2992 * worth it.
2994 sector_t newsize = raid1_size(mddev, sectors, 0);
2995 if (mddev->external_size &&
2996 mddev->array_sectors > newsize)
2997 return -EINVAL;
2998 if (mddev->bitmap) {
2999 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3000 if (ret)
3001 return ret;
3003 md_set_array_sectors(mddev, newsize);
3004 set_capacity(mddev->gendisk, mddev->array_sectors);
3005 revalidate_disk(mddev->gendisk);
3006 if (sectors > mddev->dev_sectors &&
3007 mddev->recovery_cp > mddev->dev_sectors) {
3008 mddev->recovery_cp = mddev->dev_sectors;
3009 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3011 mddev->dev_sectors = sectors;
3012 mddev->resync_max_sectors = sectors;
3013 return 0;
3016 static int raid1_reshape(struct mddev *mddev)
3018 /* We need to:
3019 * 1/ resize the r1bio_pool
3020 * 2/ resize conf->mirrors
3022 * We allocate a new r1bio_pool if we can.
3023 * Then raise a device barrier and wait until all IO stops.
3024 * Then resize conf->mirrors and swap in the new r1bio pool.
3026 * At the same time, we "pack" the devices so that all the missing
3027 * devices have the higher raid_disk numbers.
3029 mempool_t *newpool, *oldpool;
3030 struct pool_info *newpoolinfo;
3031 struct raid1_info *newmirrors;
3032 struct r1conf *conf = mddev->private;
3033 int cnt, raid_disks;
3034 unsigned long flags;
3035 int d, d2, err;
3037 /* Cannot change chunk_size, layout, or level */
3038 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3039 mddev->layout != mddev->new_layout ||
3040 mddev->level != mddev->new_level) {
3041 mddev->new_chunk_sectors = mddev->chunk_sectors;
3042 mddev->new_layout = mddev->layout;
3043 mddev->new_level = mddev->level;
3044 return -EINVAL;
3047 err = md_allow_write(mddev);
3048 if (err)
3049 return err;
3051 raid_disks = mddev->raid_disks + mddev->delta_disks;
3053 if (raid_disks < conf->raid_disks) {
3054 cnt=0;
3055 for (d= 0; d < conf->raid_disks; d++)
3056 if (conf->mirrors[d].rdev)
3057 cnt++;
3058 if (cnt > raid_disks)
3059 return -EBUSY;
3062 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3063 if (!newpoolinfo)
3064 return -ENOMEM;
3065 newpoolinfo->mddev = mddev;
3066 newpoolinfo->raid_disks = raid_disks * 2;
3068 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3069 r1bio_pool_free, newpoolinfo);
3070 if (!newpool) {
3071 kfree(newpoolinfo);
3072 return -ENOMEM;
3074 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3075 GFP_KERNEL);
3076 if (!newmirrors) {
3077 kfree(newpoolinfo);
3078 mempool_destroy(newpool);
3079 return -ENOMEM;
3082 freeze_array(conf, 0);
3084 /* ok, everything is stopped */
3085 oldpool = conf->r1bio_pool;
3086 conf->r1bio_pool = newpool;
3088 for (d = d2 = 0; d < conf->raid_disks; d++) {
3089 struct md_rdev *rdev = conf->mirrors[d].rdev;
3090 if (rdev && rdev->raid_disk != d2) {
3091 sysfs_unlink_rdev(mddev, rdev);
3092 rdev->raid_disk = d2;
3093 sysfs_unlink_rdev(mddev, rdev);
3094 if (sysfs_link_rdev(mddev, rdev))
3095 printk(KERN_WARNING
3096 "md/raid1:%s: cannot register rd%d\n",
3097 mdname(mddev), rdev->raid_disk);
3099 if (rdev)
3100 newmirrors[d2++].rdev = rdev;
3102 kfree(conf->mirrors);
3103 conf->mirrors = newmirrors;
3104 kfree(conf->poolinfo);
3105 conf->poolinfo = newpoolinfo;
3107 spin_lock_irqsave(&conf->device_lock, flags);
3108 mddev->degraded += (raid_disks - conf->raid_disks);
3109 spin_unlock_irqrestore(&conf->device_lock, flags);
3110 conf->raid_disks = mddev->raid_disks = raid_disks;
3111 mddev->delta_disks = 0;
3113 unfreeze_array(conf);
3115 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3116 md_wakeup_thread(mddev->thread);
3118 mempool_destroy(oldpool);
3119 return 0;
3122 static void raid1_quiesce(struct mddev *mddev, int state)
3124 struct r1conf *conf = mddev->private;
3126 switch(state) {
3127 case 2: /* wake for suspend */
3128 wake_up(&conf->wait_barrier);
3129 break;
3130 case 1:
3131 freeze_array(conf, 0);
3132 break;
3133 case 0:
3134 unfreeze_array(conf);
3135 break;
3139 static void *raid1_takeover(struct mddev *mddev)
3141 /* raid1 can take over:
3142 * raid5 with 2 devices, any layout or chunk size
3144 if (mddev->level == 5 && mddev->raid_disks == 2) {
3145 struct r1conf *conf;
3146 mddev->new_level = 1;
3147 mddev->new_layout = 0;
3148 mddev->new_chunk_sectors = 0;
3149 conf = setup_conf(mddev);
3150 if (!IS_ERR(conf))
3151 /* Array must appear to be quiesced */
3152 conf->array_frozen = 1;
3153 return conf;
3155 return ERR_PTR(-EINVAL);
3158 static struct md_personality raid1_personality =
3160 .name = "raid1",
3161 .level = 1,
3162 .owner = THIS_MODULE,
3163 .make_request = make_request,
3164 .run = run,
3165 .free = raid1_free,
3166 .status = status,
3167 .error_handler = error,
3168 .hot_add_disk = raid1_add_disk,
3169 .hot_remove_disk= raid1_remove_disk,
3170 .spare_active = raid1_spare_active,
3171 .sync_request = sync_request,
3172 .resize = raid1_resize,
3173 .size = raid1_size,
3174 .check_reshape = raid1_reshape,
3175 .quiesce = raid1_quiesce,
3176 .takeover = raid1_takeover,
3177 .congested = raid1_congested,
3178 .mergeable_bvec = raid1_mergeable_bvec,
3181 static int __init raid_init(void)
3183 return register_md_personality(&raid1_personality);
3186 static void raid_exit(void)
3188 unregister_md_personality(&raid1_personality);
3191 module_init(raid_init);
3192 module_exit(raid_exit);
3193 MODULE_LICENSE("GPL");
3194 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3195 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3196 MODULE_ALIAS("md-raid1");
3197 MODULE_ALIAS("md-level-1");
3199 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);