gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / soc / ti / knav_qmss_queue.c
blob6d8646db52cca164fa09c10faa5c59761e75ab2f
1 /*
2 * Keystone Queue Manager subsystem driver
4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5 * Authors: Sandeep Nair <sandeep_n@ti.com>
6 * Cyril Chemparathy <cyril@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
41 #include "knav_qmss.h"
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX 0
48 #define KNAV_QUEUE_STATUS_REG_INDEX 1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
50 #define KNAV_QUEUE_REGION_REG_INDEX 3
51 #define KNAV_QUEUE_PUSH_REG_INDEX 4
52 #define KNAV_QUEUE_POP_REG_INDEX 5
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
60 #define knav_queue_idx_to_inst(kdev, idx) \
61 (kdev->instances + (idx << kdev->inst_shift))
63 #define for_each_handle_rcu(qh, inst) \
64 list_for_each_entry_rcu(qh, &inst->handles, list)
66 #define for_each_instance(idx, inst, kdev) \
67 for (idx = 0, inst = kdev->instances; \
68 idx < (kdev)->num_queues_in_use; \
69 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
71 /**
72 * knav_queue_notify: qmss queue notfier call
74 * @inst: qmss queue instance like accumulator
76 void knav_queue_notify(struct knav_queue_inst *inst)
78 struct knav_queue *qh;
80 if (!inst)
81 return;
83 rcu_read_lock();
84 for_each_handle_rcu(qh, inst) {
85 if (atomic_read(&qh->notifier_enabled) <= 0)
86 continue;
87 if (WARN_ON(!qh->notifier_fn))
88 continue;
89 atomic_inc(&qh->stats.notifies);
90 qh->notifier_fn(qh->notifier_fn_arg);
92 rcu_read_unlock();
94 EXPORT_SYMBOL_GPL(knav_queue_notify);
96 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
98 struct knav_queue_inst *inst = _instdata;
100 knav_queue_notify(inst);
101 return IRQ_HANDLED;
104 static int knav_queue_setup_irq(struct knav_range_info *range,
105 struct knav_queue_inst *inst)
107 unsigned queue = inst->id - range->queue_base;
108 unsigned long cpu_map;
109 int ret = 0, irq;
111 if (range->flags & RANGE_HAS_IRQ) {
112 irq = range->irqs[queue].irq;
113 cpu_map = range->irqs[queue].cpu_map;
114 ret = request_irq(irq, knav_queue_int_handler, 0,
115 inst->irq_name, inst);
116 if (ret)
117 return ret;
118 disable_irq(irq);
119 if (cpu_map) {
120 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
121 if (ret) {
122 dev_warn(range->kdev->dev,
123 "Failed to set IRQ affinity\n");
124 return ret;
128 return ret;
131 static void knav_queue_free_irq(struct knav_queue_inst *inst)
133 struct knav_range_info *range = inst->range;
134 unsigned queue = inst->id - inst->range->queue_base;
135 int irq;
137 if (range->flags & RANGE_HAS_IRQ) {
138 irq = range->irqs[queue].irq;
139 irq_set_affinity_hint(irq, NULL);
140 free_irq(irq, inst);
144 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
146 return !list_empty(&inst->handles);
149 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
151 return inst->range->flags & RANGE_RESERVED;
154 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
156 struct knav_queue *tmp;
158 rcu_read_lock();
159 for_each_handle_rcu(tmp, inst) {
160 if (tmp->flags & KNAV_QUEUE_SHARED) {
161 rcu_read_unlock();
162 return true;
165 rcu_read_unlock();
166 return false;
169 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
170 unsigned type)
172 if ((type == KNAV_QUEUE_QPEND) &&
173 (inst->range->flags & RANGE_HAS_IRQ)) {
174 return true;
175 } else if ((type == KNAV_QUEUE_ACC) &&
176 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
177 return true;
178 } else if ((type == KNAV_QUEUE_GP) &&
179 !(inst->range->flags &
180 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
181 return true;
183 return false;
186 static inline struct knav_queue_inst *
187 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
189 struct knav_queue_inst *inst;
190 int idx;
192 for_each_instance(idx, inst, kdev) {
193 if (inst->id == id)
194 return inst;
196 return NULL;
199 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
201 if (kdev->base_id <= id &&
202 kdev->base_id + kdev->num_queues > id) {
203 id -= kdev->base_id;
204 return knav_queue_match_id_to_inst(kdev, id);
206 return NULL;
209 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
210 const char *name, unsigned flags)
212 struct knav_queue *qh;
213 unsigned id;
214 int ret = 0;
216 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
217 if (!qh)
218 return ERR_PTR(-ENOMEM);
220 qh->flags = flags;
221 qh->inst = inst;
222 id = inst->id - inst->qmgr->start_queue;
223 qh->reg_push = &inst->qmgr->reg_push[id];
224 qh->reg_pop = &inst->qmgr->reg_pop[id];
225 qh->reg_peek = &inst->qmgr->reg_peek[id];
227 /* first opener? */
228 if (!knav_queue_is_busy(inst)) {
229 struct knav_range_info *range = inst->range;
231 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
232 if (range->ops && range->ops->open_queue)
233 ret = range->ops->open_queue(range, inst, flags);
235 if (ret) {
236 devm_kfree(inst->kdev->dev, qh);
237 return ERR_PTR(ret);
240 list_add_tail_rcu(&qh->list, &inst->handles);
241 return qh;
244 static struct knav_queue *
245 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
247 struct knav_queue_inst *inst;
248 struct knav_queue *qh;
250 mutex_lock(&knav_dev_lock);
252 qh = ERR_PTR(-ENODEV);
253 inst = knav_queue_find_by_id(id);
254 if (!inst)
255 goto unlock_ret;
257 qh = ERR_PTR(-EEXIST);
258 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
259 goto unlock_ret;
261 qh = ERR_PTR(-EBUSY);
262 if ((flags & KNAV_QUEUE_SHARED) &&
263 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
264 goto unlock_ret;
266 qh = __knav_queue_open(inst, name, flags);
268 unlock_ret:
269 mutex_unlock(&knav_dev_lock);
271 return qh;
274 static struct knav_queue *knav_queue_open_by_type(const char *name,
275 unsigned type, unsigned flags)
277 struct knav_queue_inst *inst;
278 struct knav_queue *qh = ERR_PTR(-EINVAL);
279 int idx;
281 mutex_lock(&knav_dev_lock);
283 for_each_instance(idx, inst, kdev) {
284 if (knav_queue_is_reserved(inst))
285 continue;
286 if (!knav_queue_match_type(inst, type))
287 continue;
288 if (knav_queue_is_busy(inst))
289 continue;
290 qh = __knav_queue_open(inst, name, flags);
291 goto unlock_ret;
294 unlock_ret:
295 mutex_unlock(&knav_dev_lock);
296 return qh;
299 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
301 struct knav_range_info *range = inst->range;
303 if (range->ops && range->ops->set_notify)
304 range->ops->set_notify(range, inst, enabled);
307 static int knav_queue_enable_notifier(struct knav_queue *qh)
309 struct knav_queue_inst *inst = qh->inst;
310 bool first;
312 if (WARN_ON(!qh->notifier_fn))
313 return -EINVAL;
315 /* Adjust the per handle notifier count */
316 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
317 if (!first)
318 return 0; /* nothing to do */
320 /* Now adjust the per instance notifier count */
321 first = (atomic_inc_return(&inst->num_notifiers) == 1);
322 if (first)
323 knav_queue_set_notify(inst, true);
325 return 0;
328 static int knav_queue_disable_notifier(struct knav_queue *qh)
330 struct knav_queue_inst *inst = qh->inst;
331 bool last;
333 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
334 if (!last)
335 return 0; /* nothing to do */
337 last = (atomic_dec_return(&inst->num_notifiers) == 0);
338 if (last)
339 knav_queue_set_notify(inst, false);
341 return 0;
344 static int knav_queue_set_notifier(struct knav_queue *qh,
345 struct knav_queue_notify_config *cfg)
347 knav_queue_notify_fn old_fn = qh->notifier_fn;
349 if (!cfg)
350 return -EINVAL;
352 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
353 return -ENOTSUPP;
355 if (!cfg->fn && old_fn)
356 knav_queue_disable_notifier(qh);
358 qh->notifier_fn = cfg->fn;
359 qh->notifier_fn_arg = cfg->fn_arg;
361 if (cfg->fn && !old_fn)
362 knav_queue_enable_notifier(qh);
364 return 0;
367 static int knav_gp_set_notify(struct knav_range_info *range,
368 struct knav_queue_inst *inst,
369 bool enabled)
371 unsigned queue;
373 if (range->flags & RANGE_HAS_IRQ) {
374 queue = inst->id - range->queue_base;
375 if (enabled)
376 enable_irq(range->irqs[queue].irq);
377 else
378 disable_irq_nosync(range->irqs[queue].irq);
380 return 0;
383 static int knav_gp_open_queue(struct knav_range_info *range,
384 struct knav_queue_inst *inst, unsigned flags)
386 return knav_queue_setup_irq(range, inst);
389 static int knav_gp_close_queue(struct knav_range_info *range,
390 struct knav_queue_inst *inst)
392 knav_queue_free_irq(inst);
393 return 0;
396 struct knav_range_ops knav_gp_range_ops = {
397 .set_notify = knav_gp_set_notify,
398 .open_queue = knav_gp_open_queue,
399 .close_queue = knav_gp_close_queue,
403 static int knav_queue_get_count(void *qhandle)
405 struct knav_queue *qh = qhandle;
406 struct knav_queue_inst *inst = qh->inst;
408 return readl_relaxed(&qh->reg_peek[0].entry_count) +
409 atomic_read(&inst->desc_count);
412 static void knav_queue_debug_show_instance(struct seq_file *s,
413 struct knav_queue_inst *inst)
415 struct knav_device *kdev = inst->kdev;
416 struct knav_queue *qh;
418 if (!knav_queue_is_busy(inst))
419 return;
421 seq_printf(s, "\tqueue id %d (%s)\n",
422 kdev->base_id + inst->id, inst->name);
423 for_each_handle_rcu(qh, inst) {
424 seq_printf(s, "\t\thandle %p: ", qh);
425 seq_printf(s, "pushes %8d, ",
426 atomic_read(&qh->stats.pushes));
427 seq_printf(s, "pops %8d, ",
428 atomic_read(&qh->stats.pops));
429 seq_printf(s, "count %8d, ",
430 knav_queue_get_count(qh));
431 seq_printf(s, "notifies %8d, ",
432 atomic_read(&qh->stats.notifies));
433 seq_printf(s, "push errors %8d, ",
434 atomic_read(&qh->stats.push_errors));
435 seq_printf(s, "pop errors %8d\n",
436 atomic_read(&qh->stats.pop_errors));
440 static int knav_queue_debug_show(struct seq_file *s, void *v)
442 struct knav_queue_inst *inst;
443 int idx;
445 mutex_lock(&knav_dev_lock);
446 seq_printf(s, "%s: %u-%u\n",
447 dev_name(kdev->dev), kdev->base_id,
448 kdev->base_id + kdev->num_queues - 1);
449 for_each_instance(idx, inst, kdev)
450 knav_queue_debug_show_instance(s, inst);
451 mutex_unlock(&knav_dev_lock);
453 return 0;
456 static int knav_queue_debug_open(struct inode *inode, struct file *file)
458 return single_open(file, knav_queue_debug_show, NULL);
461 static const struct file_operations knav_queue_debug_ops = {
462 .open = knav_queue_debug_open,
463 .read = seq_read,
464 .llseek = seq_lseek,
465 .release = single_release,
468 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
469 u32 flags)
471 unsigned long end;
472 u32 val = 0;
474 end = jiffies + msecs_to_jiffies(timeout);
475 while (time_after(end, jiffies)) {
476 val = readl_relaxed(addr);
477 if (flags)
478 val &= flags;
479 if (!val)
480 break;
481 cpu_relax();
483 return val ? -ETIMEDOUT : 0;
487 static int knav_queue_flush(struct knav_queue *qh)
489 struct knav_queue_inst *inst = qh->inst;
490 unsigned id = inst->id - inst->qmgr->start_queue;
492 atomic_set(&inst->desc_count, 0);
493 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
494 return 0;
498 * knav_queue_open() - open a hardware queue
499 * @name - name to give the queue handle
500 * @id - desired queue number if any or specifes the type
501 * of queue
502 * @flags - the following flags are applicable to queues:
503 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
504 * exclusive by default.
505 * Subsequent attempts to open a shared queue should
506 * also have this flag.
508 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
509 * to check the returned value for error codes.
511 void *knav_queue_open(const char *name, unsigned id,
512 unsigned flags)
514 struct knav_queue *qh = ERR_PTR(-EINVAL);
516 switch (id) {
517 case KNAV_QUEUE_QPEND:
518 case KNAV_QUEUE_ACC:
519 case KNAV_QUEUE_GP:
520 qh = knav_queue_open_by_type(name, id, flags);
521 break;
523 default:
524 qh = knav_queue_open_by_id(name, id, flags);
525 break;
527 return qh;
529 EXPORT_SYMBOL_GPL(knav_queue_open);
532 * knav_queue_close() - close a hardware queue handle
533 * @qh - handle to close
535 void knav_queue_close(void *qhandle)
537 struct knav_queue *qh = qhandle;
538 struct knav_queue_inst *inst = qh->inst;
540 while (atomic_read(&qh->notifier_enabled) > 0)
541 knav_queue_disable_notifier(qh);
543 mutex_lock(&knav_dev_lock);
544 list_del_rcu(&qh->list);
545 mutex_unlock(&knav_dev_lock);
546 synchronize_rcu();
547 if (!knav_queue_is_busy(inst)) {
548 struct knav_range_info *range = inst->range;
550 if (range->ops && range->ops->close_queue)
551 range->ops->close_queue(range, inst);
553 devm_kfree(inst->kdev->dev, qh);
555 EXPORT_SYMBOL_GPL(knav_queue_close);
558 * knav_queue_device_control() - Perform control operations on a queue
559 * @qh - queue handle
560 * @cmd - control commands
561 * @arg - command argument
563 * Returns 0 on success, errno otherwise.
565 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
566 unsigned long arg)
568 struct knav_queue *qh = qhandle;
569 struct knav_queue_notify_config *cfg;
570 int ret;
572 switch ((int)cmd) {
573 case KNAV_QUEUE_GET_ID:
574 ret = qh->inst->kdev->base_id + qh->inst->id;
575 break;
577 case KNAV_QUEUE_FLUSH:
578 ret = knav_queue_flush(qh);
579 break;
581 case KNAV_QUEUE_SET_NOTIFIER:
582 cfg = (void *)arg;
583 ret = knav_queue_set_notifier(qh, cfg);
584 break;
586 case KNAV_QUEUE_ENABLE_NOTIFY:
587 ret = knav_queue_enable_notifier(qh);
588 break;
590 case KNAV_QUEUE_DISABLE_NOTIFY:
591 ret = knav_queue_disable_notifier(qh);
592 break;
594 case KNAV_QUEUE_GET_COUNT:
595 ret = knav_queue_get_count(qh);
596 break;
598 default:
599 ret = -ENOTSUPP;
600 break;
602 return ret;
604 EXPORT_SYMBOL_GPL(knav_queue_device_control);
609 * knav_queue_push() - push data (or descriptor) to the tail of a queue
610 * @qh - hardware queue handle
611 * @data - data to push
612 * @size - size of data to push
613 * @flags - can be used to pass additional information
615 * Returns 0 on success, errno otherwise.
617 int knav_queue_push(void *qhandle, dma_addr_t dma,
618 unsigned size, unsigned flags)
620 struct knav_queue *qh = qhandle;
621 u32 val;
623 val = (u32)dma | ((size / 16) - 1);
624 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
626 atomic_inc(&qh->stats.pushes);
627 return 0;
629 EXPORT_SYMBOL_GPL(knav_queue_push);
632 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
633 * @qh - hardware queue handle
634 * @size - (optional) size of the data pop'ed.
636 * Returns a DMA address on success, 0 on failure.
638 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
640 struct knav_queue *qh = qhandle;
641 struct knav_queue_inst *inst = qh->inst;
642 dma_addr_t dma;
643 u32 val, idx;
645 /* are we accumulated? */
646 if (inst->descs) {
647 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
648 atomic_inc(&inst->desc_count);
649 return 0;
651 idx = atomic_inc_return(&inst->desc_head);
652 idx &= ACC_DESCS_MASK;
653 val = inst->descs[idx];
654 } else {
655 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
656 if (unlikely(!val))
657 return 0;
660 dma = val & DESC_PTR_MASK;
661 if (size)
662 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
664 atomic_inc(&qh->stats.pops);
665 return dma;
667 EXPORT_SYMBOL_GPL(knav_queue_pop);
669 /* carve out descriptors and push into queue */
670 static void kdesc_fill_pool(struct knav_pool *pool)
672 struct knav_region *region;
673 int i;
675 region = pool->region;
676 pool->desc_size = region->desc_size;
677 for (i = 0; i < pool->num_desc; i++) {
678 int index = pool->region_offset + i;
679 dma_addr_t dma_addr;
680 unsigned dma_size;
681 dma_addr = region->dma_start + (region->desc_size * index);
682 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
683 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
684 DMA_TO_DEVICE);
685 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
689 /* pop out descriptors and close the queue */
690 static void kdesc_empty_pool(struct knav_pool *pool)
692 dma_addr_t dma;
693 unsigned size;
694 void *desc;
695 int i;
697 if (!pool->queue)
698 return;
700 for (i = 0;; i++) {
701 dma = knav_queue_pop(pool->queue, &size);
702 if (!dma)
703 break;
704 desc = knav_pool_desc_dma_to_virt(pool, dma);
705 if (!desc) {
706 dev_dbg(pool->kdev->dev,
707 "couldn't unmap desc, continuing\n");
708 continue;
711 WARN_ON(i != pool->num_desc);
712 knav_queue_close(pool->queue);
716 /* Get the DMA address of a descriptor */
717 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
719 struct knav_pool *pool = ph;
720 return pool->region->dma_start + (virt - pool->region->virt_start);
722 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
724 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
726 struct knav_pool *pool = ph;
727 return pool->region->virt_start + (dma - pool->region->dma_start);
729 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
732 * knav_pool_create() - Create a pool of descriptors
733 * @name - name to give the pool handle
734 * @num_desc - numbers of descriptors in the pool
735 * @region_id - QMSS region id from which the descriptors are to be
736 * allocated.
738 * Returns a pool handle on success.
739 * Use IS_ERR_OR_NULL() to identify error values on return.
741 void *knav_pool_create(const char *name,
742 int num_desc, int region_id)
744 struct knav_region *reg_itr, *region = NULL;
745 struct knav_pool *pool, *pi;
746 struct list_head *node;
747 unsigned last_offset;
748 bool slot_found;
749 int ret;
751 if (!kdev->dev)
752 return ERR_PTR(-ENODEV);
754 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
755 if (!pool) {
756 dev_err(kdev->dev, "out of memory allocating pool\n");
757 return ERR_PTR(-ENOMEM);
760 for_each_region(kdev, reg_itr) {
761 if (reg_itr->id != region_id)
762 continue;
763 region = reg_itr;
764 break;
767 if (!region) {
768 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
769 ret = -EINVAL;
770 goto err;
773 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
774 if (IS_ERR_OR_NULL(pool->queue)) {
775 dev_err(kdev->dev,
776 "failed to open queue for pool(%s), error %ld\n",
777 name, PTR_ERR(pool->queue));
778 ret = PTR_ERR(pool->queue);
779 goto err;
782 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
783 pool->kdev = kdev;
784 pool->dev = kdev->dev;
786 mutex_lock(&knav_dev_lock);
788 if (num_desc > (region->num_desc - region->used_desc)) {
789 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
790 region_id, name);
791 ret = -ENOMEM;
792 goto err_unlock;
795 /* Region maintains a sorted (by region offset) list of pools
796 * use the first free slot which is large enough to accomodate
797 * the request
799 last_offset = 0;
800 slot_found = false;
801 node = &region->pools;
802 list_for_each_entry(pi, &region->pools, region_inst) {
803 if ((pi->region_offset - last_offset) >= num_desc) {
804 slot_found = true;
805 break;
807 last_offset = pi->region_offset + pi->num_desc;
809 node = &pi->region_inst;
811 if (slot_found) {
812 pool->region = region;
813 pool->num_desc = num_desc;
814 pool->region_offset = last_offset;
815 region->used_desc += num_desc;
816 list_add_tail(&pool->list, &kdev->pools);
817 list_add_tail(&pool->region_inst, node);
818 } else {
819 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
820 name, region_id);
821 ret = -ENOMEM;
822 goto err_unlock;
825 mutex_unlock(&knav_dev_lock);
826 kdesc_fill_pool(pool);
827 return pool;
829 err_unlock:
830 mutex_unlock(&knav_dev_lock);
831 err:
832 kfree(pool->name);
833 devm_kfree(kdev->dev, pool);
834 return ERR_PTR(ret);
836 EXPORT_SYMBOL_GPL(knav_pool_create);
839 * knav_pool_destroy() - Free a pool of descriptors
840 * @pool - pool handle
842 void knav_pool_destroy(void *ph)
844 struct knav_pool *pool = ph;
846 if (!pool)
847 return;
849 if (!pool->region)
850 return;
852 kdesc_empty_pool(pool);
853 mutex_lock(&knav_dev_lock);
855 pool->region->used_desc -= pool->num_desc;
856 list_del(&pool->region_inst);
857 list_del(&pool->list);
859 mutex_unlock(&knav_dev_lock);
860 kfree(pool->name);
861 devm_kfree(kdev->dev, pool);
863 EXPORT_SYMBOL_GPL(knav_pool_destroy);
867 * knav_pool_desc_get() - Get a descriptor from the pool
868 * @pool - pool handle
870 * Returns descriptor from the pool.
872 void *knav_pool_desc_get(void *ph)
874 struct knav_pool *pool = ph;
875 dma_addr_t dma;
876 unsigned size;
877 void *data;
879 dma = knav_queue_pop(pool->queue, &size);
880 if (unlikely(!dma))
881 return ERR_PTR(-ENOMEM);
882 data = knav_pool_desc_dma_to_virt(pool, dma);
883 return data;
885 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
888 * knav_pool_desc_put() - return a descriptor to the pool
889 * @pool - pool handle
891 void knav_pool_desc_put(void *ph, void *desc)
893 struct knav_pool *pool = ph;
894 dma_addr_t dma;
895 dma = knav_pool_desc_virt_to_dma(pool, desc);
896 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
898 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
901 * knav_pool_desc_map() - Map descriptor for DMA transfer
902 * @pool - pool handle
903 * @desc - address of descriptor to map
904 * @size - size of descriptor to map
905 * @dma - DMA address return pointer
906 * @dma_sz - adjusted return pointer
908 * Returns 0 on success, errno otherwise.
910 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
911 dma_addr_t *dma, unsigned *dma_sz)
913 struct knav_pool *pool = ph;
914 *dma = knav_pool_desc_virt_to_dma(pool, desc);
915 size = min(size, pool->region->desc_size);
916 size = ALIGN(size, SMP_CACHE_BYTES);
917 *dma_sz = size;
918 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
920 /* Ensure the descriptor reaches to the memory */
921 __iowmb();
923 return 0;
925 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
928 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
929 * @pool - pool handle
930 * @dma - DMA address of descriptor to unmap
931 * @dma_sz - size of descriptor to unmap
933 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
934 * error values on return.
936 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
938 struct knav_pool *pool = ph;
939 unsigned desc_sz;
940 void *desc;
942 desc_sz = min(dma_sz, pool->region->desc_size);
943 desc = knav_pool_desc_dma_to_virt(pool, dma);
944 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
945 prefetch(desc);
946 return desc;
948 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
951 * knav_pool_count() - Get the number of descriptors in pool.
952 * @pool - pool handle
953 * Returns number of elements in the pool.
955 int knav_pool_count(void *ph)
957 struct knav_pool *pool = ph;
958 return knav_queue_get_count(pool->queue);
960 EXPORT_SYMBOL_GPL(knav_pool_count);
962 static void knav_queue_setup_region(struct knav_device *kdev,
963 struct knav_region *region)
965 unsigned hw_num_desc, hw_desc_size, size;
966 struct knav_reg_region __iomem *regs;
967 struct knav_qmgr_info *qmgr;
968 struct knav_pool *pool;
969 int id = region->id;
970 struct page *page;
972 /* unused region? */
973 if (!region->num_desc) {
974 dev_warn(kdev->dev, "unused region %s\n", region->name);
975 return;
978 /* get hardware descriptor value */
979 hw_num_desc = ilog2(region->num_desc - 1) + 1;
981 /* did we force fit ourselves into nothingness? */
982 if (region->num_desc < 32) {
983 region->num_desc = 0;
984 dev_warn(kdev->dev, "too few descriptors in region %s\n",
985 region->name);
986 return;
989 size = region->num_desc * region->desc_size;
990 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
991 GFP_DMA32);
992 if (!region->virt_start) {
993 region->num_desc = 0;
994 dev_err(kdev->dev, "memory alloc failed for region %s\n",
995 region->name);
996 return;
998 region->virt_end = region->virt_start + size;
999 page = virt_to_page(region->virt_start);
1001 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1002 DMA_BIDIRECTIONAL);
1003 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1004 dev_err(kdev->dev, "dma map failed for region %s\n",
1005 region->name);
1006 goto fail;
1008 region->dma_end = region->dma_start + size;
1010 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1011 if (!pool) {
1012 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1013 goto fail;
1015 pool->num_desc = 0;
1016 pool->region_offset = region->num_desc;
1017 list_add(&pool->region_inst, &region->pools);
1019 dev_dbg(kdev->dev,
1020 "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1021 region->name, id, region->desc_size, region->num_desc,
1022 region->link_index, region->dma_start, region->dma_end,
1023 region->virt_start, region->virt_end);
1025 hw_desc_size = (region->desc_size / 16) - 1;
1026 hw_num_desc -= 5;
1028 for_each_qmgr(kdev, qmgr) {
1029 regs = qmgr->reg_region + id;
1030 writel_relaxed(region->dma_start, &regs->base);
1031 writel_relaxed(region->link_index, &regs->start_index);
1032 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1033 &regs->size_count);
1035 return;
1037 fail:
1038 if (region->dma_start)
1039 dma_unmap_page(kdev->dev, region->dma_start, size,
1040 DMA_BIDIRECTIONAL);
1041 if (region->virt_start)
1042 free_pages_exact(region->virt_start, size);
1043 region->num_desc = 0;
1044 return;
1047 static const char *knav_queue_find_name(struct device_node *node)
1049 const char *name;
1051 if (of_property_read_string(node, "label", &name) < 0)
1052 name = node->name;
1053 if (!name)
1054 name = "unknown";
1055 return name;
1058 static int knav_queue_setup_regions(struct knav_device *kdev,
1059 struct device_node *regions)
1061 struct device *dev = kdev->dev;
1062 struct knav_region *region;
1063 struct device_node *child;
1064 u32 temp[2];
1065 int ret;
1067 for_each_child_of_node(regions, child) {
1068 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1069 if (!region) {
1070 dev_err(dev, "out of memory allocating region\n");
1071 return -ENOMEM;
1074 region->name = knav_queue_find_name(child);
1075 of_property_read_u32(child, "id", &region->id);
1076 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1077 if (!ret) {
1078 region->num_desc = temp[0];
1079 region->desc_size = temp[1];
1080 } else {
1081 dev_err(dev, "invalid region info %s\n", region->name);
1082 devm_kfree(dev, region);
1083 continue;
1086 if (!of_get_property(child, "link-index", NULL)) {
1087 dev_err(dev, "No link info for %s\n", region->name);
1088 devm_kfree(dev, region);
1089 continue;
1091 ret = of_property_read_u32(child, "link-index",
1092 &region->link_index);
1093 if (ret) {
1094 dev_err(dev, "link index not found for %s\n",
1095 region->name);
1096 devm_kfree(dev, region);
1097 continue;
1100 INIT_LIST_HEAD(&region->pools);
1101 list_add_tail(&region->list, &kdev->regions);
1103 if (list_empty(&kdev->regions)) {
1104 dev_err(dev, "no valid region information found\n");
1105 return -ENODEV;
1108 /* Next, we run through the regions and set things up */
1109 for_each_region(kdev, region)
1110 knav_queue_setup_region(kdev, region);
1112 return 0;
1115 static int knav_get_link_ram(struct knav_device *kdev,
1116 const char *name,
1117 struct knav_link_ram_block *block)
1119 struct platform_device *pdev = to_platform_device(kdev->dev);
1120 struct device_node *node = pdev->dev.of_node;
1121 u32 temp[2];
1124 * Note: link ram resources are specified in "entry" sized units. In
1125 * reality, although entries are ~40bits in hardware, we treat them as
1126 * 64-bit entities here.
1128 * For example, to specify the internal link ram for Keystone-I class
1129 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1131 * This gets a bit weird when other link rams are used. For example,
1132 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1133 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1134 * which accounts for 64-bits per entry, for 16K entries.
1136 if (!of_property_read_u32_array(node, name , temp, 2)) {
1137 if (temp[0]) {
1139 * queue_base specified => using internal or onchip
1140 * link ram WARNING - we do not "reserve" this block
1142 block->phys = (dma_addr_t)temp[0];
1143 block->virt = NULL;
1144 block->size = temp[1];
1145 } else {
1146 block->size = temp[1];
1147 /* queue_base not specific => allocate requested size */
1148 block->virt = dmam_alloc_coherent(kdev->dev,
1149 8 * block->size, &block->phys,
1150 GFP_KERNEL);
1151 if (!block->virt) {
1152 dev_err(kdev->dev, "failed to alloc linkram\n");
1153 return -ENOMEM;
1156 } else {
1157 return -ENODEV;
1159 return 0;
1162 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1164 struct knav_link_ram_block *block;
1165 struct knav_qmgr_info *qmgr;
1167 for_each_qmgr(kdev, qmgr) {
1168 block = &kdev->link_rams[0];
1169 dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1170 block->phys, block->virt, block->size);
1171 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1172 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1174 block++;
1175 if (!block->size)
1176 return 0;
1178 dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1179 block->phys, block->virt, block->size);
1180 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1183 return 0;
1186 static int knav_setup_queue_range(struct knav_device *kdev,
1187 struct device_node *node)
1189 struct device *dev = kdev->dev;
1190 struct knav_range_info *range;
1191 struct knav_qmgr_info *qmgr;
1192 u32 temp[2], start, end, id, index;
1193 int ret, i;
1195 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1196 if (!range) {
1197 dev_err(dev, "out of memory allocating range\n");
1198 return -ENOMEM;
1201 range->kdev = kdev;
1202 range->name = knav_queue_find_name(node);
1203 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1204 if (!ret) {
1205 range->queue_base = temp[0] - kdev->base_id;
1206 range->num_queues = temp[1];
1207 } else {
1208 dev_err(dev, "invalid queue range %s\n", range->name);
1209 devm_kfree(dev, range);
1210 return -EINVAL;
1213 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1214 struct of_phandle_args oirq;
1216 if (of_irq_parse_one(node, i, &oirq))
1217 break;
1219 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1220 if (range->irqs[i].irq == IRQ_NONE)
1221 break;
1223 range->num_irqs++;
1225 if (oirq.args_count == 3)
1226 range->irqs[i].cpu_map =
1227 (oirq.args[2] & 0x0000ff00) >> 8;
1230 range->num_irqs = min(range->num_irqs, range->num_queues);
1231 if (range->num_irqs)
1232 range->flags |= RANGE_HAS_IRQ;
1234 if (of_get_property(node, "qalloc-by-id", NULL))
1235 range->flags |= RANGE_RESERVED;
1237 if (of_get_property(node, "accumulator", NULL)) {
1238 ret = knav_init_acc_range(kdev, node, range);
1239 if (ret < 0) {
1240 devm_kfree(dev, range);
1241 return ret;
1243 } else {
1244 range->ops = &knav_gp_range_ops;
1247 /* set threshold to 1, and flush out the queues */
1248 for_each_qmgr(kdev, qmgr) {
1249 start = max(qmgr->start_queue, range->queue_base);
1250 end = min(qmgr->start_queue + qmgr->num_queues,
1251 range->queue_base + range->num_queues);
1252 for (id = start; id < end; id++) {
1253 index = id - qmgr->start_queue;
1254 writel_relaxed(THRESH_GTE | 1,
1255 &qmgr->reg_peek[index].ptr_size_thresh);
1256 writel_relaxed(0,
1257 &qmgr->reg_push[index].ptr_size_thresh);
1261 list_add_tail(&range->list, &kdev->queue_ranges);
1262 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1263 range->name, range->queue_base,
1264 range->queue_base + range->num_queues - 1,
1265 range->num_irqs,
1266 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1267 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1268 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1269 kdev->num_queues_in_use += range->num_queues;
1270 return 0;
1273 static int knav_setup_queue_pools(struct knav_device *kdev,
1274 struct device_node *queue_pools)
1276 struct device_node *type, *range;
1277 int ret;
1279 for_each_child_of_node(queue_pools, type) {
1280 for_each_child_of_node(type, range) {
1281 ret = knav_setup_queue_range(kdev, range);
1282 /* return value ignored, we init the rest... */
1286 /* ... and barf if they all failed! */
1287 if (list_empty(&kdev->queue_ranges)) {
1288 dev_err(kdev->dev, "no valid queue range found\n");
1289 return -ENODEV;
1291 return 0;
1294 static void knav_free_queue_range(struct knav_device *kdev,
1295 struct knav_range_info *range)
1297 if (range->ops && range->ops->free_range)
1298 range->ops->free_range(range);
1299 list_del(&range->list);
1300 devm_kfree(kdev->dev, range);
1303 static void knav_free_queue_ranges(struct knav_device *kdev)
1305 struct knav_range_info *range;
1307 for (;;) {
1308 range = first_queue_range(kdev);
1309 if (!range)
1310 break;
1311 knav_free_queue_range(kdev, range);
1315 static void knav_queue_free_regions(struct knav_device *kdev)
1317 struct knav_region *region;
1318 struct knav_pool *pool, *tmp;
1319 unsigned size;
1321 for (;;) {
1322 region = first_region(kdev);
1323 if (!region)
1324 break;
1325 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326 knav_pool_destroy(pool);
1328 size = region->virt_end - region->virt_start;
1329 if (size)
1330 free_pages_exact(region->virt_start, size);
1331 list_del(&region->list);
1332 devm_kfree(kdev->dev, region);
1336 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1337 struct device_node *node, int index)
1339 struct resource res;
1340 void __iomem *regs;
1341 int ret;
1343 ret = of_address_to_resource(node, index, &res);
1344 if (ret) {
1345 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1346 node->name, index);
1347 return ERR_PTR(ret);
1350 regs = devm_ioremap_resource(kdev->dev, &res);
1351 if (IS_ERR(regs))
1352 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1353 index, node->name);
1354 return regs;
1357 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1358 struct device_node *qmgrs)
1360 struct device *dev = kdev->dev;
1361 struct knav_qmgr_info *qmgr;
1362 struct device_node *child;
1363 u32 temp[2];
1364 int ret;
1366 for_each_child_of_node(qmgrs, child) {
1367 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1368 if (!qmgr) {
1369 dev_err(dev, "out of memory allocating qmgr\n");
1370 return -ENOMEM;
1373 ret = of_property_read_u32_array(child, "managed-queues",
1374 temp, 2);
1375 if (!ret) {
1376 qmgr->start_queue = temp[0];
1377 qmgr->num_queues = temp[1];
1378 } else {
1379 dev_err(dev, "invalid qmgr queue range\n");
1380 devm_kfree(dev, qmgr);
1381 continue;
1384 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1385 qmgr->start_queue, qmgr->num_queues);
1387 qmgr->reg_peek =
1388 knav_queue_map_reg(kdev, child,
1389 KNAV_QUEUE_PEEK_REG_INDEX);
1390 qmgr->reg_status =
1391 knav_queue_map_reg(kdev, child,
1392 KNAV_QUEUE_STATUS_REG_INDEX);
1393 qmgr->reg_config =
1394 knav_queue_map_reg(kdev, child,
1395 KNAV_QUEUE_CONFIG_REG_INDEX);
1396 qmgr->reg_region =
1397 knav_queue_map_reg(kdev, child,
1398 KNAV_QUEUE_REGION_REG_INDEX);
1399 qmgr->reg_push =
1400 knav_queue_map_reg(kdev, child,
1401 KNAV_QUEUE_PUSH_REG_INDEX);
1402 qmgr->reg_pop =
1403 knav_queue_map_reg(kdev, child,
1404 KNAV_QUEUE_POP_REG_INDEX);
1406 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1407 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1408 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1409 dev_err(dev, "failed to map qmgr regs\n");
1410 if (!IS_ERR(qmgr->reg_peek))
1411 devm_iounmap(dev, qmgr->reg_peek);
1412 if (!IS_ERR(qmgr->reg_status))
1413 devm_iounmap(dev, qmgr->reg_status);
1414 if (!IS_ERR(qmgr->reg_config))
1415 devm_iounmap(dev, qmgr->reg_config);
1416 if (!IS_ERR(qmgr->reg_region))
1417 devm_iounmap(dev, qmgr->reg_region);
1418 if (!IS_ERR(qmgr->reg_push))
1419 devm_iounmap(dev, qmgr->reg_push);
1420 if (!IS_ERR(qmgr->reg_pop))
1421 devm_iounmap(dev, qmgr->reg_pop);
1422 devm_kfree(dev, qmgr);
1423 continue;
1426 list_add_tail(&qmgr->list, &kdev->qmgrs);
1427 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1428 qmgr->start_queue, qmgr->num_queues,
1429 qmgr->reg_peek, qmgr->reg_status,
1430 qmgr->reg_config, qmgr->reg_region,
1431 qmgr->reg_push, qmgr->reg_pop);
1433 return 0;
1436 static int knav_queue_init_pdsps(struct knav_device *kdev,
1437 struct device_node *pdsps)
1439 struct device *dev = kdev->dev;
1440 struct knav_pdsp_info *pdsp;
1441 struct device_node *child;
1442 int ret;
1444 for_each_child_of_node(pdsps, child) {
1445 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1446 if (!pdsp) {
1447 dev_err(dev, "out of memory allocating pdsp\n");
1448 return -ENOMEM;
1450 pdsp->name = knav_queue_find_name(child);
1451 ret = of_property_read_string(child, "firmware",
1452 &pdsp->firmware);
1453 if (ret < 0 || !pdsp->firmware) {
1454 dev_err(dev, "unknown firmware for pdsp %s\n",
1455 pdsp->name);
1456 devm_kfree(dev, pdsp);
1457 continue;
1459 dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
1460 pdsp->firmware);
1462 pdsp->iram =
1463 knav_queue_map_reg(kdev, child,
1464 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1465 pdsp->regs =
1466 knav_queue_map_reg(kdev, child,
1467 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1468 pdsp->intd =
1469 knav_queue_map_reg(kdev, child,
1470 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1471 pdsp->command =
1472 knav_queue_map_reg(kdev, child,
1473 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1475 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1476 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1477 dev_err(dev, "failed to map pdsp %s regs\n",
1478 pdsp->name);
1479 if (!IS_ERR(pdsp->command))
1480 devm_iounmap(dev, pdsp->command);
1481 if (!IS_ERR(pdsp->iram))
1482 devm_iounmap(dev, pdsp->iram);
1483 if (!IS_ERR(pdsp->regs))
1484 devm_iounmap(dev, pdsp->regs);
1485 if (!IS_ERR(pdsp->intd))
1486 devm_iounmap(dev, pdsp->intd);
1487 devm_kfree(dev, pdsp);
1488 continue;
1490 of_property_read_u32(child, "id", &pdsp->id);
1491 list_add_tail(&pdsp->list, &kdev->pdsps);
1492 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
1493 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1494 pdsp->intd, pdsp->firmware);
1496 return 0;
1499 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1500 struct knav_pdsp_info *pdsp)
1502 u32 val, timeout = 1000;
1503 int ret;
1505 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1506 writel_relaxed(val, &pdsp->regs->control);
1507 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1508 PDSP_CTRL_RUNNING);
1509 if (ret < 0) {
1510 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1511 return ret;
1513 return 0;
1516 static int knav_queue_load_pdsp(struct knav_device *kdev,
1517 struct knav_pdsp_info *pdsp)
1519 int i, ret, fwlen;
1520 const struct firmware *fw;
1521 u32 *fwdata;
1523 ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
1524 if (ret) {
1525 dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
1526 pdsp->firmware, pdsp->name);
1527 return ret;
1529 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1530 /* download the firmware */
1531 fwdata = (u32 *)fw->data;
1532 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1533 for (i = 0; i < fwlen; i++)
1534 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1536 release_firmware(fw);
1537 return 0;
1540 static int knav_queue_start_pdsp(struct knav_device *kdev,
1541 struct knav_pdsp_info *pdsp)
1543 u32 val, timeout = 1000;
1544 int ret;
1546 /* write a command for sync */
1547 writel_relaxed(0xffffffff, pdsp->command);
1548 while (readl_relaxed(pdsp->command) != 0xffffffff)
1549 cpu_relax();
1551 /* soft reset the PDSP */
1552 val = readl_relaxed(&pdsp->regs->control);
1553 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1554 writel_relaxed(val, &pdsp->regs->control);
1556 /* enable pdsp */
1557 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1558 writel_relaxed(val, &pdsp->regs->control);
1560 /* wait for command register to clear */
1561 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1562 if (ret < 0) {
1563 dev_err(kdev->dev,
1564 "timed out on pdsp %s command register wait\n",
1565 pdsp->name);
1566 return ret;
1568 return 0;
1571 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1573 struct knav_pdsp_info *pdsp;
1575 /* disable all pdsps */
1576 for_each_pdsp(kdev, pdsp)
1577 knav_queue_stop_pdsp(kdev, pdsp);
1580 static int knav_queue_start_pdsps(struct knav_device *kdev)
1582 struct knav_pdsp_info *pdsp;
1583 int ret;
1585 knav_queue_stop_pdsps(kdev);
1586 /* now load them all */
1587 for_each_pdsp(kdev, pdsp) {
1588 ret = knav_queue_load_pdsp(kdev, pdsp);
1589 if (ret < 0)
1590 return ret;
1593 for_each_pdsp(kdev, pdsp) {
1594 ret = knav_queue_start_pdsp(kdev, pdsp);
1595 WARN_ON(ret);
1597 return 0;
1600 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1602 struct knav_qmgr_info *qmgr;
1604 for_each_qmgr(kdev, qmgr) {
1605 if ((id >= qmgr->start_queue) &&
1606 (id < qmgr->start_queue + qmgr->num_queues))
1607 return qmgr;
1609 return NULL;
1612 static int knav_queue_init_queue(struct knav_device *kdev,
1613 struct knav_range_info *range,
1614 struct knav_queue_inst *inst,
1615 unsigned id)
1617 char irq_name[KNAV_NAME_SIZE];
1618 inst->qmgr = knav_find_qmgr(id);
1619 if (!inst->qmgr)
1620 return -1;
1622 INIT_LIST_HEAD(&inst->handles);
1623 inst->kdev = kdev;
1624 inst->range = range;
1625 inst->irq_num = -1;
1626 inst->id = id;
1627 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1628 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1630 if (range->ops && range->ops->init_queue)
1631 return range->ops->init_queue(range, inst);
1632 else
1633 return 0;
1636 static int knav_queue_init_queues(struct knav_device *kdev)
1638 struct knav_range_info *range;
1639 int size, id, base_idx;
1640 int idx = 0, ret = 0;
1642 /* how much do we need for instance data? */
1643 size = sizeof(struct knav_queue_inst);
1645 /* round this up to a power of 2, keep the index to instance
1646 * arithmetic fast.
1647 * */
1648 kdev->inst_shift = order_base_2(size);
1649 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1650 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1651 if (!kdev->instances)
1652 return -ENOMEM;
1654 for_each_queue_range(kdev, range) {
1655 if (range->ops && range->ops->init_range)
1656 range->ops->init_range(range);
1657 base_idx = idx;
1658 for (id = range->queue_base;
1659 id < range->queue_base + range->num_queues; id++, idx++) {
1660 ret = knav_queue_init_queue(kdev, range,
1661 knav_queue_idx_to_inst(kdev, idx), id);
1662 if (ret < 0)
1663 return ret;
1665 range->queue_base_inst =
1666 knav_queue_idx_to_inst(kdev, base_idx);
1668 return 0;
1671 static int knav_queue_probe(struct platform_device *pdev)
1673 struct device_node *node = pdev->dev.of_node;
1674 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1675 struct device *dev = &pdev->dev;
1676 u32 temp[2];
1677 int ret;
1679 if (!node) {
1680 dev_err(dev, "device tree info unavailable\n");
1681 return -ENODEV;
1684 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1685 if (!kdev) {
1686 dev_err(dev, "memory allocation failed\n");
1687 return -ENOMEM;
1690 platform_set_drvdata(pdev, kdev);
1691 kdev->dev = dev;
1692 INIT_LIST_HEAD(&kdev->queue_ranges);
1693 INIT_LIST_HEAD(&kdev->qmgrs);
1694 INIT_LIST_HEAD(&kdev->pools);
1695 INIT_LIST_HEAD(&kdev->regions);
1696 INIT_LIST_HEAD(&kdev->pdsps);
1698 pm_runtime_enable(&pdev->dev);
1699 ret = pm_runtime_get_sync(&pdev->dev);
1700 if (ret < 0) {
1701 dev_err(dev, "Failed to enable QMSS\n");
1702 return ret;
1705 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1706 dev_err(dev, "queue-range not specified\n");
1707 ret = -ENODEV;
1708 goto err;
1710 kdev->base_id = temp[0];
1711 kdev->num_queues = temp[1];
1713 /* Initialize queue managers using device tree configuration */
1714 qmgrs = of_get_child_by_name(node, "qmgrs");
1715 if (!qmgrs) {
1716 dev_err(dev, "queue manager info not specified\n");
1717 ret = -ENODEV;
1718 goto err;
1720 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1721 of_node_put(qmgrs);
1722 if (ret)
1723 goto err;
1725 /* get pdsp configuration values from device tree */
1726 pdsps = of_get_child_by_name(node, "pdsps");
1727 if (pdsps) {
1728 ret = knav_queue_init_pdsps(kdev, pdsps);
1729 if (ret)
1730 goto err;
1732 ret = knav_queue_start_pdsps(kdev);
1733 if (ret)
1734 goto err;
1736 of_node_put(pdsps);
1738 /* get usable queue range values from device tree */
1739 queue_pools = of_get_child_by_name(node, "queue-pools");
1740 if (!queue_pools) {
1741 dev_err(dev, "queue-pools not specified\n");
1742 ret = -ENODEV;
1743 goto err;
1745 ret = knav_setup_queue_pools(kdev, queue_pools);
1746 of_node_put(queue_pools);
1747 if (ret)
1748 goto err;
1750 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1751 if (ret) {
1752 dev_err(kdev->dev, "could not setup linking ram\n");
1753 goto err;
1756 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1757 if (ret) {
1759 * nothing really, we have one linking ram already, so we just
1760 * live within our means
1764 ret = knav_queue_setup_link_ram(kdev);
1765 if (ret)
1766 goto err;
1768 regions = of_get_child_by_name(node, "descriptor-regions");
1769 if (!regions) {
1770 dev_err(dev, "descriptor-regions not specified\n");
1771 goto err;
1773 ret = knav_queue_setup_regions(kdev, regions);
1774 of_node_put(regions);
1775 if (ret)
1776 goto err;
1778 ret = knav_queue_init_queues(kdev);
1779 if (ret < 0) {
1780 dev_err(dev, "hwqueue initialization failed\n");
1781 goto err;
1784 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1785 &knav_queue_debug_ops);
1786 return 0;
1788 err:
1789 knav_queue_stop_pdsps(kdev);
1790 knav_queue_free_regions(kdev);
1791 knav_free_queue_ranges(kdev);
1792 pm_runtime_put_sync(&pdev->dev);
1793 pm_runtime_disable(&pdev->dev);
1794 return ret;
1797 static int knav_queue_remove(struct platform_device *pdev)
1799 /* TODO: Free resources */
1800 pm_runtime_put_sync(&pdev->dev);
1801 pm_runtime_disable(&pdev->dev);
1802 return 0;
1805 /* Match table for of_platform binding */
1806 static struct of_device_id keystone_qmss_of_match[] = {
1807 { .compatible = "ti,keystone-navigator-qmss", },
1810 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1812 static struct platform_driver keystone_qmss_driver = {
1813 .probe = knav_queue_probe,
1814 .remove = knav_queue_remove,
1815 .driver = {
1816 .name = "keystone-navigator-qmss",
1817 .of_match_table = keystone_qmss_of_match,
1820 module_platform_driver(keystone_qmss_driver);
1822 MODULE_LICENSE("GPL v2");
1823 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1824 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1825 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");