1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache
*extent_state_cache
;
25 static struct kmem_cache
*extent_buffer_cache
;
26 static struct bio_set
*btrfs_bioset
;
28 static inline bool extent_state_in_tree(const struct extent_state
*state
)
30 return !RB_EMPTY_NODE(&state
->rb_node
);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers
);
35 static LIST_HEAD(states
);
37 static DEFINE_SPINLOCK(leak_lock
);
40 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
44 spin_lock_irqsave(&leak_lock
, flags
);
46 spin_unlock_irqrestore(&leak_lock
, flags
);
50 void btrfs_leak_debug_del(struct list_head
*entry
)
54 spin_lock_irqsave(&leak_lock
, flags
);
56 spin_unlock_irqrestore(&leak_lock
, flags
);
60 void btrfs_leak_debug_check(void)
62 struct extent_state
*state
;
63 struct extent_buffer
*eb
;
65 while (!list_empty(&states
)) {
66 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state
->start
, state
->end
, state
->state
,
69 extent_state_in_tree(state
),
70 atomic_read(&state
->refs
));
71 list_del(&state
->leak_list
);
72 kmem_cache_free(extent_state_cache
, state
);
75 while (!list_empty(&buffers
)) {
76 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
77 printk(KERN_ERR
"BTRFS: buffer leak start %llu len %lu "
79 eb
->start
, eb
->len
, atomic_read(&eb
->refs
));
80 list_del(&eb
->leak_list
);
81 kmem_cache_free(extent_buffer_cache
, eb
);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
88 struct extent_io_tree
*tree
, u64 start
, u64 end
)
96 inode
= tree
->mapping
->host
;
97 isize
= i_size_read(inode
);
98 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
99 printk_ratelimited(KERN_DEBUG
100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 caller
, btrfs_ino(inode
), isize
, start
, end
);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node
;
119 struct extent_page_data
{
121 struct extent_io_tree
*tree
;
122 get_extent_t
*get_extent
;
123 unsigned long bio_flags
;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked
:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io
:1;
134 static noinline
void flush_write_bio(void *data
);
135 static inline struct btrfs_fs_info
*
136 tree_fs_info(struct extent_io_tree
*tree
)
140 return btrfs_sb(tree
->mapping
->host
->i_sb
);
143 int __init
extent_io_init(void)
145 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state
), 0,
147 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
148 if (!extent_state_cache
)
151 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer
), 0,
153 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
154 if (!extent_buffer_cache
)
155 goto free_state_cache
;
157 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
158 offsetof(struct btrfs_io_bio
, bio
));
160 goto free_buffer_cache
;
162 if (bioset_integrity_create(btrfs_bioset
, BIO_POOL_SIZE
))
168 bioset_free(btrfs_bioset
);
172 kmem_cache_destroy(extent_buffer_cache
);
173 extent_buffer_cache
= NULL
;
176 kmem_cache_destroy(extent_state_cache
);
177 extent_state_cache
= NULL
;
181 void extent_io_exit(void)
183 btrfs_leak_debug_check();
186 * Make sure all delayed rcu free are flushed before we
190 if (extent_state_cache
)
191 kmem_cache_destroy(extent_state_cache
);
192 if (extent_buffer_cache
)
193 kmem_cache_destroy(extent_buffer_cache
);
195 bioset_free(btrfs_bioset
);
198 void extent_io_tree_init(struct extent_io_tree
*tree
,
199 struct address_space
*mapping
)
201 tree
->state
= RB_ROOT
;
203 tree
->dirty_bytes
= 0;
204 spin_lock_init(&tree
->lock
);
205 tree
->mapping
= mapping
;
208 static struct extent_state
*alloc_extent_state(gfp_t mask
)
210 struct extent_state
*state
;
212 state
= kmem_cache_alloc(extent_state_cache
, mask
);
217 RB_CLEAR_NODE(&state
->rb_node
);
218 btrfs_leak_debug_add(&state
->leak_list
, &states
);
219 atomic_set(&state
->refs
, 1);
220 init_waitqueue_head(&state
->wq
);
221 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
225 void free_extent_state(struct extent_state
*state
)
229 if (atomic_dec_and_test(&state
->refs
)) {
230 WARN_ON(extent_state_in_tree(state
));
231 btrfs_leak_debug_del(&state
->leak_list
);
232 trace_free_extent_state(state
, _RET_IP_
);
233 kmem_cache_free(extent_state_cache
, state
);
237 static struct rb_node
*tree_insert(struct rb_root
*root
,
238 struct rb_node
*search_start
,
240 struct rb_node
*node
,
241 struct rb_node
***p_in
,
242 struct rb_node
**parent_in
)
245 struct rb_node
*parent
= NULL
;
246 struct tree_entry
*entry
;
248 if (p_in
&& parent_in
) {
254 p
= search_start
? &search_start
: &root
->rb_node
;
257 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
259 if (offset
< entry
->start
)
261 else if (offset
> entry
->end
)
268 rb_link_node(node
, parent
, p
);
269 rb_insert_color(node
, root
);
273 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
274 struct rb_node
**prev_ret
,
275 struct rb_node
**next_ret
,
276 struct rb_node
***p_ret
,
277 struct rb_node
**parent_ret
)
279 struct rb_root
*root
= &tree
->state
;
280 struct rb_node
**n
= &root
->rb_node
;
281 struct rb_node
*prev
= NULL
;
282 struct rb_node
*orig_prev
= NULL
;
283 struct tree_entry
*entry
;
284 struct tree_entry
*prev_entry
= NULL
;
288 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
291 if (offset
< entry
->start
)
293 else if (offset
> entry
->end
)
306 while (prev
&& offset
> prev_entry
->end
) {
307 prev
= rb_next(prev
);
308 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
315 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
316 while (prev
&& offset
< prev_entry
->start
) {
317 prev
= rb_prev(prev
);
318 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
325 static inline struct rb_node
*
326 tree_search_for_insert(struct extent_io_tree
*tree
,
328 struct rb_node
***p_ret
,
329 struct rb_node
**parent_ret
)
331 struct rb_node
*prev
= NULL
;
334 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
340 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
343 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
346 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
347 struct extent_state
*other
)
349 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
350 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
361 * This should be called with the tree lock held.
363 static void merge_state(struct extent_io_tree
*tree
,
364 struct extent_state
*state
)
366 struct extent_state
*other
;
367 struct rb_node
*other_node
;
369 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
372 other_node
= rb_prev(&state
->rb_node
);
374 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
375 if (other
->end
== state
->start
- 1 &&
376 other
->state
== state
->state
) {
377 merge_cb(tree
, state
, other
);
378 state
->start
= other
->start
;
379 rb_erase(&other
->rb_node
, &tree
->state
);
380 RB_CLEAR_NODE(&other
->rb_node
);
381 free_extent_state(other
);
384 other_node
= rb_next(&state
->rb_node
);
386 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
387 if (other
->start
== state
->end
+ 1 &&
388 other
->state
== state
->state
) {
389 merge_cb(tree
, state
, other
);
390 state
->end
= other
->end
;
391 rb_erase(&other
->rb_node
, &tree
->state
);
392 RB_CLEAR_NODE(&other
->rb_node
);
393 free_extent_state(other
);
398 static void set_state_cb(struct extent_io_tree
*tree
,
399 struct extent_state
*state
, unsigned *bits
)
401 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
402 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
405 static void clear_state_cb(struct extent_io_tree
*tree
,
406 struct extent_state
*state
, unsigned *bits
)
408 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
409 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
412 static void set_state_bits(struct extent_io_tree
*tree
,
413 struct extent_state
*state
, unsigned *bits
);
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
425 static int insert_state(struct extent_io_tree
*tree
,
426 struct extent_state
*state
, u64 start
, u64 end
,
428 struct rb_node
**parent
,
431 struct rb_node
*node
;
434 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
436 state
->start
= start
;
439 set_state_bits(tree
, state
, bits
);
441 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
443 struct extent_state
*found
;
444 found
= rb_entry(node
, struct extent_state
, rb_node
);
445 printk(KERN_ERR
"BTRFS: found node %llu %llu on insert of "
447 found
->start
, found
->end
, start
, end
);
450 merge_state(tree
, state
);
454 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
457 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
458 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
472 * The tree locks are not taken by this function. They need to be held
475 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
476 struct extent_state
*prealloc
, u64 split
)
478 struct rb_node
*node
;
480 split_cb(tree
, orig
, split
);
482 prealloc
->start
= orig
->start
;
483 prealloc
->end
= split
- 1;
484 prealloc
->state
= orig
->state
;
487 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
488 &prealloc
->rb_node
, NULL
, NULL
);
490 free_extent_state(prealloc
);
496 static struct extent_state
*next_state(struct extent_state
*state
)
498 struct rb_node
*next
= rb_next(&state
->rb_node
);
500 return rb_entry(next
, struct extent_state
, rb_node
);
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
512 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
513 struct extent_state
*state
,
514 unsigned *bits
, int wake
)
516 struct extent_state
*next
;
517 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
519 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
520 u64 range
= state
->end
- state
->start
+ 1;
521 WARN_ON(range
> tree
->dirty_bytes
);
522 tree
->dirty_bytes
-= range
;
524 clear_state_cb(tree
, state
, bits
);
525 state
->state
&= ~bits_to_clear
;
528 if (state
->state
== 0) {
529 next
= next_state(state
);
530 if (extent_state_in_tree(state
)) {
531 rb_erase(&state
->rb_node
, &tree
->state
);
532 RB_CLEAR_NODE(&state
->rb_node
);
533 free_extent_state(state
);
538 merge_state(tree
, state
);
539 next
= next_state(state
);
544 static struct extent_state
*
545 alloc_extent_state_atomic(struct extent_state
*prealloc
)
548 prealloc
= alloc_extent_state(GFP_ATOMIC
);
553 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
555 btrfs_panic(tree_fs_info(tree
), err
, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
568 * the range [start, end] is inclusive.
570 * This takes the tree lock, and returns 0 on success and < 0 on error.
572 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
573 unsigned bits
, int wake
, int delete,
574 struct extent_state
**cached_state
,
577 struct extent_state
*state
;
578 struct extent_state
*cached
;
579 struct extent_state
*prealloc
= NULL
;
580 struct rb_node
*node
;
585 btrfs_debug_check_extent_io_range(tree
, start
, end
);
587 if (bits
& EXTENT_DELALLOC
)
588 bits
|= EXTENT_NORESERVE
;
591 bits
|= ~EXTENT_CTLBITS
;
592 bits
|= EXTENT_FIRST_DELALLOC
;
594 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
597 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
599 * Don't care for allocation failure here because we might end
600 * up not needing the pre-allocated extent state at all, which
601 * is the case if we only have in the tree extent states that
602 * cover our input range and don't cover too any other range.
603 * If we end up needing a new extent state we allocate it later.
605 prealloc
= alloc_extent_state(mask
);
608 spin_lock(&tree
->lock
);
610 cached
= *cached_state
;
613 *cached_state
= NULL
;
617 if (cached
&& extent_state_in_tree(cached
) &&
618 cached
->start
<= start
&& cached
->end
> start
) {
620 atomic_dec(&cached
->refs
);
625 free_extent_state(cached
);
628 * this search will find the extents that end after
631 node
= tree_search(tree
, start
);
634 state
= rb_entry(node
, struct extent_state
, rb_node
);
636 if (state
->start
> end
)
638 WARN_ON(state
->end
< start
);
639 last_end
= state
->end
;
641 /* the state doesn't have the wanted bits, go ahead */
642 if (!(state
->state
& bits
)) {
643 state
= next_state(state
);
648 * | ---- desired range ---- |
650 * | ------------- state -------------- |
652 * We need to split the extent we found, and may flip
653 * bits on second half.
655 * If the extent we found extends past our range, we
656 * just split and search again. It'll get split again
657 * the next time though.
659 * If the extent we found is inside our range, we clear
660 * the desired bit on it.
663 if (state
->start
< start
) {
664 prealloc
= alloc_extent_state_atomic(prealloc
);
666 err
= split_state(tree
, state
, prealloc
, start
);
668 extent_io_tree_panic(tree
, err
);
673 if (state
->end
<= end
) {
674 state
= clear_state_bit(tree
, state
, &bits
, wake
);
680 * | ---- desired range ---- |
682 * We need to split the extent, and clear the bit
685 if (state
->start
<= end
&& state
->end
> end
) {
686 prealloc
= alloc_extent_state_atomic(prealloc
);
688 err
= split_state(tree
, state
, prealloc
, end
+ 1);
690 extent_io_tree_panic(tree
, err
);
695 clear_state_bit(tree
, prealloc
, &bits
, wake
);
701 state
= clear_state_bit(tree
, state
, &bits
, wake
);
703 if (last_end
== (u64
)-1)
705 start
= last_end
+ 1;
706 if (start
<= end
&& state
&& !need_resched())
711 spin_unlock(&tree
->lock
);
713 free_extent_state(prealloc
);
720 spin_unlock(&tree
->lock
);
721 if (mask
& __GFP_WAIT
)
726 static void wait_on_state(struct extent_io_tree
*tree
,
727 struct extent_state
*state
)
728 __releases(tree
->lock
)
729 __acquires(tree
->lock
)
732 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
733 spin_unlock(&tree
->lock
);
735 spin_lock(&tree
->lock
);
736 finish_wait(&state
->wq
, &wait
);
740 * waits for one or more bits to clear on a range in the state tree.
741 * The range [start, end] is inclusive.
742 * The tree lock is taken by this function
744 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
747 struct extent_state
*state
;
748 struct rb_node
*node
;
750 btrfs_debug_check_extent_io_range(tree
, start
, end
);
752 spin_lock(&tree
->lock
);
756 * this search will find all the extents that end after
759 node
= tree_search(tree
, start
);
764 state
= rb_entry(node
, struct extent_state
, rb_node
);
766 if (state
->start
> end
)
769 if (state
->state
& bits
) {
770 start
= state
->start
;
771 atomic_inc(&state
->refs
);
772 wait_on_state(tree
, state
);
773 free_extent_state(state
);
776 start
= state
->end
+ 1;
781 if (!cond_resched_lock(&tree
->lock
)) {
782 node
= rb_next(node
);
787 spin_unlock(&tree
->lock
);
790 static void set_state_bits(struct extent_io_tree
*tree
,
791 struct extent_state
*state
,
794 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
796 set_state_cb(tree
, state
, bits
);
797 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
798 u64 range
= state
->end
- state
->start
+ 1;
799 tree
->dirty_bytes
+= range
;
801 state
->state
|= bits_to_set
;
804 static void cache_state_if_flags(struct extent_state
*state
,
805 struct extent_state
**cached_ptr
,
808 if (cached_ptr
&& !(*cached_ptr
)) {
809 if (!flags
|| (state
->state
& flags
)) {
811 atomic_inc(&state
->refs
);
816 static void cache_state(struct extent_state
*state
,
817 struct extent_state
**cached_ptr
)
819 return cache_state_if_flags(state
, cached_ptr
,
820 EXTENT_IOBITS
| EXTENT_BOUNDARY
);
824 * set some bits on a range in the tree. This may require allocations or
825 * sleeping, so the gfp mask is used to indicate what is allowed.
827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
828 * part of the range already has the desired bits set. The start of the
829 * existing range is returned in failed_start in this case.
831 * [start, end] is inclusive This takes the tree lock.
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
836 unsigned bits
, unsigned exclusive_bits
,
837 u64
*failed_start
, struct extent_state
**cached_state
,
840 struct extent_state
*state
;
841 struct extent_state
*prealloc
= NULL
;
842 struct rb_node
*node
;
844 struct rb_node
*parent
;
849 btrfs_debug_check_extent_io_range(tree
, start
, end
);
851 bits
|= EXTENT_FIRST_DELALLOC
;
853 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
854 prealloc
= alloc_extent_state(mask
);
858 spin_lock(&tree
->lock
);
859 if (cached_state
&& *cached_state
) {
860 state
= *cached_state
;
861 if (state
->start
<= start
&& state
->end
> start
&&
862 extent_state_in_tree(state
)) {
863 node
= &state
->rb_node
;
868 * this search will find all the extents that end after
871 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
873 prealloc
= alloc_extent_state_atomic(prealloc
);
875 err
= insert_state(tree
, prealloc
, start
, end
,
878 extent_io_tree_panic(tree
, err
);
880 cache_state(prealloc
, cached_state
);
884 state
= rb_entry(node
, struct extent_state
, rb_node
);
886 last_start
= state
->start
;
887 last_end
= state
->end
;
890 * | ---- desired range ---- |
893 * Just lock what we found and keep going
895 if (state
->start
== start
&& state
->end
<= end
) {
896 if (state
->state
& exclusive_bits
) {
897 *failed_start
= state
->start
;
902 set_state_bits(tree
, state
, &bits
);
903 cache_state(state
, cached_state
);
904 merge_state(tree
, state
);
905 if (last_end
== (u64
)-1)
907 start
= last_end
+ 1;
908 state
= next_state(state
);
909 if (start
< end
&& state
&& state
->start
== start
&&
916 * | ---- desired range ---- |
919 * | ------------- state -------------- |
921 * We need to split the extent we found, and may flip bits on
924 * If the extent we found extends past our
925 * range, we just split and search again. It'll get split
926 * again the next time though.
928 * If the extent we found is inside our range, we set the
931 if (state
->start
< start
) {
932 if (state
->state
& exclusive_bits
) {
933 *failed_start
= start
;
938 prealloc
= alloc_extent_state_atomic(prealloc
);
940 err
= split_state(tree
, state
, prealloc
, start
);
942 extent_io_tree_panic(tree
, err
);
947 if (state
->end
<= end
) {
948 set_state_bits(tree
, state
, &bits
);
949 cache_state(state
, cached_state
);
950 merge_state(tree
, state
);
951 if (last_end
== (u64
)-1)
953 start
= last_end
+ 1;
954 state
= next_state(state
);
955 if (start
< end
&& state
&& state
->start
== start
&&
962 * | ---- desired range ---- |
963 * | state | or | state |
965 * There's a hole, we need to insert something in it and
966 * ignore the extent we found.
968 if (state
->start
> start
) {
970 if (end
< last_start
)
973 this_end
= last_start
- 1;
975 prealloc
= alloc_extent_state_atomic(prealloc
);
979 * Avoid to free 'prealloc' if it can be merged with
982 err
= insert_state(tree
, prealloc
, start
, this_end
,
985 extent_io_tree_panic(tree
, err
);
987 cache_state(prealloc
, cached_state
);
989 start
= this_end
+ 1;
993 * | ---- desired range ---- |
995 * We need to split the extent, and set the bit
998 if (state
->start
<= end
&& state
->end
> end
) {
999 if (state
->state
& exclusive_bits
) {
1000 *failed_start
= start
;
1005 prealloc
= alloc_extent_state_atomic(prealloc
);
1007 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1009 extent_io_tree_panic(tree
, err
);
1011 set_state_bits(tree
, prealloc
, &bits
);
1012 cache_state(prealloc
, cached_state
);
1013 merge_state(tree
, prealloc
);
1021 spin_unlock(&tree
->lock
);
1023 free_extent_state(prealloc
);
1030 spin_unlock(&tree
->lock
);
1031 if (mask
& __GFP_WAIT
)
1036 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1037 unsigned bits
, u64
* failed_start
,
1038 struct extent_state
**cached_state
, gfp_t mask
)
1040 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1041 cached_state
, mask
);
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1048 * @tree: the io tree to search
1049 * @start: the start offset in bytes
1050 * @end: the end offset in bytes (inclusive)
1051 * @bits: the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
1053 * @cached_state: state that we're going to cache
1054 * @mask: the allocation mask
1056 * This will go through and set bits for the given range. If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits. This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1060 * boundary bits like LOCK.
1062 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1063 unsigned bits
, unsigned clear_bits
,
1064 struct extent_state
**cached_state
, gfp_t mask
)
1066 struct extent_state
*state
;
1067 struct extent_state
*prealloc
= NULL
;
1068 struct rb_node
*node
;
1070 struct rb_node
*parent
;
1074 bool first_iteration
= true;
1076 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1079 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
1081 * Best effort, don't worry if extent state allocation fails
1082 * here for the first iteration. We might have a cached state
1083 * that matches exactly the target range, in which case no
1084 * extent state allocations are needed. We'll only know this
1085 * after locking the tree.
1087 prealloc
= alloc_extent_state(mask
);
1088 if (!prealloc
&& !first_iteration
)
1092 spin_lock(&tree
->lock
);
1093 if (cached_state
&& *cached_state
) {
1094 state
= *cached_state
;
1095 if (state
->start
<= start
&& state
->end
> start
&&
1096 extent_state_in_tree(state
)) {
1097 node
= &state
->rb_node
;
1103 * this search will find all the extents that end after
1106 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1108 prealloc
= alloc_extent_state_atomic(prealloc
);
1113 err
= insert_state(tree
, prealloc
, start
, end
,
1114 &p
, &parent
, &bits
);
1116 extent_io_tree_panic(tree
, err
);
1117 cache_state(prealloc
, cached_state
);
1121 state
= rb_entry(node
, struct extent_state
, rb_node
);
1123 last_start
= state
->start
;
1124 last_end
= state
->end
;
1127 * | ---- desired range ---- |
1130 * Just lock what we found and keep going
1132 if (state
->start
== start
&& state
->end
<= end
) {
1133 set_state_bits(tree
, state
, &bits
);
1134 cache_state(state
, cached_state
);
1135 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1136 if (last_end
== (u64
)-1)
1138 start
= last_end
+ 1;
1139 if (start
< end
&& state
&& state
->start
== start
&&
1146 * | ---- desired range ---- |
1149 * | ------------- state -------------- |
1151 * We need to split the extent we found, and may flip bits on
1154 * If the extent we found extends past our
1155 * range, we just split and search again. It'll get split
1156 * again the next time though.
1158 * If the extent we found is inside our range, we set the
1159 * desired bit on it.
1161 if (state
->start
< start
) {
1162 prealloc
= alloc_extent_state_atomic(prealloc
);
1167 err
= split_state(tree
, state
, prealloc
, start
);
1169 extent_io_tree_panic(tree
, err
);
1173 if (state
->end
<= end
) {
1174 set_state_bits(tree
, state
, &bits
);
1175 cache_state(state
, cached_state
);
1176 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1177 if (last_end
== (u64
)-1)
1179 start
= last_end
+ 1;
1180 if (start
< end
&& state
&& state
->start
== start
&&
1187 * | ---- desired range ---- |
1188 * | state | or | state |
1190 * There's a hole, we need to insert something in it and
1191 * ignore the extent we found.
1193 if (state
->start
> start
) {
1195 if (end
< last_start
)
1198 this_end
= last_start
- 1;
1200 prealloc
= alloc_extent_state_atomic(prealloc
);
1207 * Avoid to free 'prealloc' if it can be merged with
1210 err
= insert_state(tree
, prealloc
, start
, this_end
,
1213 extent_io_tree_panic(tree
, err
);
1214 cache_state(prealloc
, cached_state
);
1216 start
= this_end
+ 1;
1220 * | ---- desired range ---- |
1222 * We need to split the extent, and set the bit
1225 if (state
->start
<= end
&& state
->end
> end
) {
1226 prealloc
= alloc_extent_state_atomic(prealloc
);
1232 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1234 extent_io_tree_panic(tree
, err
);
1236 set_state_bits(tree
, prealloc
, &bits
);
1237 cache_state(prealloc
, cached_state
);
1238 clear_state_bit(tree
, prealloc
, &clear_bits
, 0);
1246 spin_unlock(&tree
->lock
);
1248 free_extent_state(prealloc
);
1255 spin_unlock(&tree
->lock
);
1256 if (mask
& __GFP_WAIT
)
1258 first_iteration
= false;
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1266 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, NULL
,
1270 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1271 unsigned bits
, gfp_t mask
)
1273 return set_extent_bit(tree
, start
, end
, bits
, NULL
,
1277 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1278 unsigned bits
, gfp_t mask
)
1280 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
1283 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1284 struct extent_state
**cached_state
, gfp_t mask
)
1286 return set_extent_bit(tree
, start
, end
,
1287 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1288 NULL
, cached_state
, mask
);
1291 int set_extent_defrag(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1292 struct extent_state
**cached_state
, gfp_t mask
)
1294 return set_extent_bit(tree
, start
, end
,
1295 EXTENT_DELALLOC
| EXTENT_UPTODATE
| EXTENT_DEFRAG
,
1296 NULL
, cached_state
, mask
);
1299 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1302 return clear_extent_bit(tree
, start
, end
,
1303 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1304 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1307 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1310 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, NULL
,
1314 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1315 struct extent_state
**cached_state
, gfp_t mask
)
1317 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, NULL
,
1318 cached_state
, mask
);
1321 int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1322 struct extent_state
**cached_state
, gfp_t mask
)
1324 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1325 cached_state
, mask
);
1329 * either insert or lock state struct between start and end use mask to tell
1330 * us if waiting is desired.
1332 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1333 unsigned bits
, struct extent_state
**cached_state
)
1339 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1340 EXTENT_LOCKED
, &failed_start
,
1341 cached_state
, GFP_NOFS
);
1342 if (err
== -EEXIST
) {
1343 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1344 start
= failed_start
;
1347 WARN_ON(start
> end
);
1352 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1354 return lock_extent_bits(tree
, start
, end
, 0, NULL
);
1357 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1362 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1363 &failed_start
, NULL
, GFP_NOFS
);
1364 if (err
== -EEXIST
) {
1365 if (failed_start
> start
)
1366 clear_extent_bit(tree
, start
, failed_start
- 1,
1367 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1373 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1374 struct extent_state
**cached
, gfp_t mask
)
1376 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1380 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1382 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1386 int extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1388 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1389 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1392 while (index
<= end_index
) {
1393 page
= find_get_page(inode
->i_mapping
, index
);
1394 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1395 clear_page_dirty_for_io(page
);
1396 page_cache_release(page
);
1402 int extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1404 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1405 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1408 while (index
<= end_index
) {
1409 page
= find_get_page(inode
->i_mapping
, index
);
1410 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1411 __set_page_dirty_nobuffers(page
);
1412 account_page_redirty(page
);
1413 page_cache_release(page
);
1420 * helper function to set both pages and extents in the tree writeback
1422 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1424 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1425 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1428 while (index
<= end_index
) {
1429 page
= find_get_page(tree
->mapping
, index
);
1430 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1431 set_page_writeback(page
);
1432 page_cache_release(page
);
1438 /* find the first state struct with 'bits' set after 'start', and
1439 * return it. tree->lock must be held. NULL will returned if
1440 * nothing was found after 'start'
1442 static struct extent_state
*
1443 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1444 u64 start
, unsigned bits
)
1446 struct rb_node
*node
;
1447 struct extent_state
*state
;
1450 * this search will find all the extents that end after
1453 node
= tree_search(tree
, start
);
1458 state
= rb_entry(node
, struct extent_state
, rb_node
);
1459 if (state
->end
>= start
&& (state
->state
& bits
))
1462 node
= rb_next(node
);
1471 * find the first offset in the io tree with 'bits' set. zero is
1472 * returned if we find something, and *start_ret and *end_ret are
1473 * set to reflect the state struct that was found.
1475 * If nothing was found, 1 is returned. If found something, return 0.
1477 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1478 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1479 struct extent_state
**cached_state
)
1481 struct extent_state
*state
;
1485 spin_lock(&tree
->lock
);
1486 if (cached_state
&& *cached_state
) {
1487 state
= *cached_state
;
1488 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1489 n
= rb_next(&state
->rb_node
);
1491 state
= rb_entry(n
, struct extent_state
,
1493 if (state
->state
& bits
)
1497 free_extent_state(*cached_state
);
1498 *cached_state
= NULL
;
1501 free_extent_state(*cached_state
);
1502 *cached_state
= NULL
;
1505 state
= find_first_extent_bit_state(tree
, start
, bits
);
1508 cache_state_if_flags(state
, cached_state
, 0);
1509 *start_ret
= state
->start
;
1510 *end_ret
= state
->end
;
1514 spin_unlock(&tree
->lock
);
1519 * find a contiguous range of bytes in the file marked as delalloc, not
1520 * more than 'max_bytes'. start and end are used to return the range,
1522 * 1 is returned if we find something, 0 if nothing was in the tree
1524 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1525 u64
*start
, u64
*end
, u64 max_bytes
,
1526 struct extent_state
**cached_state
)
1528 struct rb_node
*node
;
1529 struct extent_state
*state
;
1530 u64 cur_start
= *start
;
1532 u64 total_bytes
= 0;
1534 spin_lock(&tree
->lock
);
1537 * this search will find all the extents that end after
1540 node
= tree_search(tree
, cur_start
);
1548 state
= rb_entry(node
, struct extent_state
, rb_node
);
1549 if (found
&& (state
->start
!= cur_start
||
1550 (state
->state
& EXTENT_BOUNDARY
))) {
1553 if (!(state
->state
& EXTENT_DELALLOC
)) {
1559 *start
= state
->start
;
1560 *cached_state
= state
;
1561 atomic_inc(&state
->refs
);
1565 cur_start
= state
->end
+ 1;
1566 node
= rb_next(node
);
1567 total_bytes
+= state
->end
- state
->start
+ 1;
1568 if (total_bytes
>= max_bytes
)
1574 spin_unlock(&tree
->lock
);
1578 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1579 struct page
*locked_page
,
1583 struct page
*pages
[16];
1584 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1585 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1586 unsigned long nr_pages
= end_index
- index
+ 1;
1589 if (index
== locked_page
->index
&& end_index
== index
)
1592 while (nr_pages
> 0) {
1593 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1594 min_t(unsigned long, nr_pages
,
1595 ARRAY_SIZE(pages
)), pages
);
1596 for (i
= 0; i
< ret
; i
++) {
1597 if (pages
[i
] != locked_page
)
1598 unlock_page(pages
[i
]);
1599 page_cache_release(pages
[i
]);
1607 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1608 struct page
*locked_page
,
1612 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1613 unsigned long start_index
= index
;
1614 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1615 unsigned long pages_locked
= 0;
1616 struct page
*pages
[16];
1617 unsigned long nrpages
;
1621 /* the caller is responsible for locking the start index */
1622 if (index
== locked_page
->index
&& index
== end_index
)
1625 /* skip the page at the start index */
1626 nrpages
= end_index
- index
+ 1;
1627 while (nrpages
> 0) {
1628 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1629 min_t(unsigned long,
1630 nrpages
, ARRAY_SIZE(pages
)), pages
);
1635 /* now we have an array of pages, lock them all */
1636 for (i
= 0; i
< ret
; i
++) {
1638 * the caller is taking responsibility for
1641 if (pages
[i
] != locked_page
) {
1642 lock_page(pages
[i
]);
1643 if (!PageDirty(pages
[i
]) ||
1644 pages
[i
]->mapping
!= inode
->i_mapping
) {
1646 unlock_page(pages
[i
]);
1647 page_cache_release(pages
[i
]);
1651 page_cache_release(pages
[i
]);
1660 if (ret
&& pages_locked
) {
1661 __unlock_for_delalloc(inode
, locked_page
,
1663 ((u64
)(start_index
+ pages_locked
- 1)) <<
1670 * find a contiguous range of bytes in the file marked as delalloc, not
1671 * more than 'max_bytes'. start and end are used to return the range,
1673 * 1 is returned if we find something, 0 if nothing was in the tree
1675 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1676 struct extent_io_tree
*tree
,
1677 struct page
*locked_page
, u64
*start
,
1678 u64
*end
, u64 max_bytes
)
1683 struct extent_state
*cached_state
= NULL
;
1688 /* step one, find a bunch of delalloc bytes starting at start */
1689 delalloc_start
= *start
;
1691 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1692 max_bytes
, &cached_state
);
1693 if (!found
|| delalloc_end
<= *start
) {
1694 *start
= delalloc_start
;
1695 *end
= delalloc_end
;
1696 free_extent_state(cached_state
);
1701 * start comes from the offset of locked_page. We have to lock
1702 * pages in order, so we can't process delalloc bytes before
1705 if (delalloc_start
< *start
)
1706 delalloc_start
= *start
;
1709 * make sure to limit the number of pages we try to lock down
1711 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1712 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1714 /* step two, lock all the pages after the page that has start */
1715 ret
= lock_delalloc_pages(inode
, locked_page
,
1716 delalloc_start
, delalloc_end
);
1717 if (ret
== -EAGAIN
) {
1718 /* some of the pages are gone, lets avoid looping by
1719 * shortening the size of the delalloc range we're searching
1721 free_extent_state(cached_state
);
1722 cached_state
= NULL
;
1724 max_bytes
= PAGE_CACHE_SIZE
;
1732 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1734 /* step three, lock the state bits for the whole range */
1735 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, 0, &cached_state
);
1737 /* then test to make sure it is all still delalloc */
1738 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1739 EXTENT_DELALLOC
, 1, cached_state
);
1741 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1742 &cached_state
, GFP_NOFS
);
1743 __unlock_for_delalloc(inode
, locked_page
,
1744 delalloc_start
, delalloc_end
);
1748 free_extent_state(cached_state
);
1749 *start
= delalloc_start
;
1750 *end
= delalloc_end
;
1755 int extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1756 struct page
*locked_page
,
1757 unsigned clear_bits
,
1758 unsigned long page_ops
)
1760 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1762 struct page
*pages
[16];
1763 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1764 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1765 unsigned long nr_pages
= end_index
- index
+ 1;
1768 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1772 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1773 mapping_set_error(inode
->i_mapping
, -EIO
);
1775 while (nr_pages
> 0) {
1776 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1777 min_t(unsigned long,
1778 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1779 for (i
= 0; i
< ret
; i
++) {
1781 if (page_ops
& PAGE_SET_PRIVATE2
)
1782 SetPagePrivate2(pages
[i
]);
1784 if (pages
[i
] == locked_page
) {
1785 page_cache_release(pages
[i
]);
1788 if (page_ops
& PAGE_CLEAR_DIRTY
)
1789 clear_page_dirty_for_io(pages
[i
]);
1790 if (page_ops
& PAGE_SET_WRITEBACK
)
1791 set_page_writeback(pages
[i
]);
1792 if (page_ops
& PAGE_SET_ERROR
)
1793 SetPageError(pages
[i
]);
1794 if (page_ops
& PAGE_END_WRITEBACK
)
1795 end_page_writeback(pages
[i
]);
1796 if (page_ops
& PAGE_UNLOCK
)
1797 unlock_page(pages
[i
]);
1798 page_cache_release(pages
[i
]);
1808 * count the number of bytes in the tree that have a given bit(s)
1809 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1810 * cached. The total number found is returned.
1812 u64
count_range_bits(struct extent_io_tree
*tree
,
1813 u64
*start
, u64 search_end
, u64 max_bytes
,
1814 unsigned bits
, int contig
)
1816 struct rb_node
*node
;
1817 struct extent_state
*state
;
1818 u64 cur_start
= *start
;
1819 u64 total_bytes
= 0;
1823 if (WARN_ON(search_end
<= cur_start
))
1826 spin_lock(&tree
->lock
);
1827 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1828 total_bytes
= tree
->dirty_bytes
;
1832 * this search will find all the extents that end after
1835 node
= tree_search(tree
, cur_start
);
1840 state
= rb_entry(node
, struct extent_state
, rb_node
);
1841 if (state
->start
> search_end
)
1843 if (contig
&& found
&& state
->start
> last
+ 1)
1845 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1846 total_bytes
+= min(search_end
, state
->end
) + 1 -
1847 max(cur_start
, state
->start
);
1848 if (total_bytes
>= max_bytes
)
1851 *start
= max(cur_start
, state
->start
);
1855 } else if (contig
&& found
) {
1858 node
= rb_next(node
);
1863 spin_unlock(&tree
->lock
);
1868 * set the private field for a given byte offset in the tree. If there isn't
1869 * an extent_state there already, this does nothing.
1871 static int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1873 struct rb_node
*node
;
1874 struct extent_state
*state
;
1877 spin_lock(&tree
->lock
);
1879 * this search will find all the extents that end after
1882 node
= tree_search(tree
, start
);
1887 state
= rb_entry(node
, struct extent_state
, rb_node
);
1888 if (state
->start
!= start
) {
1892 state
->private = private;
1894 spin_unlock(&tree
->lock
);
1898 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1900 struct rb_node
*node
;
1901 struct extent_state
*state
;
1904 spin_lock(&tree
->lock
);
1906 * this search will find all the extents that end after
1909 node
= tree_search(tree
, start
);
1914 state
= rb_entry(node
, struct extent_state
, rb_node
);
1915 if (state
->start
!= start
) {
1919 *private = state
->private;
1921 spin_unlock(&tree
->lock
);
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set. Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1931 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1932 unsigned bits
, int filled
, struct extent_state
*cached
)
1934 struct extent_state
*state
= NULL
;
1935 struct rb_node
*node
;
1938 spin_lock(&tree
->lock
);
1939 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
1940 cached
->end
> start
)
1941 node
= &cached
->rb_node
;
1943 node
= tree_search(tree
, start
);
1944 while (node
&& start
<= end
) {
1945 state
= rb_entry(node
, struct extent_state
, rb_node
);
1947 if (filled
&& state
->start
> start
) {
1952 if (state
->start
> end
)
1955 if (state
->state
& bits
) {
1959 } else if (filled
) {
1964 if (state
->end
== (u64
)-1)
1967 start
= state
->end
+ 1;
1970 node
= rb_next(node
);
1977 spin_unlock(&tree
->lock
);
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1985 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
1987 u64 start
= page_offset(page
);
1988 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1989 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1990 SetPageUptodate(page
);
1993 int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
)
1997 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1999 set_state_private(failure_tree
, rec
->start
, 0);
2000 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2001 rec
->start
+ rec
->len
- 1,
2002 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2006 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
2007 rec
->start
+ rec
->len
- 1,
2008 EXTENT_DAMAGED
, GFP_NOFS
);
2017 * this bypasses the standard btrfs submit functions deliberately, as
2018 * the standard behavior is to write all copies in a raid setup. here we only
2019 * want to write the one bad copy. so we do the mapping for ourselves and issue
2020 * submit_bio directly.
2021 * to avoid any synchronization issues, wait for the data after writing, which
2022 * actually prevents the read that triggered the error from finishing.
2023 * currently, there can be no more than two copies of every data bit. thus,
2024 * exactly one rewrite is required.
2026 int repair_io_failure(struct inode
*inode
, u64 start
, u64 length
, u64 logical
,
2027 struct page
*page
, unsigned int pg_offset
, int mirror_num
)
2029 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2031 struct btrfs_device
*dev
;
2034 struct btrfs_bio
*bbio
= NULL
;
2035 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2038 ASSERT(!(fs_info
->sb
->s_flags
& MS_RDONLY
));
2039 BUG_ON(!mirror_num
);
2041 /* we can't repair anything in raid56 yet */
2042 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2045 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2048 bio
->bi_iter
.bi_size
= 0;
2049 map_length
= length
;
2051 ret
= btrfs_map_block(fs_info
, WRITE
, logical
,
2052 &map_length
, &bbio
, mirror_num
);
2057 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2058 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2059 bio
->bi_iter
.bi_sector
= sector
;
2060 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2061 btrfs_put_bbio(bbio
);
2062 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2066 bio
->bi_bdev
= dev
->bdev
;
2067 bio_add_page(bio
, page
, length
, pg_offset
);
2069 if (btrfsic_submit_bio_wait(WRITE_SYNC
, bio
)) {
2070 /* try to remap that extent elsewhere? */
2072 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2076 printk_ratelimited_in_rcu(KERN_INFO
2077 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2078 btrfs_ino(inode
), start
,
2079 rcu_str_deref(dev
->name
), sector
);
2084 int repair_eb_io_failure(struct btrfs_root
*root
, struct extent_buffer
*eb
,
2087 u64 start
= eb
->start
;
2088 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2091 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2094 for (i
= 0; i
< num_pages
; i
++) {
2095 struct page
*p
= eb
->pages
[i
];
2097 ret
= repair_io_failure(root
->fs_info
->btree_inode
, start
,
2098 PAGE_CACHE_SIZE
, start
, p
,
2099 start
- page_offset(p
), mirror_num
);
2102 start
+= PAGE_CACHE_SIZE
;
2109 * each time an IO finishes, we do a fast check in the IO failure tree
2110 * to see if we need to process or clean up an io_failure_record
2112 int clean_io_failure(struct inode
*inode
, u64 start
, struct page
*page
,
2113 unsigned int pg_offset
)
2116 u64 private_failure
;
2117 struct io_failure_record
*failrec
;
2118 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2119 struct extent_state
*state
;
2124 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2125 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2129 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
2134 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
2135 BUG_ON(!failrec
->this_mirror
);
2137 if (failrec
->in_validation
) {
2138 /* there was no real error, just free the record */
2139 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2143 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2146 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2147 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2150 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2152 if (state
&& state
->start
<= failrec
->start
&&
2153 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2154 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2156 if (num_copies
> 1) {
2157 repair_io_failure(inode
, start
, failrec
->len
,
2158 failrec
->logical
, page
,
2159 pg_offset
, failrec
->failed_mirror
);
2164 free_io_failure(inode
, failrec
);
2170 * Can be called when
2171 * - hold extent lock
2172 * - under ordered extent
2173 * - the inode is freeing
2175 void btrfs_free_io_failure_record(struct inode
*inode
, u64 start
, u64 end
)
2177 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2178 struct io_failure_record
*failrec
;
2179 struct extent_state
*state
, *next
;
2181 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2184 spin_lock(&failure_tree
->lock
);
2185 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2187 if (state
->start
> end
)
2190 ASSERT(state
->end
<= end
);
2192 next
= next_state(state
);
2194 failrec
= (struct io_failure_record
*)(unsigned long)state
->private;
2195 free_extent_state(state
);
2200 spin_unlock(&failure_tree
->lock
);
2203 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2204 struct io_failure_record
**failrec_ret
)
2206 struct io_failure_record
*failrec
;
2208 struct extent_map
*em
;
2209 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2210 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2211 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2215 ret
= get_state_private(failure_tree
, start
, &private);
2217 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2221 failrec
->start
= start
;
2222 failrec
->len
= end
- start
+ 1;
2223 failrec
->this_mirror
= 0;
2224 failrec
->bio_flags
= 0;
2225 failrec
->in_validation
= 0;
2227 read_lock(&em_tree
->lock
);
2228 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2230 read_unlock(&em_tree
->lock
);
2235 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2236 free_extent_map(em
);
2239 read_unlock(&em_tree
->lock
);
2245 logical
= start
- em
->start
;
2246 logical
= em
->block_start
+ logical
;
2247 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2248 logical
= em
->block_start
;
2249 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2250 extent_set_compress_type(&failrec
->bio_flags
,
2254 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2255 logical
, start
, failrec
->len
);
2257 failrec
->logical
= logical
;
2258 free_extent_map(em
);
2260 /* set the bits in the private failure tree */
2261 ret
= set_extent_bits(failure_tree
, start
, end
,
2262 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2264 ret
= set_state_private(failure_tree
, start
,
2265 (u64
)(unsigned long)failrec
);
2266 /* set the bits in the inode's tree */
2268 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2275 failrec
= (struct io_failure_record
*)(unsigned long)private;
2276 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2277 failrec
->logical
, failrec
->start
, failrec
->len
,
2278 failrec
->in_validation
);
2280 * when data can be on disk more than twice, add to failrec here
2281 * (e.g. with a list for failed_mirror) to make
2282 * clean_io_failure() clean all those errors at once.
2286 *failrec_ret
= failrec
;
2291 int btrfs_check_repairable(struct inode
*inode
, struct bio
*failed_bio
,
2292 struct io_failure_record
*failrec
, int failed_mirror
)
2296 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
2297 failrec
->logical
, failrec
->len
);
2298 if (num_copies
== 1) {
2300 * we only have a single copy of the data, so don't bother with
2301 * all the retry and error correction code that follows. no
2302 * matter what the error is, it is very likely to persist.
2304 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2305 num_copies
, failrec
->this_mirror
, failed_mirror
);
2310 * there are two premises:
2311 * a) deliver good data to the caller
2312 * b) correct the bad sectors on disk
2314 if (failed_bio
->bi_vcnt
> 1) {
2316 * to fulfill b), we need to know the exact failing sectors, as
2317 * we don't want to rewrite any more than the failed ones. thus,
2318 * we need separate read requests for the failed bio
2320 * if the following BUG_ON triggers, our validation request got
2321 * merged. we need separate requests for our algorithm to work.
2323 BUG_ON(failrec
->in_validation
);
2324 failrec
->in_validation
= 1;
2325 failrec
->this_mirror
= failed_mirror
;
2328 * we're ready to fulfill a) and b) alongside. get a good copy
2329 * of the failed sector and if we succeed, we have setup
2330 * everything for repair_io_failure to do the rest for us.
2332 if (failrec
->in_validation
) {
2333 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2334 failrec
->in_validation
= 0;
2335 failrec
->this_mirror
= 0;
2337 failrec
->failed_mirror
= failed_mirror
;
2338 failrec
->this_mirror
++;
2339 if (failrec
->this_mirror
== failed_mirror
)
2340 failrec
->this_mirror
++;
2343 if (failrec
->this_mirror
> num_copies
) {
2344 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2345 num_copies
, failrec
->this_mirror
, failed_mirror
);
2353 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2354 struct io_failure_record
*failrec
,
2355 struct page
*page
, int pg_offset
, int icsum
,
2356 bio_end_io_t
*endio_func
, void *data
)
2359 struct btrfs_io_bio
*btrfs_failed_bio
;
2360 struct btrfs_io_bio
*btrfs_bio
;
2362 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2366 bio
->bi_end_io
= endio_func
;
2367 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2368 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2369 bio
->bi_iter
.bi_size
= 0;
2370 bio
->bi_private
= data
;
2372 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2373 if (btrfs_failed_bio
->csum
) {
2374 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2375 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2377 btrfs_bio
= btrfs_io_bio(bio
);
2378 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2380 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2384 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2390 * this is a generic handler for readpage errors (default
2391 * readpage_io_failed_hook). if other copies exist, read those and write back
2392 * good data to the failed position. does not investigate in remapping the
2393 * failed extent elsewhere, hoping the device will be smart enough to do this as
2397 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2398 struct page
*page
, u64 start
, u64 end
,
2401 struct io_failure_record
*failrec
;
2402 struct inode
*inode
= page
->mapping
->host
;
2403 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2408 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2410 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2414 ret
= btrfs_check_repairable(inode
, failed_bio
, failrec
, failed_mirror
);
2416 free_io_failure(inode
, failrec
);
2420 if (failed_bio
->bi_vcnt
> 1)
2421 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2423 read_mode
= READ_SYNC
;
2425 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2426 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2427 start
- page_offset(page
),
2428 (int)phy_offset
, failed_bio
->bi_end_io
,
2431 free_io_failure(inode
, failrec
);
2435 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2436 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2438 ret
= tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
,
2439 failrec
->this_mirror
,
2440 failrec
->bio_flags
, 0);
2442 free_io_failure(inode
, failrec
);
2449 /* lots and lots of room for performance fixes in the end_bio funcs */
2451 int end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2453 int uptodate
= (err
== 0);
2454 struct extent_io_tree
*tree
;
2457 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2459 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2460 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2461 end
, NULL
, uptodate
);
2467 ClearPageUptodate(page
);
2469 ret
= ret
< 0 ? ret
: -EIO
;
2470 mapping_set_error(page
->mapping
, ret
);
2476 * after a writepage IO is done, we need to:
2477 * clear the uptodate bits on error
2478 * clear the writeback bits in the extent tree for this IO
2479 * end_page_writeback if the page has no more pending IO
2481 * Scheduling is not allowed, so the extent state tree is expected
2482 * to have one and only one object corresponding to this IO.
2484 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
2486 struct bio_vec
*bvec
;
2491 bio_for_each_segment_all(bvec
, bio
, i
) {
2492 struct page
*page
= bvec
->bv_page
;
2494 /* We always issue full-page reads, but if some block
2495 * in a page fails to read, blk_update_request() will
2496 * advance bv_offset and adjust bv_len to compensate.
2497 * Print a warning for nonzero offsets, and an error
2498 * if they don't add up to a full page. */
2499 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2500 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2501 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2502 "partial page write in btrfs with offset %u and length %u",
2503 bvec
->bv_offset
, bvec
->bv_len
);
2505 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2506 "incomplete page write in btrfs with offset %u and "
2508 bvec
->bv_offset
, bvec
->bv_len
);
2511 start
= page_offset(page
);
2512 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2514 if (end_extent_writepage(page
, err
, start
, end
))
2517 end_page_writeback(page
);
2524 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2527 struct extent_state
*cached
= NULL
;
2528 u64 end
= start
+ len
- 1;
2530 if (uptodate
&& tree
->track_uptodate
)
2531 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2532 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2536 * after a readpage IO is done, we need to:
2537 * clear the uptodate bits on error
2538 * set the uptodate bits if things worked
2539 * set the page up to date if all extents in the tree are uptodate
2540 * clear the lock bit in the extent tree
2541 * unlock the page if there are no other extents locked for it
2543 * Scheduling is not allowed, so the extent state tree is expected
2544 * to have one and only one object corresponding to this IO.
2546 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
2548 struct bio_vec
*bvec
;
2549 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2550 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2551 struct extent_io_tree
*tree
;
2556 u64 extent_start
= 0;
2565 bio_for_each_segment_all(bvec
, bio
, i
) {
2566 struct page
*page
= bvec
->bv_page
;
2567 struct inode
*inode
= page
->mapping
->host
;
2569 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2570 "mirror=%u\n", (u64
)bio
->bi_iter
.bi_sector
, err
,
2571 io_bio
->mirror_num
);
2572 tree
= &BTRFS_I(inode
)->io_tree
;
2574 /* We always issue full-page reads, but if some block
2575 * in a page fails to read, blk_update_request() will
2576 * advance bv_offset and adjust bv_len to compensate.
2577 * Print a warning for nonzero offsets, and an error
2578 * if they don't add up to a full page. */
2579 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2580 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2581 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2582 "partial page read in btrfs with offset %u and length %u",
2583 bvec
->bv_offset
, bvec
->bv_len
);
2585 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2586 "incomplete page read in btrfs with offset %u and "
2588 bvec
->bv_offset
, bvec
->bv_len
);
2591 start
= page_offset(page
);
2592 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2595 mirror
= io_bio
->mirror_num
;
2596 if (likely(uptodate
&& tree
->ops
&&
2597 tree
->ops
->readpage_end_io_hook
)) {
2598 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2604 clean_io_failure(inode
, start
, page
, 0);
2607 if (likely(uptodate
))
2610 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2611 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2613 test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
2617 * The generic bio_readpage_error handles errors the
2618 * following way: If possible, new read requests are
2619 * created and submitted and will end up in
2620 * end_bio_extent_readpage as well (if we're lucky, not
2621 * in the !uptodate case). In that case it returns 0 and
2622 * we just go on with the next page in our bio. If it
2623 * can't handle the error it will return -EIO and we
2624 * remain responsible for that page.
2626 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2630 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2638 if (likely(uptodate
)) {
2639 loff_t i_size
= i_size_read(inode
);
2640 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2643 /* Zero out the end if this page straddles i_size */
2644 off
= i_size
& (PAGE_CACHE_SIZE
-1);
2645 if (page
->index
== end_index
&& off
)
2646 zero_user_segment(page
, off
, PAGE_CACHE_SIZE
);
2647 SetPageUptodate(page
);
2649 ClearPageUptodate(page
);
2655 if (unlikely(!uptodate
)) {
2657 endio_readpage_release_extent(tree
,
2663 endio_readpage_release_extent(tree
, start
,
2664 end
- start
+ 1, 0);
2665 } else if (!extent_len
) {
2666 extent_start
= start
;
2667 extent_len
= end
+ 1 - start
;
2668 } else if (extent_start
+ extent_len
== start
) {
2669 extent_len
+= end
+ 1 - start
;
2671 endio_readpage_release_extent(tree
, extent_start
,
2672 extent_len
, uptodate
);
2673 extent_start
= start
;
2674 extent_len
= end
+ 1 - start
;
2679 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2682 io_bio
->end_io(io_bio
, err
);
2687 * this allocates from the btrfs_bioset. We're returning a bio right now
2688 * but you can call btrfs_io_bio for the appropriate container_of magic
2691 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2694 struct btrfs_io_bio
*btrfs_bio
;
2697 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2699 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2700 while (!bio
&& (nr_vecs
/= 2)) {
2701 bio
= bio_alloc_bioset(gfp_flags
,
2702 nr_vecs
, btrfs_bioset
);
2707 bio
->bi_bdev
= bdev
;
2708 bio
->bi_iter
.bi_sector
= first_sector
;
2709 btrfs_bio
= btrfs_io_bio(bio
);
2710 btrfs_bio
->csum
= NULL
;
2711 btrfs_bio
->csum_allocated
= NULL
;
2712 btrfs_bio
->end_io
= NULL
;
2717 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2719 struct btrfs_io_bio
*btrfs_bio
;
2722 new = bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2724 btrfs_bio
= btrfs_io_bio(new);
2725 btrfs_bio
->csum
= NULL
;
2726 btrfs_bio
->csum_allocated
= NULL
;
2727 btrfs_bio
->end_io
= NULL
;
2732 /* this also allocates from the btrfs_bioset */
2733 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2735 struct btrfs_io_bio
*btrfs_bio
;
2738 bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2740 btrfs_bio
= btrfs_io_bio(bio
);
2741 btrfs_bio
->csum
= NULL
;
2742 btrfs_bio
->csum_allocated
= NULL
;
2743 btrfs_bio
->end_io
= NULL
;
2749 static int __must_check
submit_one_bio(int rw
, struct bio
*bio
,
2750 int mirror_num
, unsigned long bio_flags
)
2753 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2754 struct page
*page
= bvec
->bv_page
;
2755 struct extent_io_tree
*tree
= bio
->bi_private
;
2758 start
= page_offset(page
) + bvec
->bv_offset
;
2760 bio
->bi_private
= NULL
;
2764 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2765 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2766 mirror_num
, bio_flags
, start
);
2768 btrfsic_submit_bio(rw
, bio
);
2770 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2776 static int merge_bio(int rw
, struct extent_io_tree
*tree
, struct page
*page
,
2777 unsigned long offset
, size_t size
, struct bio
*bio
,
2778 unsigned long bio_flags
)
2781 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2782 ret
= tree
->ops
->merge_bio_hook(rw
, page
, offset
, size
, bio
,
2789 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2790 struct page
*page
, sector_t sector
,
2791 size_t size
, unsigned long offset
,
2792 struct block_device
*bdev
,
2793 struct bio
**bio_ret
,
2794 unsigned long max_pages
,
2795 bio_end_io_t end_io_func
,
2797 unsigned long prev_bio_flags
,
2798 unsigned long bio_flags
,
2799 bool force_bio_submit
)
2805 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
2806 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2807 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2809 if (bio_ret
&& *bio_ret
) {
2812 contig
= bio
->bi_iter
.bi_sector
== sector
;
2814 contig
= bio_end_sector(bio
) == sector
;
2816 if (prev_bio_flags
!= bio_flags
|| !contig
||
2818 merge_bio(rw
, tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2819 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2820 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2831 if (this_compressed
)
2834 nr
= bio_get_nr_vecs(bdev
);
2836 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
2840 bio_add_page(bio
, page
, page_size
, offset
);
2841 bio
->bi_end_io
= end_io_func
;
2842 bio
->bi_private
= tree
;
2847 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2852 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2855 if (!PagePrivate(page
)) {
2856 SetPagePrivate(page
);
2857 page_cache_get(page
);
2858 set_page_private(page
, (unsigned long)eb
);
2860 WARN_ON(page
->private != (unsigned long)eb
);
2864 void set_page_extent_mapped(struct page
*page
)
2866 if (!PagePrivate(page
)) {
2867 SetPagePrivate(page
);
2868 page_cache_get(page
);
2869 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2873 static struct extent_map
*
2874 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2875 u64 start
, u64 len
, get_extent_t
*get_extent
,
2876 struct extent_map
**em_cached
)
2878 struct extent_map
*em
;
2880 if (em_cached
&& *em_cached
) {
2882 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2883 start
< extent_map_end(em
)) {
2884 atomic_inc(&em
->refs
);
2888 free_extent_map(em
);
2892 em
= get_extent(inode
, page
, pg_offset
, start
, len
, 0);
2893 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2895 atomic_inc(&em
->refs
);
2901 * basic readpage implementation. Locked extent state structs are inserted
2902 * into the tree that are removed when the IO is done (by the end_io
2904 * XXX JDM: This needs looking at to ensure proper page locking
2906 static int __do_readpage(struct extent_io_tree
*tree
,
2908 get_extent_t
*get_extent
,
2909 struct extent_map
**em_cached
,
2910 struct bio
**bio
, int mirror_num
,
2911 unsigned long *bio_flags
, int rw
,
2914 struct inode
*inode
= page
->mapping
->host
;
2915 u64 start
= page_offset(page
);
2916 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2920 u64 last_byte
= i_size_read(inode
);
2924 struct extent_map
*em
;
2925 struct block_device
*bdev
;
2928 int parent_locked
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2929 size_t pg_offset
= 0;
2931 size_t disk_io_size
;
2932 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2933 unsigned long this_bio_flag
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2935 set_page_extent_mapped(page
);
2938 if (!PageUptodate(page
)) {
2939 if (cleancache_get_page(page
) == 0) {
2940 BUG_ON(blocksize
!= PAGE_SIZE
);
2941 unlock_extent(tree
, start
, end
);
2946 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2948 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2951 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2952 userpage
= kmap_atomic(page
);
2953 memset(userpage
+ zero_offset
, 0, iosize
);
2954 flush_dcache_page(page
);
2955 kunmap_atomic(userpage
);
2958 while (cur
<= end
) {
2959 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2960 bool force_bio_submit
= false;
2962 if (cur
>= last_byte
) {
2964 struct extent_state
*cached
= NULL
;
2966 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2967 userpage
= kmap_atomic(page
);
2968 memset(userpage
+ pg_offset
, 0, iosize
);
2969 flush_dcache_page(page
);
2970 kunmap_atomic(userpage
);
2971 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2974 unlock_extent_cached(tree
, cur
,
2979 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
2980 end
- cur
+ 1, get_extent
, em_cached
);
2981 if (IS_ERR_OR_NULL(em
)) {
2984 unlock_extent(tree
, cur
, end
);
2987 extent_offset
= cur
- em
->start
;
2988 BUG_ON(extent_map_end(em
) <= cur
);
2991 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2992 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
2993 extent_set_compress_type(&this_bio_flag
,
2997 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2998 cur_end
= min(extent_map_end(em
) - 1, end
);
2999 iosize
= ALIGN(iosize
, blocksize
);
3000 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
3001 disk_io_size
= em
->block_len
;
3002 sector
= em
->block_start
>> 9;
3004 sector
= (em
->block_start
+ extent_offset
) >> 9;
3005 disk_io_size
= iosize
;
3008 block_start
= em
->block_start
;
3009 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3010 block_start
= EXTENT_MAP_HOLE
;
3013 * If we have a file range that points to a compressed extent
3014 * and it's followed by a consecutive file range that points to
3015 * to the same compressed extent (possibly with a different
3016 * offset and/or length, so it either points to the whole extent
3017 * or only part of it), we must make sure we do not submit a
3018 * single bio to populate the pages for the 2 ranges because
3019 * this makes the compressed extent read zero out the pages
3020 * belonging to the 2nd range. Imagine the following scenario:
3023 * [0 - 8K] [8K - 24K]
3026 * points to extent X, points to extent X,
3027 * offset 4K, length of 8K offset 0, length 16K
3029 * [extent X, compressed length = 4K uncompressed length = 16K]
3031 * If the bio to read the compressed extent covers both ranges,
3032 * it will decompress extent X into the pages belonging to the
3033 * first range and then it will stop, zeroing out the remaining
3034 * pages that belong to the other range that points to extent X.
3035 * So here we make sure we submit 2 bios, one for the first
3036 * range and another one for the third range. Both will target
3037 * the same physical extent from disk, but we can't currently
3038 * make the compressed bio endio callback populate the pages
3039 * for both ranges because each compressed bio is tightly
3040 * coupled with a single extent map, and each range can have
3041 * an extent map with a different offset value relative to the
3042 * uncompressed data of our extent and different lengths. This
3043 * is a corner case so we prioritize correctness over
3044 * non-optimal behavior (submitting 2 bios for the same extent).
3046 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3047 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3048 *prev_em_start
!= em
->orig_start
)
3049 force_bio_submit
= true;
3052 *prev_em_start
= em
->orig_start
;
3054 free_extent_map(em
);
3057 /* we've found a hole, just zero and go on */
3058 if (block_start
== EXTENT_MAP_HOLE
) {
3060 struct extent_state
*cached
= NULL
;
3062 userpage
= kmap_atomic(page
);
3063 memset(userpage
+ pg_offset
, 0, iosize
);
3064 flush_dcache_page(page
);
3065 kunmap_atomic(userpage
);
3067 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3069 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
3072 pg_offset
+= iosize
;
3075 /* the get_extent function already copied into the page */
3076 if (test_range_bit(tree
, cur
, cur_end
,
3077 EXTENT_UPTODATE
, 1, NULL
)) {
3078 check_page_uptodate(tree
, page
);
3080 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3082 pg_offset
+= iosize
;
3085 /* we have an inline extent but it didn't get marked up
3086 * to date. Error out
3088 if (block_start
== EXTENT_MAP_INLINE
) {
3091 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3093 pg_offset
+= iosize
;
3098 ret
= submit_extent_page(rw
, tree
, page
,
3099 sector
, disk_io_size
, pg_offset
,
3101 end_bio_extent_readpage
, mirror_num
,
3107 *bio_flags
= this_bio_flag
;
3111 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3114 pg_offset
+= iosize
;
3118 if (!PageError(page
))
3119 SetPageUptodate(page
);
3125 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
3126 struct page
*pages
[], int nr_pages
,
3128 get_extent_t
*get_extent
,
3129 struct extent_map
**em_cached
,
3130 struct bio
**bio
, int mirror_num
,
3131 unsigned long *bio_flags
, int rw
,
3134 struct inode
*inode
;
3135 struct btrfs_ordered_extent
*ordered
;
3138 inode
= pages
[0]->mapping
->host
;
3140 lock_extent(tree
, start
, end
);
3141 ordered
= btrfs_lookup_ordered_range(inode
, start
,
3145 unlock_extent(tree
, start
, end
);
3146 btrfs_start_ordered_extent(inode
, ordered
, 1);
3147 btrfs_put_ordered_extent(ordered
);
3150 for (index
= 0; index
< nr_pages
; index
++) {
3151 __do_readpage(tree
, pages
[index
], get_extent
, em_cached
, bio
,
3152 mirror_num
, bio_flags
, rw
, prev_em_start
);
3153 page_cache_release(pages
[index
]);
3157 static void __extent_readpages(struct extent_io_tree
*tree
,
3158 struct page
*pages
[],
3159 int nr_pages
, get_extent_t
*get_extent
,
3160 struct extent_map
**em_cached
,
3161 struct bio
**bio
, int mirror_num
,
3162 unsigned long *bio_flags
, int rw
,
3169 int first_index
= 0;
3171 for (index
= 0; index
< nr_pages
; index
++) {
3172 page_start
= page_offset(pages
[index
]);
3175 end
= start
+ PAGE_CACHE_SIZE
- 1;
3176 first_index
= index
;
3177 } else if (end
+ 1 == page_start
) {
3178 end
+= PAGE_CACHE_SIZE
;
3180 __do_contiguous_readpages(tree
, &pages
[first_index
],
3181 index
- first_index
, start
,
3182 end
, get_extent
, em_cached
,
3183 bio
, mirror_num
, bio_flags
,
3186 end
= start
+ PAGE_CACHE_SIZE
- 1;
3187 first_index
= index
;
3192 __do_contiguous_readpages(tree
, &pages
[first_index
],
3193 index
- first_index
, start
,
3194 end
, get_extent
, em_cached
, bio
,
3195 mirror_num
, bio_flags
, rw
,
3199 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3201 get_extent_t
*get_extent
,
3202 struct bio
**bio
, int mirror_num
,
3203 unsigned long *bio_flags
, int rw
)
3205 struct inode
*inode
= page
->mapping
->host
;
3206 struct btrfs_ordered_extent
*ordered
;
3207 u64 start
= page_offset(page
);
3208 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3212 lock_extent(tree
, start
, end
);
3213 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
3216 unlock_extent(tree
, start
, end
);
3217 btrfs_start_ordered_extent(inode
, ordered
, 1);
3218 btrfs_put_ordered_extent(ordered
);
3221 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3222 bio_flags
, rw
, NULL
);
3226 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3227 get_extent_t
*get_extent
, int mirror_num
)
3229 struct bio
*bio
= NULL
;
3230 unsigned long bio_flags
= 0;
3233 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3236 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3240 int extent_read_full_page_nolock(struct extent_io_tree
*tree
, struct page
*page
,
3241 get_extent_t
*get_extent
, int mirror_num
)
3243 struct bio
*bio
= NULL
;
3244 unsigned long bio_flags
= EXTENT_BIO_PARENT_LOCKED
;
3247 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, &bio
, mirror_num
,
3248 &bio_flags
, READ
, NULL
);
3250 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3254 static noinline
void update_nr_written(struct page
*page
,
3255 struct writeback_control
*wbc
,
3256 unsigned long nr_written
)
3258 wbc
->nr_to_write
-= nr_written
;
3259 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
3260 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
3261 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
3265 * helper for __extent_writepage, doing all of the delayed allocation setup.
3267 * This returns 1 if our fill_delalloc function did all the work required
3268 * to write the page (copy into inline extent). In this case the IO has
3269 * been started and the page is already unlocked.
3271 * This returns 0 if all went well (page still locked)
3272 * This returns < 0 if there were errors (page still locked)
3274 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3275 struct page
*page
, struct writeback_control
*wbc
,
3276 struct extent_page_data
*epd
,
3278 unsigned long *nr_written
)
3280 struct extent_io_tree
*tree
= epd
->tree
;
3281 u64 page_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
3283 u64 delalloc_to_write
= 0;
3284 u64 delalloc_end
= 0;
3286 int page_started
= 0;
3288 if (epd
->extent_locked
|| !tree
->ops
|| !tree
->ops
->fill_delalloc
)
3291 while (delalloc_end
< page_end
) {
3292 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3296 BTRFS_MAX_EXTENT_SIZE
);
3297 if (nr_delalloc
== 0) {
3298 delalloc_start
= delalloc_end
+ 1;
3301 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3306 /* File system has been set read-only */
3309 /* fill_delalloc should be return < 0 for error
3310 * but just in case, we use > 0 here meaning the
3311 * IO is started, so we don't want to return > 0
3312 * unless things are going well.
3314 ret
= ret
< 0 ? ret
: -EIO
;
3318 * delalloc_end is already one less than the total
3319 * length, so we don't subtract one from
3322 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3325 delalloc_start
= delalloc_end
+ 1;
3327 if (wbc
->nr_to_write
< delalloc_to_write
) {
3330 if (delalloc_to_write
< thresh
* 2)
3331 thresh
= delalloc_to_write
;
3332 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3336 /* did the fill delalloc function already unlock and start
3341 * we've unlocked the page, so we can't update
3342 * the mapping's writeback index, just update
3345 wbc
->nr_to_write
-= *nr_written
;
3356 * helper for __extent_writepage. This calls the writepage start hooks,
3357 * and does the loop to map the page into extents and bios.
3359 * We return 1 if the IO is started and the page is unlocked,
3360 * 0 if all went well (page still locked)
3361 * < 0 if there were errors (page still locked)
3363 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3365 struct writeback_control
*wbc
,
3366 struct extent_page_data
*epd
,
3368 unsigned long nr_written
,
3369 int write_flags
, int *nr_ret
)
3371 struct extent_io_tree
*tree
= epd
->tree
;
3372 u64 start
= page_offset(page
);
3373 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3380 struct extent_state
*cached_state
= NULL
;
3381 struct extent_map
*em
;
3382 struct block_device
*bdev
;
3383 size_t pg_offset
= 0;
3389 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3390 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3393 /* Fixup worker will requeue */
3395 wbc
->pages_skipped
++;
3397 redirty_page_for_writepage(wbc
, page
);
3399 update_nr_written(page
, wbc
, nr_written
);
3407 * we don't want to touch the inode after unlocking the page,
3408 * so we update the mapping writeback index now
3410 update_nr_written(page
, wbc
, nr_written
+ 1);
3413 if (i_size
<= start
) {
3414 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3415 tree
->ops
->writepage_end_io_hook(page
, start
,
3420 blocksize
= inode
->i_sb
->s_blocksize
;
3422 while (cur
<= end
) {
3424 if (cur
>= i_size
) {
3425 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3426 tree
->ops
->writepage_end_io_hook(page
, cur
,
3430 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3432 if (IS_ERR_OR_NULL(em
)) {
3434 ret
= PTR_ERR_OR_ZERO(em
);
3438 extent_offset
= cur
- em
->start
;
3439 em_end
= extent_map_end(em
);
3440 BUG_ON(em_end
<= cur
);
3442 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3443 iosize
= ALIGN(iosize
, blocksize
);
3444 sector
= (em
->block_start
+ extent_offset
) >> 9;
3446 block_start
= em
->block_start
;
3447 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3448 free_extent_map(em
);
3452 * compressed and inline extents are written through other
3455 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3456 block_start
== EXTENT_MAP_INLINE
) {
3458 * end_io notification does not happen here for
3459 * compressed extents
3461 if (!compressed
&& tree
->ops
&&
3462 tree
->ops
->writepage_end_io_hook
)
3463 tree
->ops
->writepage_end_io_hook(page
, cur
,
3466 else if (compressed
) {
3467 /* we don't want to end_page_writeback on
3468 * a compressed extent. this happens
3475 pg_offset
+= iosize
;
3479 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
3480 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
3488 unsigned long max_nr
= (i_size
>> PAGE_CACHE_SHIFT
) + 1;
3490 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3491 if (!PageWriteback(page
)) {
3492 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3493 "page %lu not writeback, cur %llu end %llu",
3494 page
->index
, cur
, end
);
3497 ret
= submit_extent_page(write_flags
, tree
, page
,
3498 sector
, iosize
, pg_offset
,
3499 bdev
, &epd
->bio
, max_nr
,
3500 end_bio_extent_writepage
,
3506 pg_offset
+= iosize
;
3514 /* drop our reference on any cached states */
3515 free_extent_state(cached_state
);
3520 * the writepage semantics are similar to regular writepage. extent
3521 * records are inserted to lock ranges in the tree, and as dirty areas
3522 * are found, they are marked writeback. Then the lock bits are removed
3523 * and the end_io handler clears the writeback ranges
3525 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3528 struct inode
*inode
= page
->mapping
->host
;
3529 struct extent_page_data
*epd
= data
;
3530 u64 start
= page_offset(page
);
3531 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3534 size_t pg_offset
= 0;
3535 loff_t i_size
= i_size_read(inode
);
3536 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
3538 unsigned long nr_written
= 0;
3540 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3541 write_flags
= WRITE_SYNC
;
3543 write_flags
= WRITE
;
3545 trace___extent_writepage(page
, inode
, wbc
);
3547 WARN_ON(!PageLocked(page
));
3549 ClearPageError(page
);
3551 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
3552 if (page
->index
> end_index
||
3553 (page
->index
== end_index
&& !pg_offset
)) {
3554 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
3559 if (page
->index
== end_index
) {
3562 userpage
= kmap_atomic(page
);
3563 memset(userpage
+ pg_offset
, 0,
3564 PAGE_CACHE_SIZE
- pg_offset
);
3565 kunmap_atomic(userpage
);
3566 flush_dcache_page(page
);
3571 set_page_extent_mapped(page
);
3573 ret
= writepage_delalloc(inode
, page
, wbc
, epd
, start
, &nr_written
);
3579 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3580 i_size
, nr_written
, write_flags
, &nr
);
3586 /* make sure the mapping tag for page dirty gets cleared */
3587 set_page_writeback(page
);
3588 end_page_writeback(page
);
3590 if (PageError(page
)) {
3591 ret
= ret
< 0 ? ret
: -EIO
;
3592 end_extent_writepage(page
, ret
, start
, page_end
);
3601 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3603 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3604 TASK_UNINTERRUPTIBLE
);
3607 static noinline_for_stack
int
3608 lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3609 struct btrfs_fs_info
*fs_info
,
3610 struct extent_page_data
*epd
)
3612 unsigned long i
, num_pages
;
3616 if (!btrfs_try_tree_write_lock(eb
)) {
3618 flush_write_bio(epd
);
3619 btrfs_tree_lock(eb
);
3622 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3623 btrfs_tree_unlock(eb
);
3627 flush_write_bio(epd
);
3631 wait_on_extent_buffer_writeback(eb
);
3632 btrfs_tree_lock(eb
);
3633 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3635 btrfs_tree_unlock(eb
);
3640 * We need to do this to prevent races in people who check if the eb is
3641 * under IO since we can end up having no IO bits set for a short period
3644 spin_lock(&eb
->refs_lock
);
3645 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3646 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3647 spin_unlock(&eb
->refs_lock
);
3648 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3649 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3651 fs_info
->dirty_metadata_batch
);
3654 spin_unlock(&eb
->refs_lock
);
3657 btrfs_tree_unlock(eb
);
3662 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3663 for (i
= 0; i
< num_pages
; i
++) {
3664 struct page
*p
= eb
->pages
[i
];
3666 if (!trylock_page(p
)) {
3668 flush_write_bio(epd
);
3678 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3680 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3681 smp_mb__after_atomic();
3682 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3685 static void set_btree_ioerr(struct page
*page
)
3687 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3688 struct btrfs_inode
*btree_ino
= BTRFS_I(eb
->fs_info
->btree_inode
);
3691 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3695 * If writeback for a btree extent that doesn't belong to a log tree
3696 * failed, increment the counter transaction->eb_write_errors.
3697 * We do this because while the transaction is running and before it's
3698 * committing (when we call filemap_fdata[write|wait]_range against
3699 * the btree inode), we might have
3700 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3701 * returns an error or an error happens during writeback, when we're
3702 * committing the transaction we wouldn't know about it, since the pages
3703 * can be no longer dirty nor marked anymore for writeback (if a
3704 * subsequent modification to the extent buffer didn't happen before the
3705 * transaction commit), which makes filemap_fdata[write|wait]_range not
3706 * able to find the pages tagged with SetPageError at transaction
3707 * commit time. So if this happens we must abort the transaction,
3708 * otherwise we commit a super block with btree roots that point to
3709 * btree nodes/leafs whose content on disk is invalid - either garbage
3710 * or the content of some node/leaf from a past generation that got
3711 * cowed or deleted and is no longer valid.
3713 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3714 * not be enough - we need to distinguish between log tree extents vs
3715 * non-log tree extents, and the next filemap_fdatawait_range() call
3716 * will catch and clear such errors in the mapping - and that call might
3717 * be from a log sync and not from a transaction commit. Also, checking
3718 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3719 * not done and would not be reliable - the eb might have been released
3720 * from memory and reading it back again means that flag would not be
3721 * set (since it's a runtime flag, not persisted on disk).
3723 * Using the flags below in the btree inode also makes us achieve the
3724 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3725 * writeback for all dirty pages and before filemap_fdatawait_range()
3726 * is called, the writeback for all dirty pages had already finished
3727 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3728 * filemap_fdatawait_range() would return success, as it could not know
3729 * that writeback errors happened (the pages were no longer tagged for
3732 switch (eb
->log_index
) {
3734 set_bit(BTRFS_INODE_BTREE_ERR
, &btree_ino
->runtime_flags
);
3737 set_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
3740 set_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
3743 BUG(); /* unexpected, logic error */
3747 static void end_bio_extent_buffer_writepage(struct bio
*bio
, int err
)
3749 struct bio_vec
*bvec
;
3750 struct extent_buffer
*eb
;
3753 bio_for_each_segment_all(bvec
, bio
, i
) {
3754 struct page
*page
= bvec
->bv_page
;
3756 eb
= (struct extent_buffer
*)page
->private;
3758 done
= atomic_dec_and_test(&eb
->io_pages
);
3760 if (err
|| test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3761 ClearPageUptodate(page
);
3762 set_btree_ioerr(page
);
3765 end_page_writeback(page
);
3770 end_extent_buffer_writeback(eb
);
3776 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3777 struct btrfs_fs_info
*fs_info
,
3778 struct writeback_control
*wbc
,
3779 struct extent_page_data
*epd
)
3781 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3782 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3783 u64 offset
= eb
->start
;
3784 unsigned long i
, num_pages
;
3785 unsigned long bio_flags
= 0;
3786 int rw
= (epd
->sync_io
? WRITE_SYNC
: WRITE
) | REQ_META
;
3789 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3790 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3791 atomic_set(&eb
->io_pages
, num_pages
);
3792 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3793 bio_flags
= EXTENT_BIO_TREE_LOG
;
3795 for (i
= 0; i
< num_pages
; i
++) {
3796 struct page
*p
= eb
->pages
[i
];
3798 clear_page_dirty_for_io(p
);
3799 set_page_writeback(p
);
3800 ret
= submit_extent_page(rw
, tree
, p
, offset
>> 9,
3801 PAGE_CACHE_SIZE
, 0, bdev
, &epd
->bio
,
3802 -1, end_bio_extent_buffer_writepage
,
3803 0, epd
->bio_flags
, bio_flags
, false);
3804 epd
->bio_flags
= bio_flags
;
3807 end_page_writeback(p
);
3808 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3809 end_extent_buffer_writeback(eb
);
3813 offset
+= PAGE_CACHE_SIZE
;
3814 update_nr_written(p
, wbc
, 1);
3818 if (unlikely(ret
)) {
3819 for (; i
< num_pages
; i
++) {
3820 struct page
*p
= eb
->pages
[i
];
3821 clear_page_dirty_for_io(p
);
3829 int btree_write_cache_pages(struct address_space
*mapping
,
3830 struct writeback_control
*wbc
)
3832 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3833 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3834 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3835 struct extent_page_data epd
= {
3839 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3844 int nr_to_write_done
= 0;
3845 struct pagevec pvec
;
3848 pgoff_t end
; /* Inclusive */
3852 pagevec_init(&pvec
, 0);
3853 if (wbc
->range_cyclic
) {
3854 index
= mapping
->writeback_index
; /* Start from prev offset */
3857 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3858 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3861 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3862 tag
= PAGECACHE_TAG_TOWRITE
;
3864 tag
= PAGECACHE_TAG_DIRTY
;
3866 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3867 tag_pages_for_writeback(mapping
, index
, end
);
3868 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3869 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3870 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3874 for (i
= 0; i
< nr_pages
; i
++) {
3875 struct page
*page
= pvec
.pages
[i
];
3877 if (!PagePrivate(page
))
3880 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3885 spin_lock(&mapping
->private_lock
);
3886 if (!PagePrivate(page
)) {
3887 spin_unlock(&mapping
->private_lock
);
3891 eb
= (struct extent_buffer
*)page
->private;
3894 * Shouldn't happen and normally this would be a BUG_ON
3895 * but no sense in crashing the users box for something
3896 * we can survive anyway.
3899 spin_unlock(&mapping
->private_lock
);
3903 if (eb
== prev_eb
) {
3904 spin_unlock(&mapping
->private_lock
);
3908 ret
= atomic_inc_not_zero(&eb
->refs
);
3909 spin_unlock(&mapping
->private_lock
);
3914 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3916 free_extent_buffer(eb
);
3920 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3923 free_extent_buffer(eb
);
3926 free_extent_buffer(eb
);
3929 * the filesystem may choose to bump up nr_to_write.
3930 * We have to make sure to honor the new nr_to_write
3933 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3935 pagevec_release(&pvec
);
3938 if (!scanned
&& !done
) {
3940 * We hit the last page and there is more work to be done: wrap
3941 * back to the start of the file
3947 flush_write_bio(&epd
);
3952 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3953 * @mapping: address space structure to write
3954 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3955 * @writepage: function called for each page
3956 * @data: data passed to writepage function
3958 * If a page is already under I/O, write_cache_pages() skips it, even
3959 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3960 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3961 * and msync() need to guarantee that all the data which was dirty at the time
3962 * the call was made get new I/O started against them. If wbc->sync_mode is
3963 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3964 * existing IO to complete.
3966 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
3967 struct address_space
*mapping
,
3968 struct writeback_control
*wbc
,
3969 writepage_t writepage
, void *data
,
3970 void (*flush_fn
)(void *))
3972 struct inode
*inode
= mapping
->host
;
3976 int nr_to_write_done
= 0;
3977 struct pagevec pvec
;
3980 pgoff_t end
; /* Inclusive */
3985 * We have to hold onto the inode so that ordered extents can do their
3986 * work when the IO finishes. The alternative to this is failing to add
3987 * an ordered extent if the igrab() fails there and that is a huge pain
3988 * to deal with, so instead just hold onto the inode throughout the
3989 * writepages operation. If it fails here we are freeing up the inode
3990 * anyway and we'd rather not waste our time writing out stuff that is
3991 * going to be truncated anyway.
3996 pagevec_init(&pvec
, 0);
3997 if (wbc
->range_cyclic
) {
3998 index
= mapping
->writeback_index
; /* Start from prev offset */
4001 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
4002 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
4005 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4006 tag
= PAGECACHE_TAG_TOWRITE
;
4008 tag
= PAGECACHE_TAG_DIRTY
;
4010 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4011 tag_pages_for_writeback(mapping
, index
, end
);
4012 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4013 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
4014 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
4018 for (i
= 0; i
< nr_pages
; i
++) {
4019 struct page
*page
= pvec
.pages
[i
];
4022 * At this point we hold neither mapping->tree_lock nor
4023 * lock on the page itself: the page may be truncated or
4024 * invalidated (changing page->mapping to NULL), or even
4025 * swizzled back from swapper_space to tmpfs file
4028 if (!trylock_page(page
)) {
4033 if (unlikely(page
->mapping
!= mapping
)) {
4038 if (!wbc
->range_cyclic
&& page
->index
> end
) {
4044 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4045 if (PageWriteback(page
))
4047 wait_on_page_writeback(page
);
4050 if (PageWriteback(page
) ||
4051 !clear_page_dirty_for_io(page
)) {
4056 ret
= (*writepage
)(page
, wbc
, data
);
4058 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
4062 if (!err
&& ret
< 0)
4066 * the filesystem may choose to bump up nr_to_write.
4067 * We have to make sure to honor the new nr_to_write
4070 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4072 pagevec_release(&pvec
);
4075 if (!scanned
&& !done
&& !err
) {
4077 * We hit the last page and there is more work to be done: wrap
4078 * back to the start of the file
4084 btrfs_add_delayed_iput(inode
);
4088 static void flush_epd_write_bio(struct extent_page_data
*epd
)
4097 ret
= submit_one_bio(rw
, epd
->bio
, 0, epd
->bio_flags
);
4098 BUG_ON(ret
< 0); /* -ENOMEM */
4103 static noinline
void flush_write_bio(void *data
)
4105 struct extent_page_data
*epd
= data
;
4106 flush_epd_write_bio(epd
);
4109 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
4110 get_extent_t
*get_extent
,
4111 struct writeback_control
*wbc
)
4114 struct extent_page_data epd
= {
4117 .get_extent
= get_extent
,
4119 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4123 ret
= __extent_writepage(page
, wbc
, &epd
);
4125 flush_epd_write_bio(&epd
);
4129 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
4130 u64 start
, u64 end
, get_extent_t
*get_extent
,
4134 struct address_space
*mapping
= inode
->i_mapping
;
4136 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
4139 struct extent_page_data epd
= {
4142 .get_extent
= get_extent
,
4144 .sync_io
= mode
== WB_SYNC_ALL
,
4147 struct writeback_control wbc_writepages
= {
4149 .nr_to_write
= nr_pages
* 2,
4150 .range_start
= start
,
4151 .range_end
= end
+ 1,
4154 while (start
<= end
) {
4155 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
4156 if (clear_page_dirty_for_io(page
))
4157 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4159 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
4160 tree
->ops
->writepage_end_io_hook(page
, start
,
4161 start
+ PAGE_CACHE_SIZE
- 1,
4165 page_cache_release(page
);
4166 start
+= PAGE_CACHE_SIZE
;
4169 flush_epd_write_bio(&epd
);
4173 int extent_writepages(struct extent_io_tree
*tree
,
4174 struct address_space
*mapping
,
4175 get_extent_t
*get_extent
,
4176 struct writeback_control
*wbc
)
4179 struct extent_page_data epd
= {
4182 .get_extent
= get_extent
,
4184 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4188 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
4189 __extent_writepage
, &epd
,
4191 flush_epd_write_bio(&epd
);
4195 int extent_readpages(struct extent_io_tree
*tree
,
4196 struct address_space
*mapping
,
4197 struct list_head
*pages
, unsigned nr_pages
,
4198 get_extent_t get_extent
)
4200 struct bio
*bio
= NULL
;
4202 unsigned long bio_flags
= 0;
4203 struct page
*pagepool
[16];
4205 struct extent_map
*em_cached
= NULL
;
4207 u64 prev_em_start
= (u64
)-1;
4209 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
4210 page
= list_entry(pages
->prev
, struct page
, lru
);
4212 prefetchw(&page
->flags
);
4213 list_del(&page
->lru
);
4214 if (add_to_page_cache_lru(page
, mapping
,
4215 page
->index
, GFP_NOFS
)) {
4216 page_cache_release(page
);
4220 pagepool
[nr
++] = page
;
4221 if (nr
< ARRAY_SIZE(pagepool
))
4223 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4224 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4228 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4229 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4232 free_extent_map(em_cached
);
4234 BUG_ON(!list_empty(pages
));
4236 return submit_one_bio(READ
, bio
, 0, bio_flags
);
4241 * basic invalidatepage code, this waits on any locked or writeback
4242 * ranges corresponding to the page, and then deletes any extent state
4243 * records from the tree
4245 int extent_invalidatepage(struct extent_io_tree
*tree
,
4246 struct page
*page
, unsigned long offset
)
4248 struct extent_state
*cached_state
= NULL
;
4249 u64 start
= page_offset(page
);
4250 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4251 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4253 start
+= ALIGN(offset
, blocksize
);
4257 lock_extent_bits(tree
, start
, end
, 0, &cached_state
);
4258 wait_on_page_writeback(page
);
4259 clear_extent_bit(tree
, start
, end
,
4260 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4261 EXTENT_DO_ACCOUNTING
,
4262 1, 1, &cached_state
, GFP_NOFS
);
4267 * a helper for releasepage, this tests for areas of the page that
4268 * are locked or under IO and drops the related state bits if it is safe
4271 static int try_release_extent_state(struct extent_map_tree
*map
,
4272 struct extent_io_tree
*tree
,
4273 struct page
*page
, gfp_t mask
)
4275 u64 start
= page_offset(page
);
4276 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4279 if (test_range_bit(tree
, start
, end
,
4280 EXTENT_IOBITS
, 0, NULL
))
4283 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
4286 * at this point we can safely clear everything except the
4287 * locked bit and the nodatasum bit
4289 ret
= clear_extent_bit(tree
, start
, end
,
4290 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4293 /* if clear_extent_bit failed for enomem reasons,
4294 * we can't allow the release to continue.
4305 * a helper for releasepage. As long as there are no locked extents
4306 * in the range corresponding to the page, both state records and extent
4307 * map records are removed
4309 int try_release_extent_mapping(struct extent_map_tree
*map
,
4310 struct extent_io_tree
*tree
, struct page
*page
,
4313 struct extent_map
*em
;
4314 u64 start
= page_offset(page
);
4315 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4317 if ((mask
& __GFP_WAIT
) &&
4318 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
4320 while (start
<= end
) {
4321 len
= end
- start
+ 1;
4322 write_lock(&map
->lock
);
4323 em
= lookup_extent_mapping(map
, start
, len
);
4325 write_unlock(&map
->lock
);
4328 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4329 em
->start
!= start
) {
4330 write_unlock(&map
->lock
);
4331 free_extent_map(em
);
4334 if (!test_range_bit(tree
, em
->start
,
4335 extent_map_end(em
) - 1,
4336 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4338 remove_extent_mapping(map
, em
);
4339 /* once for the rb tree */
4340 free_extent_map(em
);
4342 start
= extent_map_end(em
);
4343 write_unlock(&map
->lock
);
4346 free_extent_map(em
);
4349 return try_release_extent_state(map
, tree
, page
, mask
);
4353 * helper function for fiemap, which doesn't want to see any holes.
4354 * This maps until we find something past 'last'
4356 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4359 get_extent_t
*get_extent
)
4361 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
4362 struct extent_map
*em
;
4369 len
= last
- offset
;
4372 len
= ALIGN(len
, sectorsize
);
4373 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
4374 if (IS_ERR_OR_NULL(em
))
4377 /* if this isn't a hole return it */
4378 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
4379 em
->block_start
!= EXTENT_MAP_HOLE
) {
4383 /* this is a hole, advance to the next extent */
4384 offset
= extent_map_end(em
);
4385 free_extent_map(em
);
4392 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4393 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
4397 u64 max
= start
+ len
;
4401 u64 last_for_get_extent
= 0;
4403 u64 isize
= i_size_read(inode
);
4404 struct btrfs_key found_key
;
4405 struct extent_map
*em
= NULL
;
4406 struct extent_state
*cached_state
= NULL
;
4407 struct btrfs_path
*path
;
4408 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4417 path
= btrfs_alloc_path();
4420 path
->leave_spinning
= 1;
4422 start
= round_down(start
, BTRFS_I(inode
)->root
->sectorsize
);
4423 len
= round_up(max
, BTRFS_I(inode
)->root
->sectorsize
) - start
;
4426 * lookup the last file extent. We're not using i_size here
4427 * because there might be preallocation past i_size
4429 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
), -1,
4432 btrfs_free_path(path
);
4437 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4438 found_type
= found_key
.type
;
4440 /* No extents, but there might be delalloc bits */
4441 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4442 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4443 /* have to trust i_size as the end */
4445 last_for_get_extent
= isize
;
4448 * remember the start of the last extent. There are a
4449 * bunch of different factors that go into the length of the
4450 * extent, so its much less complex to remember where it started
4452 last
= found_key
.offset
;
4453 last_for_get_extent
= last
+ 1;
4455 btrfs_release_path(path
);
4458 * we might have some extents allocated but more delalloc past those
4459 * extents. so, we trust isize unless the start of the last extent is
4464 last_for_get_extent
= isize
;
4467 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1, 0,
4470 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4480 u64 offset_in_extent
= 0;
4482 /* break if the extent we found is outside the range */
4483 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4487 * get_extent may return an extent that starts before our
4488 * requested range. We have to make sure the ranges
4489 * we return to fiemap always move forward and don't
4490 * overlap, so adjust the offsets here
4492 em_start
= max(em
->start
, off
);
4495 * record the offset from the start of the extent
4496 * for adjusting the disk offset below. Only do this if the
4497 * extent isn't compressed since our in ram offset may be past
4498 * what we have actually allocated on disk.
4500 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4501 offset_in_extent
= em_start
- em
->start
;
4502 em_end
= extent_map_end(em
);
4503 em_len
= em_end
- em_start
;
4508 * bump off for our next call to get_extent
4510 off
= extent_map_end(em
);
4514 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4516 flags
|= FIEMAP_EXTENT_LAST
;
4517 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4518 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4519 FIEMAP_EXTENT_NOT_ALIGNED
);
4520 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4521 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4522 FIEMAP_EXTENT_UNKNOWN
);
4523 } else if (fieinfo
->fi_extents_max
) {
4524 u64 bytenr
= em
->block_start
-
4525 (em
->start
- em
->orig_start
);
4527 disko
= em
->block_start
+ offset_in_extent
;
4530 * As btrfs supports shared space, this information
4531 * can be exported to userspace tools via
4532 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4533 * then we're just getting a count and we can skip the
4536 ret
= btrfs_check_shared(NULL
, root
->fs_info
,
4538 btrfs_ino(inode
), bytenr
);
4542 flags
|= FIEMAP_EXTENT_SHARED
;
4545 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4546 flags
|= FIEMAP_EXTENT_ENCODED
;
4548 free_extent_map(em
);
4550 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4551 (last
== (u64
)-1 && isize
<= em_end
)) {
4552 flags
|= FIEMAP_EXTENT_LAST
;
4556 /* now scan forward to see if this is really the last extent. */
4557 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4564 flags
|= FIEMAP_EXTENT_LAST
;
4567 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4576 free_extent_map(em
);
4578 btrfs_free_path(path
);
4579 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4580 &cached_state
, GFP_NOFS
);
4584 static void __free_extent_buffer(struct extent_buffer
*eb
)
4586 btrfs_leak_debug_del(&eb
->leak_list
);
4587 kmem_cache_free(extent_buffer_cache
, eb
);
4590 int extent_buffer_under_io(struct extent_buffer
*eb
)
4592 return (atomic_read(&eb
->io_pages
) ||
4593 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4594 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4598 * Helper for releasing extent buffer page.
4600 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
)
4602 unsigned long index
;
4604 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4606 BUG_ON(extent_buffer_under_io(eb
));
4608 index
= num_extent_pages(eb
->start
, eb
->len
);
4614 page
= eb
->pages
[index
];
4618 spin_lock(&page
->mapping
->private_lock
);
4620 * We do this since we'll remove the pages after we've
4621 * removed the eb from the radix tree, so we could race
4622 * and have this page now attached to the new eb. So
4623 * only clear page_private if it's still connected to
4626 if (PagePrivate(page
) &&
4627 page
->private == (unsigned long)eb
) {
4628 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4629 BUG_ON(PageDirty(page
));
4630 BUG_ON(PageWriteback(page
));
4632 * We need to make sure we haven't be attached
4635 ClearPagePrivate(page
);
4636 set_page_private(page
, 0);
4637 /* One for the page private */
4638 page_cache_release(page
);
4642 spin_unlock(&page
->mapping
->private_lock
);
4644 /* One for when we alloced the page */
4645 page_cache_release(page
);
4646 } while (index
!= 0);
4650 * Helper for releasing the extent buffer.
4652 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4654 btrfs_release_extent_buffer_page(eb
);
4655 __free_extent_buffer(eb
);
4658 static struct extent_buffer
*
4659 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4662 struct extent_buffer
*eb
= NULL
;
4664 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
);
4669 eb
->fs_info
= fs_info
;
4671 rwlock_init(&eb
->lock
);
4672 atomic_set(&eb
->write_locks
, 0);
4673 atomic_set(&eb
->read_locks
, 0);
4674 atomic_set(&eb
->blocking_readers
, 0);
4675 atomic_set(&eb
->blocking_writers
, 0);
4676 atomic_set(&eb
->spinning_readers
, 0);
4677 atomic_set(&eb
->spinning_writers
, 0);
4678 eb
->lock_nested
= 0;
4679 init_waitqueue_head(&eb
->write_lock_wq
);
4680 init_waitqueue_head(&eb
->read_lock_wq
);
4682 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4684 spin_lock_init(&eb
->refs_lock
);
4685 atomic_set(&eb
->refs
, 1);
4686 atomic_set(&eb
->io_pages
, 0);
4689 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4691 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4692 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4693 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4698 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4702 struct extent_buffer
*new;
4703 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4705 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4709 for (i
= 0; i
< num_pages
; i
++) {
4710 p
= alloc_page(GFP_NOFS
);
4712 btrfs_release_extent_buffer(new);
4715 attach_extent_buffer_page(new, p
);
4716 WARN_ON(PageDirty(p
));
4721 copy_extent_buffer(new, src
, 0, 0, src
->len
);
4722 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4723 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4728 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4731 struct extent_buffer
*eb
;
4733 unsigned long num_pages
;
4738 * Called only from tests that don't always have a fs_info
4739 * available, but we know that nodesize is 4096
4743 len
= fs_info
->tree_root
->nodesize
;
4745 num_pages
= num_extent_pages(0, len
);
4747 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4751 for (i
= 0; i
< num_pages
; i
++) {
4752 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4756 set_extent_buffer_uptodate(eb
);
4757 btrfs_set_header_nritems(eb
, 0);
4758 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4763 __free_page(eb
->pages
[i
- 1]);
4764 __free_extent_buffer(eb
);
4768 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4771 /* the ref bit is tricky. We have to make sure it is set
4772 * if we have the buffer dirty. Otherwise the
4773 * code to free a buffer can end up dropping a dirty
4776 * Once the ref bit is set, it won't go away while the
4777 * buffer is dirty or in writeback, and it also won't
4778 * go away while we have the reference count on the
4781 * We can't just set the ref bit without bumping the
4782 * ref on the eb because free_extent_buffer might
4783 * see the ref bit and try to clear it. If this happens
4784 * free_extent_buffer might end up dropping our original
4785 * ref by mistake and freeing the page before we are able
4786 * to add one more ref.
4788 * So bump the ref count first, then set the bit. If someone
4789 * beat us to it, drop the ref we added.
4791 refs
= atomic_read(&eb
->refs
);
4792 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4795 spin_lock(&eb
->refs_lock
);
4796 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4797 atomic_inc(&eb
->refs
);
4798 spin_unlock(&eb
->refs_lock
);
4801 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4802 struct page
*accessed
)
4804 unsigned long num_pages
, i
;
4806 check_buffer_tree_ref(eb
);
4808 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4809 for (i
= 0; i
< num_pages
; i
++) {
4810 struct page
*p
= eb
->pages
[i
];
4813 mark_page_accessed(p
);
4817 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4820 struct extent_buffer
*eb
;
4823 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4824 start
>> PAGE_CACHE_SHIFT
);
4825 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4828 * Lock our eb's refs_lock to avoid races with
4829 * free_extent_buffer. When we get our eb it might be flagged
4830 * with EXTENT_BUFFER_STALE and another task running
4831 * free_extent_buffer might have seen that flag set,
4832 * eb->refs == 2, that the buffer isn't under IO (dirty and
4833 * writeback flags not set) and it's still in the tree (flag
4834 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4835 * of decrementing the extent buffer's reference count twice.
4836 * So here we could race and increment the eb's reference count,
4837 * clear its stale flag, mark it as dirty and drop our reference
4838 * before the other task finishes executing free_extent_buffer,
4839 * which would later result in an attempt to free an extent
4840 * buffer that is dirty.
4842 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
4843 spin_lock(&eb
->refs_lock
);
4844 spin_unlock(&eb
->refs_lock
);
4846 mark_extent_buffer_accessed(eb
, NULL
);
4854 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4855 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
4858 struct extent_buffer
*eb
, *exists
= NULL
;
4861 eb
= find_extent_buffer(fs_info
, start
);
4864 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
4867 eb
->fs_info
= fs_info
;
4869 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4872 spin_lock(&fs_info
->buffer_lock
);
4873 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4874 start
>> PAGE_CACHE_SHIFT
, eb
);
4875 spin_unlock(&fs_info
->buffer_lock
);
4876 radix_tree_preload_end();
4877 if (ret
== -EEXIST
) {
4878 exists
= find_extent_buffer(fs_info
, start
);
4884 check_buffer_tree_ref(eb
);
4885 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4888 * We will free dummy extent buffer's if they come into
4889 * free_extent_buffer with a ref count of 2, but if we are using this we
4890 * want the buffers to stay in memory until we're done with them, so
4891 * bump the ref count again.
4893 atomic_inc(&eb
->refs
);
4896 btrfs_release_extent_buffer(eb
);
4901 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4904 unsigned long len
= fs_info
->tree_root
->nodesize
;
4905 unsigned long num_pages
= num_extent_pages(start
, len
);
4907 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
4908 struct extent_buffer
*eb
;
4909 struct extent_buffer
*exists
= NULL
;
4911 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
4915 eb
= find_extent_buffer(fs_info
, start
);
4919 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4923 for (i
= 0; i
< num_pages
; i
++, index
++) {
4924 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
4928 spin_lock(&mapping
->private_lock
);
4929 if (PagePrivate(p
)) {
4931 * We could have already allocated an eb for this page
4932 * and attached one so lets see if we can get a ref on
4933 * the existing eb, and if we can we know it's good and
4934 * we can just return that one, else we know we can just
4935 * overwrite page->private.
4937 exists
= (struct extent_buffer
*)p
->private;
4938 if (atomic_inc_not_zero(&exists
->refs
)) {
4939 spin_unlock(&mapping
->private_lock
);
4941 page_cache_release(p
);
4942 mark_extent_buffer_accessed(exists
, p
);
4948 * Do this so attach doesn't complain and we need to
4949 * drop the ref the old guy had.
4951 ClearPagePrivate(p
);
4952 WARN_ON(PageDirty(p
));
4953 page_cache_release(p
);
4955 attach_extent_buffer_page(eb
, p
);
4956 spin_unlock(&mapping
->private_lock
);
4957 WARN_ON(PageDirty(p
));
4959 if (!PageUptodate(p
))
4963 * see below about how we avoid a nasty race with release page
4964 * and why we unlock later
4968 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4970 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4974 spin_lock(&fs_info
->buffer_lock
);
4975 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4976 start
>> PAGE_CACHE_SHIFT
, eb
);
4977 spin_unlock(&fs_info
->buffer_lock
);
4978 radix_tree_preload_end();
4979 if (ret
== -EEXIST
) {
4980 exists
= find_extent_buffer(fs_info
, start
);
4986 /* add one reference for the tree */
4987 check_buffer_tree_ref(eb
);
4988 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4991 * there is a race where release page may have
4992 * tried to find this extent buffer in the radix
4993 * but failed. It will tell the VM it is safe to
4994 * reclaim the, and it will clear the page private bit.
4995 * We must make sure to set the page private bit properly
4996 * after the extent buffer is in the radix tree so
4997 * it doesn't get lost
4999 SetPageChecked(eb
->pages
[0]);
5000 for (i
= 1; i
< num_pages
; i
++) {
5002 ClearPageChecked(p
);
5005 unlock_page(eb
->pages
[0]);
5009 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5010 for (i
= 0; i
< num_pages
; i
++) {
5012 unlock_page(eb
->pages
[i
]);
5015 btrfs_release_extent_buffer(eb
);
5019 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5021 struct extent_buffer
*eb
=
5022 container_of(head
, struct extent_buffer
, rcu_head
);
5024 __free_extent_buffer(eb
);
5027 /* Expects to have eb->eb_lock already held */
5028 static int release_extent_buffer(struct extent_buffer
*eb
)
5030 WARN_ON(atomic_read(&eb
->refs
) == 0);
5031 if (atomic_dec_and_test(&eb
->refs
)) {
5032 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5033 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5035 spin_unlock(&eb
->refs_lock
);
5037 spin_lock(&fs_info
->buffer_lock
);
5038 radix_tree_delete(&fs_info
->buffer_radix
,
5039 eb
->start
>> PAGE_CACHE_SHIFT
);
5040 spin_unlock(&fs_info
->buffer_lock
);
5042 spin_unlock(&eb
->refs_lock
);
5045 /* Should be safe to release our pages at this point */
5046 btrfs_release_extent_buffer_page(eb
);
5047 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5048 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))) {
5049 __free_extent_buffer(eb
);
5053 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5056 spin_unlock(&eb
->refs_lock
);
5061 void free_extent_buffer(struct extent_buffer
*eb
)
5069 refs
= atomic_read(&eb
->refs
);
5072 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5077 spin_lock(&eb
->refs_lock
);
5078 if (atomic_read(&eb
->refs
) == 2 &&
5079 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
5080 atomic_dec(&eb
->refs
);
5082 if (atomic_read(&eb
->refs
) == 2 &&
5083 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5084 !extent_buffer_under_io(eb
) &&
5085 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5086 atomic_dec(&eb
->refs
);
5089 * I know this is terrible, but it's temporary until we stop tracking
5090 * the uptodate bits and such for the extent buffers.
5092 release_extent_buffer(eb
);
5095 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5100 spin_lock(&eb
->refs_lock
);
5101 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5103 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5104 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5105 atomic_dec(&eb
->refs
);
5106 release_extent_buffer(eb
);
5109 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5112 unsigned long num_pages
;
5115 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5117 for (i
= 0; i
< num_pages
; i
++) {
5118 page
= eb
->pages
[i
];
5119 if (!PageDirty(page
))
5123 WARN_ON(!PagePrivate(page
));
5125 clear_page_dirty_for_io(page
);
5126 spin_lock_irq(&page
->mapping
->tree_lock
);
5127 if (!PageDirty(page
)) {
5128 radix_tree_tag_clear(&page
->mapping
->page_tree
,
5130 PAGECACHE_TAG_DIRTY
);
5132 spin_unlock_irq(&page
->mapping
->tree_lock
);
5133 ClearPageError(page
);
5136 WARN_ON(atomic_read(&eb
->refs
) == 0);
5139 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
5142 unsigned long num_pages
;
5145 check_buffer_tree_ref(eb
);
5147 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5149 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5150 WARN_ON(atomic_read(&eb
->refs
) == 0);
5151 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5153 for (i
= 0; i
< num_pages
; i
++)
5154 set_page_dirty(eb
->pages
[i
]);
5158 int clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5162 unsigned long num_pages
;
5164 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5165 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5166 for (i
= 0; i
< num_pages
; i
++) {
5167 page
= eb
->pages
[i
];
5169 ClearPageUptodate(page
);
5174 int set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5178 unsigned long num_pages
;
5180 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5181 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5182 for (i
= 0; i
< num_pages
; i
++) {
5183 page
= eb
->pages
[i
];
5184 SetPageUptodate(page
);
5189 int extent_buffer_uptodate(struct extent_buffer
*eb
)
5191 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5194 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
5195 struct extent_buffer
*eb
, u64 start
, int wait
,
5196 get_extent_t
*get_extent
, int mirror_num
)
5199 unsigned long start_i
;
5203 int locked_pages
= 0;
5204 int all_uptodate
= 1;
5205 unsigned long num_pages
;
5206 unsigned long num_reads
= 0;
5207 struct bio
*bio
= NULL
;
5208 unsigned long bio_flags
= 0;
5210 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5214 WARN_ON(start
< eb
->start
);
5215 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
5216 (eb
->start
>> PAGE_CACHE_SHIFT
);
5221 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5222 for (i
= start_i
; i
< num_pages
; i
++) {
5223 page
= eb
->pages
[i
];
5224 if (wait
== WAIT_NONE
) {
5225 if (!trylock_page(page
))
5231 if (!PageUptodate(page
)) {
5238 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5242 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5243 eb
->read_mirror
= 0;
5244 atomic_set(&eb
->io_pages
, num_reads
);
5245 for (i
= start_i
; i
< num_pages
; i
++) {
5246 page
= eb
->pages
[i
];
5247 if (!PageUptodate(page
)) {
5248 ClearPageError(page
);
5249 err
= __extent_read_full_page(tree
, page
,
5251 mirror_num
, &bio_flags
,
5261 err
= submit_one_bio(READ
| REQ_META
, bio
, mirror_num
,
5267 if (ret
|| wait
!= WAIT_COMPLETE
)
5270 for (i
= start_i
; i
< num_pages
; i
++) {
5271 page
= eb
->pages
[i
];
5272 wait_on_page_locked(page
);
5273 if (!PageUptodate(page
))
5281 while (locked_pages
> 0) {
5282 page
= eb
->pages
[i
];
5290 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
5291 unsigned long start
,
5298 char *dst
= (char *)dstv
;
5299 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5300 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5302 WARN_ON(start
> eb
->len
);
5303 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5305 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5308 page
= eb
->pages
[i
];
5310 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5311 kaddr
= page_address(page
);
5312 memcpy(dst
, kaddr
+ offset
, cur
);
5321 int read_extent_buffer_to_user(struct extent_buffer
*eb
, void __user
*dstv
,
5322 unsigned long start
,
5329 char __user
*dst
= (char __user
*)dstv
;
5330 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5331 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5334 WARN_ON(start
> eb
->len
);
5335 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5337 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5340 page
= eb
->pages
[i
];
5342 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5343 kaddr
= page_address(page
);
5344 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5358 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5359 unsigned long min_len
, char **map
,
5360 unsigned long *map_start
,
5361 unsigned long *map_len
)
5363 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
5366 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5367 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5368 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5375 offset
= start_offset
;
5379 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
5382 if (start
+ min_len
> eb
->len
) {
5383 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
5385 eb
->start
, eb
->len
, start
, min_len
);
5390 kaddr
= page_address(p
);
5391 *map
= kaddr
+ offset
;
5392 *map_len
= PAGE_CACHE_SIZE
- offset
;
5396 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
5397 unsigned long start
,
5404 char *ptr
= (char *)ptrv
;
5405 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5406 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5409 WARN_ON(start
> eb
->len
);
5410 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5412 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5415 page
= eb
->pages
[i
];
5417 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5419 kaddr
= page_address(page
);
5420 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5432 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5433 unsigned long start
, unsigned long len
)
5439 char *src
= (char *)srcv
;
5440 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5441 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5443 WARN_ON(start
> eb
->len
);
5444 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5446 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5449 page
= eb
->pages
[i
];
5450 WARN_ON(!PageUptodate(page
));
5452 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5453 kaddr
= page_address(page
);
5454 memcpy(kaddr
+ offset
, src
, cur
);
5463 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
5464 unsigned long start
, unsigned long len
)
5470 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5471 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5473 WARN_ON(start
> eb
->len
);
5474 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5476 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5479 page
= eb
->pages
[i
];
5480 WARN_ON(!PageUptodate(page
));
5482 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5483 kaddr
= page_address(page
);
5484 memset(kaddr
+ offset
, c
, cur
);
5492 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5493 unsigned long dst_offset
, unsigned long src_offset
,
5496 u64 dst_len
= dst
->len
;
5501 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5502 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5504 WARN_ON(src
->len
!= dst_len
);
5506 offset
= (start_offset
+ dst_offset
) &
5507 (PAGE_CACHE_SIZE
- 1);
5510 page
= dst
->pages
[i
];
5511 WARN_ON(!PageUptodate(page
));
5513 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
5515 kaddr
= page_address(page
);
5516 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5525 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5527 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5528 return distance
< len
;
5531 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5532 unsigned long dst_off
, unsigned long src_off
,
5535 char *dst_kaddr
= page_address(dst_page
);
5537 int must_memmove
= 0;
5539 if (dst_page
!= src_page
) {
5540 src_kaddr
= page_address(src_page
);
5542 src_kaddr
= dst_kaddr
;
5543 if (areas_overlap(src_off
, dst_off
, len
))
5548 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5550 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5553 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5554 unsigned long src_offset
, unsigned long len
)
5557 size_t dst_off_in_page
;
5558 size_t src_off_in_page
;
5559 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5560 unsigned long dst_i
;
5561 unsigned long src_i
;
5563 if (src_offset
+ len
> dst
->len
) {
5564 printk(KERN_ERR
"BTRFS: memmove bogus src_offset %lu move "
5565 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
5568 if (dst_offset
+ len
> dst
->len
) {
5569 printk(KERN_ERR
"BTRFS: memmove bogus dst_offset %lu move "
5570 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
5575 dst_off_in_page
= (start_offset
+ dst_offset
) &
5576 (PAGE_CACHE_SIZE
- 1);
5577 src_off_in_page
= (start_offset
+ src_offset
) &
5578 (PAGE_CACHE_SIZE
- 1);
5580 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5581 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
5583 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
5585 cur
= min_t(unsigned long, cur
,
5586 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
5588 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5589 dst_off_in_page
, src_off_in_page
, cur
);
5597 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5598 unsigned long src_offset
, unsigned long len
)
5601 size_t dst_off_in_page
;
5602 size_t src_off_in_page
;
5603 unsigned long dst_end
= dst_offset
+ len
- 1;
5604 unsigned long src_end
= src_offset
+ len
- 1;
5605 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5606 unsigned long dst_i
;
5607 unsigned long src_i
;
5609 if (src_offset
+ len
> dst
->len
) {
5610 printk(KERN_ERR
"BTRFS: memmove bogus src_offset %lu move "
5611 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
5614 if (dst_offset
+ len
> dst
->len
) {
5615 printk(KERN_ERR
"BTRFS: memmove bogus dst_offset %lu move "
5616 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
5619 if (dst_offset
< src_offset
) {
5620 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5624 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
5625 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
5627 dst_off_in_page
= (start_offset
+ dst_end
) &
5628 (PAGE_CACHE_SIZE
- 1);
5629 src_off_in_page
= (start_offset
+ src_end
) &
5630 (PAGE_CACHE_SIZE
- 1);
5632 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5633 cur
= min(cur
, dst_off_in_page
+ 1);
5634 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5635 dst_off_in_page
- cur
+ 1,
5636 src_off_in_page
- cur
+ 1, cur
);
5644 int try_release_extent_buffer(struct page
*page
)
5646 struct extent_buffer
*eb
;
5649 * We need to make sure noboody is attaching this page to an eb right
5652 spin_lock(&page
->mapping
->private_lock
);
5653 if (!PagePrivate(page
)) {
5654 spin_unlock(&page
->mapping
->private_lock
);
5658 eb
= (struct extent_buffer
*)page
->private;
5662 * This is a little awful but should be ok, we need to make sure that
5663 * the eb doesn't disappear out from under us while we're looking at
5666 spin_lock(&eb
->refs_lock
);
5667 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5668 spin_unlock(&eb
->refs_lock
);
5669 spin_unlock(&page
->mapping
->private_lock
);
5672 spin_unlock(&page
->mapping
->private_lock
);
5675 * If tree ref isn't set then we know the ref on this eb is a real ref,
5676 * so just return, this page will likely be freed soon anyway.
5678 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5679 spin_unlock(&eb
->refs_lock
);
5683 return release_extent_buffer(eb
);