gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blob885f533a34d9c07ae34f80c81eb9e1c513923672
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 static inline bool extent_state_in_tree(const struct extent_state *state)
30 return !RB_EMPTY_NODE(&state->rb_node);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
37 static DEFINE_SPINLOCK(leak_lock);
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 unsigned long flags;
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
52 unsigned long flags;
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
59 static inline
60 void btrfs_leak_debug_check(void)
62 struct extent_state *state;
63 struct extent_buffer *eb;
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
90 struct inode *inode;
91 u64 isize;
93 if (!tree->mapping)
94 return;
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 caller, btrfs_ino(inode), isize, start, end);
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
111 #define BUFFER_LRU_MAX 64
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
138 if (!tree->mapping)
139 return NULL;
140 return btrfs_sb(tree->mapping->host->i_sb);
143 int __init extent_io_init(void)
145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 if (!extent_state_cache)
149 return -ENOMEM;
151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 if (!extent_buffer_cache)
155 goto free_state_cache;
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
165 return 0;
167 free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
171 free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
175 free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
177 extent_state_cache = NULL;
178 return -ENOMEM;
181 void extent_io_exit(void)
183 btrfs_leak_debug_check();
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
189 rcu_barrier();
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 struct address_space *mapping)
201 tree->state = RB_ROOT;
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
204 spin_lock_init(&tree->lock);
205 tree->mapping = mapping;
208 static struct extent_state *alloc_extent_state(gfp_t mask)
210 struct extent_state *state;
212 state = kmem_cache_alloc(extent_state_cache, mask);
213 if (!state)
214 return state;
215 state->state = 0;
216 state->private = 0;
217 RB_CLEAR_NODE(&state->rb_node);
218 btrfs_leak_debug_add(&state->leak_list, &states);
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
221 trace_alloc_extent_state(state, mask, _RET_IP_);
222 return state;
225 void free_extent_state(struct extent_state *state)
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
230 WARN_ON(extent_state_in_tree(state));
231 btrfs_leak_debug_del(&state->leak_list);
232 trace_free_extent_state(state, _RET_IP_);
233 kmem_cache_free(extent_state_cache, state);
237 static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
244 struct rb_node **p;
245 struct rb_node *parent = NULL;
246 struct tree_entry *entry;
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
254 p = search_start ? &search_start : &root->rb_node;
255 while (*p) {
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
267 do_insert:
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
279 struct rb_root *root = &tree->state;
280 struct rb_node **n = &root->rb_node;
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
289 prev_entry = entry;
291 if (offset < entry->start)
292 n = &(*n)->rb_left;
293 else if (offset > entry->end)
294 n = &(*n)->rb_right;
295 else
296 return *n;
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
304 if (prev_ret) {
305 orig_prev = prev;
306 while (prev && offset > prev_entry->end) {
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310 *prev_ret = prev;
311 prev = orig_prev;
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 while (prev && offset < prev_entry->start) {
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320 *next_ret = prev;
322 return NULL;
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
331 struct rb_node *prev = NULL;
332 struct rb_node *ret;
334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 if (!ret)
336 return prev;
337 return ret;
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
343 return tree_search_for_insert(tree, offset, NULL, NULL);
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
361 * This should be called with the tree lock held.
363 static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
366 struct extent_state *other;
367 struct rb_node *other_node;
369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 return;
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
377 merge_cb(tree, state, other);
378 state->start = other->start;
379 rb_erase(&other->rb_node, &tree->state);
380 RB_CLEAR_NODE(&other->rb_node);
381 free_extent_state(other);
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->end = other->end;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
398 static void set_state_cb(struct extent_io_tree *tree,
399 struct extent_state *state, unsigned *bits)
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
405 static void clear_state_cb(struct extent_io_tree *tree,
406 struct extent_state *state, unsigned *bits)
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
412 static void set_state_bits(struct extent_io_tree *tree,
413 struct extent_state *state, unsigned *bits);
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
425 static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
427 struct rb_node ***p,
428 struct rb_node **parent,
429 unsigned *bits)
431 struct rb_node *node;
433 if (end < start)
434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 end, start);
436 state->start = start;
437 state->end = end;
439 set_state_bits(tree, state, bits);
441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 "%llu %llu\n",
447 found->start, found->end, start, end);
448 return -EEXIST;
450 merge_state(tree, state);
451 return 0;
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 u64 split)
457 if (tree->ops && tree->ops->split_extent_hook)
458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
478 struct rb_node *node;
480 split_cb(tree, orig, split);
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
489 if (node) {
490 free_extent_state(prealloc);
491 return -EEXIST;
493 return 0;
496 static struct extent_state *next_state(struct extent_state *state)
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
514 unsigned *bits, int wake)
516 struct extent_state *next;
517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
524 clear_state_cb(tree, state, bits);
525 state->state &= ~bits_to_clear;
526 if (wake)
527 wake_up(&state->wq);
528 if (state->state == 0) {
529 next = next_state(state);
530 if (extent_state_in_tree(state)) {
531 rb_erase(&state->rb_node, &tree->state);
532 RB_CLEAR_NODE(&state->rb_node);
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
537 } else {
538 merge_state(tree, state);
539 next = next_state(state);
541 return next;
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
550 return prealloc;
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
568 * the range [start, end] is inclusive.
570 * This takes the tree lock, and returns 0 on success and < 0 on error.
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 unsigned bits, int wake, int delete,
574 struct extent_state **cached_state,
575 gfp_t mask)
577 struct extent_state *state;
578 struct extent_state *cached;
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
581 u64 last_end;
582 int err;
583 int clear = 0;
585 btrfs_debug_check_extent_io_range(tree, start, end);
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
596 again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
599 * Don't care for allocation failure here because we might end
600 * up not needing the pre-allocated extent state at all, which
601 * is the case if we only have in the tree extent states that
602 * cover our input range and don't cover too any other range.
603 * If we end up needing a new extent state we allocate it later.
605 prealloc = alloc_extent_state(mask);
608 spin_lock(&tree->lock);
609 if (cached_state) {
610 cached = *cached_state;
612 if (clear) {
613 *cached_state = NULL;
614 cached_state = NULL;
617 if (cached && extent_state_in_tree(cached) &&
618 cached->start <= start && cached->end > start) {
619 if (clear)
620 atomic_dec(&cached->refs);
621 state = cached;
622 goto hit_next;
624 if (clear)
625 free_extent_state(cached);
628 * this search will find the extents that end after
629 * our range starts
631 node = tree_search(tree, start);
632 if (!node)
633 goto out;
634 state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636 if (state->start > end)
637 goto out;
638 WARN_ON(state->end < start);
639 last_end = state->end;
641 /* the state doesn't have the wanted bits, go ahead */
642 if (!(state->state & bits)) {
643 state = next_state(state);
644 goto next;
648 * | ---- desired range ---- |
649 * | state | or
650 * | ------------- state -------------- |
652 * We need to split the extent we found, and may flip
653 * bits on second half.
655 * If the extent we found extends past our range, we
656 * just split and search again. It'll get split again
657 * the next time though.
659 * If the extent we found is inside our range, we clear
660 * the desired bit on it.
663 if (state->start < start) {
664 prealloc = alloc_extent_state_atomic(prealloc);
665 BUG_ON(!prealloc);
666 err = split_state(tree, state, prealloc, start);
667 if (err)
668 extent_io_tree_panic(tree, err);
670 prealloc = NULL;
671 if (err)
672 goto out;
673 if (state->end <= end) {
674 state = clear_state_bit(tree, state, &bits, wake);
675 goto next;
677 goto search_again;
680 * | ---- desired range ---- |
681 * | state |
682 * We need to split the extent, and clear the bit
683 * on the first half
685 if (state->start <= end && state->end > end) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, end + 1);
689 if (err)
690 extent_io_tree_panic(tree, err);
692 if (wake)
693 wake_up(&state->wq);
695 clear_state_bit(tree, prealloc, &bits, wake);
697 prealloc = NULL;
698 goto out;
701 state = clear_state_bit(tree, state, &bits, wake);
702 next:
703 if (last_end == (u64)-1)
704 goto out;
705 start = last_end + 1;
706 if (start <= end && state && !need_resched())
707 goto hit_next;
708 goto search_again;
710 out:
711 spin_unlock(&tree->lock);
712 if (prealloc)
713 free_extent_state(prealloc);
715 return 0;
717 search_again:
718 if (start > end)
719 goto out;
720 spin_unlock(&tree->lock);
721 if (mask & __GFP_WAIT)
722 cond_resched();
723 goto again;
726 static void wait_on_state(struct extent_io_tree *tree,
727 struct extent_state *state)
728 __releases(tree->lock)
729 __acquires(tree->lock)
731 DEFINE_WAIT(wait);
732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733 spin_unlock(&tree->lock);
734 schedule();
735 spin_lock(&tree->lock);
736 finish_wait(&state->wq, &wait);
740 * waits for one or more bits to clear on a range in the state tree.
741 * The range [start, end] is inclusive.
742 * The tree lock is taken by this function
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 unsigned long bits)
747 struct extent_state *state;
748 struct rb_node *node;
750 btrfs_debug_check_extent_io_range(tree, start, end);
752 spin_lock(&tree->lock);
753 again:
754 while (1) {
756 * this search will find all the extents that end after
757 * our range starts
759 node = tree_search(tree, start);
760 process_node:
761 if (!node)
762 break;
764 state = rb_entry(node, struct extent_state, rb_node);
766 if (state->start > end)
767 goto out;
769 if (state->state & bits) {
770 start = state->start;
771 atomic_inc(&state->refs);
772 wait_on_state(tree, state);
773 free_extent_state(state);
774 goto again;
776 start = state->end + 1;
778 if (start > end)
779 break;
781 if (!cond_resched_lock(&tree->lock)) {
782 node = rb_next(node);
783 goto process_node;
786 out:
787 spin_unlock(&tree->lock);
790 static void set_state_bits(struct extent_io_tree *tree,
791 struct extent_state *state,
792 unsigned *bits)
794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
796 set_state_cb(tree, state, bits);
797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
801 state->state |= bits_to_set;
804 static void cache_state_if_flags(struct extent_state *state,
805 struct extent_state **cached_ptr,
806 unsigned flags)
808 if (cached_ptr && !(*cached_ptr)) {
809 if (!flags || (state->state & flags)) {
810 *cached_ptr = state;
811 atomic_inc(&state->refs);
816 static void cache_state(struct extent_state *state,
817 struct extent_state **cached_ptr)
819 return cache_state_if_flags(state, cached_ptr,
820 EXTENT_IOBITS | EXTENT_BOUNDARY);
824 * set some bits on a range in the tree. This may require allocations or
825 * sleeping, so the gfp mask is used to indicate what is allowed.
827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
828 * part of the range already has the desired bits set. The start of the
829 * existing range is returned in failed_start in this case.
831 * [start, end] is inclusive This takes the tree lock.
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836 unsigned bits, unsigned exclusive_bits,
837 u64 *failed_start, struct extent_state **cached_state,
838 gfp_t mask)
840 struct extent_state *state;
841 struct extent_state *prealloc = NULL;
842 struct rb_node *node;
843 struct rb_node **p;
844 struct rb_node *parent;
845 int err = 0;
846 u64 last_start;
847 u64 last_end;
849 btrfs_debug_check_extent_io_range(tree, start, end);
851 bits |= EXTENT_FIRST_DELALLOC;
852 again:
853 if (!prealloc && (mask & __GFP_WAIT)) {
854 prealloc = alloc_extent_state(mask);
855 BUG_ON(!prealloc);
858 spin_lock(&tree->lock);
859 if (cached_state && *cached_state) {
860 state = *cached_state;
861 if (state->start <= start && state->end > start &&
862 extent_state_in_tree(state)) {
863 node = &state->rb_node;
864 goto hit_next;
868 * this search will find all the extents that end after
869 * our range starts.
871 node = tree_search_for_insert(tree, start, &p, &parent);
872 if (!node) {
873 prealloc = alloc_extent_state_atomic(prealloc);
874 BUG_ON(!prealloc);
875 err = insert_state(tree, prealloc, start, end,
876 &p, &parent, &bits);
877 if (err)
878 extent_io_tree_panic(tree, err);
880 cache_state(prealloc, cached_state);
881 prealloc = NULL;
882 goto out;
884 state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886 last_start = state->start;
887 last_end = state->end;
890 * | ---- desired range ---- |
891 * | state |
893 * Just lock what we found and keep going
895 if (state->start == start && state->end <= end) {
896 if (state->state & exclusive_bits) {
897 *failed_start = state->start;
898 err = -EEXIST;
899 goto out;
902 set_state_bits(tree, state, &bits);
903 cache_state(state, cached_state);
904 merge_state(tree, state);
905 if (last_end == (u64)-1)
906 goto out;
907 start = last_end + 1;
908 state = next_state(state);
909 if (start < end && state && state->start == start &&
910 !need_resched())
911 goto hit_next;
912 goto search_again;
916 * | ---- desired range ---- |
917 * | state |
918 * or
919 * | ------------- state -------------- |
921 * We need to split the extent we found, and may flip bits on
922 * second half.
924 * If the extent we found extends past our
925 * range, we just split and search again. It'll get split
926 * again the next time though.
928 * If the extent we found is inside our range, we set the
929 * desired bit on it.
931 if (state->start < start) {
932 if (state->state & exclusive_bits) {
933 *failed_start = start;
934 err = -EEXIST;
935 goto out;
938 prealloc = alloc_extent_state_atomic(prealloc);
939 BUG_ON(!prealloc);
940 err = split_state(tree, state, prealloc, start);
941 if (err)
942 extent_io_tree_panic(tree, err);
944 prealloc = NULL;
945 if (err)
946 goto out;
947 if (state->end <= end) {
948 set_state_bits(tree, state, &bits);
949 cache_state(state, cached_state);
950 merge_state(tree, state);
951 if (last_end == (u64)-1)
952 goto out;
953 start = last_end + 1;
954 state = next_state(state);
955 if (start < end && state && state->start == start &&
956 !need_resched())
957 goto hit_next;
959 goto search_again;
962 * | ---- desired range ---- |
963 * | state | or | state |
965 * There's a hole, we need to insert something in it and
966 * ignore the extent we found.
968 if (state->start > start) {
969 u64 this_end;
970 if (end < last_start)
971 this_end = end;
972 else
973 this_end = last_start - 1;
975 prealloc = alloc_extent_state_atomic(prealloc);
976 BUG_ON(!prealloc);
979 * Avoid to free 'prealloc' if it can be merged with
980 * the later extent.
982 err = insert_state(tree, prealloc, start, this_end,
983 NULL, NULL, &bits);
984 if (err)
985 extent_io_tree_panic(tree, err);
987 cache_state(prealloc, cached_state);
988 prealloc = NULL;
989 start = this_end + 1;
990 goto search_again;
993 * | ---- desired range ---- |
994 * | state |
995 * We need to split the extent, and set the bit
996 * on the first half
998 if (state->start <= end && state->end > end) {
999 if (state->state & exclusive_bits) {
1000 *failed_start = start;
1001 err = -EEXIST;
1002 goto out;
1005 prealloc = alloc_extent_state_atomic(prealloc);
1006 BUG_ON(!prealloc);
1007 err = split_state(tree, state, prealloc, end + 1);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1011 set_state_bits(tree, prealloc, &bits);
1012 cache_state(prealloc, cached_state);
1013 merge_state(tree, prealloc);
1014 prealloc = NULL;
1015 goto out;
1018 goto search_again;
1020 out:
1021 spin_unlock(&tree->lock);
1022 if (prealloc)
1023 free_extent_state(prealloc);
1025 return err;
1027 search_again:
1028 if (start > end)
1029 goto out;
1030 spin_unlock(&tree->lock);
1031 if (mask & __GFP_WAIT)
1032 cond_resched();
1033 goto again;
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 unsigned bits, u64 * failed_start,
1038 struct extent_state **cached_state, gfp_t mask)
1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 cached_state, mask);
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1047 * another
1048 * @tree: the io tree to search
1049 * @start: the start offset in bytes
1050 * @end: the end offset in bytes (inclusive)
1051 * @bits: the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
1053 * @cached_state: state that we're going to cache
1054 * @mask: the allocation mask
1056 * This will go through and set bits for the given range. If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits. This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1060 * boundary bits like LOCK.
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063 unsigned bits, unsigned clear_bits,
1064 struct extent_state **cached_state, gfp_t mask)
1066 struct extent_state *state;
1067 struct extent_state *prealloc = NULL;
1068 struct rb_node *node;
1069 struct rb_node **p;
1070 struct rb_node *parent;
1071 int err = 0;
1072 u64 last_start;
1073 u64 last_end;
1074 bool first_iteration = true;
1076 btrfs_debug_check_extent_io_range(tree, start, end);
1078 again:
1079 if (!prealloc && (mask & __GFP_WAIT)) {
1081 * Best effort, don't worry if extent state allocation fails
1082 * here for the first iteration. We might have a cached state
1083 * that matches exactly the target range, in which case no
1084 * extent state allocations are needed. We'll only know this
1085 * after locking the tree.
1087 prealloc = alloc_extent_state(mask);
1088 if (!prealloc && !first_iteration)
1089 return -ENOMEM;
1092 spin_lock(&tree->lock);
1093 if (cached_state && *cached_state) {
1094 state = *cached_state;
1095 if (state->start <= start && state->end > start &&
1096 extent_state_in_tree(state)) {
1097 node = &state->rb_node;
1098 goto hit_next;
1103 * this search will find all the extents that end after
1104 * our range starts.
1106 node = tree_search_for_insert(tree, start, &p, &parent);
1107 if (!node) {
1108 prealloc = alloc_extent_state_atomic(prealloc);
1109 if (!prealloc) {
1110 err = -ENOMEM;
1111 goto out;
1113 err = insert_state(tree, prealloc, start, end,
1114 &p, &parent, &bits);
1115 if (err)
1116 extent_io_tree_panic(tree, err);
1117 cache_state(prealloc, cached_state);
1118 prealloc = NULL;
1119 goto out;
1121 state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123 last_start = state->start;
1124 last_end = state->end;
1127 * | ---- desired range ---- |
1128 * | state |
1130 * Just lock what we found and keep going
1132 if (state->start == start && state->end <= end) {
1133 set_state_bits(tree, state, &bits);
1134 cache_state(state, cached_state);
1135 state = clear_state_bit(tree, state, &clear_bits, 0);
1136 if (last_end == (u64)-1)
1137 goto out;
1138 start = last_end + 1;
1139 if (start < end && state && state->start == start &&
1140 !need_resched())
1141 goto hit_next;
1142 goto search_again;
1146 * | ---- desired range ---- |
1147 * | state |
1148 * or
1149 * | ------------- state -------------- |
1151 * We need to split the extent we found, and may flip bits on
1152 * second half.
1154 * If the extent we found extends past our
1155 * range, we just split and search again. It'll get split
1156 * again the next time though.
1158 * If the extent we found is inside our range, we set the
1159 * desired bit on it.
1161 if (state->start < start) {
1162 prealloc = alloc_extent_state_atomic(prealloc);
1163 if (!prealloc) {
1164 err = -ENOMEM;
1165 goto out;
1167 err = split_state(tree, state, prealloc, start);
1168 if (err)
1169 extent_io_tree_panic(tree, err);
1170 prealloc = NULL;
1171 if (err)
1172 goto out;
1173 if (state->end <= end) {
1174 set_state_bits(tree, state, &bits);
1175 cache_state(state, cached_state);
1176 state = clear_state_bit(tree, state, &clear_bits, 0);
1177 if (last_end == (u64)-1)
1178 goto out;
1179 start = last_end + 1;
1180 if (start < end && state && state->start == start &&
1181 !need_resched())
1182 goto hit_next;
1184 goto search_again;
1187 * | ---- desired range ---- |
1188 * | state | or | state |
1190 * There's a hole, we need to insert something in it and
1191 * ignore the extent we found.
1193 if (state->start > start) {
1194 u64 this_end;
1195 if (end < last_start)
1196 this_end = end;
1197 else
1198 this_end = last_start - 1;
1200 prealloc = alloc_extent_state_atomic(prealloc);
1201 if (!prealloc) {
1202 err = -ENOMEM;
1203 goto out;
1207 * Avoid to free 'prealloc' if it can be merged with
1208 * the later extent.
1210 err = insert_state(tree, prealloc, start, this_end,
1211 NULL, NULL, &bits);
1212 if (err)
1213 extent_io_tree_panic(tree, err);
1214 cache_state(prealloc, cached_state);
1215 prealloc = NULL;
1216 start = this_end + 1;
1217 goto search_again;
1220 * | ---- desired range ---- |
1221 * | state |
1222 * We need to split the extent, and set the bit
1223 * on the first half
1225 if (state->start <= end && state->end > end) {
1226 prealloc = alloc_extent_state_atomic(prealloc);
1227 if (!prealloc) {
1228 err = -ENOMEM;
1229 goto out;
1232 err = split_state(tree, state, prealloc, end + 1);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1236 set_state_bits(tree, prealloc, &bits);
1237 cache_state(prealloc, cached_state);
1238 clear_state_bit(tree, prealloc, &clear_bits, 0);
1239 prealloc = NULL;
1240 goto out;
1243 goto search_again;
1245 out:
1246 spin_unlock(&tree->lock);
1247 if (prealloc)
1248 free_extent_state(prealloc);
1250 return err;
1252 search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
1256 if (mask & __GFP_WAIT)
1257 cond_resched();
1258 first_iteration = false;
1259 goto again;
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 gfp_t mask)
1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267 NULL, mask);
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271 unsigned bits, gfp_t mask)
1273 return set_extent_bit(tree, start, end, bits, NULL,
1274 NULL, mask);
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278 unsigned bits, gfp_t mask)
1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1283 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1284 struct extent_state **cached_state, gfp_t mask)
1286 return set_extent_bit(tree, start, end,
1287 EXTENT_DELALLOC | EXTENT_UPTODATE,
1288 NULL, cached_state, mask);
1291 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1292 struct extent_state **cached_state, gfp_t mask)
1294 return set_extent_bit(tree, start, end,
1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1296 NULL, cached_state, mask);
1299 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1300 gfp_t mask)
1302 return clear_extent_bit(tree, start, end,
1303 EXTENT_DIRTY | EXTENT_DELALLOC |
1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1307 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1308 gfp_t mask)
1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1311 NULL, mask);
1314 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1315 struct extent_state **cached_state, gfp_t mask)
1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1318 cached_state, mask);
1321 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state, gfp_t mask)
1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1325 cached_state, mask);
1329 * either insert or lock state struct between start and end use mask to tell
1330 * us if waiting is desired.
1332 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1333 unsigned bits, struct extent_state **cached_state)
1335 int err;
1336 u64 failed_start;
1338 while (1) {
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1340 EXTENT_LOCKED, &failed_start,
1341 cached_state, GFP_NOFS);
1342 if (err == -EEXIST) {
1343 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1344 start = failed_start;
1345 } else
1346 break;
1347 WARN_ON(start > end);
1349 return err;
1352 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 return lock_extent_bits(tree, start, end, 0, NULL);
1357 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1359 int err;
1360 u64 failed_start;
1362 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1363 &failed_start, NULL, GFP_NOFS);
1364 if (err == -EEXIST) {
1365 if (failed_start > start)
1366 clear_extent_bit(tree, start, failed_start - 1,
1367 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1368 return 0;
1370 return 1;
1373 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1374 struct extent_state **cached, gfp_t mask)
1376 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1377 mask);
1380 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1382 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1383 GFP_NOFS);
1386 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1388 unsigned long index = start >> PAGE_CACHE_SHIFT;
1389 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1390 struct page *page;
1392 while (index <= end_index) {
1393 page = find_get_page(inode->i_mapping, index);
1394 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1395 clear_page_dirty_for_io(page);
1396 page_cache_release(page);
1397 index++;
1399 return 0;
1402 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1404 unsigned long index = start >> PAGE_CACHE_SHIFT;
1405 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1406 struct page *page;
1408 while (index <= end_index) {
1409 page = find_get_page(inode->i_mapping, index);
1410 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1411 __set_page_dirty_nobuffers(page);
1412 account_page_redirty(page);
1413 page_cache_release(page);
1414 index++;
1416 return 0;
1420 * helper function to set both pages and extents in the tree writeback
1422 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1424 unsigned long index = start >> PAGE_CACHE_SHIFT;
1425 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1426 struct page *page;
1428 while (index <= end_index) {
1429 page = find_get_page(tree->mapping, index);
1430 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1431 set_page_writeback(page);
1432 page_cache_release(page);
1433 index++;
1435 return 0;
1438 /* find the first state struct with 'bits' set after 'start', and
1439 * return it. tree->lock must be held. NULL will returned if
1440 * nothing was found after 'start'
1442 static struct extent_state *
1443 find_first_extent_bit_state(struct extent_io_tree *tree,
1444 u64 start, unsigned bits)
1446 struct rb_node *node;
1447 struct extent_state *state;
1450 * this search will find all the extents that end after
1451 * our range starts.
1453 node = tree_search(tree, start);
1454 if (!node)
1455 goto out;
1457 while (1) {
1458 state = rb_entry(node, struct extent_state, rb_node);
1459 if (state->end >= start && (state->state & bits))
1460 return state;
1462 node = rb_next(node);
1463 if (!node)
1464 break;
1466 out:
1467 return NULL;
1471 * find the first offset in the io tree with 'bits' set. zero is
1472 * returned if we find something, and *start_ret and *end_ret are
1473 * set to reflect the state struct that was found.
1475 * If nothing was found, 1 is returned. If found something, return 0.
1477 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1478 u64 *start_ret, u64 *end_ret, unsigned bits,
1479 struct extent_state **cached_state)
1481 struct extent_state *state;
1482 struct rb_node *n;
1483 int ret = 1;
1485 spin_lock(&tree->lock);
1486 if (cached_state && *cached_state) {
1487 state = *cached_state;
1488 if (state->end == start - 1 && extent_state_in_tree(state)) {
1489 n = rb_next(&state->rb_node);
1490 while (n) {
1491 state = rb_entry(n, struct extent_state,
1492 rb_node);
1493 if (state->state & bits)
1494 goto got_it;
1495 n = rb_next(n);
1497 free_extent_state(*cached_state);
1498 *cached_state = NULL;
1499 goto out;
1501 free_extent_state(*cached_state);
1502 *cached_state = NULL;
1505 state = find_first_extent_bit_state(tree, start, bits);
1506 got_it:
1507 if (state) {
1508 cache_state_if_flags(state, cached_state, 0);
1509 *start_ret = state->start;
1510 *end_ret = state->end;
1511 ret = 0;
1513 out:
1514 spin_unlock(&tree->lock);
1515 return ret;
1519 * find a contiguous range of bytes in the file marked as delalloc, not
1520 * more than 'max_bytes'. start and end are used to return the range,
1522 * 1 is returned if we find something, 0 if nothing was in the tree
1524 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1525 u64 *start, u64 *end, u64 max_bytes,
1526 struct extent_state **cached_state)
1528 struct rb_node *node;
1529 struct extent_state *state;
1530 u64 cur_start = *start;
1531 u64 found = 0;
1532 u64 total_bytes = 0;
1534 spin_lock(&tree->lock);
1537 * this search will find all the extents that end after
1538 * our range starts.
1540 node = tree_search(tree, cur_start);
1541 if (!node) {
1542 if (!found)
1543 *end = (u64)-1;
1544 goto out;
1547 while (1) {
1548 state = rb_entry(node, struct extent_state, rb_node);
1549 if (found && (state->start != cur_start ||
1550 (state->state & EXTENT_BOUNDARY))) {
1551 goto out;
1553 if (!(state->state & EXTENT_DELALLOC)) {
1554 if (!found)
1555 *end = state->end;
1556 goto out;
1558 if (!found) {
1559 *start = state->start;
1560 *cached_state = state;
1561 atomic_inc(&state->refs);
1563 found++;
1564 *end = state->end;
1565 cur_start = state->end + 1;
1566 node = rb_next(node);
1567 total_bytes += state->end - state->start + 1;
1568 if (total_bytes >= max_bytes)
1569 break;
1570 if (!node)
1571 break;
1573 out:
1574 spin_unlock(&tree->lock);
1575 return found;
1578 static noinline void __unlock_for_delalloc(struct inode *inode,
1579 struct page *locked_page,
1580 u64 start, u64 end)
1582 int ret;
1583 struct page *pages[16];
1584 unsigned long index = start >> PAGE_CACHE_SHIFT;
1585 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1586 unsigned long nr_pages = end_index - index + 1;
1587 int i;
1589 if (index == locked_page->index && end_index == index)
1590 return;
1592 while (nr_pages > 0) {
1593 ret = find_get_pages_contig(inode->i_mapping, index,
1594 min_t(unsigned long, nr_pages,
1595 ARRAY_SIZE(pages)), pages);
1596 for (i = 0; i < ret; i++) {
1597 if (pages[i] != locked_page)
1598 unlock_page(pages[i]);
1599 page_cache_release(pages[i]);
1601 nr_pages -= ret;
1602 index += ret;
1603 cond_resched();
1607 static noinline int lock_delalloc_pages(struct inode *inode,
1608 struct page *locked_page,
1609 u64 delalloc_start,
1610 u64 delalloc_end)
1612 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1613 unsigned long start_index = index;
1614 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1615 unsigned long pages_locked = 0;
1616 struct page *pages[16];
1617 unsigned long nrpages;
1618 int ret;
1619 int i;
1621 /* the caller is responsible for locking the start index */
1622 if (index == locked_page->index && index == end_index)
1623 return 0;
1625 /* skip the page at the start index */
1626 nrpages = end_index - index + 1;
1627 while (nrpages > 0) {
1628 ret = find_get_pages_contig(inode->i_mapping, index,
1629 min_t(unsigned long,
1630 nrpages, ARRAY_SIZE(pages)), pages);
1631 if (ret == 0) {
1632 ret = -EAGAIN;
1633 goto done;
1635 /* now we have an array of pages, lock them all */
1636 for (i = 0; i < ret; i++) {
1638 * the caller is taking responsibility for
1639 * locked_page
1641 if (pages[i] != locked_page) {
1642 lock_page(pages[i]);
1643 if (!PageDirty(pages[i]) ||
1644 pages[i]->mapping != inode->i_mapping) {
1645 ret = -EAGAIN;
1646 unlock_page(pages[i]);
1647 page_cache_release(pages[i]);
1648 goto done;
1651 page_cache_release(pages[i]);
1652 pages_locked++;
1654 nrpages -= ret;
1655 index += ret;
1656 cond_resched();
1658 ret = 0;
1659 done:
1660 if (ret && pages_locked) {
1661 __unlock_for_delalloc(inode, locked_page,
1662 delalloc_start,
1663 ((u64)(start_index + pages_locked - 1)) <<
1664 PAGE_CACHE_SHIFT);
1666 return ret;
1670 * find a contiguous range of bytes in the file marked as delalloc, not
1671 * more than 'max_bytes'. start and end are used to return the range,
1673 * 1 is returned if we find something, 0 if nothing was in the tree
1675 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1676 struct extent_io_tree *tree,
1677 struct page *locked_page, u64 *start,
1678 u64 *end, u64 max_bytes)
1680 u64 delalloc_start;
1681 u64 delalloc_end;
1682 u64 found;
1683 struct extent_state *cached_state = NULL;
1684 int ret;
1685 int loops = 0;
1687 again:
1688 /* step one, find a bunch of delalloc bytes starting at start */
1689 delalloc_start = *start;
1690 delalloc_end = 0;
1691 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1692 max_bytes, &cached_state);
1693 if (!found || delalloc_end <= *start) {
1694 *start = delalloc_start;
1695 *end = delalloc_end;
1696 free_extent_state(cached_state);
1697 return 0;
1701 * start comes from the offset of locked_page. We have to lock
1702 * pages in order, so we can't process delalloc bytes before
1703 * locked_page
1705 if (delalloc_start < *start)
1706 delalloc_start = *start;
1709 * make sure to limit the number of pages we try to lock down
1711 if (delalloc_end + 1 - delalloc_start > max_bytes)
1712 delalloc_end = delalloc_start + max_bytes - 1;
1714 /* step two, lock all the pages after the page that has start */
1715 ret = lock_delalloc_pages(inode, locked_page,
1716 delalloc_start, delalloc_end);
1717 if (ret == -EAGAIN) {
1718 /* some of the pages are gone, lets avoid looping by
1719 * shortening the size of the delalloc range we're searching
1721 free_extent_state(cached_state);
1722 cached_state = NULL;
1723 if (!loops) {
1724 max_bytes = PAGE_CACHE_SIZE;
1725 loops = 1;
1726 goto again;
1727 } else {
1728 found = 0;
1729 goto out_failed;
1732 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1734 /* step three, lock the state bits for the whole range */
1735 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1737 /* then test to make sure it is all still delalloc */
1738 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1739 EXTENT_DELALLOC, 1, cached_state);
1740 if (!ret) {
1741 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1742 &cached_state, GFP_NOFS);
1743 __unlock_for_delalloc(inode, locked_page,
1744 delalloc_start, delalloc_end);
1745 cond_resched();
1746 goto again;
1748 free_extent_state(cached_state);
1749 *start = delalloc_start;
1750 *end = delalloc_end;
1751 out_failed:
1752 return found;
1755 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1756 struct page *locked_page,
1757 unsigned clear_bits,
1758 unsigned long page_ops)
1760 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1761 int ret;
1762 struct page *pages[16];
1763 unsigned long index = start >> PAGE_CACHE_SHIFT;
1764 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1765 unsigned long nr_pages = end_index - index + 1;
1766 int i;
1768 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1769 if (page_ops == 0)
1770 return 0;
1772 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1773 mapping_set_error(inode->i_mapping, -EIO);
1775 while (nr_pages > 0) {
1776 ret = find_get_pages_contig(inode->i_mapping, index,
1777 min_t(unsigned long,
1778 nr_pages, ARRAY_SIZE(pages)), pages);
1779 for (i = 0; i < ret; i++) {
1781 if (page_ops & PAGE_SET_PRIVATE2)
1782 SetPagePrivate2(pages[i]);
1784 if (pages[i] == locked_page) {
1785 page_cache_release(pages[i]);
1786 continue;
1788 if (page_ops & PAGE_CLEAR_DIRTY)
1789 clear_page_dirty_for_io(pages[i]);
1790 if (page_ops & PAGE_SET_WRITEBACK)
1791 set_page_writeback(pages[i]);
1792 if (page_ops & PAGE_SET_ERROR)
1793 SetPageError(pages[i]);
1794 if (page_ops & PAGE_END_WRITEBACK)
1795 end_page_writeback(pages[i]);
1796 if (page_ops & PAGE_UNLOCK)
1797 unlock_page(pages[i]);
1798 page_cache_release(pages[i]);
1800 nr_pages -= ret;
1801 index += ret;
1802 cond_resched();
1804 return 0;
1808 * count the number of bytes in the tree that have a given bit(s)
1809 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1810 * cached. The total number found is returned.
1812 u64 count_range_bits(struct extent_io_tree *tree,
1813 u64 *start, u64 search_end, u64 max_bytes,
1814 unsigned bits, int contig)
1816 struct rb_node *node;
1817 struct extent_state *state;
1818 u64 cur_start = *start;
1819 u64 total_bytes = 0;
1820 u64 last = 0;
1821 int found = 0;
1823 if (WARN_ON(search_end <= cur_start))
1824 return 0;
1826 spin_lock(&tree->lock);
1827 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1828 total_bytes = tree->dirty_bytes;
1829 goto out;
1832 * this search will find all the extents that end after
1833 * our range starts.
1835 node = tree_search(tree, cur_start);
1836 if (!node)
1837 goto out;
1839 while (1) {
1840 state = rb_entry(node, struct extent_state, rb_node);
1841 if (state->start > search_end)
1842 break;
1843 if (contig && found && state->start > last + 1)
1844 break;
1845 if (state->end >= cur_start && (state->state & bits) == bits) {
1846 total_bytes += min(search_end, state->end) + 1 -
1847 max(cur_start, state->start);
1848 if (total_bytes >= max_bytes)
1849 break;
1850 if (!found) {
1851 *start = max(cur_start, state->start);
1852 found = 1;
1854 last = state->end;
1855 } else if (contig && found) {
1856 break;
1858 node = rb_next(node);
1859 if (!node)
1860 break;
1862 out:
1863 spin_unlock(&tree->lock);
1864 return total_bytes;
1868 * set the private field for a given byte offset in the tree. If there isn't
1869 * an extent_state there already, this does nothing.
1871 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1873 struct rb_node *node;
1874 struct extent_state *state;
1875 int ret = 0;
1877 spin_lock(&tree->lock);
1879 * this search will find all the extents that end after
1880 * our range starts.
1882 node = tree_search(tree, start);
1883 if (!node) {
1884 ret = -ENOENT;
1885 goto out;
1887 state = rb_entry(node, struct extent_state, rb_node);
1888 if (state->start != start) {
1889 ret = -ENOENT;
1890 goto out;
1892 state->private = private;
1893 out:
1894 spin_unlock(&tree->lock);
1895 return ret;
1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1900 struct rb_node *node;
1901 struct extent_state *state;
1902 int ret = 0;
1904 spin_lock(&tree->lock);
1906 * this search will find all the extents that end after
1907 * our range starts.
1909 node = tree_search(tree, start);
1910 if (!node) {
1911 ret = -ENOENT;
1912 goto out;
1914 state = rb_entry(node, struct extent_state, rb_node);
1915 if (state->start != start) {
1916 ret = -ENOENT;
1917 goto out;
1919 *private = state->private;
1920 out:
1921 spin_unlock(&tree->lock);
1922 return ret;
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set. Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932 unsigned bits, int filled, struct extent_state *cached)
1934 struct extent_state *state = NULL;
1935 struct rb_node *node;
1936 int bitset = 0;
1938 spin_lock(&tree->lock);
1939 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1940 cached->end > start)
1941 node = &cached->rb_node;
1942 else
1943 node = tree_search(tree, start);
1944 while (node && start <= end) {
1945 state = rb_entry(node, struct extent_state, rb_node);
1947 if (filled && state->start > start) {
1948 bitset = 0;
1949 break;
1952 if (state->start > end)
1953 break;
1955 if (state->state & bits) {
1956 bitset = 1;
1957 if (!filled)
1958 break;
1959 } else if (filled) {
1960 bitset = 0;
1961 break;
1964 if (state->end == (u64)-1)
1965 break;
1967 start = state->end + 1;
1968 if (start > end)
1969 break;
1970 node = rb_next(node);
1971 if (!node) {
1972 if (filled)
1973 bitset = 0;
1974 break;
1977 spin_unlock(&tree->lock);
1978 return bitset;
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1987 u64 start = page_offset(page);
1988 u64 end = start + PAGE_CACHE_SIZE - 1;
1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990 SetPageUptodate(page);
1993 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1995 int ret;
1996 int err = 0;
1997 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1999 set_state_private(failure_tree, rec->start, 0);
2000 ret = clear_extent_bits(failure_tree, rec->start,
2001 rec->start + rec->len - 1,
2002 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2003 if (ret)
2004 err = ret;
2006 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2007 rec->start + rec->len - 1,
2008 EXTENT_DAMAGED, GFP_NOFS);
2009 if (ret && !err)
2010 err = ret;
2012 kfree(rec);
2013 return err;
2017 * this bypasses the standard btrfs submit functions deliberately, as
2018 * the standard behavior is to write all copies in a raid setup. here we only
2019 * want to write the one bad copy. so we do the mapping for ourselves and issue
2020 * submit_bio directly.
2021 * to avoid any synchronization issues, wait for the data after writing, which
2022 * actually prevents the read that triggered the error from finishing.
2023 * currently, there can be no more than two copies of every data bit. thus,
2024 * exactly one rewrite is required.
2026 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2027 struct page *page, unsigned int pg_offset, int mirror_num)
2029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2030 struct bio *bio;
2031 struct btrfs_device *dev;
2032 u64 map_length = 0;
2033 u64 sector;
2034 struct btrfs_bio *bbio = NULL;
2035 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2036 int ret;
2038 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2039 BUG_ON(!mirror_num);
2041 /* we can't repair anything in raid56 yet */
2042 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2043 return 0;
2045 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2046 if (!bio)
2047 return -EIO;
2048 bio->bi_iter.bi_size = 0;
2049 map_length = length;
2051 ret = btrfs_map_block(fs_info, WRITE, logical,
2052 &map_length, &bbio, mirror_num);
2053 if (ret) {
2054 bio_put(bio);
2055 return -EIO;
2057 BUG_ON(mirror_num != bbio->mirror_num);
2058 sector = bbio->stripes[mirror_num-1].physical >> 9;
2059 bio->bi_iter.bi_sector = sector;
2060 dev = bbio->stripes[mirror_num-1].dev;
2061 btrfs_put_bbio(bbio);
2062 if (!dev || !dev->bdev || !dev->writeable) {
2063 bio_put(bio);
2064 return -EIO;
2066 bio->bi_bdev = dev->bdev;
2067 bio_add_page(bio, page, length, pg_offset);
2069 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2070 /* try to remap that extent elsewhere? */
2071 bio_put(bio);
2072 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2073 return -EIO;
2076 printk_ratelimited_in_rcu(KERN_INFO
2077 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2078 btrfs_ino(inode), start,
2079 rcu_str_deref(dev->name), sector);
2080 bio_put(bio);
2081 return 0;
2084 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2085 int mirror_num)
2087 u64 start = eb->start;
2088 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2089 int ret = 0;
2091 if (root->fs_info->sb->s_flags & MS_RDONLY)
2092 return -EROFS;
2094 for (i = 0; i < num_pages; i++) {
2095 struct page *p = eb->pages[i];
2097 ret = repair_io_failure(root->fs_info->btree_inode, start,
2098 PAGE_CACHE_SIZE, start, p,
2099 start - page_offset(p), mirror_num);
2100 if (ret)
2101 break;
2102 start += PAGE_CACHE_SIZE;
2105 return ret;
2109 * each time an IO finishes, we do a fast check in the IO failure tree
2110 * to see if we need to process or clean up an io_failure_record
2112 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2113 unsigned int pg_offset)
2115 u64 private;
2116 u64 private_failure;
2117 struct io_failure_record *failrec;
2118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2119 struct extent_state *state;
2120 int num_copies;
2121 int ret;
2123 private = 0;
2124 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2125 (u64)-1, 1, EXTENT_DIRTY, 0);
2126 if (!ret)
2127 return 0;
2129 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2130 &private_failure);
2131 if (ret)
2132 return 0;
2134 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2135 BUG_ON(!failrec->this_mirror);
2137 if (failrec->in_validation) {
2138 /* there was no real error, just free the record */
2139 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2140 failrec->start);
2141 goto out;
2143 if (fs_info->sb->s_flags & MS_RDONLY)
2144 goto out;
2146 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2147 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2148 failrec->start,
2149 EXTENT_LOCKED);
2150 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2152 if (state && state->start <= failrec->start &&
2153 state->end >= failrec->start + failrec->len - 1) {
2154 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2155 failrec->len);
2156 if (num_copies > 1) {
2157 repair_io_failure(inode, start, failrec->len,
2158 failrec->logical, page,
2159 pg_offset, failrec->failed_mirror);
2163 out:
2164 free_io_failure(inode, failrec);
2166 return 0;
2170 * Can be called when
2171 * - hold extent lock
2172 * - under ordered extent
2173 * - the inode is freeing
2175 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178 struct io_failure_record *failrec;
2179 struct extent_state *state, *next;
2181 if (RB_EMPTY_ROOT(&failure_tree->state))
2182 return;
2184 spin_lock(&failure_tree->lock);
2185 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2186 while (state) {
2187 if (state->start > end)
2188 break;
2190 ASSERT(state->end <= end);
2192 next = next_state(state);
2194 failrec = (struct io_failure_record *)(unsigned long)state->private;
2195 free_extent_state(state);
2196 kfree(failrec);
2198 state = next;
2200 spin_unlock(&failure_tree->lock);
2203 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2204 struct io_failure_record **failrec_ret)
2206 struct io_failure_record *failrec;
2207 u64 private;
2208 struct extent_map *em;
2209 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2210 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2211 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2212 int ret;
2213 u64 logical;
2215 ret = get_state_private(failure_tree, start, &private);
2216 if (ret) {
2217 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2218 if (!failrec)
2219 return -ENOMEM;
2221 failrec->start = start;
2222 failrec->len = end - start + 1;
2223 failrec->this_mirror = 0;
2224 failrec->bio_flags = 0;
2225 failrec->in_validation = 0;
2227 read_lock(&em_tree->lock);
2228 em = lookup_extent_mapping(em_tree, start, failrec->len);
2229 if (!em) {
2230 read_unlock(&em_tree->lock);
2231 kfree(failrec);
2232 return -EIO;
2235 if (em->start > start || em->start + em->len <= start) {
2236 free_extent_map(em);
2237 em = NULL;
2239 read_unlock(&em_tree->lock);
2240 if (!em) {
2241 kfree(failrec);
2242 return -EIO;
2245 logical = start - em->start;
2246 logical = em->block_start + logical;
2247 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2248 logical = em->block_start;
2249 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2250 extent_set_compress_type(&failrec->bio_flags,
2251 em->compress_type);
2254 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2255 logical, start, failrec->len);
2257 failrec->logical = logical;
2258 free_extent_map(em);
2260 /* set the bits in the private failure tree */
2261 ret = set_extent_bits(failure_tree, start, end,
2262 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2263 if (ret >= 0)
2264 ret = set_state_private(failure_tree, start,
2265 (u64)(unsigned long)failrec);
2266 /* set the bits in the inode's tree */
2267 if (ret >= 0)
2268 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2269 GFP_NOFS);
2270 if (ret < 0) {
2271 kfree(failrec);
2272 return ret;
2274 } else {
2275 failrec = (struct io_failure_record *)(unsigned long)private;
2276 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2277 failrec->logical, failrec->start, failrec->len,
2278 failrec->in_validation);
2280 * when data can be on disk more than twice, add to failrec here
2281 * (e.g. with a list for failed_mirror) to make
2282 * clean_io_failure() clean all those errors at once.
2286 *failrec_ret = failrec;
2288 return 0;
2291 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2292 struct io_failure_record *failrec, int failed_mirror)
2294 int num_copies;
2296 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2297 failrec->logical, failrec->len);
2298 if (num_copies == 1) {
2300 * we only have a single copy of the data, so don't bother with
2301 * all the retry and error correction code that follows. no
2302 * matter what the error is, it is very likely to persist.
2304 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2305 num_copies, failrec->this_mirror, failed_mirror);
2306 return 0;
2310 * there are two premises:
2311 * a) deliver good data to the caller
2312 * b) correct the bad sectors on disk
2314 if (failed_bio->bi_vcnt > 1) {
2316 * to fulfill b), we need to know the exact failing sectors, as
2317 * we don't want to rewrite any more than the failed ones. thus,
2318 * we need separate read requests for the failed bio
2320 * if the following BUG_ON triggers, our validation request got
2321 * merged. we need separate requests for our algorithm to work.
2323 BUG_ON(failrec->in_validation);
2324 failrec->in_validation = 1;
2325 failrec->this_mirror = failed_mirror;
2326 } else {
2328 * we're ready to fulfill a) and b) alongside. get a good copy
2329 * of the failed sector and if we succeed, we have setup
2330 * everything for repair_io_failure to do the rest for us.
2332 if (failrec->in_validation) {
2333 BUG_ON(failrec->this_mirror != failed_mirror);
2334 failrec->in_validation = 0;
2335 failrec->this_mirror = 0;
2337 failrec->failed_mirror = failed_mirror;
2338 failrec->this_mirror++;
2339 if (failrec->this_mirror == failed_mirror)
2340 failrec->this_mirror++;
2343 if (failrec->this_mirror > num_copies) {
2344 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2345 num_copies, failrec->this_mirror, failed_mirror);
2346 return 0;
2349 return 1;
2353 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2354 struct io_failure_record *failrec,
2355 struct page *page, int pg_offset, int icsum,
2356 bio_end_io_t *endio_func, void *data)
2358 struct bio *bio;
2359 struct btrfs_io_bio *btrfs_failed_bio;
2360 struct btrfs_io_bio *btrfs_bio;
2362 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2363 if (!bio)
2364 return NULL;
2366 bio->bi_end_io = endio_func;
2367 bio->bi_iter.bi_sector = failrec->logical >> 9;
2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369 bio->bi_iter.bi_size = 0;
2370 bio->bi_private = data;
2372 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2373 if (btrfs_failed_bio->csum) {
2374 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2375 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2377 btrfs_bio = btrfs_io_bio(bio);
2378 btrfs_bio->csum = btrfs_bio->csum_inline;
2379 icsum *= csum_size;
2380 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2381 csum_size);
2384 bio_add_page(bio, page, failrec->len, pg_offset);
2386 return bio;
2390 * this is a generic handler for readpage errors (default
2391 * readpage_io_failed_hook). if other copies exist, read those and write back
2392 * good data to the failed position. does not investigate in remapping the
2393 * failed extent elsewhere, hoping the device will be smart enough to do this as
2394 * needed
2397 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2398 struct page *page, u64 start, u64 end,
2399 int failed_mirror)
2401 struct io_failure_record *failrec;
2402 struct inode *inode = page->mapping->host;
2403 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2404 struct bio *bio;
2405 int read_mode;
2406 int ret;
2408 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2410 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2411 if (ret)
2412 return ret;
2414 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2415 if (!ret) {
2416 free_io_failure(inode, failrec);
2417 return -EIO;
2420 if (failed_bio->bi_vcnt > 1)
2421 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2422 else
2423 read_mode = READ_SYNC;
2425 phy_offset >>= inode->i_sb->s_blocksize_bits;
2426 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2427 start - page_offset(page),
2428 (int)phy_offset, failed_bio->bi_end_io,
2429 NULL);
2430 if (!bio) {
2431 free_io_failure(inode, failrec);
2432 return -EIO;
2435 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2436 read_mode, failrec->this_mirror, failrec->in_validation);
2438 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2439 failrec->this_mirror,
2440 failrec->bio_flags, 0);
2441 if (ret) {
2442 free_io_failure(inode, failrec);
2443 bio_put(bio);
2446 return ret;
2449 /* lots and lots of room for performance fixes in the end_bio funcs */
2451 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2453 int uptodate = (err == 0);
2454 struct extent_io_tree *tree;
2455 int ret = 0;
2457 tree = &BTRFS_I(page->mapping->host)->io_tree;
2459 if (tree->ops && tree->ops->writepage_end_io_hook) {
2460 ret = tree->ops->writepage_end_io_hook(page, start,
2461 end, NULL, uptodate);
2462 if (ret)
2463 uptodate = 0;
2466 if (!uptodate) {
2467 ClearPageUptodate(page);
2468 SetPageError(page);
2469 ret = ret < 0 ? ret : -EIO;
2470 mapping_set_error(page->mapping, ret);
2472 return 0;
2476 * after a writepage IO is done, we need to:
2477 * clear the uptodate bits on error
2478 * clear the writeback bits in the extent tree for this IO
2479 * end_page_writeback if the page has no more pending IO
2481 * Scheduling is not allowed, so the extent state tree is expected
2482 * to have one and only one object corresponding to this IO.
2484 static void end_bio_extent_writepage(struct bio *bio, int err)
2486 struct bio_vec *bvec;
2487 u64 start;
2488 u64 end;
2489 int i;
2491 bio_for_each_segment_all(bvec, bio, i) {
2492 struct page *page = bvec->bv_page;
2494 /* We always issue full-page reads, but if some block
2495 * in a page fails to read, blk_update_request() will
2496 * advance bv_offset and adjust bv_len to compensate.
2497 * Print a warning for nonzero offsets, and an error
2498 * if they don't add up to a full page. */
2499 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2500 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2501 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2502 "partial page write in btrfs with offset %u and length %u",
2503 bvec->bv_offset, bvec->bv_len);
2504 else
2505 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2506 "incomplete page write in btrfs with offset %u and "
2507 "length %u",
2508 bvec->bv_offset, bvec->bv_len);
2511 start = page_offset(page);
2512 end = start + bvec->bv_offset + bvec->bv_len - 1;
2514 if (end_extent_writepage(page, err, start, end))
2515 continue;
2517 end_page_writeback(page);
2520 bio_put(bio);
2523 static void
2524 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2525 int uptodate)
2527 struct extent_state *cached = NULL;
2528 u64 end = start + len - 1;
2530 if (uptodate && tree->track_uptodate)
2531 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2532 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2536 * after a readpage IO is done, we need to:
2537 * clear the uptodate bits on error
2538 * set the uptodate bits if things worked
2539 * set the page up to date if all extents in the tree are uptodate
2540 * clear the lock bit in the extent tree
2541 * unlock the page if there are no other extents locked for it
2543 * Scheduling is not allowed, so the extent state tree is expected
2544 * to have one and only one object corresponding to this IO.
2546 static void end_bio_extent_readpage(struct bio *bio, int err)
2548 struct bio_vec *bvec;
2549 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2550 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2551 struct extent_io_tree *tree;
2552 u64 offset = 0;
2553 u64 start;
2554 u64 end;
2555 u64 len;
2556 u64 extent_start = 0;
2557 u64 extent_len = 0;
2558 int mirror;
2559 int ret;
2560 int i;
2562 if (err)
2563 uptodate = 0;
2565 bio_for_each_segment_all(bvec, bio, i) {
2566 struct page *page = bvec->bv_page;
2567 struct inode *inode = page->mapping->host;
2569 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2570 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2571 io_bio->mirror_num);
2572 tree = &BTRFS_I(inode)->io_tree;
2574 /* We always issue full-page reads, but if some block
2575 * in a page fails to read, blk_update_request() will
2576 * advance bv_offset and adjust bv_len to compensate.
2577 * Print a warning for nonzero offsets, and an error
2578 * if they don't add up to a full page. */
2579 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2580 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2581 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2582 "partial page read in btrfs with offset %u and length %u",
2583 bvec->bv_offset, bvec->bv_len);
2584 else
2585 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2586 "incomplete page read in btrfs with offset %u and "
2587 "length %u",
2588 bvec->bv_offset, bvec->bv_len);
2591 start = page_offset(page);
2592 end = start + bvec->bv_offset + bvec->bv_len - 1;
2593 len = bvec->bv_len;
2595 mirror = io_bio->mirror_num;
2596 if (likely(uptodate && tree->ops &&
2597 tree->ops->readpage_end_io_hook)) {
2598 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2599 page, start, end,
2600 mirror);
2601 if (ret)
2602 uptodate = 0;
2603 else
2604 clean_io_failure(inode, start, page, 0);
2607 if (likely(uptodate))
2608 goto readpage_ok;
2610 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2611 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2612 if (!ret && !err &&
2613 test_bit(BIO_UPTODATE, &bio->bi_flags))
2614 uptodate = 1;
2615 } else {
2617 * The generic bio_readpage_error handles errors the
2618 * following way: If possible, new read requests are
2619 * created and submitted and will end up in
2620 * end_bio_extent_readpage as well (if we're lucky, not
2621 * in the !uptodate case). In that case it returns 0 and
2622 * we just go on with the next page in our bio. If it
2623 * can't handle the error it will return -EIO and we
2624 * remain responsible for that page.
2626 ret = bio_readpage_error(bio, offset, page, start, end,
2627 mirror);
2628 if (ret == 0) {
2629 uptodate =
2630 test_bit(BIO_UPTODATE, &bio->bi_flags);
2631 if (err)
2632 uptodate = 0;
2633 offset += len;
2634 continue;
2637 readpage_ok:
2638 if (likely(uptodate)) {
2639 loff_t i_size = i_size_read(inode);
2640 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2641 unsigned off;
2643 /* Zero out the end if this page straddles i_size */
2644 off = i_size & (PAGE_CACHE_SIZE-1);
2645 if (page->index == end_index && off)
2646 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2647 SetPageUptodate(page);
2648 } else {
2649 ClearPageUptodate(page);
2650 SetPageError(page);
2652 unlock_page(page);
2653 offset += len;
2655 if (unlikely(!uptodate)) {
2656 if (extent_len) {
2657 endio_readpage_release_extent(tree,
2658 extent_start,
2659 extent_len, 1);
2660 extent_start = 0;
2661 extent_len = 0;
2663 endio_readpage_release_extent(tree, start,
2664 end - start + 1, 0);
2665 } else if (!extent_len) {
2666 extent_start = start;
2667 extent_len = end + 1 - start;
2668 } else if (extent_start + extent_len == start) {
2669 extent_len += end + 1 - start;
2670 } else {
2671 endio_readpage_release_extent(tree, extent_start,
2672 extent_len, uptodate);
2673 extent_start = start;
2674 extent_len = end + 1 - start;
2678 if (extent_len)
2679 endio_readpage_release_extent(tree, extent_start, extent_len,
2680 uptodate);
2681 if (io_bio->end_io)
2682 io_bio->end_io(io_bio, err);
2683 bio_put(bio);
2687 * this allocates from the btrfs_bioset. We're returning a bio right now
2688 * but you can call btrfs_io_bio for the appropriate container_of magic
2690 struct bio *
2691 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2692 gfp_t gfp_flags)
2694 struct btrfs_io_bio *btrfs_bio;
2695 struct bio *bio;
2697 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2699 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2700 while (!bio && (nr_vecs /= 2)) {
2701 bio = bio_alloc_bioset(gfp_flags,
2702 nr_vecs, btrfs_bioset);
2706 if (bio) {
2707 bio->bi_bdev = bdev;
2708 bio->bi_iter.bi_sector = first_sector;
2709 btrfs_bio = btrfs_io_bio(bio);
2710 btrfs_bio->csum = NULL;
2711 btrfs_bio->csum_allocated = NULL;
2712 btrfs_bio->end_io = NULL;
2714 return bio;
2717 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2719 struct btrfs_io_bio *btrfs_bio;
2720 struct bio *new;
2722 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2723 if (new) {
2724 btrfs_bio = btrfs_io_bio(new);
2725 btrfs_bio->csum = NULL;
2726 btrfs_bio->csum_allocated = NULL;
2727 btrfs_bio->end_io = NULL;
2729 return new;
2732 /* this also allocates from the btrfs_bioset */
2733 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2735 struct btrfs_io_bio *btrfs_bio;
2736 struct bio *bio;
2738 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2739 if (bio) {
2740 btrfs_bio = btrfs_io_bio(bio);
2741 btrfs_bio->csum = NULL;
2742 btrfs_bio->csum_allocated = NULL;
2743 btrfs_bio->end_io = NULL;
2745 return bio;
2749 static int __must_check submit_one_bio(int rw, struct bio *bio,
2750 int mirror_num, unsigned long bio_flags)
2752 int ret = 0;
2753 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2754 struct page *page = bvec->bv_page;
2755 struct extent_io_tree *tree = bio->bi_private;
2756 u64 start;
2758 start = page_offset(page) + bvec->bv_offset;
2760 bio->bi_private = NULL;
2762 bio_get(bio);
2764 if (tree->ops && tree->ops->submit_bio_hook)
2765 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2766 mirror_num, bio_flags, start);
2767 else
2768 btrfsic_submit_bio(rw, bio);
2770 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2771 ret = -EOPNOTSUPP;
2772 bio_put(bio);
2773 return ret;
2776 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2777 unsigned long offset, size_t size, struct bio *bio,
2778 unsigned long bio_flags)
2780 int ret = 0;
2781 if (tree->ops && tree->ops->merge_bio_hook)
2782 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2783 bio_flags);
2784 BUG_ON(ret < 0);
2785 return ret;
2789 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2790 struct page *page, sector_t sector,
2791 size_t size, unsigned long offset,
2792 struct block_device *bdev,
2793 struct bio **bio_ret,
2794 unsigned long max_pages,
2795 bio_end_io_t end_io_func,
2796 int mirror_num,
2797 unsigned long prev_bio_flags,
2798 unsigned long bio_flags,
2799 bool force_bio_submit)
2801 int ret = 0;
2802 struct bio *bio;
2803 int nr;
2804 int contig = 0;
2805 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2806 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2807 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2809 if (bio_ret && *bio_ret) {
2810 bio = *bio_ret;
2811 if (old_compressed)
2812 contig = bio->bi_iter.bi_sector == sector;
2813 else
2814 contig = bio_end_sector(bio) == sector;
2816 if (prev_bio_flags != bio_flags || !contig ||
2817 force_bio_submit ||
2818 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2819 bio_add_page(bio, page, page_size, offset) < page_size) {
2820 ret = submit_one_bio(rw, bio, mirror_num,
2821 prev_bio_flags);
2822 if (ret < 0) {
2823 *bio_ret = NULL;
2824 return ret;
2826 bio = NULL;
2827 } else {
2828 return 0;
2831 if (this_compressed)
2832 nr = BIO_MAX_PAGES;
2833 else
2834 nr = bio_get_nr_vecs(bdev);
2836 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2837 if (!bio)
2838 return -ENOMEM;
2840 bio_add_page(bio, page, page_size, offset);
2841 bio->bi_end_io = end_io_func;
2842 bio->bi_private = tree;
2844 if (bio_ret)
2845 *bio_ret = bio;
2846 else
2847 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2849 return ret;
2852 static void attach_extent_buffer_page(struct extent_buffer *eb,
2853 struct page *page)
2855 if (!PagePrivate(page)) {
2856 SetPagePrivate(page);
2857 page_cache_get(page);
2858 set_page_private(page, (unsigned long)eb);
2859 } else {
2860 WARN_ON(page->private != (unsigned long)eb);
2864 void set_page_extent_mapped(struct page *page)
2866 if (!PagePrivate(page)) {
2867 SetPagePrivate(page);
2868 page_cache_get(page);
2869 set_page_private(page, EXTENT_PAGE_PRIVATE);
2873 static struct extent_map *
2874 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2875 u64 start, u64 len, get_extent_t *get_extent,
2876 struct extent_map **em_cached)
2878 struct extent_map *em;
2880 if (em_cached && *em_cached) {
2881 em = *em_cached;
2882 if (extent_map_in_tree(em) && start >= em->start &&
2883 start < extent_map_end(em)) {
2884 atomic_inc(&em->refs);
2885 return em;
2888 free_extent_map(em);
2889 *em_cached = NULL;
2892 em = get_extent(inode, page, pg_offset, start, len, 0);
2893 if (em_cached && !IS_ERR_OR_NULL(em)) {
2894 BUG_ON(*em_cached);
2895 atomic_inc(&em->refs);
2896 *em_cached = em;
2898 return em;
2901 * basic readpage implementation. Locked extent state structs are inserted
2902 * into the tree that are removed when the IO is done (by the end_io
2903 * handlers)
2904 * XXX JDM: This needs looking at to ensure proper page locking
2906 static int __do_readpage(struct extent_io_tree *tree,
2907 struct page *page,
2908 get_extent_t *get_extent,
2909 struct extent_map **em_cached,
2910 struct bio **bio, int mirror_num,
2911 unsigned long *bio_flags, int rw,
2912 u64 *prev_em_start)
2914 struct inode *inode = page->mapping->host;
2915 u64 start = page_offset(page);
2916 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2917 u64 end;
2918 u64 cur = start;
2919 u64 extent_offset;
2920 u64 last_byte = i_size_read(inode);
2921 u64 block_start;
2922 u64 cur_end;
2923 sector_t sector;
2924 struct extent_map *em;
2925 struct block_device *bdev;
2926 int ret;
2927 int nr = 0;
2928 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2929 size_t pg_offset = 0;
2930 size_t iosize;
2931 size_t disk_io_size;
2932 size_t blocksize = inode->i_sb->s_blocksize;
2933 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2935 set_page_extent_mapped(page);
2937 end = page_end;
2938 if (!PageUptodate(page)) {
2939 if (cleancache_get_page(page) == 0) {
2940 BUG_ON(blocksize != PAGE_SIZE);
2941 unlock_extent(tree, start, end);
2942 goto out;
2946 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2947 char *userpage;
2948 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2950 if (zero_offset) {
2951 iosize = PAGE_CACHE_SIZE - zero_offset;
2952 userpage = kmap_atomic(page);
2953 memset(userpage + zero_offset, 0, iosize);
2954 flush_dcache_page(page);
2955 kunmap_atomic(userpage);
2958 while (cur <= end) {
2959 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2960 bool force_bio_submit = false;
2962 if (cur >= last_byte) {
2963 char *userpage;
2964 struct extent_state *cached = NULL;
2966 iosize = PAGE_CACHE_SIZE - pg_offset;
2967 userpage = kmap_atomic(page);
2968 memset(userpage + pg_offset, 0, iosize);
2969 flush_dcache_page(page);
2970 kunmap_atomic(userpage);
2971 set_extent_uptodate(tree, cur, cur + iosize - 1,
2972 &cached, GFP_NOFS);
2973 if (!parent_locked)
2974 unlock_extent_cached(tree, cur,
2975 cur + iosize - 1,
2976 &cached, GFP_NOFS);
2977 break;
2979 em = __get_extent_map(inode, page, pg_offset, cur,
2980 end - cur + 1, get_extent, em_cached);
2981 if (IS_ERR_OR_NULL(em)) {
2982 SetPageError(page);
2983 if (!parent_locked)
2984 unlock_extent(tree, cur, end);
2985 break;
2987 extent_offset = cur - em->start;
2988 BUG_ON(extent_map_end(em) <= cur);
2989 BUG_ON(end < cur);
2991 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2992 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2993 extent_set_compress_type(&this_bio_flag,
2994 em->compress_type);
2997 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2998 cur_end = min(extent_map_end(em) - 1, end);
2999 iosize = ALIGN(iosize, blocksize);
3000 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3001 disk_io_size = em->block_len;
3002 sector = em->block_start >> 9;
3003 } else {
3004 sector = (em->block_start + extent_offset) >> 9;
3005 disk_io_size = iosize;
3007 bdev = em->bdev;
3008 block_start = em->block_start;
3009 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3010 block_start = EXTENT_MAP_HOLE;
3013 * If we have a file range that points to a compressed extent
3014 * and it's followed by a consecutive file range that points to
3015 * to the same compressed extent (possibly with a different
3016 * offset and/or length, so it either points to the whole extent
3017 * or only part of it), we must make sure we do not submit a
3018 * single bio to populate the pages for the 2 ranges because
3019 * this makes the compressed extent read zero out the pages
3020 * belonging to the 2nd range. Imagine the following scenario:
3022 * File layout
3023 * [0 - 8K] [8K - 24K]
3024 * | |
3025 * | |
3026 * points to extent X, points to extent X,
3027 * offset 4K, length of 8K offset 0, length 16K
3029 * [extent X, compressed length = 4K uncompressed length = 16K]
3031 * If the bio to read the compressed extent covers both ranges,
3032 * it will decompress extent X into the pages belonging to the
3033 * first range and then it will stop, zeroing out the remaining
3034 * pages that belong to the other range that points to extent X.
3035 * So here we make sure we submit 2 bios, one for the first
3036 * range and another one for the third range. Both will target
3037 * the same physical extent from disk, but we can't currently
3038 * make the compressed bio endio callback populate the pages
3039 * for both ranges because each compressed bio is tightly
3040 * coupled with a single extent map, and each range can have
3041 * an extent map with a different offset value relative to the
3042 * uncompressed data of our extent and different lengths. This
3043 * is a corner case so we prioritize correctness over
3044 * non-optimal behavior (submitting 2 bios for the same extent).
3046 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3047 prev_em_start && *prev_em_start != (u64)-1 &&
3048 *prev_em_start != em->orig_start)
3049 force_bio_submit = true;
3051 if (prev_em_start)
3052 *prev_em_start = em->orig_start;
3054 free_extent_map(em);
3055 em = NULL;
3057 /* we've found a hole, just zero and go on */
3058 if (block_start == EXTENT_MAP_HOLE) {
3059 char *userpage;
3060 struct extent_state *cached = NULL;
3062 userpage = kmap_atomic(page);
3063 memset(userpage + pg_offset, 0, iosize);
3064 flush_dcache_page(page);
3065 kunmap_atomic(userpage);
3067 set_extent_uptodate(tree, cur, cur + iosize - 1,
3068 &cached, GFP_NOFS);
3069 unlock_extent_cached(tree, cur, cur + iosize - 1,
3070 &cached, GFP_NOFS);
3071 cur = cur + iosize;
3072 pg_offset += iosize;
3073 continue;
3075 /* the get_extent function already copied into the page */
3076 if (test_range_bit(tree, cur, cur_end,
3077 EXTENT_UPTODATE, 1, NULL)) {
3078 check_page_uptodate(tree, page);
3079 if (!parent_locked)
3080 unlock_extent(tree, cur, cur + iosize - 1);
3081 cur = cur + iosize;
3082 pg_offset += iosize;
3083 continue;
3085 /* we have an inline extent but it didn't get marked up
3086 * to date. Error out
3088 if (block_start == EXTENT_MAP_INLINE) {
3089 SetPageError(page);
3090 if (!parent_locked)
3091 unlock_extent(tree, cur, cur + iosize - 1);
3092 cur = cur + iosize;
3093 pg_offset += iosize;
3094 continue;
3097 pnr -= page->index;
3098 ret = submit_extent_page(rw, tree, page,
3099 sector, disk_io_size, pg_offset,
3100 bdev, bio, pnr,
3101 end_bio_extent_readpage, mirror_num,
3102 *bio_flags,
3103 this_bio_flag,
3104 force_bio_submit);
3105 if (!ret) {
3106 nr++;
3107 *bio_flags = this_bio_flag;
3108 } else {
3109 SetPageError(page);
3110 if (!parent_locked)
3111 unlock_extent(tree, cur, cur + iosize - 1);
3113 cur = cur + iosize;
3114 pg_offset += iosize;
3116 out:
3117 if (!nr) {
3118 if (!PageError(page))
3119 SetPageUptodate(page);
3120 unlock_page(page);
3122 return 0;
3125 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3126 struct page *pages[], int nr_pages,
3127 u64 start, u64 end,
3128 get_extent_t *get_extent,
3129 struct extent_map **em_cached,
3130 struct bio **bio, int mirror_num,
3131 unsigned long *bio_flags, int rw,
3132 u64 *prev_em_start)
3134 struct inode *inode;
3135 struct btrfs_ordered_extent *ordered;
3136 int index;
3138 inode = pages[0]->mapping->host;
3139 while (1) {
3140 lock_extent(tree, start, end);
3141 ordered = btrfs_lookup_ordered_range(inode, start,
3142 end - start + 1);
3143 if (!ordered)
3144 break;
3145 unlock_extent(tree, start, end);
3146 btrfs_start_ordered_extent(inode, ordered, 1);
3147 btrfs_put_ordered_extent(ordered);
3150 for (index = 0; index < nr_pages; index++) {
3151 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3152 mirror_num, bio_flags, rw, prev_em_start);
3153 page_cache_release(pages[index]);
3157 static void __extent_readpages(struct extent_io_tree *tree,
3158 struct page *pages[],
3159 int nr_pages, get_extent_t *get_extent,
3160 struct extent_map **em_cached,
3161 struct bio **bio, int mirror_num,
3162 unsigned long *bio_flags, int rw,
3163 u64 *prev_em_start)
3165 u64 start = 0;
3166 u64 end = 0;
3167 u64 page_start;
3168 int index;
3169 int first_index = 0;
3171 for (index = 0; index < nr_pages; index++) {
3172 page_start = page_offset(pages[index]);
3173 if (!end) {
3174 start = page_start;
3175 end = start + PAGE_CACHE_SIZE - 1;
3176 first_index = index;
3177 } else if (end + 1 == page_start) {
3178 end += PAGE_CACHE_SIZE;
3179 } else {
3180 __do_contiguous_readpages(tree, &pages[first_index],
3181 index - first_index, start,
3182 end, get_extent, em_cached,
3183 bio, mirror_num, bio_flags,
3184 rw, prev_em_start);
3185 start = page_start;
3186 end = start + PAGE_CACHE_SIZE - 1;
3187 first_index = index;
3191 if (end)
3192 __do_contiguous_readpages(tree, &pages[first_index],
3193 index - first_index, start,
3194 end, get_extent, em_cached, bio,
3195 mirror_num, bio_flags, rw,
3196 prev_em_start);
3199 static int __extent_read_full_page(struct extent_io_tree *tree,
3200 struct page *page,
3201 get_extent_t *get_extent,
3202 struct bio **bio, int mirror_num,
3203 unsigned long *bio_flags, int rw)
3205 struct inode *inode = page->mapping->host;
3206 struct btrfs_ordered_extent *ordered;
3207 u64 start = page_offset(page);
3208 u64 end = start + PAGE_CACHE_SIZE - 1;
3209 int ret;
3211 while (1) {
3212 lock_extent(tree, start, end);
3213 ordered = btrfs_lookup_ordered_extent(inode, start);
3214 if (!ordered)
3215 break;
3216 unlock_extent(tree, start, end);
3217 btrfs_start_ordered_extent(inode, ordered, 1);
3218 btrfs_put_ordered_extent(ordered);
3221 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3222 bio_flags, rw, NULL);
3223 return ret;
3226 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3227 get_extent_t *get_extent, int mirror_num)
3229 struct bio *bio = NULL;
3230 unsigned long bio_flags = 0;
3231 int ret;
3233 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3234 &bio_flags, READ);
3235 if (bio)
3236 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3237 return ret;
3240 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3241 get_extent_t *get_extent, int mirror_num)
3243 struct bio *bio = NULL;
3244 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3245 int ret;
3247 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3248 &bio_flags, READ, NULL);
3249 if (bio)
3250 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3251 return ret;
3254 static noinline void update_nr_written(struct page *page,
3255 struct writeback_control *wbc,
3256 unsigned long nr_written)
3258 wbc->nr_to_write -= nr_written;
3259 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3260 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3261 page->mapping->writeback_index = page->index + nr_written;
3265 * helper for __extent_writepage, doing all of the delayed allocation setup.
3267 * This returns 1 if our fill_delalloc function did all the work required
3268 * to write the page (copy into inline extent). In this case the IO has
3269 * been started and the page is already unlocked.
3271 * This returns 0 if all went well (page still locked)
3272 * This returns < 0 if there were errors (page still locked)
3274 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3275 struct page *page, struct writeback_control *wbc,
3276 struct extent_page_data *epd,
3277 u64 delalloc_start,
3278 unsigned long *nr_written)
3280 struct extent_io_tree *tree = epd->tree;
3281 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3282 u64 nr_delalloc;
3283 u64 delalloc_to_write = 0;
3284 u64 delalloc_end = 0;
3285 int ret;
3286 int page_started = 0;
3288 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3289 return 0;
3291 while (delalloc_end < page_end) {
3292 nr_delalloc = find_lock_delalloc_range(inode, tree,
3293 page,
3294 &delalloc_start,
3295 &delalloc_end,
3296 BTRFS_MAX_EXTENT_SIZE);
3297 if (nr_delalloc == 0) {
3298 delalloc_start = delalloc_end + 1;
3299 continue;
3301 ret = tree->ops->fill_delalloc(inode, page,
3302 delalloc_start,
3303 delalloc_end,
3304 &page_started,
3305 nr_written);
3306 /* File system has been set read-only */
3307 if (ret) {
3308 SetPageError(page);
3309 /* fill_delalloc should be return < 0 for error
3310 * but just in case, we use > 0 here meaning the
3311 * IO is started, so we don't want to return > 0
3312 * unless things are going well.
3314 ret = ret < 0 ? ret : -EIO;
3315 goto done;
3318 * delalloc_end is already one less than the total
3319 * length, so we don't subtract one from
3320 * PAGE_CACHE_SIZE
3322 delalloc_to_write += (delalloc_end - delalloc_start +
3323 PAGE_CACHE_SIZE) >>
3324 PAGE_CACHE_SHIFT;
3325 delalloc_start = delalloc_end + 1;
3327 if (wbc->nr_to_write < delalloc_to_write) {
3328 int thresh = 8192;
3330 if (delalloc_to_write < thresh * 2)
3331 thresh = delalloc_to_write;
3332 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3333 thresh);
3336 /* did the fill delalloc function already unlock and start
3337 * the IO?
3339 if (page_started) {
3341 * we've unlocked the page, so we can't update
3342 * the mapping's writeback index, just update
3343 * nr_to_write.
3345 wbc->nr_to_write -= *nr_written;
3346 return 1;
3349 ret = 0;
3351 done:
3352 return ret;
3356 * helper for __extent_writepage. This calls the writepage start hooks,
3357 * and does the loop to map the page into extents and bios.
3359 * We return 1 if the IO is started and the page is unlocked,
3360 * 0 if all went well (page still locked)
3361 * < 0 if there were errors (page still locked)
3363 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3364 struct page *page,
3365 struct writeback_control *wbc,
3366 struct extent_page_data *epd,
3367 loff_t i_size,
3368 unsigned long nr_written,
3369 int write_flags, int *nr_ret)
3371 struct extent_io_tree *tree = epd->tree;
3372 u64 start = page_offset(page);
3373 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3374 u64 end;
3375 u64 cur = start;
3376 u64 extent_offset;
3377 u64 block_start;
3378 u64 iosize;
3379 sector_t sector;
3380 struct extent_state *cached_state = NULL;
3381 struct extent_map *em;
3382 struct block_device *bdev;
3383 size_t pg_offset = 0;
3384 size_t blocksize;
3385 int ret = 0;
3386 int nr = 0;
3387 bool compressed;
3389 if (tree->ops && tree->ops->writepage_start_hook) {
3390 ret = tree->ops->writepage_start_hook(page, start,
3391 page_end);
3392 if (ret) {
3393 /* Fixup worker will requeue */
3394 if (ret == -EBUSY)
3395 wbc->pages_skipped++;
3396 else
3397 redirty_page_for_writepage(wbc, page);
3399 update_nr_written(page, wbc, nr_written);
3400 unlock_page(page);
3401 ret = 1;
3402 goto done_unlocked;
3407 * we don't want to touch the inode after unlocking the page,
3408 * so we update the mapping writeback index now
3410 update_nr_written(page, wbc, nr_written + 1);
3412 end = page_end;
3413 if (i_size <= start) {
3414 if (tree->ops && tree->ops->writepage_end_io_hook)
3415 tree->ops->writepage_end_io_hook(page, start,
3416 page_end, NULL, 1);
3417 goto done;
3420 blocksize = inode->i_sb->s_blocksize;
3422 while (cur <= end) {
3423 u64 em_end;
3424 if (cur >= i_size) {
3425 if (tree->ops && tree->ops->writepage_end_io_hook)
3426 tree->ops->writepage_end_io_hook(page, cur,
3427 page_end, NULL, 1);
3428 break;
3430 em = epd->get_extent(inode, page, pg_offset, cur,
3431 end - cur + 1, 1);
3432 if (IS_ERR_OR_NULL(em)) {
3433 SetPageError(page);
3434 ret = PTR_ERR_OR_ZERO(em);
3435 break;
3438 extent_offset = cur - em->start;
3439 em_end = extent_map_end(em);
3440 BUG_ON(em_end <= cur);
3441 BUG_ON(end < cur);
3442 iosize = min(em_end - cur, end - cur + 1);
3443 iosize = ALIGN(iosize, blocksize);
3444 sector = (em->block_start + extent_offset) >> 9;
3445 bdev = em->bdev;
3446 block_start = em->block_start;
3447 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3448 free_extent_map(em);
3449 em = NULL;
3452 * compressed and inline extents are written through other
3453 * paths in the FS
3455 if (compressed || block_start == EXTENT_MAP_HOLE ||
3456 block_start == EXTENT_MAP_INLINE) {
3458 * end_io notification does not happen here for
3459 * compressed extents
3461 if (!compressed && tree->ops &&
3462 tree->ops->writepage_end_io_hook)
3463 tree->ops->writepage_end_io_hook(page, cur,
3464 cur + iosize - 1,
3465 NULL, 1);
3466 else if (compressed) {
3467 /* we don't want to end_page_writeback on
3468 * a compressed extent. this happens
3469 * elsewhere
3471 nr++;
3474 cur += iosize;
3475 pg_offset += iosize;
3476 continue;
3479 if (tree->ops && tree->ops->writepage_io_hook) {
3480 ret = tree->ops->writepage_io_hook(page, cur,
3481 cur + iosize - 1);
3482 } else {
3483 ret = 0;
3485 if (ret) {
3486 SetPageError(page);
3487 } else {
3488 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3490 set_range_writeback(tree, cur, cur + iosize - 1);
3491 if (!PageWriteback(page)) {
3492 btrfs_err(BTRFS_I(inode)->root->fs_info,
3493 "page %lu not writeback, cur %llu end %llu",
3494 page->index, cur, end);
3497 ret = submit_extent_page(write_flags, tree, page,
3498 sector, iosize, pg_offset,
3499 bdev, &epd->bio, max_nr,
3500 end_bio_extent_writepage,
3501 0, 0, 0, false);
3502 if (ret)
3503 SetPageError(page);
3505 cur = cur + iosize;
3506 pg_offset += iosize;
3507 nr++;
3509 done:
3510 *nr_ret = nr;
3512 done_unlocked:
3514 /* drop our reference on any cached states */
3515 free_extent_state(cached_state);
3516 return ret;
3520 * the writepage semantics are similar to regular writepage. extent
3521 * records are inserted to lock ranges in the tree, and as dirty areas
3522 * are found, they are marked writeback. Then the lock bits are removed
3523 * and the end_io handler clears the writeback ranges
3525 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3526 void *data)
3528 struct inode *inode = page->mapping->host;
3529 struct extent_page_data *epd = data;
3530 u64 start = page_offset(page);
3531 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3532 int ret;
3533 int nr = 0;
3534 size_t pg_offset = 0;
3535 loff_t i_size = i_size_read(inode);
3536 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3537 int write_flags;
3538 unsigned long nr_written = 0;
3540 if (wbc->sync_mode == WB_SYNC_ALL)
3541 write_flags = WRITE_SYNC;
3542 else
3543 write_flags = WRITE;
3545 trace___extent_writepage(page, inode, wbc);
3547 WARN_ON(!PageLocked(page));
3549 ClearPageError(page);
3551 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3552 if (page->index > end_index ||
3553 (page->index == end_index && !pg_offset)) {
3554 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3555 unlock_page(page);
3556 return 0;
3559 if (page->index == end_index) {
3560 char *userpage;
3562 userpage = kmap_atomic(page);
3563 memset(userpage + pg_offset, 0,
3564 PAGE_CACHE_SIZE - pg_offset);
3565 kunmap_atomic(userpage);
3566 flush_dcache_page(page);
3569 pg_offset = 0;
3571 set_page_extent_mapped(page);
3573 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3574 if (ret == 1)
3575 goto done_unlocked;
3576 if (ret)
3577 goto done;
3579 ret = __extent_writepage_io(inode, page, wbc, epd,
3580 i_size, nr_written, write_flags, &nr);
3581 if (ret == 1)
3582 goto done_unlocked;
3584 done:
3585 if (nr == 0) {
3586 /* make sure the mapping tag for page dirty gets cleared */
3587 set_page_writeback(page);
3588 end_page_writeback(page);
3590 if (PageError(page)) {
3591 ret = ret < 0 ? ret : -EIO;
3592 end_extent_writepage(page, ret, start, page_end);
3594 unlock_page(page);
3595 return ret;
3597 done_unlocked:
3598 return 0;
3601 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3603 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3604 TASK_UNINTERRUPTIBLE);
3607 static noinline_for_stack int
3608 lock_extent_buffer_for_io(struct extent_buffer *eb,
3609 struct btrfs_fs_info *fs_info,
3610 struct extent_page_data *epd)
3612 unsigned long i, num_pages;
3613 int flush = 0;
3614 int ret = 0;
3616 if (!btrfs_try_tree_write_lock(eb)) {
3617 flush = 1;
3618 flush_write_bio(epd);
3619 btrfs_tree_lock(eb);
3622 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3623 btrfs_tree_unlock(eb);
3624 if (!epd->sync_io)
3625 return 0;
3626 if (!flush) {
3627 flush_write_bio(epd);
3628 flush = 1;
3630 while (1) {
3631 wait_on_extent_buffer_writeback(eb);
3632 btrfs_tree_lock(eb);
3633 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3634 break;
3635 btrfs_tree_unlock(eb);
3640 * We need to do this to prevent races in people who check if the eb is
3641 * under IO since we can end up having no IO bits set for a short period
3642 * of time.
3644 spin_lock(&eb->refs_lock);
3645 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3646 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3647 spin_unlock(&eb->refs_lock);
3648 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3649 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3650 -eb->len,
3651 fs_info->dirty_metadata_batch);
3652 ret = 1;
3653 } else {
3654 spin_unlock(&eb->refs_lock);
3657 btrfs_tree_unlock(eb);
3659 if (!ret)
3660 return ret;
3662 num_pages = num_extent_pages(eb->start, eb->len);
3663 for (i = 0; i < num_pages; i++) {
3664 struct page *p = eb->pages[i];
3666 if (!trylock_page(p)) {
3667 if (!flush) {
3668 flush_write_bio(epd);
3669 flush = 1;
3671 lock_page(p);
3675 return ret;
3678 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3680 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3681 smp_mb__after_atomic();
3682 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3685 static void set_btree_ioerr(struct page *page)
3687 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3688 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3690 SetPageError(page);
3691 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3692 return;
3695 * If writeback for a btree extent that doesn't belong to a log tree
3696 * failed, increment the counter transaction->eb_write_errors.
3697 * We do this because while the transaction is running and before it's
3698 * committing (when we call filemap_fdata[write|wait]_range against
3699 * the btree inode), we might have
3700 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3701 * returns an error or an error happens during writeback, when we're
3702 * committing the transaction we wouldn't know about it, since the pages
3703 * can be no longer dirty nor marked anymore for writeback (if a
3704 * subsequent modification to the extent buffer didn't happen before the
3705 * transaction commit), which makes filemap_fdata[write|wait]_range not
3706 * able to find the pages tagged with SetPageError at transaction
3707 * commit time. So if this happens we must abort the transaction,
3708 * otherwise we commit a super block with btree roots that point to
3709 * btree nodes/leafs whose content on disk is invalid - either garbage
3710 * or the content of some node/leaf from a past generation that got
3711 * cowed or deleted and is no longer valid.
3713 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3714 * not be enough - we need to distinguish between log tree extents vs
3715 * non-log tree extents, and the next filemap_fdatawait_range() call
3716 * will catch and clear such errors in the mapping - and that call might
3717 * be from a log sync and not from a transaction commit. Also, checking
3718 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3719 * not done and would not be reliable - the eb might have been released
3720 * from memory and reading it back again means that flag would not be
3721 * set (since it's a runtime flag, not persisted on disk).
3723 * Using the flags below in the btree inode also makes us achieve the
3724 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3725 * writeback for all dirty pages and before filemap_fdatawait_range()
3726 * is called, the writeback for all dirty pages had already finished
3727 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3728 * filemap_fdatawait_range() would return success, as it could not know
3729 * that writeback errors happened (the pages were no longer tagged for
3730 * writeback).
3732 switch (eb->log_index) {
3733 case -1:
3734 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3735 break;
3736 case 0:
3737 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3738 break;
3739 case 1:
3740 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3741 break;
3742 default:
3743 BUG(); /* unexpected, logic error */
3747 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3749 struct bio_vec *bvec;
3750 struct extent_buffer *eb;
3751 int i, done;
3753 bio_for_each_segment_all(bvec, bio, i) {
3754 struct page *page = bvec->bv_page;
3756 eb = (struct extent_buffer *)page->private;
3757 BUG_ON(!eb);
3758 done = atomic_dec_and_test(&eb->io_pages);
3760 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3761 ClearPageUptodate(page);
3762 set_btree_ioerr(page);
3765 end_page_writeback(page);
3767 if (!done)
3768 continue;
3770 end_extent_buffer_writeback(eb);
3773 bio_put(bio);
3776 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3777 struct btrfs_fs_info *fs_info,
3778 struct writeback_control *wbc,
3779 struct extent_page_data *epd)
3781 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3782 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3783 u64 offset = eb->start;
3784 unsigned long i, num_pages;
3785 unsigned long bio_flags = 0;
3786 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3787 int ret = 0;
3789 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3790 num_pages = num_extent_pages(eb->start, eb->len);
3791 atomic_set(&eb->io_pages, num_pages);
3792 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3793 bio_flags = EXTENT_BIO_TREE_LOG;
3795 for (i = 0; i < num_pages; i++) {
3796 struct page *p = eb->pages[i];
3798 clear_page_dirty_for_io(p);
3799 set_page_writeback(p);
3800 ret = submit_extent_page(rw, tree, p, offset >> 9,
3801 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3802 -1, end_bio_extent_buffer_writepage,
3803 0, epd->bio_flags, bio_flags, false);
3804 epd->bio_flags = bio_flags;
3805 if (ret) {
3806 set_btree_ioerr(p);
3807 end_page_writeback(p);
3808 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3809 end_extent_buffer_writeback(eb);
3810 ret = -EIO;
3811 break;
3813 offset += PAGE_CACHE_SIZE;
3814 update_nr_written(p, wbc, 1);
3815 unlock_page(p);
3818 if (unlikely(ret)) {
3819 for (; i < num_pages; i++) {
3820 struct page *p = eb->pages[i];
3821 clear_page_dirty_for_io(p);
3822 unlock_page(p);
3826 return ret;
3829 int btree_write_cache_pages(struct address_space *mapping,
3830 struct writeback_control *wbc)
3832 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3833 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3834 struct extent_buffer *eb, *prev_eb = NULL;
3835 struct extent_page_data epd = {
3836 .bio = NULL,
3837 .tree = tree,
3838 .extent_locked = 0,
3839 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3840 .bio_flags = 0,
3842 int ret = 0;
3843 int done = 0;
3844 int nr_to_write_done = 0;
3845 struct pagevec pvec;
3846 int nr_pages;
3847 pgoff_t index;
3848 pgoff_t end; /* Inclusive */
3849 int scanned = 0;
3850 int tag;
3852 pagevec_init(&pvec, 0);
3853 if (wbc->range_cyclic) {
3854 index = mapping->writeback_index; /* Start from prev offset */
3855 end = -1;
3856 } else {
3857 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3858 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3859 scanned = 1;
3861 if (wbc->sync_mode == WB_SYNC_ALL)
3862 tag = PAGECACHE_TAG_TOWRITE;
3863 else
3864 tag = PAGECACHE_TAG_DIRTY;
3865 retry:
3866 if (wbc->sync_mode == WB_SYNC_ALL)
3867 tag_pages_for_writeback(mapping, index, end);
3868 while (!done && !nr_to_write_done && (index <= end) &&
3869 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3870 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3871 unsigned i;
3873 scanned = 1;
3874 for (i = 0; i < nr_pages; i++) {
3875 struct page *page = pvec.pages[i];
3877 if (!PagePrivate(page))
3878 continue;
3880 if (!wbc->range_cyclic && page->index > end) {
3881 done = 1;
3882 break;
3885 spin_lock(&mapping->private_lock);
3886 if (!PagePrivate(page)) {
3887 spin_unlock(&mapping->private_lock);
3888 continue;
3891 eb = (struct extent_buffer *)page->private;
3894 * Shouldn't happen and normally this would be a BUG_ON
3895 * but no sense in crashing the users box for something
3896 * we can survive anyway.
3898 if (WARN_ON(!eb)) {
3899 spin_unlock(&mapping->private_lock);
3900 continue;
3903 if (eb == prev_eb) {
3904 spin_unlock(&mapping->private_lock);
3905 continue;
3908 ret = atomic_inc_not_zero(&eb->refs);
3909 spin_unlock(&mapping->private_lock);
3910 if (!ret)
3911 continue;
3913 prev_eb = eb;
3914 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3915 if (!ret) {
3916 free_extent_buffer(eb);
3917 continue;
3920 ret = write_one_eb(eb, fs_info, wbc, &epd);
3921 if (ret) {
3922 done = 1;
3923 free_extent_buffer(eb);
3924 break;
3926 free_extent_buffer(eb);
3929 * the filesystem may choose to bump up nr_to_write.
3930 * We have to make sure to honor the new nr_to_write
3931 * at any time
3933 nr_to_write_done = wbc->nr_to_write <= 0;
3935 pagevec_release(&pvec);
3936 cond_resched();
3938 if (!scanned && !done) {
3940 * We hit the last page and there is more work to be done: wrap
3941 * back to the start of the file
3943 scanned = 1;
3944 index = 0;
3945 goto retry;
3947 flush_write_bio(&epd);
3948 return ret;
3952 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3953 * @mapping: address space structure to write
3954 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3955 * @writepage: function called for each page
3956 * @data: data passed to writepage function
3958 * If a page is already under I/O, write_cache_pages() skips it, even
3959 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3960 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3961 * and msync() need to guarantee that all the data which was dirty at the time
3962 * the call was made get new I/O started against them. If wbc->sync_mode is
3963 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3964 * existing IO to complete.
3966 static int extent_write_cache_pages(struct extent_io_tree *tree,
3967 struct address_space *mapping,
3968 struct writeback_control *wbc,
3969 writepage_t writepage, void *data,
3970 void (*flush_fn)(void *))
3972 struct inode *inode = mapping->host;
3973 int ret = 0;
3974 int done = 0;
3975 int err = 0;
3976 int nr_to_write_done = 0;
3977 struct pagevec pvec;
3978 int nr_pages;
3979 pgoff_t index;
3980 pgoff_t end; /* Inclusive */
3981 int scanned = 0;
3982 int tag;
3985 * We have to hold onto the inode so that ordered extents can do their
3986 * work when the IO finishes. The alternative to this is failing to add
3987 * an ordered extent if the igrab() fails there and that is a huge pain
3988 * to deal with, so instead just hold onto the inode throughout the
3989 * writepages operation. If it fails here we are freeing up the inode
3990 * anyway and we'd rather not waste our time writing out stuff that is
3991 * going to be truncated anyway.
3993 if (!igrab(inode))
3994 return 0;
3996 pagevec_init(&pvec, 0);
3997 if (wbc->range_cyclic) {
3998 index = mapping->writeback_index; /* Start from prev offset */
3999 end = -1;
4000 } else {
4001 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4002 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4003 scanned = 1;
4005 if (wbc->sync_mode == WB_SYNC_ALL)
4006 tag = PAGECACHE_TAG_TOWRITE;
4007 else
4008 tag = PAGECACHE_TAG_DIRTY;
4009 retry:
4010 if (wbc->sync_mode == WB_SYNC_ALL)
4011 tag_pages_for_writeback(mapping, index, end);
4012 while (!done && !nr_to_write_done && (index <= end) &&
4013 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4014 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4015 unsigned i;
4017 scanned = 1;
4018 for (i = 0; i < nr_pages; i++) {
4019 struct page *page = pvec.pages[i];
4022 * At this point we hold neither mapping->tree_lock nor
4023 * lock on the page itself: the page may be truncated or
4024 * invalidated (changing page->mapping to NULL), or even
4025 * swizzled back from swapper_space to tmpfs file
4026 * mapping
4028 if (!trylock_page(page)) {
4029 flush_fn(data);
4030 lock_page(page);
4033 if (unlikely(page->mapping != mapping)) {
4034 unlock_page(page);
4035 continue;
4038 if (!wbc->range_cyclic && page->index > end) {
4039 done = 1;
4040 unlock_page(page);
4041 continue;
4044 if (wbc->sync_mode != WB_SYNC_NONE) {
4045 if (PageWriteback(page))
4046 flush_fn(data);
4047 wait_on_page_writeback(page);
4050 if (PageWriteback(page) ||
4051 !clear_page_dirty_for_io(page)) {
4052 unlock_page(page);
4053 continue;
4056 ret = (*writepage)(page, wbc, data);
4058 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4059 unlock_page(page);
4060 ret = 0;
4062 if (!err && ret < 0)
4063 err = ret;
4066 * the filesystem may choose to bump up nr_to_write.
4067 * We have to make sure to honor the new nr_to_write
4068 * at any time
4070 nr_to_write_done = wbc->nr_to_write <= 0;
4072 pagevec_release(&pvec);
4073 cond_resched();
4075 if (!scanned && !done && !err) {
4077 * We hit the last page and there is more work to be done: wrap
4078 * back to the start of the file
4080 scanned = 1;
4081 index = 0;
4082 goto retry;
4084 btrfs_add_delayed_iput(inode);
4085 return err;
4088 static void flush_epd_write_bio(struct extent_page_data *epd)
4090 if (epd->bio) {
4091 int rw = WRITE;
4092 int ret;
4094 if (epd->sync_io)
4095 rw = WRITE_SYNC;
4097 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4098 BUG_ON(ret < 0); /* -ENOMEM */
4099 epd->bio = NULL;
4103 static noinline void flush_write_bio(void *data)
4105 struct extent_page_data *epd = data;
4106 flush_epd_write_bio(epd);
4109 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4110 get_extent_t *get_extent,
4111 struct writeback_control *wbc)
4113 int ret;
4114 struct extent_page_data epd = {
4115 .bio = NULL,
4116 .tree = tree,
4117 .get_extent = get_extent,
4118 .extent_locked = 0,
4119 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4120 .bio_flags = 0,
4123 ret = __extent_writepage(page, wbc, &epd);
4125 flush_epd_write_bio(&epd);
4126 return ret;
4129 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4130 u64 start, u64 end, get_extent_t *get_extent,
4131 int mode)
4133 int ret = 0;
4134 struct address_space *mapping = inode->i_mapping;
4135 struct page *page;
4136 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4137 PAGE_CACHE_SHIFT;
4139 struct extent_page_data epd = {
4140 .bio = NULL,
4141 .tree = tree,
4142 .get_extent = get_extent,
4143 .extent_locked = 1,
4144 .sync_io = mode == WB_SYNC_ALL,
4145 .bio_flags = 0,
4147 struct writeback_control wbc_writepages = {
4148 .sync_mode = mode,
4149 .nr_to_write = nr_pages * 2,
4150 .range_start = start,
4151 .range_end = end + 1,
4154 while (start <= end) {
4155 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4156 if (clear_page_dirty_for_io(page))
4157 ret = __extent_writepage(page, &wbc_writepages, &epd);
4158 else {
4159 if (tree->ops && tree->ops->writepage_end_io_hook)
4160 tree->ops->writepage_end_io_hook(page, start,
4161 start + PAGE_CACHE_SIZE - 1,
4162 NULL, 1);
4163 unlock_page(page);
4165 page_cache_release(page);
4166 start += PAGE_CACHE_SIZE;
4169 flush_epd_write_bio(&epd);
4170 return ret;
4173 int extent_writepages(struct extent_io_tree *tree,
4174 struct address_space *mapping,
4175 get_extent_t *get_extent,
4176 struct writeback_control *wbc)
4178 int ret = 0;
4179 struct extent_page_data epd = {
4180 .bio = NULL,
4181 .tree = tree,
4182 .get_extent = get_extent,
4183 .extent_locked = 0,
4184 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4185 .bio_flags = 0,
4188 ret = extent_write_cache_pages(tree, mapping, wbc,
4189 __extent_writepage, &epd,
4190 flush_write_bio);
4191 flush_epd_write_bio(&epd);
4192 return ret;
4195 int extent_readpages(struct extent_io_tree *tree,
4196 struct address_space *mapping,
4197 struct list_head *pages, unsigned nr_pages,
4198 get_extent_t get_extent)
4200 struct bio *bio = NULL;
4201 unsigned page_idx;
4202 unsigned long bio_flags = 0;
4203 struct page *pagepool[16];
4204 struct page *page;
4205 struct extent_map *em_cached = NULL;
4206 int nr = 0;
4207 u64 prev_em_start = (u64)-1;
4209 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4210 page = list_entry(pages->prev, struct page, lru);
4212 prefetchw(&page->flags);
4213 list_del(&page->lru);
4214 if (add_to_page_cache_lru(page, mapping,
4215 page->index, GFP_NOFS)) {
4216 page_cache_release(page);
4217 continue;
4220 pagepool[nr++] = page;
4221 if (nr < ARRAY_SIZE(pagepool))
4222 continue;
4223 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4224 &bio, 0, &bio_flags, READ, &prev_em_start);
4225 nr = 0;
4227 if (nr)
4228 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4229 &bio, 0, &bio_flags, READ, &prev_em_start);
4231 if (em_cached)
4232 free_extent_map(em_cached);
4234 BUG_ON(!list_empty(pages));
4235 if (bio)
4236 return submit_one_bio(READ, bio, 0, bio_flags);
4237 return 0;
4241 * basic invalidatepage code, this waits on any locked or writeback
4242 * ranges corresponding to the page, and then deletes any extent state
4243 * records from the tree
4245 int extent_invalidatepage(struct extent_io_tree *tree,
4246 struct page *page, unsigned long offset)
4248 struct extent_state *cached_state = NULL;
4249 u64 start = page_offset(page);
4250 u64 end = start + PAGE_CACHE_SIZE - 1;
4251 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4253 start += ALIGN(offset, blocksize);
4254 if (start > end)
4255 return 0;
4257 lock_extent_bits(tree, start, end, 0, &cached_state);
4258 wait_on_page_writeback(page);
4259 clear_extent_bit(tree, start, end,
4260 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4261 EXTENT_DO_ACCOUNTING,
4262 1, 1, &cached_state, GFP_NOFS);
4263 return 0;
4267 * a helper for releasepage, this tests for areas of the page that
4268 * are locked or under IO and drops the related state bits if it is safe
4269 * to drop the page.
4271 static int try_release_extent_state(struct extent_map_tree *map,
4272 struct extent_io_tree *tree,
4273 struct page *page, gfp_t mask)
4275 u64 start = page_offset(page);
4276 u64 end = start + PAGE_CACHE_SIZE - 1;
4277 int ret = 1;
4279 if (test_range_bit(tree, start, end,
4280 EXTENT_IOBITS, 0, NULL))
4281 ret = 0;
4282 else {
4283 if ((mask & GFP_NOFS) == GFP_NOFS)
4284 mask = GFP_NOFS;
4286 * at this point we can safely clear everything except the
4287 * locked bit and the nodatasum bit
4289 ret = clear_extent_bit(tree, start, end,
4290 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4291 0, 0, NULL, mask);
4293 /* if clear_extent_bit failed for enomem reasons,
4294 * we can't allow the release to continue.
4296 if (ret < 0)
4297 ret = 0;
4298 else
4299 ret = 1;
4301 return ret;
4305 * a helper for releasepage. As long as there are no locked extents
4306 * in the range corresponding to the page, both state records and extent
4307 * map records are removed
4309 int try_release_extent_mapping(struct extent_map_tree *map,
4310 struct extent_io_tree *tree, struct page *page,
4311 gfp_t mask)
4313 struct extent_map *em;
4314 u64 start = page_offset(page);
4315 u64 end = start + PAGE_CACHE_SIZE - 1;
4317 if ((mask & __GFP_WAIT) &&
4318 page->mapping->host->i_size > 16 * 1024 * 1024) {
4319 u64 len;
4320 while (start <= end) {
4321 len = end - start + 1;
4322 write_lock(&map->lock);
4323 em = lookup_extent_mapping(map, start, len);
4324 if (!em) {
4325 write_unlock(&map->lock);
4326 break;
4328 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4329 em->start != start) {
4330 write_unlock(&map->lock);
4331 free_extent_map(em);
4332 break;
4334 if (!test_range_bit(tree, em->start,
4335 extent_map_end(em) - 1,
4336 EXTENT_LOCKED | EXTENT_WRITEBACK,
4337 0, NULL)) {
4338 remove_extent_mapping(map, em);
4339 /* once for the rb tree */
4340 free_extent_map(em);
4342 start = extent_map_end(em);
4343 write_unlock(&map->lock);
4345 /* once for us */
4346 free_extent_map(em);
4349 return try_release_extent_state(map, tree, page, mask);
4353 * helper function for fiemap, which doesn't want to see any holes.
4354 * This maps until we find something past 'last'
4356 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4357 u64 offset,
4358 u64 last,
4359 get_extent_t *get_extent)
4361 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4362 struct extent_map *em;
4363 u64 len;
4365 if (offset >= last)
4366 return NULL;
4368 while (1) {
4369 len = last - offset;
4370 if (len == 0)
4371 break;
4372 len = ALIGN(len, sectorsize);
4373 em = get_extent(inode, NULL, 0, offset, len, 0);
4374 if (IS_ERR_OR_NULL(em))
4375 return em;
4377 /* if this isn't a hole return it */
4378 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4379 em->block_start != EXTENT_MAP_HOLE) {
4380 return em;
4383 /* this is a hole, advance to the next extent */
4384 offset = extent_map_end(em);
4385 free_extent_map(em);
4386 if (offset >= last)
4387 break;
4389 return NULL;
4392 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4393 __u64 start, __u64 len, get_extent_t *get_extent)
4395 int ret = 0;
4396 u64 off = start;
4397 u64 max = start + len;
4398 u32 flags = 0;
4399 u32 found_type;
4400 u64 last;
4401 u64 last_for_get_extent = 0;
4402 u64 disko = 0;
4403 u64 isize = i_size_read(inode);
4404 struct btrfs_key found_key;
4405 struct extent_map *em = NULL;
4406 struct extent_state *cached_state = NULL;
4407 struct btrfs_path *path;
4408 struct btrfs_root *root = BTRFS_I(inode)->root;
4409 int end = 0;
4410 u64 em_start = 0;
4411 u64 em_len = 0;
4412 u64 em_end = 0;
4414 if (len == 0)
4415 return -EINVAL;
4417 path = btrfs_alloc_path();
4418 if (!path)
4419 return -ENOMEM;
4420 path->leave_spinning = 1;
4422 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4423 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4426 * lookup the last file extent. We're not using i_size here
4427 * because there might be preallocation past i_size
4429 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4431 if (ret < 0) {
4432 btrfs_free_path(path);
4433 return ret;
4435 WARN_ON(!ret);
4436 path->slots[0]--;
4437 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4438 found_type = found_key.type;
4440 /* No extents, but there might be delalloc bits */
4441 if (found_key.objectid != btrfs_ino(inode) ||
4442 found_type != BTRFS_EXTENT_DATA_KEY) {
4443 /* have to trust i_size as the end */
4444 last = (u64)-1;
4445 last_for_get_extent = isize;
4446 } else {
4448 * remember the start of the last extent. There are a
4449 * bunch of different factors that go into the length of the
4450 * extent, so its much less complex to remember where it started
4452 last = found_key.offset;
4453 last_for_get_extent = last + 1;
4455 btrfs_release_path(path);
4458 * we might have some extents allocated but more delalloc past those
4459 * extents. so, we trust isize unless the start of the last extent is
4460 * beyond isize
4462 if (last < isize) {
4463 last = (u64)-1;
4464 last_for_get_extent = isize;
4467 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4468 &cached_state);
4470 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4471 get_extent);
4472 if (!em)
4473 goto out;
4474 if (IS_ERR(em)) {
4475 ret = PTR_ERR(em);
4476 goto out;
4479 while (!end) {
4480 u64 offset_in_extent = 0;
4482 /* break if the extent we found is outside the range */
4483 if (em->start >= max || extent_map_end(em) < off)
4484 break;
4487 * get_extent may return an extent that starts before our
4488 * requested range. We have to make sure the ranges
4489 * we return to fiemap always move forward and don't
4490 * overlap, so adjust the offsets here
4492 em_start = max(em->start, off);
4495 * record the offset from the start of the extent
4496 * for adjusting the disk offset below. Only do this if the
4497 * extent isn't compressed since our in ram offset may be past
4498 * what we have actually allocated on disk.
4500 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4501 offset_in_extent = em_start - em->start;
4502 em_end = extent_map_end(em);
4503 em_len = em_end - em_start;
4504 disko = 0;
4505 flags = 0;
4508 * bump off for our next call to get_extent
4510 off = extent_map_end(em);
4511 if (off >= max)
4512 end = 1;
4514 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4515 end = 1;
4516 flags |= FIEMAP_EXTENT_LAST;
4517 } else if (em->block_start == EXTENT_MAP_INLINE) {
4518 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4519 FIEMAP_EXTENT_NOT_ALIGNED);
4520 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4521 flags |= (FIEMAP_EXTENT_DELALLOC |
4522 FIEMAP_EXTENT_UNKNOWN);
4523 } else if (fieinfo->fi_extents_max) {
4524 u64 bytenr = em->block_start -
4525 (em->start - em->orig_start);
4527 disko = em->block_start + offset_in_extent;
4530 * As btrfs supports shared space, this information
4531 * can be exported to userspace tools via
4532 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4533 * then we're just getting a count and we can skip the
4534 * lookup stuff.
4536 ret = btrfs_check_shared(NULL, root->fs_info,
4537 root->objectid,
4538 btrfs_ino(inode), bytenr);
4539 if (ret < 0)
4540 goto out_free;
4541 if (ret)
4542 flags |= FIEMAP_EXTENT_SHARED;
4543 ret = 0;
4545 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4546 flags |= FIEMAP_EXTENT_ENCODED;
4548 free_extent_map(em);
4549 em = NULL;
4550 if ((em_start >= last) || em_len == (u64)-1 ||
4551 (last == (u64)-1 && isize <= em_end)) {
4552 flags |= FIEMAP_EXTENT_LAST;
4553 end = 1;
4556 /* now scan forward to see if this is really the last extent. */
4557 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4558 get_extent);
4559 if (IS_ERR(em)) {
4560 ret = PTR_ERR(em);
4561 goto out;
4563 if (!em) {
4564 flags |= FIEMAP_EXTENT_LAST;
4565 end = 1;
4567 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4568 em_len, flags);
4569 if (ret) {
4570 if (ret == 1)
4571 ret = 0;
4572 goto out_free;
4575 out_free:
4576 free_extent_map(em);
4577 out:
4578 btrfs_free_path(path);
4579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4580 &cached_state, GFP_NOFS);
4581 return ret;
4584 static void __free_extent_buffer(struct extent_buffer *eb)
4586 btrfs_leak_debug_del(&eb->leak_list);
4587 kmem_cache_free(extent_buffer_cache, eb);
4590 int extent_buffer_under_io(struct extent_buffer *eb)
4592 return (atomic_read(&eb->io_pages) ||
4593 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4594 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4598 * Helper for releasing extent buffer page.
4600 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4602 unsigned long index;
4603 struct page *page;
4604 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4606 BUG_ON(extent_buffer_under_io(eb));
4608 index = num_extent_pages(eb->start, eb->len);
4609 if (index == 0)
4610 return;
4612 do {
4613 index--;
4614 page = eb->pages[index];
4615 if (!page)
4616 continue;
4617 if (mapped)
4618 spin_lock(&page->mapping->private_lock);
4620 * We do this since we'll remove the pages after we've
4621 * removed the eb from the radix tree, so we could race
4622 * and have this page now attached to the new eb. So
4623 * only clear page_private if it's still connected to
4624 * this eb.
4626 if (PagePrivate(page) &&
4627 page->private == (unsigned long)eb) {
4628 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4629 BUG_ON(PageDirty(page));
4630 BUG_ON(PageWriteback(page));
4632 * We need to make sure we haven't be attached
4633 * to a new eb.
4635 ClearPagePrivate(page);
4636 set_page_private(page, 0);
4637 /* One for the page private */
4638 page_cache_release(page);
4641 if (mapped)
4642 spin_unlock(&page->mapping->private_lock);
4644 /* One for when we alloced the page */
4645 page_cache_release(page);
4646 } while (index != 0);
4650 * Helper for releasing the extent buffer.
4652 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4654 btrfs_release_extent_buffer_page(eb);
4655 __free_extent_buffer(eb);
4658 static struct extent_buffer *
4659 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4660 unsigned long len)
4662 struct extent_buffer *eb = NULL;
4664 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
4665 if (eb == NULL)
4666 return NULL;
4667 eb->start = start;
4668 eb->len = len;
4669 eb->fs_info = fs_info;
4670 eb->bflags = 0;
4671 rwlock_init(&eb->lock);
4672 atomic_set(&eb->write_locks, 0);
4673 atomic_set(&eb->read_locks, 0);
4674 atomic_set(&eb->blocking_readers, 0);
4675 atomic_set(&eb->blocking_writers, 0);
4676 atomic_set(&eb->spinning_readers, 0);
4677 atomic_set(&eb->spinning_writers, 0);
4678 eb->lock_nested = 0;
4679 init_waitqueue_head(&eb->write_lock_wq);
4680 init_waitqueue_head(&eb->read_lock_wq);
4682 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4684 spin_lock_init(&eb->refs_lock);
4685 atomic_set(&eb->refs, 1);
4686 atomic_set(&eb->io_pages, 0);
4689 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4691 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4692 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4693 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4695 return eb;
4698 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4700 unsigned long i;
4701 struct page *p;
4702 struct extent_buffer *new;
4703 unsigned long num_pages = num_extent_pages(src->start, src->len);
4705 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4706 if (new == NULL)
4707 return NULL;
4709 for (i = 0; i < num_pages; i++) {
4710 p = alloc_page(GFP_NOFS);
4711 if (!p) {
4712 btrfs_release_extent_buffer(new);
4713 return NULL;
4715 attach_extent_buffer_page(new, p);
4716 WARN_ON(PageDirty(p));
4717 SetPageUptodate(p);
4718 new->pages[i] = p;
4721 copy_extent_buffer(new, src, 0, 0, src->len);
4722 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4723 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4725 return new;
4728 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4729 u64 start)
4731 struct extent_buffer *eb;
4732 unsigned long len;
4733 unsigned long num_pages;
4734 unsigned long i;
4736 if (!fs_info) {
4738 * Called only from tests that don't always have a fs_info
4739 * available, but we know that nodesize is 4096
4741 len = 4096;
4742 } else {
4743 len = fs_info->tree_root->nodesize;
4745 num_pages = num_extent_pages(0, len);
4747 eb = __alloc_extent_buffer(fs_info, start, len);
4748 if (!eb)
4749 return NULL;
4751 for (i = 0; i < num_pages; i++) {
4752 eb->pages[i] = alloc_page(GFP_NOFS);
4753 if (!eb->pages[i])
4754 goto err;
4756 set_extent_buffer_uptodate(eb);
4757 btrfs_set_header_nritems(eb, 0);
4758 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4760 return eb;
4761 err:
4762 for (; i > 0; i--)
4763 __free_page(eb->pages[i - 1]);
4764 __free_extent_buffer(eb);
4765 return NULL;
4768 static void check_buffer_tree_ref(struct extent_buffer *eb)
4770 int refs;
4771 /* the ref bit is tricky. We have to make sure it is set
4772 * if we have the buffer dirty. Otherwise the
4773 * code to free a buffer can end up dropping a dirty
4774 * page
4776 * Once the ref bit is set, it won't go away while the
4777 * buffer is dirty or in writeback, and it also won't
4778 * go away while we have the reference count on the
4779 * eb bumped.
4781 * We can't just set the ref bit without bumping the
4782 * ref on the eb because free_extent_buffer might
4783 * see the ref bit and try to clear it. If this happens
4784 * free_extent_buffer might end up dropping our original
4785 * ref by mistake and freeing the page before we are able
4786 * to add one more ref.
4788 * So bump the ref count first, then set the bit. If someone
4789 * beat us to it, drop the ref we added.
4791 refs = atomic_read(&eb->refs);
4792 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4793 return;
4795 spin_lock(&eb->refs_lock);
4796 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4797 atomic_inc(&eb->refs);
4798 spin_unlock(&eb->refs_lock);
4801 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4802 struct page *accessed)
4804 unsigned long num_pages, i;
4806 check_buffer_tree_ref(eb);
4808 num_pages = num_extent_pages(eb->start, eb->len);
4809 for (i = 0; i < num_pages; i++) {
4810 struct page *p = eb->pages[i];
4812 if (p != accessed)
4813 mark_page_accessed(p);
4817 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4818 u64 start)
4820 struct extent_buffer *eb;
4822 rcu_read_lock();
4823 eb = radix_tree_lookup(&fs_info->buffer_radix,
4824 start >> PAGE_CACHE_SHIFT);
4825 if (eb && atomic_inc_not_zero(&eb->refs)) {
4826 rcu_read_unlock();
4828 * Lock our eb's refs_lock to avoid races with
4829 * free_extent_buffer. When we get our eb it might be flagged
4830 * with EXTENT_BUFFER_STALE and another task running
4831 * free_extent_buffer might have seen that flag set,
4832 * eb->refs == 2, that the buffer isn't under IO (dirty and
4833 * writeback flags not set) and it's still in the tree (flag
4834 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4835 * of decrementing the extent buffer's reference count twice.
4836 * So here we could race and increment the eb's reference count,
4837 * clear its stale flag, mark it as dirty and drop our reference
4838 * before the other task finishes executing free_extent_buffer,
4839 * which would later result in an attempt to free an extent
4840 * buffer that is dirty.
4842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4843 spin_lock(&eb->refs_lock);
4844 spin_unlock(&eb->refs_lock);
4846 mark_extent_buffer_accessed(eb, NULL);
4847 return eb;
4849 rcu_read_unlock();
4851 return NULL;
4854 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4855 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4856 u64 start)
4858 struct extent_buffer *eb, *exists = NULL;
4859 int ret;
4861 eb = find_extent_buffer(fs_info, start);
4862 if (eb)
4863 return eb;
4864 eb = alloc_dummy_extent_buffer(fs_info, start);
4865 if (!eb)
4866 return NULL;
4867 eb->fs_info = fs_info;
4868 again:
4869 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4870 if (ret)
4871 goto free_eb;
4872 spin_lock(&fs_info->buffer_lock);
4873 ret = radix_tree_insert(&fs_info->buffer_radix,
4874 start >> PAGE_CACHE_SHIFT, eb);
4875 spin_unlock(&fs_info->buffer_lock);
4876 radix_tree_preload_end();
4877 if (ret == -EEXIST) {
4878 exists = find_extent_buffer(fs_info, start);
4879 if (exists)
4880 goto free_eb;
4881 else
4882 goto again;
4884 check_buffer_tree_ref(eb);
4885 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4888 * We will free dummy extent buffer's if they come into
4889 * free_extent_buffer with a ref count of 2, but if we are using this we
4890 * want the buffers to stay in memory until we're done with them, so
4891 * bump the ref count again.
4893 atomic_inc(&eb->refs);
4894 return eb;
4895 free_eb:
4896 btrfs_release_extent_buffer(eb);
4897 return exists;
4899 #endif
4901 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4902 u64 start)
4904 unsigned long len = fs_info->tree_root->nodesize;
4905 unsigned long num_pages = num_extent_pages(start, len);
4906 unsigned long i;
4907 unsigned long index = start >> PAGE_CACHE_SHIFT;
4908 struct extent_buffer *eb;
4909 struct extent_buffer *exists = NULL;
4910 struct page *p;
4911 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4912 int uptodate = 1;
4913 int ret;
4915 eb = find_extent_buffer(fs_info, start);
4916 if (eb)
4917 return eb;
4919 eb = __alloc_extent_buffer(fs_info, start, len);
4920 if (!eb)
4921 return NULL;
4923 for (i = 0; i < num_pages; i++, index++) {
4924 p = find_or_create_page(mapping, index, GFP_NOFS);
4925 if (!p)
4926 goto free_eb;
4928 spin_lock(&mapping->private_lock);
4929 if (PagePrivate(p)) {
4931 * We could have already allocated an eb for this page
4932 * and attached one so lets see if we can get a ref on
4933 * the existing eb, and if we can we know it's good and
4934 * we can just return that one, else we know we can just
4935 * overwrite page->private.
4937 exists = (struct extent_buffer *)p->private;
4938 if (atomic_inc_not_zero(&exists->refs)) {
4939 spin_unlock(&mapping->private_lock);
4940 unlock_page(p);
4941 page_cache_release(p);
4942 mark_extent_buffer_accessed(exists, p);
4943 goto free_eb;
4945 exists = NULL;
4948 * Do this so attach doesn't complain and we need to
4949 * drop the ref the old guy had.
4951 ClearPagePrivate(p);
4952 WARN_ON(PageDirty(p));
4953 page_cache_release(p);
4955 attach_extent_buffer_page(eb, p);
4956 spin_unlock(&mapping->private_lock);
4957 WARN_ON(PageDirty(p));
4958 eb->pages[i] = p;
4959 if (!PageUptodate(p))
4960 uptodate = 0;
4963 * see below about how we avoid a nasty race with release page
4964 * and why we unlock later
4967 if (uptodate)
4968 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4969 again:
4970 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4971 if (ret)
4972 goto free_eb;
4974 spin_lock(&fs_info->buffer_lock);
4975 ret = radix_tree_insert(&fs_info->buffer_radix,
4976 start >> PAGE_CACHE_SHIFT, eb);
4977 spin_unlock(&fs_info->buffer_lock);
4978 radix_tree_preload_end();
4979 if (ret == -EEXIST) {
4980 exists = find_extent_buffer(fs_info, start);
4981 if (exists)
4982 goto free_eb;
4983 else
4984 goto again;
4986 /* add one reference for the tree */
4987 check_buffer_tree_ref(eb);
4988 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4991 * there is a race where release page may have
4992 * tried to find this extent buffer in the radix
4993 * but failed. It will tell the VM it is safe to
4994 * reclaim the, and it will clear the page private bit.
4995 * We must make sure to set the page private bit properly
4996 * after the extent buffer is in the radix tree so
4997 * it doesn't get lost
4999 SetPageChecked(eb->pages[0]);
5000 for (i = 1; i < num_pages; i++) {
5001 p = eb->pages[i];
5002 ClearPageChecked(p);
5003 unlock_page(p);
5005 unlock_page(eb->pages[0]);
5006 return eb;
5008 free_eb:
5009 WARN_ON(!atomic_dec_and_test(&eb->refs));
5010 for (i = 0; i < num_pages; i++) {
5011 if (eb->pages[i])
5012 unlock_page(eb->pages[i]);
5015 btrfs_release_extent_buffer(eb);
5016 return exists;
5019 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5021 struct extent_buffer *eb =
5022 container_of(head, struct extent_buffer, rcu_head);
5024 __free_extent_buffer(eb);
5027 /* Expects to have eb->eb_lock already held */
5028 static int release_extent_buffer(struct extent_buffer *eb)
5030 WARN_ON(atomic_read(&eb->refs) == 0);
5031 if (atomic_dec_and_test(&eb->refs)) {
5032 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5033 struct btrfs_fs_info *fs_info = eb->fs_info;
5035 spin_unlock(&eb->refs_lock);
5037 spin_lock(&fs_info->buffer_lock);
5038 radix_tree_delete(&fs_info->buffer_radix,
5039 eb->start >> PAGE_CACHE_SHIFT);
5040 spin_unlock(&fs_info->buffer_lock);
5041 } else {
5042 spin_unlock(&eb->refs_lock);
5045 /* Should be safe to release our pages at this point */
5046 btrfs_release_extent_buffer_page(eb);
5047 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5048 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5049 __free_extent_buffer(eb);
5050 return 1;
5052 #endif
5053 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5054 return 1;
5056 spin_unlock(&eb->refs_lock);
5058 return 0;
5061 void free_extent_buffer(struct extent_buffer *eb)
5063 int refs;
5064 int old;
5065 if (!eb)
5066 return;
5068 while (1) {
5069 refs = atomic_read(&eb->refs);
5070 if (refs <= 3)
5071 break;
5072 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5073 if (old == refs)
5074 return;
5077 spin_lock(&eb->refs_lock);
5078 if (atomic_read(&eb->refs) == 2 &&
5079 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5080 atomic_dec(&eb->refs);
5082 if (atomic_read(&eb->refs) == 2 &&
5083 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5084 !extent_buffer_under_io(eb) &&
5085 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5086 atomic_dec(&eb->refs);
5089 * I know this is terrible, but it's temporary until we stop tracking
5090 * the uptodate bits and such for the extent buffers.
5092 release_extent_buffer(eb);
5095 void free_extent_buffer_stale(struct extent_buffer *eb)
5097 if (!eb)
5098 return;
5100 spin_lock(&eb->refs_lock);
5101 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5103 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5104 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5105 atomic_dec(&eb->refs);
5106 release_extent_buffer(eb);
5109 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5111 unsigned long i;
5112 unsigned long num_pages;
5113 struct page *page;
5115 num_pages = num_extent_pages(eb->start, eb->len);
5117 for (i = 0; i < num_pages; i++) {
5118 page = eb->pages[i];
5119 if (!PageDirty(page))
5120 continue;
5122 lock_page(page);
5123 WARN_ON(!PagePrivate(page));
5125 clear_page_dirty_for_io(page);
5126 spin_lock_irq(&page->mapping->tree_lock);
5127 if (!PageDirty(page)) {
5128 radix_tree_tag_clear(&page->mapping->page_tree,
5129 page_index(page),
5130 PAGECACHE_TAG_DIRTY);
5132 spin_unlock_irq(&page->mapping->tree_lock);
5133 ClearPageError(page);
5134 unlock_page(page);
5136 WARN_ON(atomic_read(&eb->refs) == 0);
5139 int set_extent_buffer_dirty(struct extent_buffer *eb)
5141 unsigned long i;
5142 unsigned long num_pages;
5143 int was_dirty = 0;
5145 check_buffer_tree_ref(eb);
5147 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5149 num_pages = num_extent_pages(eb->start, eb->len);
5150 WARN_ON(atomic_read(&eb->refs) == 0);
5151 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5153 for (i = 0; i < num_pages; i++)
5154 set_page_dirty(eb->pages[i]);
5155 return was_dirty;
5158 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5160 unsigned long i;
5161 struct page *page;
5162 unsigned long num_pages;
5164 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5165 num_pages = num_extent_pages(eb->start, eb->len);
5166 for (i = 0; i < num_pages; i++) {
5167 page = eb->pages[i];
5168 if (page)
5169 ClearPageUptodate(page);
5171 return 0;
5174 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5176 unsigned long i;
5177 struct page *page;
5178 unsigned long num_pages;
5180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181 num_pages = num_extent_pages(eb->start, eb->len);
5182 for (i = 0; i < num_pages; i++) {
5183 page = eb->pages[i];
5184 SetPageUptodate(page);
5186 return 0;
5189 int extent_buffer_uptodate(struct extent_buffer *eb)
5191 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5194 int read_extent_buffer_pages(struct extent_io_tree *tree,
5195 struct extent_buffer *eb, u64 start, int wait,
5196 get_extent_t *get_extent, int mirror_num)
5198 unsigned long i;
5199 unsigned long start_i;
5200 struct page *page;
5201 int err;
5202 int ret = 0;
5203 int locked_pages = 0;
5204 int all_uptodate = 1;
5205 unsigned long num_pages;
5206 unsigned long num_reads = 0;
5207 struct bio *bio = NULL;
5208 unsigned long bio_flags = 0;
5210 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5211 return 0;
5213 if (start) {
5214 WARN_ON(start < eb->start);
5215 start_i = (start >> PAGE_CACHE_SHIFT) -
5216 (eb->start >> PAGE_CACHE_SHIFT);
5217 } else {
5218 start_i = 0;
5221 num_pages = num_extent_pages(eb->start, eb->len);
5222 for (i = start_i; i < num_pages; i++) {
5223 page = eb->pages[i];
5224 if (wait == WAIT_NONE) {
5225 if (!trylock_page(page))
5226 goto unlock_exit;
5227 } else {
5228 lock_page(page);
5230 locked_pages++;
5231 if (!PageUptodate(page)) {
5232 num_reads++;
5233 all_uptodate = 0;
5236 if (all_uptodate) {
5237 if (start_i == 0)
5238 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5239 goto unlock_exit;
5242 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5243 eb->read_mirror = 0;
5244 atomic_set(&eb->io_pages, num_reads);
5245 for (i = start_i; i < num_pages; i++) {
5246 page = eb->pages[i];
5247 if (!PageUptodate(page)) {
5248 ClearPageError(page);
5249 err = __extent_read_full_page(tree, page,
5250 get_extent, &bio,
5251 mirror_num, &bio_flags,
5252 READ | REQ_META);
5253 if (err)
5254 ret = err;
5255 } else {
5256 unlock_page(page);
5260 if (bio) {
5261 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5262 bio_flags);
5263 if (err)
5264 return err;
5267 if (ret || wait != WAIT_COMPLETE)
5268 return ret;
5270 for (i = start_i; i < num_pages; i++) {
5271 page = eb->pages[i];
5272 wait_on_page_locked(page);
5273 if (!PageUptodate(page))
5274 ret = -EIO;
5277 return ret;
5279 unlock_exit:
5280 i = start_i;
5281 while (locked_pages > 0) {
5282 page = eb->pages[i];
5283 i++;
5284 unlock_page(page);
5285 locked_pages--;
5287 return ret;
5290 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5291 unsigned long start,
5292 unsigned long len)
5294 size_t cur;
5295 size_t offset;
5296 struct page *page;
5297 char *kaddr;
5298 char *dst = (char *)dstv;
5299 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5300 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5302 WARN_ON(start > eb->len);
5303 WARN_ON(start + len > eb->start + eb->len);
5305 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5307 while (len > 0) {
5308 page = eb->pages[i];
5310 cur = min(len, (PAGE_CACHE_SIZE - offset));
5311 kaddr = page_address(page);
5312 memcpy(dst, kaddr + offset, cur);
5314 dst += cur;
5315 len -= cur;
5316 offset = 0;
5317 i++;
5321 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5322 unsigned long start,
5323 unsigned long len)
5325 size_t cur;
5326 size_t offset;
5327 struct page *page;
5328 char *kaddr;
5329 char __user *dst = (char __user *)dstv;
5330 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5331 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5332 int ret = 0;
5334 WARN_ON(start > eb->len);
5335 WARN_ON(start + len > eb->start + eb->len);
5337 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5339 while (len > 0) {
5340 page = eb->pages[i];
5342 cur = min(len, (PAGE_CACHE_SIZE - offset));
5343 kaddr = page_address(page);
5344 if (copy_to_user(dst, kaddr + offset, cur)) {
5345 ret = -EFAULT;
5346 break;
5349 dst += cur;
5350 len -= cur;
5351 offset = 0;
5352 i++;
5355 return ret;
5358 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5359 unsigned long min_len, char **map,
5360 unsigned long *map_start,
5361 unsigned long *map_len)
5363 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5364 char *kaddr;
5365 struct page *p;
5366 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5367 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5368 unsigned long end_i = (start_offset + start + min_len - 1) >>
5369 PAGE_CACHE_SHIFT;
5371 if (i != end_i)
5372 return -EINVAL;
5374 if (i == 0) {
5375 offset = start_offset;
5376 *map_start = 0;
5377 } else {
5378 offset = 0;
5379 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5382 if (start + min_len > eb->len) {
5383 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5384 "wanted %lu %lu\n",
5385 eb->start, eb->len, start, min_len);
5386 return -EINVAL;
5389 p = eb->pages[i];
5390 kaddr = page_address(p);
5391 *map = kaddr + offset;
5392 *map_len = PAGE_CACHE_SIZE - offset;
5393 return 0;
5396 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5397 unsigned long start,
5398 unsigned long len)
5400 size_t cur;
5401 size_t offset;
5402 struct page *page;
5403 char *kaddr;
5404 char *ptr = (char *)ptrv;
5405 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5406 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5407 int ret = 0;
5409 WARN_ON(start > eb->len);
5410 WARN_ON(start + len > eb->start + eb->len);
5412 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5414 while (len > 0) {
5415 page = eb->pages[i];
5417 cur = min(len, (PAGE_CACHE_SIZE - offset));
5419 kaddr = page_address(page);
5420 ret = memcmp(ptr, kaddr + offset, cur);
5421 if (ret)
5422 break;
5424 ptr += cur;
5425 len -= cur;
5426 offset = 0;
5427 i++;
5429 return ret;
5432 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5433 unsigned long start, unsigned long len)
5435 size_t cur;
5436 size_t offset;
5437 struct page *page;
5438 char *kaddr;
5439 char *src = (char *)srcv;
5440 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5441 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5443 WARN_ON(start > eb->len);
5444 WARN_ON(start + len > eb->start + eb->len);
5446 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5448 while (len > 0) {
5449 page = eb->pages[i];
5450 WARN_ON(!PageUptodate(page));
5452 cur = min(len, PAGE_CACHE_SIZE - offset);
5453 kaddr = page_address(page);
5454 memcpy(kaddr + offset, src, cur);
5456 src += cur;
5457 len -= cur;
5458 offset = 0;
5459 i++;
5463 void memset_extent_buffer(struct extent_buffer *eb, char c,
5464 unsigned long start, unsigned long len)
5466 size_t cur;
5467 size_t offset;
5468 struct page *page;
5469 char *kaddr;
5470 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5471 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5473 WARN_ON(start > eb->len);
5474 WARN_ON(start + len > eb->start + eb->len);
5476 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5478 while (len > 0) {
5479 page = eb->pages[i];
5480 WARN_ON(!PageUptodate(page));
5482 cur = min(len, PAGE_CACHE_SIZE - offset);
5483 kaddr = page_address(page);
5484 memset(kaddr + offset, c, cur);
5486 len -= cur;
5487 offset = 0;
5488 i++;
5492 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5493 unsigned long dst_offset, unsigned long src_offset,
5494 unsigned long len)
5496 u64 dst_len = dst->len;
5497 size_t cur;
5498 size_t offset;
5499 struct page *page;
5500 char *kaddr;
5501 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5502 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5504 WARN_ON(src->len != dst_len);
5506 offset = (start_offset + dst_offset) &
5507 (PAGE_CACHE_SIZE - 1);
5509 while (len > 0) {
5510 page = dst->pages[i];
5511 WARN_ON(!PageUptodate(page));
5513 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5515 kaddr = page_address(page);
5516 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5518 src_offset += cur;
5519 len -= cur;
5520 offset = 0;
5521 i++;
5525 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5527 unsigned long distance = (src > dst) ? src - dst : dst - src;
5528 return distance < len;
5531 static void copy_pages(struct page *dst_page, struct page *src_page,
5532 unsigned long dst_off, unsigned long src_off,
5533 unsigned long len)
5535 char *dst_kaddr = page_address(dst_page);
5536 char *src_kaddr;
5537 int must_memmove = 0;
5539 if (dst_page != src_page) {
5540 src_kaddr = page_address(src_page);
5541 } else {
5542 src_kaddr = dst_kaddr;
5543 if (areas_overlap(src_off, dst_off, len))
5544 must_memmove = 1;
5547 if (must_memmove)
5548 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5549 else
5550 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5553 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5554 unsigned long src_offset, unsigned long len)
5556 size_t cur;
5557 size_t dst_off_in_page;
5558 size_t src_off_in_page;
5559 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5560 unsigned long dst_i;
5561 unsigned long src_i;
5563 if (src_offset + len > dst->len) {
5564 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5565 "len %lu dst len %lu\n", src_offset, len, dst->len);
5566 BUG_ON(1);
5568 if (dst_offset + len > dst->len) {
5569 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5570 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5571 BUG_ON(1);
5574 while (len > 0) {
5575 dst_off_in_page = (start_offset + dst_offset) &
5576 (PAGE_CACHE_SIZE - 1);
5577 src_off_in_page = (start_offset + src_offset) &
5578 (PAGE_CACHE_SIZE - 1);
5580 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5581 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5583 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5584 src_off_in_page));
5585 cur = min_t(unsigned long, cur,
5586 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5588 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5589 dst_off_in_page, src_off_in_page, cur);
5591 src_offset += cur;
5592 dst_offset += cur;
5593 len -= cur;
5597 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5598 unsigned long src_offset, unsigned long len)
5600 size_t cur;
5601 size_t dst_off_in_page;
5602 size_t src_off_in_page;
5603 unsigned long dst_end = dst_offset + len - 1;
5604 unsigned long src_end = src_offset + len - 1;
5605 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5606 unsigned long dst_i;
5607 unsigned long src_i;
5609 if (src_offset + len > dst->len) {
5610 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5611 "len %lu len %lu\n", src_offset, len, dst->len);
5612 BUG_ON(1);
5614 if (dst_offset + len > dst->len) {
5615 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5616 "len %lu len %lu\n", dst_offset, len, dst->len);
5617 BUG_ON(1);
5619 if (dst_offset < src_offset) {
5620 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5621 return;
5623 while (len > 0) {
5624 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5625 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5627 dst_off_in_page = (start_offset + dst_end) &
5628 (PAGE_CACHE_SIZE - 1);
5629 src_off_in_page = (start_offset + src_end) &
5630 (PAGE_CACHE_SIZE - 1);
5632 cur = min_t(unsigned long, len, src_off_in_page + 1);
5633 cur = min(cur, dst_off_in_page + 1);
5634 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5635 dst_off_in_page - cur + 1,
5636 src_off_in_page - cur + 1, cur);
5638 dst_end -= cur;
5639 src_end -= cur;
5640 len -= cur;
5644 int try_release_extent_buffer(struct page *page)
5646 struct extent_buffer *eb;
5649 * We need to make sure noboody is attaching this page to an eb right
5650 * now.
5652 spin_lock(&page->mapping->private_lock);
5653 if (!PagePrivate(page)) {
5654 spin_unlock(&page->mapping->private_lock);
5655 return 1;
5658 eb = (struct extent_buffer *)page->private;
5659 BUG_ON(!eb);
5662 * This is a little awful but should be ok, we need to make sure that
5663 * the eb doesn't disappear out from under us while we're looking at
5664 * this page.
5666 spin_lock(&eb->refs_lock);
5667 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5668 spin_unlock(&eb->refs_lock);
5669 spin_unlock(&page->mapping->private_lock);
5670 return 0;
5672 spin_unlock(&page->mapping->private_lock);
5675 * If tree ref isn't set then we know the ref on this eb is a real ref,
5676 * so just return, this page will likely be freed soon anyway.
5678 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5679 spin_unlock(&eb->refs_lock);
5680 return 0;
5683 return release_extent_buffer(eb);