2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
64 struct btrfs_iget_args
{
65 struct btrfs_key
*location
;
66 struct btrfs_root
*root
;
69 static const struct inode_operations btrfs_dir_inode_operations
;
70 static const struct inode_operations btrfs_symlink_inode_operations
;
71 static const struct inode_operations btrfs_dir_ro_inode_operations
;
72 static const struct inode_operations btrfs_special_inode_operations
;
73 static const struct inode_operations btrfs_file_inode_operations
;
74 static const struct address_space_operations btrfs_aops
;
75 static const struct address_space_operations btrfs_symlink_aops
;
76 static const struct file_operations btrfs_dir_file_operations
;
77 static struct extent_io_ops btrfs_extent_io_ops
;
79 static struct kmem_cache
*btrfs_inode_cachep
;
80 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
81 struct kmem_cache
*btrfs_trans_handle_cachep
;
82 struct kmem_cache
*btrfs_transaction_cachep
;
83 struct kmem_cache
*btrfs_path_cachep
;
84 struct kmem_cache
*btrfs_free_space_cachep
;
87 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
88 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
89 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
90 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
91 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
92 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
93 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
94 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
97 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
98 static int btrfs_truncate(struct inode
*inode
);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
100 static noinline
int cow_file_range(struct inode
*inode
,
101 struct page
*locked_page
,
102 u64 start
, u64 end
, int *page_started
,
103 unsigned long *nr_written
, int unlock
);
104 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
105 u64 len
, u64 orig_start
,
106 u64 block_start
, u64 block_len
,
107 u64 orig_block_len
, u64 ram_bytes
,
110 static int btrfs_dirty_inode(struct inode
*inode
);
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode
*inode
)
115 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
119 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
120 struct inode
*inode
, struct inode
*dir
,
121 const struct qstr
*qstr
)
125 err
= btrfs_init_acl(trans
, inode
, dir
);
127 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
136 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
137 struct btrfs_path
*path
, int extent_inserted
,
138 struct btrfs_root
*root
, struct inode
*inode
,
139 u64 start
, size_t size
, size_t compressed_size
,
141 struct page
**compressed_pages
)
143 struct extent_buffer
*leaf
;
144 struct page
*page
= NULL
;
147 struct btrfs_file_extent_item
*ei
;
150 size_t cur_size
= size
;
151 unsigned long offset
;
153 if (compressed_size
&& compressed_pages
)
154 cur_size
= compressed_size
;
156 inode_add_bytes(inode
, size
);
158 if (!extent_inserted
) {
159 struct btrfs_key key
;
162 key
.objectid
= btrfs_ino(inode
);
164 key
.type
= BTRFS_EXTENT_DATA_KEY
;
166 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
167 path
->leave_spinning
= 1;
168 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
175 leaf
= path
->nodes
[0];
176 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
177 struct btrfs_file_extent_item
);
178 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
179 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
180 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
181 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
182 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
183 ptr
= btrfs_file_extent_inline_start(ei
);
185 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
188 while (compressed_size
> 0) {
189 cpage
= compressed_pages
[i
];
190 cur_size
= min_t(unsigned long, compressed_size
,
193 kaddr
= kmap_atomic(cpage
);
194 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
195 kunmap_atomic(kaddr
);
199 compressed_size
-= cur_size
;
201 btrfs_set_file_extent_compression(leaf
, ei
,
204 page
= find_get_page(inode
->i_mapping
,
205 start
>> PAGE_CACHE_SHIFT
);
206 btrfs_set_file_extent_compression(leaf
, ei
, 0);
207 kaddr
= kmap_atomic(page
);
208 offset
= start
& (PAGE_CACHE_SIZE
- 1);
209 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
210 kunmap_atomic(kaddr
);
211 page_cache_release(page
);
213 btrfs_mark_buffer_dirty(leaf
);
214 btrfs_release_path(path
);
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
225 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
226 ret
= btrfs_update_inode(trans
, root
, inode
);
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
239 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
240 struct inode
*inode
, u64 start
,
241 u64 end
, size_t compressed_size
,
243 struct page
**compressed_pages
)
245 struct btrfs_trans_handle
*trans
;
246 u64 isize
= i_size_read(inode
);
247 u64 actual_end
= min(end
+ 1, isize
);
248 u64 inline_len
= actual_end
- start
;
249 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
250 u64 data_len
= inline_len
;
252 struct btrfs_path
*path
;
253 int extent_inserted
= 0;
254 u32 extent_item_size
;
257 data_len
= compressed_size
;
260 actual_end
> PAGE_CACHE_SIZE
||
261 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
263 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
265 data_len
> root
->fs_info
->max_inline
) {
269 path
= btrfs_alloc_path();
273 trans
= btrfs_join_transaction(root
);
275 btrfs_free_path(path
);
276 return PTR_ERR(trans
);
278 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
280 if (compressed_size
&& compressed_pages
)
281 extent_item_size
= btrfs_file_extent_calc_inline_size(
284 extent_item_size
= btrfs_file_extent_calc_inline_size(
287 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
288 start
, aligned_end
, NULL
,
289 1, 1, extent_item_size
, &extent_inserted
);
291 btrfs_abort_transaction(trans
, root
, ret
);
295 if (isize
> actual_end
)
296 inline_len
= min_t(u64
, isize
, actual_end
);
297 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
299 inline_len
, compressed_size
,
300 compress_type
, compressed_pages
);
301 if (ret
&& ret
!= -ENOSPC
) {
302 btrfs_abort_transaction(trans
, root
, ret
);
304 } else if (ret
== -ENOSPC
) {
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
310 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
311 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
313 btrfs_free_path(path
);
314 btrfs_end_transaction(trans
, root
);
318 struct async_extent
{
323 unsigned long nr_pages
;
325 struct list_head list
;
330 struct btrfs_root
*root
;
331 struct page
*locked_page
;
334 struct list_head extents
;
335 struct btrfs_work work
;
338 static noinline
int add_async_extent(struct async_cow
*cow
,
339 u64 start
, u64 ram_size
,
342 unsigned long nr_pages
,
345 struct async_extent
*async_extent
;
347 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
348 BUG_ON(!async_extent
); /* -ENOMEM */
349 async_extent
->start
= start
;
350 async_extent
->ram_size
= ram_size
;
351 async_extent
->compressed_size
= compressed_size
;
352 async_extent
->pages
= pages
;
353 async_extent
->nr_pages
= nr_pages
;
354 async_extent
->compress_type
= compress_type
;
355 list_add_tail(&async_extent
->list
, &cow
->extents
);
359 static inline int inode_need_compress(struct inode
*inode
)
361 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
364 if (btrfs_test_opt(root
, FORCE_COMPRESS
))
366 /* bad compression ratios */
367 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
369 if (btrfs_test_opt(root
, COMPRESS
) ||
370 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
371 BTRFS_I(inode
)->force_compress
)
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
393 static noinline
void compress_file_range(struct inode
*inode
,
394 struct page
*locked_page
,
396 struct async_cow
*async_cow
,
399 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
401 u64 blocksize
= root
->sectorsize
;
403 u64 isize
= i_size_read(inode
);
405 struct page
**pages
= NULL
;
406 unsigned long nr_pages
;
407 unsigned long nr_pages_ret
= 0;
408 unsigned long total_compressed
= 0;
409 unsigned long total_in
= 0;
410 unsigned long max_compressed
= 128 * 1024;
411 unsigned long max_uncompressed
= 128 * 1024;
414 int compress_type
= root
->fs_info
->compress_type
;
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end
- start
+ 1) < 16 * 1024 &&
419 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
420 btrfs_add_inode_defrag(NULL
, inode
);
422 actual_end
= min_t(u64
, isize
, end
+ 1);
425 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
426 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
438 if (actual_end
<= start
)
439 goto cleanup_and_bail_uncompressed
;
441 total_compressed
= actual_end
- start
;
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
447 if (total_compressed
<= blocksize
&&
448 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
449 goto cleanup_and_bail_uncompressed
;
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
461 total_compressed
= min(total_compressed
, max_uncompressed
);
462 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
463 num_bytes
= max(blocksize
, num_bytes
);
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
472 if (inode_need_compress(inode
)) {
474 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
476 /* just bail out to the uncompressed code */
480 if (BTRFS_I(inode
)->force_compress
)
481 compress_type
= BTRFS_I(inode
)->force_compress
;
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
492 extent_range_clear_dirty_for_io(inode
, start
, end
);
494 ret
= btrfs_compress_pages(compress_type
,
495 inode
->i_mapping
, start
,
496 total_compressed
, pages
,
497 nr_pages
, &nr_pages_ret
,
503 unsigned long offset
= total_compressed
&
504 (PAGE_CACHE_SIZE
- 1);
505 struct page
*page
= pages
[nr_pages_ret
- 1];
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
512 kaddr
= kmap_atomic(page
);
513 memset(kaddr
+ offset
, 0,
514 PAGE_CACHE_SIZE
- offset
);
515 kunmap_atomic(kaddr
);
522 /* lets try to make an inline extent */
523 if (ret
|| total_in
< (actual_end
- start
)) {
524 /* we didn't compress the entire range, try
525 * to make an uncompressed inline extent.
527 ret
= cow_file_range_inline(root
, inode
, start
, end
,
530 /* try making a compressed inline extent */
531 ret
= cow_file_range_inline(root
, inode
, start
, end
,
533 compress_type
, pages
);
536 unsigned long clear_flags
= EXTENT_DELALLOC
|
538 unsigned long page_error_op
;
540 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
541 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
548 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
549 clear_flags
, PAGE_UNLOCK
|
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
564 total_compressed
= ALIGN(total_compressed
, blocksize
);
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
570 total_in
= ALIGN(total_in
, PAGE_CACHE_SIZE
);
571 if (total_compressed
>= total_in
) {
574 num_bytes
= total_in
;
577 if (!will_compress
&& pages
) {
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
582 for (i
= 0; i
< nr_pages_ret
; i
++) {
583 WARN_ON(pages
[i
]->mapping
);
584 page_cache_release(pages
[i
]);
588 total_compressed
= 0;
591 /* flag the file so we don't compress in the future */
592 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
593 !(BTRFS_I(inode
)->force_compress
)) {
594 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
604 add_async_extent(async_cow
, start
, num_bytes
,
605 total_compressed
, pages
, nr_pages_ret
,
608 if (start
+ num_bytes
< end
) {
615 cleanup_and_bail_uncompressed
:
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
623 if (page_offset(locked_page
) >= start
&&
624 page_offset(locked_page
) <= end
) {
625 __set_page_dirty_nobuffers(locked_page
);
626 /* unlocked later on in the async handlers */
629 extent_range_redirty_for_io(inode
, start
, end
);
630 add_async_extent(async_cow
, start
, end
- start
+ 1,
631 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
638 for (i
= 0; i
< nr_pages_ret
; i
++) {
639 WARN_ON(pages
[i
]->mapping
);
640 page_cache_release(pages
[i
]);
645 static void free_async_extent_pages(struct async_extent
*async_extent
)
649 if (!async_extent
->pages
)
652 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
653 WARN_ON(async_extent
->pages
[i
]->mapping
);
654 page_cache_release(async_extent
->pages
[i
]);
656 kfree(async_extent
->pages
);
657 async_extent
->nr_pages
= 0;
658 async_extent
->pages
= NULL
;
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
667 static noinline
void submit_compressed_extents(struct inode
*inode
,
668 struct async_cow
*async_cow
)
670 struct async_extent
*async_extent
;
672 struct btrfs_key ins
;
673 struct extent_map
*em
;
674 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
675 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
676 struct extent_io_tree
*io_tree
;
680 while (!list_empty(&async_cow
->extents
)) {
681 async_extent
= list_entry(async_cow
->extents
.next
,
682 struct async_extent
, list
);
683 list_del(&async_extent
->list
);
685 io_tree
= &BTRFS_I(inode
)->io_tree
;
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent
->pages
) {
690 int page_started
= 0;
691 unsigned long nr_written
= 0;
693 lock_extent(io_tree
, async_extent
->start
,
694 async_extent
->start
+
695 async_extent
->ram_size
- 1);
697 /* allocate blocks */
698 ret
= cow_file_range(inode
, async_cow
->locked_page
,
700 async_extent
->start
+
701 async_extent
->ram_size
- 1,
702 &page_started
, &nr_written
, 0);
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
712 if (!page_started
&& !ret
)
713 extent_write_locked_range(io_tree
,
714 inode
, async_extent
->start
,
715 async_extent
->start
+
716 async_extent
->ram_size
- 1,
720 unlock_page(async_cow
->locked_page
);
726 lock_extent(io_tree
, async_extent
->start
,
727 async_extent
->start
+ async_extent
->ram_size
- 1);
729 ret
= btrfs_reserve_extent(root
,
730 async_extent
->compressed_size
,
731 async_extent
->compressed_size
,
732 0, alloc_hint
, &ins
, 1, 1);
734 free_async_extent_pages(async_extent
);
736 if (ret
== -ENOSPC
) {
737 unlock_extent(io_tree
, async_extent
->start
,
738 async_extent
->start
+
739 async_extent
->ram_size
- 1);
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
747 extent_range_redirty_for_io(inode
,
749 async_extent
->start
+
750 async_extent
->ram_size
- 1);
757 * here we're doing allocation and writeback of the
760 btrfs_drop_extent_cache(inode
, async_extent
->start
,
761 async_extent
->start
+
762 async_extent
->ram_size
- 1, 0);
764 em
= alloc_extent_map();
767 goto out_free_reserve
;
769 em
->start
= async_extent
->start
;
770 em
->len
= async_extent
->ram_size
;
771 em
->orig_start
= em
->start
;
772 em
->mod_start
= em
->start
;
773 em
->mod_len
= em
->len
;
775 em
->block_start
= ins
.objectid
;
776 em
->block_len
= ins
.offset
;
777 em
->orig_block_len
= ins
.offset
;
778 em
->ram_bytes
= async_extent
->ram_size
;
779 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
780 em
->compress_type
= async_extent
->compress_type
;
781 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
782 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
786 write_lock(&em_tree
->lock
);
787 ret
= add_extent_mapping(em_tree
, em
, 1);
788 write_unlock(&em_tree
->lock
);
789 if (ret
!= -EEXIST
) {
793 btrfs_drop_extent_cache(inode
, async_extent
->start
,
794 async_extent
->start
+
795 async_extent
->ram_size
- 1, 0);
799 goto out_free_reserve
;
801 ret
= btrfs_add_ordered_extent_compress(inode
,
804 async_extent
->ram_size
,
806 BTRFS_ORDERED_COMPRESSED
,
807 async_extent
->compress_type
);
809 btrfs_drop_extent_cache(inode
, async_extent
->start
,
810 async_extent
->start
+
811 async_extent
->ram_size
- 1, 0);
812 goto out_free_reserve
;
816 * clear dirty, set writeback and unlock the pages.
818 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
819 async_extent
->start
+
820 async_extent
->ram_size
- 1,
821 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
822 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
824 ret
= btrfs_submit_compressed_write(inode
,
826 async_extent
->ram_size
,
828 ins
.offset
, async_extent
->pages
,
829 async_extent
->nr_pages
);
831 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
832 struct page
*p
= async_extent
->pages
[0];
833 const u64 start
= async_extent
->start
;
834 const u64 end
= start
+ async_extent
->ram_size
- 1;
836 p
->mapping
= inode
->i_mapping
;
837 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
840 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
, 0,
843 free_async_extent_pages(async_extent
);
845 alloc_hint
= ins
.objectid
+ ins
.offset
;
851 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
853 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
854 async_extent
->start
+
855 async_extent
->ram_size
- 1,
856 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
857 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
858 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
859 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
861 free_async_extent_pages(async_extent
);
866 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
869 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
870 struct extent_map
*em
;
873 read_lock(&em_tree
->lock
);
874 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
881 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
883 em
= search_extent_mapping(em_tree
, 0, 0);
884 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
885 alloc_hint
= em
->block_start
;
889 alloc_hint
= em
->block_start
;
893 read_unlock(&em_tree
->lock
);
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
911 static noinline
int cow_file_range(struct inode
*inode
,
912 struct page
*locked_page
,
913 u64 start
, u64 end
, int *page_started
,
914 unsigned long *nr_written
,
917 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
920 unsigned long ram_size
;
923 u64 blocksize
= root
->sectorsize
;
924 struct btrfs_key ins
;
925 struct extent_map
*em
;
926 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
929 if (btrfs_is_free_space_inode(inode
)) {
935 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
936 num_bytes
= max(blocksize
, num_bytes
);
937 disk_num_bytes
= num_bytes
;
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes
< 64 * 1024 &&
941 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
942 btrfs_add_inode_defrag(NULL
, inode
);
945 /* lets try to make an inline extent */
946 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
949 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
950 EXTENT_LOCKED
| EXTENT_DELALLOC
|
951 EXTENT_DEFRAG
, PAGE_UNLOCK
|
952 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
955 *nr_written
= *nr_written
+
956 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
959 } else if (ret
< 0) {
964 BUG_ON(disk_num_bytes
>
965 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
967 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
968 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
970 while (disk_num_bytes
> 0) {
973 cur_alloc_size
= disk_num_bytes
;
974 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
975 root
->sectorsize
, 0, alloc_hint
,
980 em
= alloc_extent_map();
986 em
->orig_start
= em
->start
;
987 ram_size
= ins
.offset
;
988 em
->len
= ins
.offset
;
989 em
->mod_start
= em
->start
;
990 em
->mod_len
= em
->len
;
992 em
->block_start
= ins
.objectid
;
993 em
->block_len
= ins
.offset
;
994 em
->orig_block_len
= ins
.offset
;
995 em
->ram_bytes
= ram_size
;
996 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
997 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1001 write_lock(&em_tree
->lock
);
1002 ret
= add_extent_mapping(em_tree
, em
, 1);
1003 write_unlock(&em_tree
->lock
);
1004 if (ret
!= -EEXIST
) {
1005 free_extent_map(em
);
1008 btrfs_drop_extent_cache(inode
, start
,
1009 start
+ ram_size
- 1, 0);
1014 cur_alloc_size
= ins
.offset
;
1015 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1016 ram_size
, cur_alloc_size
, 0);
1018 goto out_drop_extent_cache
;
1020 if (root
->root_key
.objectid
==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1022 ret
= btrfs_reloc_clone_csums(inode
, start
,
1025 goto out_drop_extent_cache
;
1028 if (disk_num_bytes
< cur_alloc_size
)
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1038 op
= unlock
? PAGE_UNLOCK
: 0;
1039 op
|= PAGE_SET_PRIVATE2
;
1041 extent_clear_unlock_delalloc(inode
, start
,
1042 start
+ ram_size
- 1, locked_page
,
1043 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1045 disk_num_bytes
-= cur_alloc_size
;
1046 num_bytes
-= cur_alloc_size
;
1047 alloc_hint
= ins
.objectid
+ ins
.offset
;
1048 start
+= cur_alloc_size
;
1053 out_drop_extent_cache
:
1054 btrfs_drop_extent_cache(inode
, start
, start
+ ram_size
- 1, 0);
1056 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
1058 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1059 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
1060 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
1061 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1062 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1067 * work queue call back to started compression on a file and pages
1069 static noinline
void async_cow_start(struct btrfs_work
*work
)
1071 struct async_cow
*async_cow
;
1073 async_cow
= container_of(work
, struct async_cow
, work
);
1075 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1076 async_cow
->start
, async_cow
->end
, async_cow
,
1078 if (num_added
== 0) {
1079 btrfs_add_delayed_iput(async_cow
->inode
);
1080 async_cow
->inode
= NULL
;
1085 * work queue call back to submit previously compressed pages
1087 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1089 struct async_cow
*async_cow
;
1090 struct btrfs_root
*root
;
1091 unsigned long nr_pages
;
1093 async_cow
= container_of(work
, struct async_cow
, work
);
1095 root
= async_cow
->root
;
1096 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1099 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1101 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1102 wake_up(&root
->fs_info
->async_submit_wait
);
1104 if (async_cow
->inode
)
1105 submit_compressed_extents(async_cow
->inode
, async_cow
);
1108 static noinline
void async_cow_free(struct btrfs_work
*work
)
1110 struct async_cow
*async_cow
;
1111 async_cow
= container_of(work
, struct async_cow
, work
);
1112 if (async_cow
->inode
)
1113 btrfs_add_delayed_iput(async_cow
->inode
);
1117 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1118 u64 start
, u64 end
, int *page_started
,
1119 unsigned long *nr_written
)
1121 struct async_cow
*async_cow
;
1122 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1123 unsigned long nr_pages
;
1125 int limit
= 10 * 1024 * 1024;
1127 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1128 1, 0, NULL
, GFP_NOFS
);
1129 while (start
< end
) {
1130 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1131 BUG_ON(!async_cow
); /* -ENOMEM */
1132 async_cow
->inode
= igrab(inode
);
1133 async_cow
->root
= root
;
1134 async_cow
->locked_page
= locked_page
;
1135 async_cow
->start
= start
;
1137 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1138 !btrfs_test_opt(root
, FORCE_COMPRESS
))
1141 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1143 async_cow
->end
= cur_end
;
1144 INIT_LIST_HEAD(&async_cow
->extents
);
1146 btrfs_init_work(&async_cow
->work
,
1147 btrfs_delalloc_helper
,
1148 async_cow_start
, async_cow_submit
,
1151 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1153 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1155 btrfs_queue_work(root
->fs_info
->delalloc_workers
,
1158 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1159 wait_event(root
->fs_info
->async_submit_wait
,
1160 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1164 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1165 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1166 wait_event(root
->fs_info
->async_submit_wait
,
1167 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1171 *nr_written
+= nr_pages
;
1172 start
= cur_end
+ 1;
1178 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1179 u64 bytenr
, u64 num_bytes
)
1182 struct btrfs_ordered_sum
*sums
;
1185 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1186 bytenr
+ num_bytes
- 1, &list
, 0);
1187 if (ret
== 0 && list_empty(&list
))
1190 while (!list_empty(&list
)) {
1191 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1192 list_del(&sums
->list
);
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1202 * If no cow copies or snapshots exist, we write directly to the existing
1205 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1206 struct page
*locked_page
,
1207 u64 start
, u64 end
, int *page_started
, int force
,
1208 unsigned long *nr_written
)
1210 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1211 struct btrfs_trans_handle
*trans
;
1212 struct extent_buffer
*leaf
;
1213 struct btrfs_path
*path
;
1214 struct btrfs_file_extent_item
*fi
;
1215 struct btrfs_key found_key
;
1230 u64 ino
= btrfs_ino(inode
);
1232 path
= btrfs_alloc_path();
1234 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1235 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1236 EXTENT_DO_ACCOUNTING
|
1237 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1239 PAGE_SET_WRITEBACK
|
1240 PAGE_END_WRITEBACK
);
1244 nolock
= btrfs_is_free_space_inode(inode
);
1247 trans
= btrfs_join_transaction_nolock(root
);
1249 trans
= btrfs_join_transaction(root
);
1251 if (IS_ERR(trans
)) {
1252 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1253 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1254 EXTENT_DO_ACCOUNTING
|
1255 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1257 PAGE_SET_WRITEBACK
|
1258 PAGE_END_WRITEBACK
);
1259 btrfs_free_path(path
);
1260 return PTR_ERR(trans
);
1263 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1265 cow_start
= (u64
)-1;
1268 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1272 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1273 leaf
= path
->nodes
[0];
1274 btrfs_item_key_to_cpu(leaf
, &found_key
,
1275 path
->slots
[0] - 1);
1276 if (found_key
.objectid
== ino
&&
1277 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1282 leaf
= path
->nodes
[0];
1283 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1284 ret
= btrfs_next_leaf(root
, path
);
1289 leaf
= path
->nodes
[0];
1295 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1297 if (found_key
.objectid
> ino
)
1299 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1300 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1304 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1305 found_key
.offset
> end
)
1308 if (found_key
.offset
> cur_offset
) {
1309 extent_end
= found_key
.offset
;
1314 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1315 struct btrfs_file_extent_item
);
1316 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1318 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1319 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1320 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1321 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1322 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1323 extent_end
= found_key
.offset
+
1324 btrfs_file_extent_num_bytes(leaf
, fi
);
1326 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1327 if (extent_end
<= start
) {
1331 if (disk_bytenr
== 0)
1333 if (btrfs_file_extent_compression(leaf
, fi
) ||
1334 btrfs_file_extent_encryption(leaf
, fi
) ||
1335 btrfs_file_extent_other_encoding(leaf
, fi
))
1337 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1339 if (btrfs_extent_readonly(root
, disk_bytenr
))
1341 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1343 extent_offset
, disk_bytenr
))
1345 disk_bytenr
+= extent_offset
;
1346 disk_bytenr
+= cur_offset
- found_key
.offset
;
1347 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1349 * if there are pending snapshots for this root,
1350 * we fall into common COW way.
1353 err
= btrfs_start_write_no_snapshoting(root
);
1358 * force cow if csum exists in the range.
1359 * this ensure that csum for a given extent are
1360 * either valid or do not exist.
1362 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1365 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1366 extent_end
= found_key
.offset
+
1367 btrfs_file_extent_inline_len(leaf
,
1368 path
->slots
[0], fi
);
1369 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1374 if (extent_end
<= start
) {
1376 if (!nolock
&& nocow
)
1377 btrfs_end_write_no_snapshoting(root
);
1381 if (cow_start
== (u64
)-1)
1382 cow_start
= cur_offset
;
1383 cur_offset
= extent_end
;
1384 if (cur_offset
> end
)
1390 btrfs_release_path(path
);
1391 if (cow_start
!= (u64
)-1) {
1392 ret
= cow_file_range(inode
, locked_page
,
1393 cow_start
, found_key
.offset
- 1,
1394 page_started
, nr_written
, 1);
1396 if (!nolock
&& nocow
)
1397 btrfs_end_write_no_snapshoting(root
);
1400 cow_start
= (u64
)-1;
1403 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1404 struct extent_map
*em
;
1405 struct extent_map_tree
*em_tree
;
1406 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1407 em
= alloc_extent_map();
1408 BUG_ON(!em
); /* -ENOMEM */
1409 em
->start
= cur_offset
;
1410 em
->orig_start
= found_key
.offset
- extent_offset
;
1411 em
->len
= num_bytes
;
1412 em
->block_len
= num_bytes
;
1413 em
->block_start
= disk_bytenr
;
1414 em
->orig_block_len
= disk_num_bytes
;
1415 em
->ram_bytes
= ram_bytes
;
1416 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1417 em
->mod_start
= em
->start
;
1418 em
->mod_len
= em
->len
;
1419 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1420 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1421 em
->generation
= -1;
1423 write_lock(&em_tree
->lock
);
1424 ret
= add_extent_mapping(em_tree
, em
, 1);
1425 write_unlock(&em_tree
->lock
);
1426 if (ret
!= -EEXIST
) {
1427 free_extent_map(em
);
1430 btrfs_drop_extent_cache(inode
, em
->start
,
1431 em
->start
+ em
->len
- 1, 0);
1433 type
= BTRFS_ORDERED_PREALLOC
;
1435 type
= BTRFS_ORDERED_NOCOW
;
1438 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1439 num_bytes
, num_bytes
, type
);
1440 BUG_ON(ret
); /* -ENOMEM */
1442 if (root
->root_key
.objectid
==
1443 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1444 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1447 if (!nolock
&& nocow
)
1448 btrfs_end_write_no_snapshoting(root
);
1453 extent_clear_unlock_delalloc(inode
, cur_offset
,
1454 cur_offset
+ num_bytes
- 1,
1455 locked_page
, EXTENT_LOCKED
|
1456 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1458 if (!nolock
&& nocow
)
1459 btrfs_end_write_no_snapshoting(root
);
1460 cur_offset
= extent_end
;
1461 if (cur_offset
> end
)
1464 btrfs_release_path(path
);
1466 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1467 cow_start
= cur_offset
;
1471 if (cow_start
!= (u64
)-1) {
1472 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1473 page_started
, nr_written
, 1);
1479 err
= btrfs_end_transaction(trans
, root
);
1483 if (ret
&& cur_offset
< end
)
1484 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1485 locked_page
, EXTENT_LOCKED
|
1486 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1487 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1489 PAGE_SET_WRITEBACK
|
1490 PAGE_END_WRITEBACK
);
1491 btrfs_free_path(path
);
1495 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1498 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1499 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1503 * @defrag_bytes is a hint value, no spinlock held here,
1504 * if is not zero, it means the file is defragging.
1505 * Force cow if given extent needs to be defragged.
1507 if (BTRFS_I(inode
)->defrag_bytes
&&
1508 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1509 EXTENT_DEFRAG
, 0, NULL
))
1516 * extent_io.c call back to do delayed allocation processing
1518 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1519 u64 start
, u64 end
, int *page_started
,
1520 unsigned long *nr_written
)
1523 int force_cow
= need_force_cow(inode
, start
, end
);
1525 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1526 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1527 page_started
, 1, nr_written
);
1528 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1529 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1530 page_started
, 0, nr_written
);
1531 } else if (!inode_need_compress(inode
)) {
1532 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1533 page_started
, nr_written
, 1);
1535 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1536 &BTRFS_I(inode
)->runtime_flags
);
1537 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1538 page_started
, nr_written
);
1543 static void btrfs_split_extent_hook(struct inode
*inode
,
1544 struct extent_state
*orig
, u64 split
)
1548 /* not delalloc, ignore it */
1549 if (!(orig
->state
& EXTENT_DELALLOC
))
1552 size
= orig
->end
- orig
->start
+ 1;
1553 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1558 * See the explanation in btrfs_merge_extent_hook, the same
1559 * applies here, just in reverse.
1561 new_size
= orig
->end
- split
+ 1;
1562 num_extents
= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1563 BTRFS_MAX_EXTENT_SIZE
);
1564 new_size
= split
- orig
->start
;
1565 num_extents
+= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1566 BTRFS_MAX_EXTENT_SIZE
);
1567 if (div64_u64(size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1568 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1572 spin_lock(&BTRFS_I(inode
)->lock
);
1573 BTRFS_I(inode
)->outstanding_extents
++;
1574 spin_unlock(&BTRFS_I(inode
)->lock
);
1578 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1579 * extents so we can keep track of new extents that are just merged onto old
1580 * extents, such as when we are doing sequential writes, so we can properly
1581 * account for the metadata space we'll need.
1583 static void btrfs_merge_extent_hook(struct inode
*inode
,
1584 struct extent_state
*new,
1585 struct extent_state
*other
)
1587 u64 new_size
, old_size
;
1590 /* not delalloc, ignore it */
1591 if (!(other
->state
& EXTENT_DELALLOC
))
1594 if (new->start
> other
->start
)
1595 new_size
= new->end
- other
->start
+ 1;
1597 new_size
= other
->end
- new->start
+ 1;
1599 /* we're not bigger than the max, unreserve the space and go */
1600 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1601 spin_lock(&BTRFS_I(inode
)->lock
);
1602 BTRFS_I(inode
)->outstanding_extents
--;
1603 spin_unlock(&BTRFS_I(inode
)->lock
);
1608 * We have to add up either side to figure out how many extents were
1609 * accounted for before we merged into one big extent. If the number of
1610 * extents we accounted for is <= the amount we need for the new range
1611 * then we can return, otherwise drop. Think of it like this
1615 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1616 * need 2 outstanding extents, on one side we have 1 and the other side
1617 * we have 1 so they are == and we can return. But in this case
1619 * [MAX_SIZE+4k][MAX_SIZE+4k]
1621 * Each range on their own accounts for 2 extents, but merged together
1622 * they are only 3 extents worth of accounting, so we need to drop in
1625 old_size
= other
->end
- other
->start
+ 1;
1626 num_extents
= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1627 BTRFS_MAX_EXTENT_SIZE
);
1628 old_size
= new->end
- new->start
+ 1;
1629 num_extents
+= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1630 BTRFS_MAX_EXTENT_SIZE
);
1632 if (div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1633 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1636 spin_lock(&BTRFS_I(inode
)->lock
);
1637 BTRFS_I(inode
)->outstanding_extents
--;
1638 spin_unlock(&BTRFS_I(inode
)->lock
);
1641 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1642 struct inode
*inode
)
1644 spin_lock(&root
->delalloc_lock
);
1645 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1646 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1647 &root
->delalloc_inodes
);
1648 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1649 &BTRFS_I(inode
)->runtime_flags
);
1650 root
->nr_delalloc_inodes
++;
1651 if (root
->nr_delalloc_inodes
== 1) {
1652 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1653 BUG_ON(!list_empty(&root
->delalloc_root
));
1654 list_add_tail(&root
->delalloc_root
,
1655 &root
->fs_info
->delalloc_roots
);
1656 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1659 spin_unlock(&root
->delalloc_lock
);
1662 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1663 struct inode
*inode
)
1665 spin_lock(&root
->delalloc_lock
);
1666 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1667 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1668 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1669 &BTRFS_I(inode
)->runtime_flags
);
1670 root
->nr_delalloc_inodes
--;
1671 if (!root
->nr_delalloc_inodes
) {
1672 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1673 BUG_ON(list_empty(&root
->delalloc_root
));
1674 list_del_init(&root
->delalloc_root
);
1675 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1678 spin_unlock(&root
->delalloc_lock
);
1682 * extent_io.c set_bit_hook, used to track delayed allocation
1683 * bytes in this file, and to maintain the list of inodes that
1684 * have pending delalloc work to be done.
1686 static void btrfs_set_bit_hook(struct inode
*inode
,
1687 struct extent_state
*state
, unsigned *bits
)
1690 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1693 * set_bit and clear bit hooks normally require _irqsave/restore
1694 * but in this case, we are only testing for the DELALLOC
1695 * bit, which is only set or cleared with irqs on
1697 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1698 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1699 u64 len
= state
->end
+ 1 - state
->start
;
1700 bool do_list
= !btrfs_is_free_space_inode(inode
);
1702 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1703 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1705 spin_lock(&BTRFS_I(inode
)->lock
);
1706 BTRFS_I(inode
)->outstanding_extents
++;
1707 spin_unlock(&BTRFS_I(inode
)->lock
);
1710 /* For sanity tests */
1711 if (btrfs_test_is_dummy_root(root
))
1714 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1715 root
->fs_info
->delalloc_batch
);
1716 spin_lock(&BTRFS_I(inode
)->lock
);
1717 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1718 if (*bits
& EXTENT_DEFRAG
)
1719 BTRFS_I(inode
)->defrag_bytes
+= len
;
1720 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1721 &BTRFS_I(inode
)->runtime_flags
))
1722 btrfs_add_delalloc_inodes(root
, inode
);
1723 spin_unlock(&BTRFS_I(inode
)->lock
);
1728 * extent_io.c clear_bit_hook, see set_bit_hook for why
1730 static void btrfs_clear_bit_hook(struct inode
*inode
,
1731 struct extent_state
*state
,
1734 u64 len
= state
->end
+ 1 - state
->start
;
1735 u64 num_extents
= div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
-1,
1736 BTRFS_MAX_EXTENT_SIZE
);
1738 spin_lock(&BTRFS_I(inode
)->lock
);
1739 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
))
1740 BTRFS_I(inode
)->defrag_bytes
-= len
;
1741 spin_unlock(&BTRFS_I(inode
)->lock
);
1744 * set_bit and clear bit hooks normally require _irqsave/restore
1745 * but in this case, we are only testing for the DELALLOC
1746 * bit, which is only set or cleared with irqs on
1748 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1749 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1750 bool do_list
= !btrfs_is_free_space_inode(inode
);
1752 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1753 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1754 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1755 spin_lock(&BTRFS_I(inode
)->lock
);
1756 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
1757 spin_unlock(&BTRFS_I(inode
)->lock
);
1761 * We don't reserve metadata space for space cache inodes so we
1762 * don't need to call dellalloc_release_metadata if there is an
1765 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1766 root
!= root
->fs_info
->tree_root
)
1767 btrfs_delalloc_release_metadata(inode
, len
);
1769 /* For sanity tests. */
1770 if (btrfs_test_is_dummy_root(root
))
1773 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1774 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1775 btrfs_free_reserved_data_space(inode
, len
);
1777 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1778 root
->fs_info
->delalloc_batch
);
1779 spin_lock(&BTRFS_I(inode
)->lock
);
1780 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1781 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1782 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1783 &BTRFS_I(inode
)->runtime_flags
))
1784 btrfs_del_delalloc_inode(root
, inode
);
1785 spin_unlock(&BTRFS_I(inode
)->lock
);
1790 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1791 * we don't create bios that span stripes or chunks
1793 int btrfs_merge_bio_hook(int rw
, struct page
*page
, unsigned long offset
,
1794 size_t size
, struct bio
*bio
,
1795 unsigned long bio_flags
)
1797 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1798 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1803 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1806 length
= bio
->bi_iter
.bi_size
;
1807 map_length
= length
;
1808 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
,
1809 &map_length
, NULL
, 0);
1810 /* Will always return 0 with map_multi == NULL */
1812 if (map_length
< length
+ size
)
1818 * in order to insert checksums into the metadata in large chunks,
1819 * we wait until bio submission time. All the pages in the bio are
1820 * checksummed and sums are attached onto the ordered extent record.
1822 * At IO completion time the cums attached on the ordered extent record
1823 * are inserted into the btree
1825 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1826 struct bio
*bio
, int mirror_num
,
1827 unsigned long bio_flags
,
1830 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1833 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1834 BUG_ON(ret
); /* -ENOMEM */
1839 * in order to insert checksums into the metadata in large chunks,
1840 * we wait until bio submission time. All the pages in the bio are
1841 * checksummed and sums are attached onto the ordered extent record.
1843 * At IO completion time the cums attached on the ordered extent record
1844 * are inserted into the btree
1846 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1847 int mirror_num
, unsigned long bio_flags
,
1850 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1853 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1855 bio_endio(bio
, ret
);
1860 * extent_io.c submission hook. This does the right thing for csum calculation
1861 * on write, or reading the csums from the tree before a read
1863 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1864 int mirror_num
, unsigned long bio_flags
,
1867 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1871 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1873 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1875 if (btrfs_is_free_space_inode(inode
))
1878 if (!(rw
& REQ_WRITE
)) {
1879 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1883 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1884 ret
= btrfs_submit_compressed_read(inode
, bio
,
1888 } else if (!skip_sum
) {
1889 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1894 } else if (async
&& !skip_sum
) {
1895 /* csum items have already been cloned */
1896 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1898 /* we're doing a write, do the async checksumming */
1899 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1900 inode
, rw
, bio
, mirror_num
,
1901 bio_flags
, bio_offset
,
1902 __btrfs_submit_bio_start
,
1903 __btrfs_submit_bio_done
);
1905 } else if (!skip_sum
) {
1906 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1912 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1916 bio_endio(bio
, ret
);
1921 * given a list of ordered sums record them in the inode. This happens
1922 * at IO completion time based on sums calculated at bio submission time.
1924 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1925 struct inode
*inode
, u64 file_offset
,
1926 struct list_head
*list
)
1928 struct btrfs_ordered_sum
*sum
;
1930 list_for_each_entry(sum
, list
, list
) {
1931 trans
->adding_csums
= 1;
1932 btrfs_csum_file_blocks(trans
,
1933 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1934 trans
->adding_csums
= 0;
1939 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1940 struct extent_state
**cached_state
)
1942 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1943 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1944 cached_state
, GFP_NOFS
);
1947 /* see btrfs_writepage_start_hook for details on why this is required */
1948 struct btrfs_writepage_fixup
{
1950 struct btrfs_work work
;
1953 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1955 struct btrfs_writepage_fixup
*fixup
;
1956 struct btrfs_ordered_extent
*ordered
;
1957 struct extent_state
*cached_state
= NULL
;
1959 struct inode
*inode
;
1964 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1968 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1969 ClearPageChecked(page
);
1973 inode
= page
->mapping
->host
;
1974 page_start
= page_offset(page
);
1975 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1977 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1980 /* already ordered? We're done */
1981 if (PagePrivate2(page
))
1984 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1986 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1987 page_end
, &cached_state
, GFP_NOFS
);
1989 btrfs_start_ordered_extent(inode
, ordered
, 1);
1990 btrfs_put_ordered_extent(ordered
);
1994 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1996 mapping_set_error(page
->mapping
, ret
);
1997 end_extent_writepage(page
, ret
, page_start
, page_end
);
1998 ClearPageChecked(page
);
2002 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
2003 ClearPageChecked(page
);
2004 set_page_dirty(page
);
2006 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2007 &cached_state
, GFP_NOFS
);
2010 page_cache_release(page
);
2015 * There are a few paths in the higher layers of the kernel that directly
2016 * set the page dirty bit without asking the filesystem if it is a
2017 * good idea. This causes problems because we want to make sure COW
2018 * properly happens and the data=ordered rules are followed.
2020 * In our case any range that doesn't have the ORDERED bit set
2021 * hasn't been properly setup for IO. We kick off an async process
2022 * to fix it up. The async helper will wait for ordered extents, set
2023 * the delalloc bit and make it safe to write the page.
2025 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2027 struct inode
*inode
= page
->mapping
->host
;
2028 struct btrfs_writepage_fixup
*fixup
;
2029 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2031 /* this page is properly in the ordered list */
2032 if (TestClearPagePrivate2(page
))
2035 if (PageChecked(page
))
2038 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2042 SetPageChecked(page
);
2043 page_cache_get(page
);
2044 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2045 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2047 btrfs_queue_work(root
->fs_info
->fixup_workers
, &fixup
->work
);
2051 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2052 struct inode
*inode
, u64 file_pos
,
2053 u64 disk_bytenr
, u64 disk_num_bytes
,
2054 u64 num_bytes
, u64 ram_bytes
,
2055 u8 compression
, u8 encryption
,
2056 u16 other_encoding
, int extent_type
)
2058 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2059 struct btrfs_file_extent_item
*fi
;
2060 struct btrfs_path
*path
;
2061 struct extent_buffer
*leaf
;
2062 struct btrfs_key ins
;
2063 int extent_inserted
= 0;
2066 path
= btrfs_alloc_path();
2071 * we may be replacing one extent in the tree with another.
2072 * The new extent is pinned in the extent map, and we don't want
2073 * to drop it from the cache until it is completely in the btree.
2075 * So, tell btrfs_drop_extents to leave this extent in the cache.
2076 * the caller is expected to unpin it and allow it to be merged
2079 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2080 file_pos
+ num_bytes
, NULL
, 0,
2081 1, sizeof(*fi
), &extent_inserted
);
2085 if (!extent_inserted
) {
2086 ins
.objectid
= btrfs_ino(inode
);
2087 ins
.offset
= file_pos
;
2088 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2090 path
->leave_spinning
= 1;
2091 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2096 leaf
= path
->nodes
[0];
2097 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2098 struct btrfs_file_extent_item
);
2099 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2100 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2101 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2102 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2103 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2104 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2105 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2106 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2107 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2108 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2110 btrfs_mark_buffer_dirty(leaf
);
2111 btrfs_release_path(path
);
2113 inode_add_bytes(inode
, num_bytes
);
2115 ins
.objectid
= disk_bytenr
;
2116 ins
.offset
= disk_num_bytes
;
2117 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2118 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2119 root
->root_key
.objectid
,
2120 btrfs_ino(inode
), file_pos
, &ins
);
2122 btrfs_free_path(path
);
2127 /* snapshot-aware defrag */
2128 struct sa_defrag_extent_backref
{
2129 struct rb_node node
;
2130 struct old_sa_defrag_extent
*old
;
2139 struct old_sa_defrag_extent
{
2140 struct list_head list
;
2141 struct new_sa_defrag_extent
*new;
2150 struct new_sa_defrag_extent
{
2151 struct rb_root root
;
2152 struct list_head head
;
2153 struct btrfs_path
*path
;
2154 struct inode
*inode
;
2162 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2163 struct sa_defrag_extent_backref
*b2
)
2165 if (b1
->root_id
< b2
->root_id
)
2167 else if (b1
->root_id
> b2
->root_id
)
2170 if (b1
->inum
< b2
->inum
)
2172 else if (b1
->inum
> b2
->inum
)
2175 if (b1
->file_pos
< b2
->file_pos
)
2177 else if (b1
->file_pos
> b2
->file_pos
)
2181 * [------------------------------] ===> (a range of space)
2182 * |<--->| |<---->| =============> (fs/file tree A)
2183 * |<---------------------------->| ===> (fs/file tree B)
2185 * A range of space can refer to two file extents in one tree while
2186 * refer to only one file extent in another tree.
2188 * So we may process a disk offset more than one time(two extents in A)
2189 * and locate at the same extent(one extent in B), then insert two same
2190 * backrefs(both refer to the extent in B).
2195 static void backref_insert(struct rb_root
*root
,
2196 struct sa_defrag_extent_backref
*backref
)
2198 struct rb_node
**p
= &root
->rb_node
;
2199 struct rb_node
*parent
= NULL
;
2200 struct sa_defrag_extent_backref
*entry
;
2205 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2207 ret
= backref_comp(backref
, entry
);
2211 p
= &(*p
)->rb_right
;
2214 rb_link_node(&backref
->node
, parent
, p
);
2215 rb_insert_color(&backref
->node
, root
);
2219 * Note the backref might has changed, and in this case we just return 0.
2221 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2224 struct btrfs_file_extent_item
*extent
;
2225 struct btrfs_fs_info
*fs_info
;
2226 struct old_sa_defrag_extent
*old
= ctx
;
2227 struct new_sa_defrag_extent
*new = old
->new;
2228 struct btrfs_path
*path
= new->path
;
2229 struct btrfs_key key
;
2230 struct btrfs_root
*root
;
2231 struct sa_defrag_extent_backref
*backref
;
2232 struct extent_buffer
*leaf
;
2233 struct inode
*inode
= new->inode
;
2239 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2240 inum
== btrfs_ino(inode
))
2243 key
.objectid
= root_id
;
2244 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2245 key
.offset
= (u64
)-1;
2247 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2248 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2250 if (PTR_ERR(root
) == -ENOENT
)
2253 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2254 inum
, offset
, root_id
);
2255 return PTR_ERR(root
);
2258 key
.objectid
= inum
;
2259 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2260 if (offset
> (u64
)-1 << 32)
2263 key
.offset
= offset
;
2265 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2266 if (WARN_ON(ret
< 0))
2273 leaf
= path
->nodes
[0];
2274 slot
= path
->slots
[0];
2276 if (slot
>= btrfs_header_nritems(leaf
)) {
2277 ret
= btrfs_next_leaf(root
, path
);
2280 } else if (ret
> 0) {
2289 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2291 if (key
.objectid
> inum
)
2294 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2297 extent
= btrfs_item_ptr(leaf
, slot
,
2298 struct btrfs_file_extent_item
);
2300 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2304 * 'offset' refers to the exact key.offset,
2305 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2306 * (key.offset - extent_offset).
2308 if (key
.offset
!= offset
)
2311 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2312 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2314 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2315 old
->len
|| extent_offset
+ num_bytes
<=
2316 old
->extent_offset
+ old
->offset
)
2321 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2327 backref
->root_id
= root_id
;
2328 backref
->inum
= inum
;
2329 backref
->file_pos
= offset
;
2330 backref
->num_bytes
= num_bytes
;
2331 backref
->extent_offset
= extent_offset
;
2332 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2334 backref_insert(&new->root
, backref
);
2337 btrfs_release_path(path
);
2342 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2343 struct new_sa_defrag_extent
*new)
2345 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2346 struct old_sa_defrag_extent
*old
, *tmp
;
2351 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2352 ret
= iterate_inodes_from_logical(old
->bytenr
+
2353 old
->extent_offset
, fs_info
,
2354 path
, record_one_backref
,
2356 if (ret
< 0 && ret
!= -ENOENT
)
2359 /* no backref to be processed for this extent */
2361 list_del(&old
->list
);
2366 if (list_empty(&new->head
))
2372 static int relink_is_mergable(struct extent_buffer
*leaf
,
2373 struct btrfs_file_extent_item
*fi
,
2374 struct new_sa_defrag_extent
*new)
2376 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2379 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2382 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2385 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2386 btrfs_file_extent_other_encoding(leaf
, fi
))
2393 * Note the backref might has changed, and in this case we just return 0.
2395 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2396 struct sa_defrag_extent_backref
*prev
,
2397 struct sa_defrag_extent_backref
*backref
)
2399 struct btrfs_file_extent_item
*extent
;
2400 struct btrfs_file_extent_item
*item
;
2401 struct btrfs_ordered_extent
*ordered
;
2402 struct btrfs_trans_handle
*trans
;
2403 struct btrfs_fs_info
*fs_info
;
2404 struct btrfs_root
*root
;
2405 struct btrfs_key key
;
2406 struct extent_buffer
*leaf
;
2407 struct old_sa_defrag_extent
*old
= backref
->old
;
2408 struct new_sa_defrag_extent
*new = old
->new;
2409 struct inode
*src_inode
= new->inode
;
2410 struct inode
*inode
;
2411 struct extent_state
*cached
= NULL
;
2420 if (prev
&& prev
->root_id
== backref
->root_id
&&
2421 prev
->inum
== backref
->inum
&&
2422 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2425 /* step 1: get root */
2426 key
.objectid
= backref
->root_id
;
2427 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2428 key
.offset
= (u64
)-1;
2430 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2431 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2433 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2435 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2436 if (PTR_ERR(root
) == -ENOENT
)
2438 return PTR_ERR(root
);
2441 if (btrfs_root_readonly(root
)) {
2442 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2446 /* step 2: get inode */
2447 key
.objectid
= backref
->inum
;
2448 key
.type
= BTRFS_INODE_ITEM_KEY
;
2451 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2452 if (IS_ERR(inode
)) {
2453 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2457 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2459 /* step 3: relink backref */
2460 lock_start
= backref
->file_pos
;
2461 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2462 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2465 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2467 btrfs_put_ordered_extent(ordered
);
2471 trans
= btrfs_join_transaction(root
);
2472 if (IS_ERR(trans
)) {
2473 ret
= PTR_ERR(trans
);
2477 key
.objectid
= backref
->inum
;
2478 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2479 key
.offset
= backref
->file_pos
;
2481 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2484 } else if (ret
> 0) {
2489 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2490 struct btrfs_file_extent_item
);
2492 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2493 backref
->generation
)
2496 btrfs_release_path(path
);
2498 start
= backref
->file_pos
;
2499 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2500 start
+= old
->extent_offset
+ old
->offset
-
2501 backref
->extent_offset
;
2503 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2504 old
->extent_offset
+ old
->offset
+ old
->len
);
2505 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2507 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2512 key
.objectid
= btrfs_ino(inode
);
2513 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2516 path
->leave_spinning
= 1;
2518 struct btrfs_file_extent_item
*fi
;
2520 struct btrfs_key found_key
;
2522 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2527 leaf
= path
->nodes
[0];
2528 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2530 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2531 struct btrfs_file_extent_item
);
2532 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2534 if (extent_len
+ found_key
.offset
== start
&&
2535 relink_is_mergable(leaf
, fi
, new)) {
2536 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2538 btrfs_mark_buffer_dirty(leaf
);
2539 inode_add_bytes(inode
, len
);
2545 btrfs_release_path(path
);
2550 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2553 btrfs_abort_transaction(trans
, root
, ret
);
2557 leaf
= path
->nodes
[0];
2558 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2559 struct btrfs_file_extent_item
);
2560 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2561 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2562 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2563 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2564 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2565 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2566 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2567 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2568 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2569 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2571 btrfs_mark_buffer_dirty(leaf
);
2572 inode_add_bytes(inode
, len
);
2573 btrfs_release_path(path
);
2575 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2577 backref
->root_id
, backref
->inum
,
2578 new->file_pos
, 0); /* start - extent_offset */
2580 btrfs_abort_transaction(trans
, root
, ret
);
2586 btrfs_release_path(path
);
2587 path
->leave_spinning
= 0;
2588 btrfs_end_transaction(trans
, root
);
2590 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2596 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2598 struct old_sa_defrag_extent
*old
, *tmp
;
2603 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2604 list_del(&old
->list
);
2610 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2612 struct btrfs_path
*path
;
2613 struct sa_defrag_extent_backref
*backref
;
2614 struct sa_defrag_extent_backref
*prev
= NULL
;
2615 struct inode
*inode
;
2616 struct btrfs_root
*root
;
2617 struct rb_node
*node
;
2621 root
= BTRFS_I(inode
)->root
;
2623 path
= btrfs_alloc_path();
2627 if (!record_extent_backrefs(path
, new)) {
2628 btrfs_free_path(path
);
2631 btrfs_release_path(path
);
2634 node
= rb_first(&new->root
);
2637 rb_erase(node
, &new->root
);
2639 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2641 ret
= relink_extent_backref(path
, prev
, backref
);
2654 btrfs_free_path(path
);
2656 free_sa_defrag_extent(new);
2658 atomic_dec(&root
->fs_info
->defrag_running
);
2659 wake_up(&root
->fs_info
->transaction_wait
);
2662 static struct new_sa_defrag_extent
*
2663 record_old_file_extents(struct inode
*inode
,
2664 struct btrfs_ordered_extent
*ordered
)
2666 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2667 struct btrfs_path
*path
;
2668 struct btrfs_key key
;
2669 struct old_sa_defrag_extent
*old
;
2670 struct new_sa_defrag_extent
*new;
2673 new = kmalloc(sizeof(*new), GFP_NOFS
);
2678 new->file_pos
= ordered
->file_offset
;
2679 new->len
= ordered
->len
;
2680 new->bytenr
= ordered
->start
;
2681 new->disk_len
= ordered
->disk_len
;
2682 new->compress_type
= ordered
->compress_type
;
2683 new->root
= RB_ROOT
;
2684 INIT_LIST_HEAD(&new->head
);
2686 path
= btrfs_alloc_path();
2690 key
.objectid
= btrfs_ino(inode
);
2691 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2692 key
.offset
= new->file_pos
;
2694 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2697 if (ret
> 0 && path
->slots
[0] > 0)
2700 /* find out all the old extents for the file range */
2702 struct btrfs_file_extent_item
*extent
;
2703 struct extent_buffer
*l
;
2712 slot
= path
->slots
[0];
2714 if (slot
>= btrfs_header_nritems(l
)) {
2715 ret
= btrfs_next_leaf(root
, path
);
2723 btrfs_item_key_to_cpu(l
, &key
, slot
);
2725 if (key
.objectid
!= btrfs_ino(inode
))
2727 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2729 if (key
.offset
>= new->file_pos
+ new->len
)
2732 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2734 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2735 if (key
.offset
+ num_bytes
< new->file_pos
)
2738 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2742 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2744 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2748 offset
= max(new->file_pos
, key
.offset
);
2749 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2751 old
->bytenr
= disk_bytenr
;
2752 old
->extent_offset
= extent_offset
;
2753 old
->offset
= offset
- key
.offset
;
2754 old
->len
= end
- offset
;
2757 list_add_tail(&old
->list
, &new->head
);
2763 btrfs_free_path(path
);
2764 atomic_inc(&root
->fs_info
->defrag_running
);
2769 btrfs_free_path(path
);
2771 free_sa_defrag_extent(new);
2775 static void btrfs_release_delalloc_bytes(struct btrfs_root
*root
,
2778 struct btrfs_block_group_cache
*cache
;
2780 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
2783 spin_lock(&cache
->lock
);
2784 cache
->delalloc_bytes
-= len
;
2785 spin_unlock(&cache
->lock
);
2787 btrfs_put_block_group(cache
);
2790 /* as ordered data IO finishes, this gets called so we can finish
2791 * an ordered extent if the range of bytes in the file it covers are
2794 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2796 struct inode
*inode
= ordered_extent
->inode
;
2797 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2798 struct btrfs_trans_handle
*trans
= NULL
;
2799 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2800 struct extent_state
*cached_state
= NULL
;
2801 struct new_sa_defrag_extent
*new = NULL
;
2802 int compress_type
= 0;
2804 u64 logical_len
= ordered_extent
->len
;
2806 bool truncated
= false;
2808 nolock
= btrfs_is_free_space_inode(inode
);
2810 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2815 btrfs_free_io_failure_record(inode
, ordered_extent
->file_offset
,
2816 ordered_extent
->file_offset
+
2817 ordered_extent
->len
- 1);
2819 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2821 logical_len
= ordered_extent
->truncated_len
;
2822 /* Truncated the entire extent, don't bother adding */
2827 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2828 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2829 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2831 trans
= btrfs_join_transaction_nolock(root
);
2833 trans
= btrfs_join_transaction(root
);
2834 if (IS_ERR(trans
)) {
2835 ret
= PTR_ERR(trans
);
2839 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2840 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2841 if (ret
) /* -ENOMEM or corruption */
2842 btrfs_abort_transaction(trans
, root
, ret
);
2846 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2847 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2850 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2851 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2852 EXTENT_DEFRAG
, 1, cached_state
);
2854 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2855 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2856 /* the inode is shared */
2857 new = record_old_file_extents(inode
, ordered_extent
);
2859 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2860 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2861 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2865 trans
= btrfs_join_transaction_nolock(root
);
2867 trans
= btrfs_join_transaction(root
);
2868 if (IS_ERR(trans
)) {
2869 ret
= PTR_ERR(trans
);
2874 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2876 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2877 compress_type
= ordered_extent
->compress_type
;
2878 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2879 BUG_ON(compress_type
);
2880 ret
= btrfs_mark_extent_written(trans
, inode
,
2881 ordered_extent
->file_offset
,
2882 ordered_extent
->file_offset
+
2885 BUG_ON(root
== root
->fs_info
->tree_root
);
2886 ret
= insert_reserved_file_extent(trans
, inode
,
2887 ordered_extent
->file_offset
,
2888 ordered_extent
->start
,
2889 ordered_extent
->disk_len
,
2890 logical_len
, logical_len
,
2891 compress_type
, 0, 0,
2892 BTRFS_FILE_EXTENT_REG
);
2894 btrfs_release_delalloc_bytes(root
,
2895 ordered_extent
->start
,
2896 ordered_extent
->disk_len
);
2898 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2899 ordered_extent
->file_offset
, ordered_extent
->len
,
2902 btrfs_abort_transaction(trans
, root
, ret
);
2906 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2907 &ordered_extent
->list
);
2909 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2910 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2911 if (ret
) { /* -ENOMEM or corruption */
2912 btrfs_abort_transaction(trans
, root
, ret
);
2917 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2918 ordered_extent
->file_offset
+
2919 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2921 if (root
!= root
->fs_info
->tree_root
)
2922 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2924 btrfs_end_transaction(trans
, root
);
2926 if (ret
|| truncated
) {
2930 start
= ordered_extent
->file_offset
+ logical_len
;
2932 start
= ordered_extent
->file_offset
;
2933 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2934 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2936 /* Drop the cache for the part of the extent we didn't write. */
2937 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2940 * If the ordered extent had an IOERR or something else went
2941 * wrong we need to return the space for this ordered extent
2942 * back to the allocator. We only free the extent in the
2943 * truncated case if we didn't write out the extent at all.
2945 if ((ret
|| !logical_len
) &&
2946 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2947 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
2948 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
2949 ordered_extent
->disk_len
, 1);
2954 * This needs to be done to make sure anybody waiting knows we are done
2955 * updating everything for this ordered extent.
2957 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2959 /* for snapshot-aware defrag */
2962 free_sa_defrag_extent(new);
2963 atomic_dec(&root
->fs_info
->defrag_running
);
2965 relink_file_extents(new);
2970 btrfs_put_ordered_extent(ordered_extent
);
2971 /* once for the tree */
2972 btrfs_put_ordered_extent(ordered_extent
);
2977 static void finish_ordered_fn(struct btrfs_work
*work
)
2979 struct btrfs_ordered_extent
*ordered_extent
;
2980 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2981 btrfs_finish_ordered_io(ordered_extent
);
2984 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2985 struct extent_state
*state
, int uptodate
)
2987 struct inode
*inode
= page
->mapping
->host
;
2988 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2989 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2990 struct btrfs_workqueue
*wq
;
2991 btrfs_work_func_t func
;
2993 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2995 ClearPagePrivate2(page
);
2996 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2997 end
- start
+ 1, uptodate
))
3000 if (btrfs_is_free_space_inode(inode
)) {
3001 wq
= root
->fs_info
->endio_freespace_worker
;
3002 func
= btrfs_freespace_write_helper
;
3004 wq
= root
->fs_info
->endio_write_workers
;
3005 func
= btrfs_endio_write_helper
;
3008 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3010 btrfs_queue_work(wq
, &ordered_extent
->work
);
3015 static int __readpage_endio_check(struct inode
*inode
,
3016 struct btrfs_io_bio
*io_bio
,
3017 int icsum
, struct page
*page
,
3018 int pgoff
, u64 start
, size_t len
)
3023 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3024 DEFAULT_RATELIMIT_BURST
);
3026 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3028 kaddr
= kmap_atomic(page
);
3029 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3030 btrfs_csum_final(csum
, (char *)&csum
);
3031 if (csum
!= csum_expected
)
3034 kunmap_atomic(kaddr
);
3037 if (__ratelimit(&_rs
))
3038 btrfs_warn(BTRFS_I(inode
)->root
->fs_info
,
3039 "csum failed ino %llu off %llu csum %u expected csum %u",
3040 btrfs_ino(inode
), start
, csum
, csum_expected
);
3041 memset(kaddr
+ pgoff
, 1, len
);
3042 flush_dcache_page(page
);
3043 kunmap_atomic(kaddr
);
3044 if (csum_expected
== 0)
3050 * when reads are done, we need to check csums to verify the data is correct
3051 * if there's a match, we allow the bio to finish. If not, the code in
3052 * extent_io.c will try to find good copies for us.
3054 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3055 u64 phy_offset
, struct page
*page
,
3056 u64 start
, u64 end
, int mirror
)
3058 size_t offset
= start
- page_offset(page
);
3059 struct inode
*inode
= page
->mapping
->host
;
3060 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3061 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3063 if (PageChecked(page
)) {
3064 ClearPageChecked(page
);
3068 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3071 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3072 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3073 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
3078 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3079 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3080 start
, (size_t)(end
- start
+ 1));
3083 void btrfs_add_delayed_iput(struct inode
*inode
)
3085 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
3086 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3088 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3091 spin_lock(&fs_info
->delayed_iput_lock
);
3092 if (binode
->delayed_iput_count
== 0) {
3093 ASSERT(list_empty(&binode
->delayed_iput
));
3094 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3096 binode
->delayed_iput_count
++;
3098 spin_unlock(&fs_info
->delayed_iput_lock
);
3101 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
3103 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3105 spin_lock(&fs_info
->delayed_iput_lock
);
3106 while (!list_empty(&fs_info
->delayed_iputs
)) {
3107 struct btrfs_inode
*inode
;
3109 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3110 struct btrfs_inode
, delayed_iput
);
3111 if (inode
->delayed_iput_count
) {
3112 inode
->delayed_iput_count
--;
3113 list_move_tail(&inode
->delayed_iput
,
3114 &fs_info
->delayed_iputs
);
3116 list_del_init(&inode
->delayed_iput
);
3118 spin_unlock(&fs_info
->delayed_iput_lock
);
3119 iput(&inode
->vfs_inode
);
3120 spin_lock(&fs_info
->delayed_iput_lock
);
3122 spin_unlock(&fs_info
->delayed_iput_lock
);
3126 * This is called in transaction commit time. If there are no orphan
3127 * files in the subvolume, it removes orphan item and frees block_rsv
3130 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3131 struct btrfs_root
*root
)
3133 struct btrfs_block_rsv
*block_rsv
;
3136 if (atomic_read(&root
->orphan_inodes
) ||
3137 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3140 spin_lock(&root
->orphan_lock
);
3141 if (atomic_read(&root
->orphan_inodes
)) {
3142 spin_unlock(&root
->orphan_lock
);
3146 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3147 spin_unlock(&root
->orphan_lock
);
3151 block_rsv
= root
->orphan_block_rsv
;
3152 root
->orphan_block_rsv
= NULL
;
3153 spin_unlock(&root
->orphan_lock
);
3155 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3156 btrfs_root_refs(&root
->root_item
) > 0) {
3157 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
3158 root
->root_key
.objectid
);
3160 btrfs_abort_transaction(trans
, root
, ret
);
3162 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3167 WARN_ON(block_rsv
->size
> 0);
3168 btrfs_free_block_rsv(root
, block_rsv
);
3173 * This creates an orphan entry for the given inode in case something goes
3174 * wrong in the middle of an unlink/truncate.
3176 * NOTE: caller of this function should reserve 5 units of metadata for
3179 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
3181 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3182 struct btrfs_block_rsv
*block_rsv
= NULL
;
3187 if (!root
->orphan_block_rsv
) {
3188 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3193 spin_lock(&root
->orphan_lock
);
3194 if (!root
->orphan_block_rsv
) {
3195 root
->orphan_block_rsv
= block_rsv
;
3196 } else if (block_rsv
) {
3197 btrfs_free_block_rsv(root
, block_rsv
);
3201 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3202 &BTRFS_I(inode
)->runtime_flags
)) {
3205 * For proper ENOSPC handling, we should do orphan
3206 * cleanup when mounting. But this introduces backward
3207 * compatibility issue.
3209 if (!xchg(&root
->orphan_item_inserted
, 1))
3215 atomic_inc(&root
->orphan_inodes
);
3218 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3219 &BTRFS_I(inode
)->runtime_flags
))
3221 spin_unlock(&root
->orphan_lock
);
3223 /* grab metadata reservation from transaction handle */
3225 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3226 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
3229 /* insert an orphan item to track this unlinked/truncated file */
3231 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3233 atomic_dec(&root
->orphan_inodes
);
3235 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3236 &BTRFS_I(inode
)->runtime_flags
);
3237 btrfs_orphan_release_metadata(inode
);
3239 if (ret
!= -EEXIST
) {
3240 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3241 &BTRFS_I(inode
)->runtime_flags
);
3242 btrfs_abort_transaction(trans
, root
, ret
);
3249 /* insert an orphan item to track subvolume contains orphan files */
3251 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3252 root
->root_key
.objectid
);
3253 if (ret
&& ret
!= -EEXIST
) {
3254 btrfs_abort_transaction(trans
, root
, ret
);
3262 * We have done the truncate/delete so we can go ahead and remove the orphan
3263 * item for this particular inode.
3265 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3266 struct inode
*inode
)
3268 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3269 int delete_item
= 0;
3270 int release_rsv
= 0;
3273 spin_lock(&root
->orphan_lock
);
3274 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3275 &BTRFS_I(inode
)->runtime_flags
))
3278 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3279 &BTRFS_I(inode
)->runtime_flags
))
3281 spin_unlock(&root
->orphan_lock
);
3284 atomic_dec(&root
->orphan_inodes
);
3286 ret
= btrfs_del_orphan_item(trans
, root
,
3291 btrfs_orphan_release_metadata(inode
);
3297 * this cleans up any orphans that may be left on the list from the last use
3300 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3302 struct btrfs_path
*path
;
3303 struct extent_buffer
*leaf
;
3304 struct btrfs_key key
, found_key
;
3305 struct btrfs_trans_handle
*trans
;
3306 struct inode
*inode
;
3307 u64 last_objectid
= 0;
3308 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3310 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3313 path
= btrfs_alloc_path();
3320 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3321 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3322 key
.offset
= (u64
)-1;
3325 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3330 * if ret == 0 means we found what we were searching for, which
3331 * is weird, but possible, so only screw with path if we didn't
3332 * find the key and see if we have stuff that matches
3336 if (path
->slots
[0] == 0)
3341 /* pull out the item */
3342 leaf
= path
->nodes
[0];
3343 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3345 /* make sure the item matches what we want */
3346 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3348 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3351 /* release the path since we're done with it */
3352 btrfs_release_path(path
);
3355 * this is where we are basically btrfs_lookup, without the
3356 * crossing root thing. we store the inode number in the
3357 * offset of the orphan item.
3360 if (found_key
.offset
== last_objectid
) {
3361 btrfs_err(root
->fs_info
,
3362 "Error removing orphan entry, stopping orphan cleanup");
3367 last_objectid
= found_key
.offset
;
3369 found_key
.objectid
= found_key
.offset
;
3370 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3371 found_key
.offset
= 0;
3372 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3373 ret
= PTR_ERR_OR_ZERO(inode
);
3374 if (ret
&& ret
!= -ESTALE
)
3377 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
3378 struct btrfs_root
*dead_root
;
3379 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3380 int is_dead_root
= 0;
3383 * this is an orphan in the tree root. Currently these
3384 * could come from 2 sources:
3385 * a) a snapshot deletion in progress
3386 * b) a free space cache inode
3387 * We need to distinguish those two, as the snapshot
3388 * orphan must not get deleted.
3389 * find_dead_roots already ran before us, so if this
3390 * is a snapshot deletion, we should find the root
3391 * in the dead_roots list
3393 spin_lock(&fs_info
->trans_lock
);
3394 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3396 if (dead_root
->root_key
.objectid
==
3397 found_key
.objectid
) {
3402 spin_unlock(&fs_info
->trans_lock
);
3404 /* prevent this orphan from being found again */
3405 key
.offset
= found_key
.objectid
- 1;
3410 * Inode is already gone but the orphan item is still there,
3411 * kill the orphan item.
3413 if (ret
== -ESTALE
) {
3414 trans
= btrfs_start_transaction(root
, 1);
3415 if (IS_ERR(trans
)) {
3416 ret
= PTR_ERR(trans
);
3419 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3420 found_key
.objectid
);
3421 ret
= btrfs_del_orphan_item(trans
, root
,
3422 found_key
.objectid
);
3423 btrfs_end_transaction(trans
, root
);
3430 * add this inode to the orphan list so btrfs_orphan_del does
3431 * the proper thing when we hit it
3433 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3434 &BTRFS_I(inode
)->runtime_flags
);
3435 atomic_inc(&root
->orphan_inodes
);
3437 /* if we have links, this was a truncate, lets do that */
3438 if (inode
->i_nlink
) {
3439 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3445 /* 1 for the orphan item deletion. */
3446 trans
= btrfs_start_transaction(root
, 1);
3447 if (IS_ERR(trans
)) {
3449 ret
= PTR_ERR(trans
);
3452 ret
= btrfs_orphan_add(trans
, inode
);
3453 btrfs_end_transaction(trans
, root
);
3459 ret
= btrfs_truncate(inode
);
3461 btrfs_orphan_del(NULL
, inode
);
3466 /* this will do delete_inode and everything for us */
3471 /* release the path since we're done with it */
3472 btrfs_release_path(path
);
3474 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3476 if (root
->orphan_block_rsv
)
3477 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3480 if (root
->orphan_block_rsv
||
3481 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3482 trans
= btrfs_join_transaction(root
);
3484 btrfs_end_transaction(trans
, root
);
3488 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3490 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3494 btrfs_err(root
->fs_info
,
3495 "could not do orphan cleanup %d", ret
);
3496 btrfs_free_path(path
);
3501 * very simple check to peek ahead in the leaf looking for xattrs. If we
3502 * don't find any xattrs, we know there can't be any acls.
3504 * slot is the slot the inode is in, objectid is the objectid of the inode
3506 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3507 int slot
, u64 objectid
,
3508 int *first_xattr_slot
)
3510 u32 nritems
= btrfs_header_nritems(leaf
);
3511 struct btrfs_key found_key
;
3512 static u64 xattr_access
= 0;
3513 static u64 xattr_default
= 0;
3516 if (!xattr_access
) {
3517 xattr_access
= btrfs_name_hash(POSIX_ACL_XATTR_ACCESS
,
3518 strlen(POSIX_ACL_XATTR_ACCESS
));
3519 xattr_default
= btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT
,
3520 strlen(POSIX_ACL_XATTR_DEFAULT
));
3524 *first_xattr_slot
= -1;
3525 while (slot
< nritems
) {
3526 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3528 /* we found a different objectid, there must not be acls */
3529 if (found_key
.objectid
!= objectid
)
3532 /* we found an xattr, assume we've got an acl */
3533 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3534 if (*first_xattr_slot
== -1)
3535 *first_xattr_slot
= slot
;
3536 if (found_key
.offset
== xattr_access
||
3537 found_key
.offset
== xattr_default
)
3542 * we found a key greater than an xattr key, there can't
3543 * be any acls later on
3545 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3552 * it goes inode, inode backrefs, xattrs, extents,
3553 * so if there are a ton of hard links to an inode there can
3554 * be a lot of backrefs. Don't waste time searching too hard,
3555 * this is just an optimization
3560 /* we hit the end of the leaf before we found an xattr or
3561 * something larger than an xattr. We have to assume the inode
3564 if (*first_xattr_slot
== -1)
3565 *first_xattr_slot
= slot
;
3570 * read an inode from the btree into the in-memory inode
3572 static void btrfs_read_locked_inode(struct inode
*inode
)
3574 struct btrfs_path
*path
;
3575 struct extent_buffer
*leaf
;
3576 struct btrfs_inode_item
*inode_item
;
3577 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3578 struct btrfs_key location
;
3583 bool filled
= false;
3584 int first_xattr_slot
;
3586 ret
= btrfs_fill_inode(inode
, &rdev
);
3590 path
= btrfs_alloc_path();
3594 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3596 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3600 leaf
= path
->nodes
[0];
3605 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3606 struct btrfs_inode_item
);
3607 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3608 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3609 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3610 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3611 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3613 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3614 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3616 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3617 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3619 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3620 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3622 BTRFS_I(inode
)->i_otime
.tv_sec
=
3623 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3624 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3625 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3627 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3628 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3629 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3631 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3632 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3634 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3636 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3637 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3641 * If we were modified in the current generation and evicted from memory
3642 * and then re-read we need to do a full sync since we don't have any
3643 * idea about which extents were modified before we were evicted from
3646 * This is required for both inode re-read from disk and delayed inode
3647 * in delayed_nodes_tree.
3649 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3650 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3651 &BTRFS_I(inode
)->runtime_flags
);
3654 if (inode
->i_nlink
!= 1 ||
3655 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3658 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3659 if (location
.objectid
!= btrfs_ino(inode
))
3662 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3663 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3664 struct btrfs_inode_ref
*ref
;
3666 ref
= (struct btrfs_inode_ref
*)ptr
;
3667 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3668 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3669 struct btrfs_inode_extref
*extref
;
3671 extref
= (struct btrfs_inode_extref
*)ptr
;
3672 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3677 * try to precache a NULL acl entry for files that don't have
3678 * any xattrs or acls
3680 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3681 btrfs_ino(inode
), &first_xattr_slot
);
3682 if (first_xattr_slot
!= -1) {
3683 path
->slots
[0] = first_xattr_slot
;
3684 ret
= btrfs_load_inode_props(inode
, path
);
3686 btrfs_err(root
->fs_info
,
3687 "error loading props for ino %llu (root %llu): %d",
3689 root
->root_key
.objectid
, ret
);
3691 btrfs_free_path(path
);
3694 cache_no_acl(inode
);
3696 switch (inode
->i_mode
& S_IFMT
) {
3698 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3699 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3700 inode
->i_fop
= &btrfs_file_operations
;
3701 inode
->i_op
= &btrfs_file_inode_operations
;
3704 inode
->i_fop
= &btrfs_dir_file_operations
;
3705 if (root
== root
->fs_info
->tree_root
)
3706 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3708 inode
->i_op
= &btrfs_dir_inode_operations
;
3711 inode
->i_op
= &btrfs_symlink_inode_operations
;
3712 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3715 inode
->i_op
= &btrfs_special_inode_operations
;
3716 init_special_inode(inode
, inode
->i_mode
, rdev
);
3720 btrfs_update_iflags(inode
);
3724 btrfs_free_path(path
);
3725 make_bad_inode(inode
);
3729 * given a leaf and an inode, copy the inode fields into the leaf
3731 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3732 struct extent_buffer
*leaf
,
3733 struct btrfs_inode_item
*item
,
3734 struct inode
*inode
)
3736 struct btrfs_map_token token
;
3738 btrfs_init_map_token(&token
);
3740 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3741 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3742 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3744 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3745 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3747 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3748 inode
->i_atime
.tv_sec
, &token
);
3749 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3750 inode
->i_atime
.tv_nsec
, &token
);
3752 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3753 inode
->i_mtime
.tv_sec
, &token
);
3754 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3755 inode
->i_mtime
.tv_nsec
, &token
);
3757 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3758 inode
->i_ctime
.tv_sec
, &token
);
3759 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3760 inode
->i_ctime
.tv_nsec
, &token
);
3762 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3763 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3764 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3765 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3767 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3769 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3771 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3772 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3773 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3774 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3775 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3779 * copy everything in the in-memory inode into the btree.
3781 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3782 struct btrfs_root
*root
, struct inode
*inode
)
3784 struct btrfs_inode_item
*inode_item
;
3785 struct btrfs_path
*path
;
3786 struct extent_buffer
*leaf
;
3789 path
= btrfs_alloc_path();
3793 path
->leave_spinning
= 1;
3794 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3802 leaf
= path
->nodes
[0];
3803 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3804 struct btrfs_inode_item
);
3806 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3807 btrfs_mark_buffer_dirty(leaf
);
3808 btrfs_set_inode_last_trans(trans
, inode
);
3811 btrfs_free_path(path
);
3816 * copy everything in the in-memory inode into the btree.
3818 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3819 struct btrfs_root
*root
, struct inode
*inode
)
3824 * If the inode is a free space inode, we can deadlock during commit
3825 * if we put it into the delayed code.
3827 * The data relocation inode should also be directly updated
3830 if (!btrfs_is_free_space_inode(inode
)
3831 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3832 && !root
->fs_info
->log_root_recovering
) {
3833 btrfs_update_root_times(trans
, root
);
3835 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3837 btrfs_set_inode_last_trans(trans
, inode
);
3841 return btrfs_update_inode_item(trans
, root
, inode
);
3844 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3845 struct btrfs_root
*root
,
3846 struct inode
*inode
)
3850 ret
= btrfs_update_inode(trans
, root
, inode
);
3852 return btrfs_update_inode_item(trans
, root
, inode
);
3857 * unlink helper that gets used here in inode.c and in the tree logging
3858 * recovery code. It remove a link in a directory with a given name, and
3859 * also drops the back refs in the inode to the directory
3861 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3862 struct btrfs_root
*root
,
3863 struct inode
*dir
, struct inode
*inode
,
3864 const char *name
, int name_len
)
3866 struct btrfs_path
*path
;
3868 struct extent_buffer
*leaf
;
3869 struct btrfs_dir_item
*di
;
3870 struct btrfs_key key
;
3872 u64 ino
= btrfs_ino(inode
);
3873 u64 dir_ino
= btrfs_ino(dir
);
3875 path
= btrfs_alloc_path();
3881 path
->leave_spinning
= 1;
3882 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3883 name
, name_len
, -1);
3892 leaf
= path
->nodes
[0];
3893 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3894 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3897 btrfs_release_path(path
);
3900 * If we don't have dir index, we have to get it by looking up
3901 * the inode ref, since we get the inode ref, remove it directly,
3902 * it is unnecessary to do delayed deletion.
3904 * But if we have dir index, needn't search inode ref to get it.
3905 * Since the inode ref is close to the inode item, it is better
3906 * that we delay to delete it, and just do this deletion when
3907 * we update the inode item.
3909 if (BTRFS_I(inode
)->dir_index
) {
3910 ret
= btrfs_delayed_delete_inode_ref(inode
);
3912 index
= BTRFS_I(inode
)->dir_index
;
3917 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3920 btrfs_info(root
->fs_info
,
3921 "failed to delete reference to %.*s, inode %llu parent %llu",
3922 name_len
, name
, ino
, dir_ino
);
3923 btrfs_abort_transaction(trans
, root
, ret
);
3927 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3929 btrfs_abort_transaction(trans
, root
, ret
);
3933 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
3935 if (ret
!= 0 && ret
!= -ENOENT
) {
3936 btrfs_abort_transaction(trans
, root
, ret
);
3940 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
3945 btrfs_abort_transaction(trans
, root
, ret
);
3947 btrfs_free_path(path
);
3951 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3952 inode_inc_iversion(inode
);
3953 inode_inc_iversion(dir
);
3954 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3955 ret
= btrfs_update_inode(trans
, root
, dir
);
3960 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3961 struct btrfs_root
*root
,
3962 struct inode
*dir
, struct inode
*inode
,
3963 const char *name
, int name_len
)
3966 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3969 ret
= btrfs_update_inode(trans
, root
, inode
);
3975 * helper to start transaction for unlink and rmdir.
3977 * unlink and rmdir are special in btrfs, they do not always free space, so
3978 * if we cannot make our reservations the normal way try and see if there is
3979 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3980 * allow the unlink to occur.
3982 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3984 struct btrfs_trans_handle
*trans
;
3985 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3989 * 1 for the possible orphan item
3990 * 1 for the dir item
3991 * 1 for the dir index
3992 * 1 for the inode ref
3995 trans
= btrfs_start_transaction(root
, 5);
3996 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
3999 if (PTR_ERR(trans
) == -ENOSPC
) {
4000 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
4002 trans
= btrfs_start_transaction(root
, 0);
4005 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
4006 &root
->fs_info
->trans_block_rsv
,
4009 btrfs_end_transaction(trans
, root
);
4010 return ERR_PTR(ret
);
4012 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4013 trans
->bytes_reserved
= num_bytes
;
4018 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4020 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4021 struct btrfs_trans_handle
*trans
;
4022 struct inode
*inode
= d_inode(dentry
);
4025 trans
= __unlink_start_trans(dir
);
4027 return PTR_ERR(trans
);
4029 btrfs_record_unlink_dir(trans
, dir
, d_inode(dentry
), 0);
4031 ret
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4032 dentry
->d_name
.name
, dentry
->d_name
.len
);
4036 if (inode
->i_nlink
== 0) {
4037 ret
= btrfs_orphan_add(trans
, inode
);
4043 btrfs_end_transaction(trans
, root
);
4044 btrfs_btree_balance_dirty(root
);
4048 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4049 struct btrfs_root
*root
,
4050 struct inode
*dir
, u64 objectid
,
4051 const char *name
, int name_len
)
4053 struct btrfs_path
*path
;
4054 struct extent_buffer
*leaf
;
4055 struct btrfs_dir_item
*di
;
4056 struct btrfs_key key
;
4059 u64 dir_ino
= btrfs_ino(dir
);
4061 path
= btrfs_alloc_path();
4065 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4066 name
, name_len
, -1);
4067 if (IS_ERR_OR_NULL(di
)) {
4075 leaf
= path
->nodes
[0];
4076 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4077 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4078 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4080 btrfs_abort_transaction(trans
, root
, ret
);
4083 btrfs_release_path(path
);
4085 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4086 objectid
, root
->root_key
.objectid
,
4087 dir_ino
, &index
, name
, name_len
);
4089 if (ret
!= -ENOENT
) {
4090 btrfs_abort_transaction(trans
, root
, ret
);
4093 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4095 if (IS_ERR_OR_NULL(di
)) {
4100 btrfs_abort_transaction(trans
, root
, ret
);
4104 leaf
= path
->nodes
[0];
4105 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4106 btrfs_release_path(path
);
4109 btrfs_release_path(path
);
4111 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
4113 btrfs_abort_transaction(trans
, root
, ret
);
4117 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4118 inode_inc_iversion(dir
);
4119 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
4120 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4122 btrfs_abort_transaction(trans
, root
, ret
);
4124 btrfs_free_path(path
);
4128 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4130 struct inode
*inode
= d_inode(dentry
);
4132 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4133 struct btrfs_trans_handle
*trans
;
4135 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4137 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
4140 trans
= __unlink_start_trans(dir
);
4142 return PTR_ERR(trans
);
4144 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4145 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4146 BTRFS_I(inode
)->location
.objectid
,
4147 dentry
->d_name
.name
,
4148 dentry
->d_name
.len
);
4152 err
= btrfs_orphan_add(trans
, inode
);
4156 /* now the directory is empty */
4157 err
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4158 dentry
->d_name
.name
, dentry
->d_name
.len
);
4160 btrfs_i_size_write(inode
, 0);
4162 btrfs_end_transaction(trans
, root
);
4163 btrfs_btree_balance_dirty(root
);
4168 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4169 struct btrfs_root
*root
,
4174 bytes_deleted
= btrfs_csum_bytes_to_leaves(root
, bytes_deleted
);
4175 ret
= btrfs_block_rsv_add(root
, &root
->fs_info
->trans_block_rsv
,
4176 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4178 trans
->bytes_reserved
+= bytes_deleted
;
4183 static int truncate_inline_extent(struct inode
*inode
,
4184 struct btrfs_path
*path
,
4185 struct btrfs_key
*found_key
,
4189 struct extent_buffer
*leaf
= path
->nodes
[0];
4190 int slot
= path
->slots
[0];
4191 struct btrfs_file_extent_item
*fi
;
4192 u32 size
= (u32
)(new_size
- found_key
->offset
);
4193 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4195 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4197 if (btrfs_file_extent_compression(leaf
, fi
) != BTRFS_COMPRESS_NONE
) {
4198 loff_t offset
= new_size
;
4199 loff_t page_end
= ALIGN(offset
, PAGE_CACHE_SIZE
);
4202 * Zero out the remaining of the last page of our inline extent,
4203 * instead of directly truncating our inline extent here - that
4204 * would be much more complex (decompressing all the data, then
4205 * compressing the truncated data, which might be bigger than
4206 * the size of the inline extent, resize the extent, etc).
4207 * We release the path because to get the page we might need to
4208 * read the extent item from disk (data not in the page cache).
4210 btrfs_release_path(path
);
4211 return btrfs_truncate_page(inode
, offset
, page_end
- offset
, 0);
4214 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4215 size
= btrfs_file_extent_calc_inline_size(size
);
4216 btrfs_truncate_item(root
, path
, size
, 1);
4218 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4219 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4225 * this can truncate away extent items, csum items and directory items.
4226 * It starts at a high offset and removes keys until it can't find
4227 * any higher than new_size
4229 * csum items that cross the new i_size are truncated to the new size
4232 * min_type is the minimum key type to truncate down to. If set to 0, this
4233 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4235 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4236 struct btrfs_root
*root
,
4237 struct inode
*inode
,
4238 u64 new_size
, u32 min_type
)
4240 struct btrfs_path
*path
;
4241 struct extent_buffer
*leaf
;
4242 struct btrfs_file_extent_item
*fi
;
4243 struct btrfs_key key
;
4244 struct btrfs_key found_key
;
4245 u64 extent_start
= 0;
4246 u64 extent_num_bytes
= 0;
4247 u64 extent_offset
= 0;
4249 u64 last_size
= (u64
)-1;
4250 u32 found_type
= (u8
)-1;
4253 int pending_del_nr
= 0;
4254 int pending_del_slot
= 0;
4255 int extent_type
= -1;
4258 u64 ino
= btrfs_ino(inode
);
4259 u64 bytes_deleted
= 0;
4261 bool should_throttle
= 0;
4262 bool should_end
= 0;
4264 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4267 * for non-free space inodes and ref cows, we want to back off from
4270 if (!btrfs_is_free_space_inode(inode
) &&
4271 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4274 path
= btrfs_alloc_path();
4280 * We want to drop from the next block forward in case this new size is
4281 * not block aligned since we will be keeping the last block of the
4282 * extent just the way it is.
4284 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4285 root
== root
->fs_info
->tree_root
)
4286 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4287 root
->sectorsize
), (u64
)-1, 0);
4290 * This function is also used to drop the items in the log tree before
4291 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4292 * it is used to drop the loged items. So we shouldn't kill the delayed
4295 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4296 btrfs_kill_delayed_inode_items(inode
);
4299 key
.offset
= (u64
)-1;
4304 * with a 16K leaf size and 128MB extents, you can actually queue
4305 * up a huge file in a single leaf. Most of the time that
4306 * bytes_deleted is > 0, it will be huge by the time we get here
4308 if (be_nice
&& bytes_deleted
> 32 * 1024 * 1024) {
4309 if (btrfs_should_end_transaction(trans
, root
)) {
4316 path
->leave_spinning
= 1;
4317 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4324 /* there are no items in the tree for us to truncate, we're
4327 if (path
->slots
[0] == 0)
4334 leaf
= path
->nodes
[0];
4335 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4336 found_type
= found_key
.type
;
4338 if (found_key
.objectid
!= ino
)
4341 if (found_type
< min_type
)
4344 item_end
= found_key
.offset
;
4345 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4346 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4347 struct btrfs_file_extent_item
);
4348 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4349 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4351 btrfs_file_extent_num_bytes(leaf
, fi
);
4352 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4353 item_end
+= btrfs_file_extent_inline_len(leaf
,
4354 path
->slots
[0], fi
);
4358 if (found_type
> min_type
) {
4361 if (item_end
< new_size
)
4363 if (found_key
.offset
>= new_size
)
4369 /* FIXME, shrink the extent if the ref count is only 1 */
4370 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4374 last_size
= found_key
.offset
;
4376 last_size
= new_size
;
4378 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4380 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4382 u64 orig_num_bytes
=
4383 btrfs_file_extent_num_bytes(leaf
, fi
);
4384 extent_num_bytes
= ALIGN(new_size
-
4387 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4389 num_dec
= (orig_num_bytes
-
4391 if (test_bit(BTRFS_ROOT_REF_COWS
,
4394 inode_sub_bytes(inode
, num_dec
);
4395 btrfs_mark_buffer_dirty(leaf
);
4398 btrfs_file_extent_disk_num_bytes(leaf
,
4400 extent_offset
= found_key
.offset
-
4401 btrfs_file_extent_offset(leaf
, fi
);
4403 /* FIXME blocksize != 4096 */
4404 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4405 if (extent_start
!= 0) {
4407 if (test_bit(BTRFS_ROOT_REF_COWS
,
4409 inode_sub_bytes(inode
, num_dec
);
4412 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4414 * we can't truncate inline items that have had
4418 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4419 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4422 * Need to release path in order to truncate a
4423 * compressed extent. So delete any accumulated
4424 * extent items so far.
4426 if (btrfs_file_extent_compression(leaf
, fi
) !=
4427 BTRFS_COMPRESS_NONE
&& pending_del_nr
) {
4428 err
= btrfs_del_items(trans
, root
, path
,
4432 btrfs_abort_transaction(trans
,
4440 err
= truncate_inline_extent(inode
, path
,
4445 btrfs_abort_transaction(trans
,
4449 } else if (test_bit(BTRFS_ROOT_REF_COWS
,
4451 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4456 if (!pending_del_nr
) {
4457 /* no pending yet, add ourselves */
4458 pending_del_slot
= path
->slots
[0];
4460 } else if (pending_del_nr
&&
4461 path
->slots
[0] + 1 == pending_del_slot
) {
4462 /* hop on the pending chunk */
4464 pending_del_slot
= path
->slots
[0];
4471 should_throttle
= 0;
4474 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4475 root
== root
->fs_info
->tree_root
)) {
4476 btrfs_set_path_blocking(path
);
4477 bytes_deleted
+= extent_num_bytes
;
4478 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4479 extent_num_bytes
, 0,
4480 btrfs_header_owner(leaf
),
4481 ino
, extent_offset
, 0);
4483 if (btrfs_should_throttle_delayed_refs(trans
, root
))
4484 btrfs_async_run_delayed_refs(root
,
4485 trans
->delayed_ref_updates
* 2, 0);
4487 if (truncate_space_check(trans
, root
,
4488 extent_num_bytes
)) {
4491 if (btrfs_should_throttle_delayed_refs(trans
,
4493 should_throttle
= 1;
4498 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4501 if (path
->slots
[0] == 0 ||
4502 path
->slots
[0] != pending_del_slot
||
4503 should_throttle
|| should_end
) {
4504 if (pending_del_nr
) {
4505 ret
= btrfs_del_items(trans
, root
, path
,
4509 btrfs_abort_transaction(trans
,
4515 btrfs_release_path(path
);
4516 if (should_throttle
) {
4517 unsigned long updates
= trans
->delayed_ref_updates
;
4519 trans
->delayed_ref_updates
= 0;
4520 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4526 * if we failed to refill our space rsv, bail out
4527 * and let the transaction restart
4539 if (pending_del_nr
) {
4540 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4543 btrfs_abort_transaction(trans
, root
, ret
);
4546 if (last_size
!= (u64
)-1 &&
4547 root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4548 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4550 btrfs_free_path(path
);
4552 if (be_nice
&& bytes_deleted
> 32 * 1024 * 1024) {
4553 unsigned long updates
= trans
->delayed_ref_updates
;
4555 trans
->delayed_ref_updates
= 0;
4556 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4565 * btrfs_truncate_page - read, zero a chunk and write a page
4566 * @inode - inode that we're zeroing
4567 * @from - the offset to start zeroing
4568 * @len - the length to zero, 0 to zero the entire range respective to the
4570 * @front - zero up to the offset instead of from the offset on
4572 * This will find the page for the "from" offset and cow the page and zero the
4573 * part we want to zero. This is used with truncate and hole punching.
4575 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
4578 struct address_space
*mapping
= inode
->i_mapping
;
4579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4580 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4581 struct btrfs_ordered_extent
*ordered
;
4582 struct extent_state
*cached_state
= NULL
;
4584 u32 blocksize
= root
->sectorsize
;
4585 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
4586 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4588 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4593 if ((offset
& (blocksize
- 1)) == 0 &&
4594 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4596 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
4601 page
= find_or_create_page(mapping
, index
, mask
);
4603 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4608 page_start
= page_offset(page
);
4609 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4611 if (!PageUptodate(page
)) {
4612 ret
= btrfs_readpage(NULL
, page
);
4614 if (page
->mapping
!= mapping
) {
4616 page_cache_release(page
);
4619 if (!PageUptodate(page
)) {
4624 wait_on_page_writeback(page
);
4626 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
4627 set_page_extent_mapped(page
);
4629 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4631 unlock_extent_cached(io_tree
, page_start
, page_end
,
4632 &cached_state
, GFP_NOFS
);
4634 page_cache_release(page
);
4635 btrfs_start_ordered_extent(inode
, ordered
, 1);
4636 btrfs_put_ordered_extent(ordered
);
4640 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
4641 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4642 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4643 0, 0, &cached_state
, GFP_NOFS
);
4645 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
4648 unlock_extent_cached(io_tree
, page_start
, page_end
,
4649 &cached_state
, GFP_NOFS
);
4653 if (offset
!= PAGE_CACHE_SIZE
) {
4655 len
= PAGE_CACHE_SIZE
- offset
;
4658 memset(kaddr
, 0, offset
);
4660 memset(kaddr
+ offset
, 0, len
);
4661 flush_dcache_page(page
);
4664 ClearPageChecked(page
);
4665 set_page_dirty(page
);
4666 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
4671 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4673 page_cache_release(page
);
4678 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4679 u64 offset
, u64 len
)
4681 struct btrfs_trans_handle
*trans
;
4685 * Still need to make sure the inode looks like it's been updated so
4686 * that any holes get logged if we fsync.
4688 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
)) {
4689 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
4690 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4691 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4696 * 1 - for the one we're dropping
4697 * 1 - for the one we're adding
4698 * 1 - for updating the inode.
4700 trans
= btrfs_start_transaction(root
, 3);
4702 return PTR_ERR(trans
);
4704 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4706 btrfs_abort_transaction(trans
, root
, ret
);
4707 btrfs_end_transaction(trans
, root
);
4711 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4712 0, 0, len
, 0, len
, 0, 0, 0);
4714 btrfs_abort_transaction(trans
, root
, ret
);
4716 btrfs_update_inode(trans
, root
, inode
);
4717 btrfs_end_transaction(trans
, root
);
4722 * This function puts in dummy file extents for the area we're creating a hole
4723 * for. So if we are truncating this file to a larger size we need to insert
4724 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4725 * the range between oldsize and size
4727 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4729 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4730 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4731 struct extent_map
*em
= NULL
;
4732 struct extent_state
*cached_state
= NULL
;
4733 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4734 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4735 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4742 * If our size started in the middle of a page we need to zero out the
4743 * rest of the page before we expand the i_size, otherwise we could
4744 * expose stale data.
4746 err
= btrfs_truncate_page(inode
, oldsize
, 0, 0);
4750 if (size
<= hole_start
)
4754 struct btrfs_ordered_extent
*ordered
;
4756 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
4758 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4759 block_end
- hole_start
);
4762 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4763 &cached_state
, GFP_NOFS
);
4764 btrfs_start_ordered_extent(inode
, ordered
, 1);
4765 btrfs_put_ordered_extent(ordered
);
4768 cur_offset
= hole_start
;
4770 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4771 block_end
- cur_offset
, 0);
4777 last_byte
= min(extent_map_end(em
), block_end
);
4778 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4779 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4780 struct extent_map
*hole_em
;
4781 hole_size
= last_byte
- cur_offset
;
4783 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4787 btrfs_drop_extent_cache(inode
, cur_offset
,
4788 cur_offset
+ hole_size
- 1, 0);
4789 hole_em
= alloc_extent_map();
4791 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4792 &BTRFS_I(inode
)->runtime_flags
);
4795 hole_em
->start
= cur_offset
;
4796 hole_em
->len
= hole_size
;
4797 hole_em
->orig_start
= cur_offset
;
4799 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4800 hole_em
->block_len
= 0;
4801 hole_em
->orig_block_len
= 0;
4802 hole_em
->ram_bytes
= hole_size
;
4803 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4804 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4805 hole_em
->generation
= root
->fs_info
->generation
;
4808 write_lock(&em_tree
->lock
);
4809 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4810 write_unlock(&em_tree
->lock
);
4813 btrfs_drop_extent_cache(inode
, cur_offset
,
4817 free_extent_map(hole_em
);
4820 free_extent_map(em
);
4822 cur_offset
= last_byte
;
4823 if (cur_offset
>= block_end
)
4826 free_extent_map(em
);
4827 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4832 static int wait_snapshoting_atomic_t(atomic_t
*a
)
4838 static void wait_for_snapshot_creation(struct btrfs_root
*root
)
4843 ret
= btrfs_start_write_no_snapshoting(root
);
4846 wait_on_atomic_t(&root
->will_be_snapshoted
,
4847 wait_snapshoting_atomic_t
,
4848 TASK_UNINTERRUPTIBLE
);
4852 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4854 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4855 struct btrfs_trans_handle
*trans
;
4856 loff_t oldsize
= i_size_read(inode
);
4857 loff_t newsize
= attr
->ia_size
;
4858 int mask
= attr
->ia_valid
;
4862 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4863 * special case where we need to update the times despite not having
4864 * these flags set. For all other operations the VFS set these flags
4865 * explicitly if it wants a timestamp update.
4867 if (newsize
!= oldsize
) {
4868 inode_inc_iversion(inode
);
4869 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4870 inode
->i_ctime
= inode
->i_mtime
=
4871 current_fs_time(inode
->i_sb
);
4874 if (newsize
> oldsize
) {
4875 truncate_pagecache(inode
, newsize
);
4877 * Don't do an expanding truncate while snapshoting is ongoing.
4878 * This is to ensure the snapshot captures a fully consistent
4879 * state of this file - if the snapshot captures this expanding
4880 * truncation, it must capture all writes that happened before
4883 wait_for_snapshot_creation(root
);
4884 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4886 btrfs_end_write_no_snapshoting(root
);
4890 trans
= btrfs_start_transaction(root
, 1);
4891 if (IS_ERR(trans
)) {
4892 btrfs_end_write_no_snapshoting(root
);
4893 return PTR_ERR(trans
);
4896 i_size_write(inode
, newsize
);
4897 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4898 ret
= btrfs_update_inode(trans
, root
, inode
);
4899 btrfs_end_write_no_snapshoting(root
);
4900 btrfs_end_transaction(trans
, root
);
4904 * We're truncating a file that used to have good data down to
4905 * zero. Make sure it gets into the ordered flush list so that
4906 * any new writes get down to disk quickly.
4909 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4910 &BTRFS_I(inode
)->runtime_flags
);
4913 * 1 for the orphan item we're going to add
4914 * 1 for the orphan item deletion.
4916 trans
= btrfs_start_transaction(root
, 2);
4918 return PTR_ERR(trans
);
4921 * We need to do this in case we fail at _any_ point during the
4922 * actual truncate. Once we do the truncate_setsize we could
4923 * invalidate pages which forces any outstanding ordered io to
4924 * be instantly completed which will give us extents that need
4925 * to be truncated. If we fail to get an orphan inode down we
4926 * could have left over extents that were never meant to live,
4927 * so we need to garuntee from this point on that everything
4928 * will be consistent.
4930 ret
= btrfs_orphan_add(trans
, inode
);
4931 btrfs_end_transaction(trans
, root
);
4935 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4936 truncate_setsize(inode
, newsize
);
4938 /* Disable nonlocked read DIO to avoid the end less truncate */
4939 btrfs_inode_block_unlocked_dio(inode
);
4940 inode_dio_wait(inode
);
4941 btrfs_inode_resume_unlocked_dio(inode
);
4943 ret
= btrfs_truncate(inode
);
4944 if (ret
&& inode
->i_nlink
) {
4948 * failed to truncate, disk_i_size is only adjusted down
4949 * as we remove extents, so it should represent the true
4950 * size of the inode, so reset the in memory size and
4951 * delete our orphan entry.
4953 trans
= btrfs_join_transaction(root
);
4954 if (IS_ERR(trans
)) {
4955 btrfs_orphan_del(NULL
, inode
);
4958 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4959 err
= btrfs_orphan_del(trans
, inode
);
4961 btrfs_abort_transaction(trans
, root
, err
);
4962 btrfs_end_transaction(trans
, root
);
4969 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4971 struct inode
*inode
= d_inode(dentry
);
4972 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4975 if (btrfs_root_readonly(root
))
4978 err
= setattr_prepare(dentry
, attr
);
4982 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4983 err
= btrfs_setsize(inode
, attr
);
4988 if (attr
->ia_valid
) {
4989 setattr_copy(inode
, attr
);
4990 inode_inc_iversion(inode
);
4991 err
= btrfs_dirty_inode(inode
);
4993 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4994 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5001 * While truncating the inode pages during eviction, we get the VFS calling
5002 * btrfs_invalidatepage() against each page of the inode. This is slow because
5003 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5004 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5005 * extent_state structures over and over, wasting lots of time.
5007 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5008 * those expensive operations on a per page basis and do only the ordered io
5009 * finishing, while we release here the extent_map and extent_state structures,
5010 * without the excessive merging and splitting.
5012 static void evict_inode_truncate_pages(struct inode
*inode
)
5014 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5015 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5016 struct rb_node
*node
;
5018 ASSERT(inode
->i_state
& I_FREEING
);
5019 truncate_inode_pages_final(&inode
->i_data
);
5021 write_lock(&map_tree
->lock
);
5022 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5023 struct extent_map
*em
;
5025 node
= rb_first(&map_tree
->map
);
5026 em
= rb_entry(node
, struct extent_map
, rb_node
);
5027 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5028 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5029 remove_extent_mapping(map_tree
, em
);
5030 free_extent_map(em
);
5031 if (need_resched()) {
5032 write_unlock(&map_tree
->lock
);
5034 write_lock(&map_tree
->lock
);
5037 write_unlock(&map_tree
->lock
);
5039 spin_lock(&io_tree
->lock
);
5040 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5041 struct extent_state
*state
;
5042 struct extent_state
*cached_state
= NULL
;
5044 node
= rb_first(&io_tree
->state
);
5045 state
= rb_entry(node
, struct extent_state
, rb_node
);
5046 atomic_inc(&state
->refs
);
5047 spin_unlock(&io_tree
->lock
);
5049 lock_extent_bits(io_tree
, state
->start
, state
->end
,
5051 clear_extent_bit(io_tree
, state
->start
, state
->end
,
5052 EXTENT_LOCKED
| EXTENT_DIRTY
|
5053 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5054 EXTENT_DEFRAG
, 1, 1,
5055 &cached_state
, GFP_NOFS
);
5056 free_extent_state(state
);
5059 spin_lock(&io_tree
->lock
);
5061 spin_unlock(&io_tree
->lock
);
5064 void btrfs_evict_inode(struct inode
*inode
)
5066 struct btrfs_trans_handle
*trans
;
5067 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5068 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5069 int steal_from_global
= 0;
5070 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
5073 trace_btrfs_inode_evict(inode
);
5075 evict_inode_truncate_pages(inode
);
5077 if (inode
->i_nlink
&&
5078 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5079 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5080 btrfs_is_free_space_inode(inode
)))
5083 if (is_bad_inode(inode
)) {
5084 btrfs_orphan_del(NULL
, inode
);
5087 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5088 if (!special_file(inode
->i_mode
))
5089 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5091 btrfs_free_io_failure_record(inode
, 0, (u64
)-1);
5093 if (root
->fs_info
->log_root_recovering
) {
5094 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5095 &BTRFS_I(inode
)->runtime_flags
));
5099 if (inode
->i_nlink
> 0) {
5100 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5101 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5105 ret
= btrfs_commit_inode_delayed_inode(inode
);
5107 btrfs_orphan_del(NULL
, inode
);
5111 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
5113 btrfs_orphan_del(NULL
, inode
);
5116 rsv
->size
= min_size
;
5118 global_rsv
= &root
->fs_info
->global_block_rsv
;
5120 btrfs_i_size_write(inode
, 0);
5123 * This is a bit simpler than btrfs_truncate since we've already
5124 * reserved our space for our orphan item in the unlink, so we just
5125 * need to reserve some slack space in case we add bytes and update
5126 * inode item when doing the truncate.
5129 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5130 BTRFS_RESERVE_FLUSH_LIMIT
);
5133 * Try and steal from the global reserve since we will
5134 * likely not use this space anyway, we want to try as
5135 * hard as possible to get this to work.
5138 steal_from_global
++;
5140 steal_from_global
= 0;
5144 * steal_from_global == 0: we reserved stuff, hooray!
5145 * steal_from_global == 1: we didn't reserve stuff, boo!
5146 * steal_from_global == 2: we've committed, still not a lot of
5147 * room but maybe we'll have room in the global reserve this
5149 * steal_from_global == 3: abandon all hope!
5151 if (steal_from_global
> 2) {
5152 btrfs_warn(root
->fs_info
,
5153 "Could not get space for a delete, will truncate on mount %d",
5155 btrfs_orphan_del(NULL
, inode
);
5156 btrfs_free_block_rsv(root
, rsv
);
5160 trans
= btrfs_join_transaction(root
);
5161 if (IS_ERR(trans
)) {
5162 btrfs_orphan_del(NULL
, inode
);
5163 btrfs_free_block_rsv(root
, rsv
);
5168 * We can't just steal from the global reserve, we need tomake
5169 * sure there is room to do it, if not we need to commit and try
5172 if (steal_from_global
) {
5173 if (!btrfs_check_space_for_delayed_refs(trans
, root
))
5174 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5181 * Couldn't steal from the global reserve, we have too much
5182 * pending stuff built up, commit the transaction and try it
5186 ret
= btrfs_commit_transaction(trans
, root
);
5188 btrfs_orphan_del(NULL
, inode
);
5189 btrfs_free_block_rsv(root
, rsv
);
5194 steal_from_global
= 0;
5197 trans
->block_rsv
= rsv
;
5199 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5200 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5203 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5204 btrfs_end_transaction(trans
, root
);
5206 btrfs_btree_balance_dirty(root
);
5209 btrfs_free_block_rsv(root
, rsv
);
5212 * Errors here aren't a big deal, it just means we leave orphan items
5213 * in the tree. They will be cleaned up on the next mount.
5216 trans
->block_rsv
= root
->orphan_block_rsv
;
5217 btrfs_orphan_del(trans
, inode
);
5219 btrfs_orphan_del(NULL
, inode
);
5222 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5223 if (!(root
== root
->fs_info
->tree_root
||
5224 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5225 btrfs_return_ino(root
, btrfs_ino(inode
));
5227 btrfs_end_transaction(trans
, root
);
5228 btrfs_btree_balance_dirty(root
);
5230 btrfs_remove_delayed_node(inode
);
5236 * this returns the key found in the dir entry in the location pointer.
5237 * If no dir entries were found, location->objectid is 0.
5239 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5240 struct btrfs_key
*location
)
5242 const char *name
= dentry
->d_name
.name
;
5243 int namelen
= dentry
->d_name
.len
;
5244 struct btrfs_dir_item
*di
;
5245 struct btrfs_path
*path
;
5246 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5249 path
= btrfs_alloc_path();
5253 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
5258 if (IS_ERR_OR_NULL(di
))
5261 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5263 btrfs_free_path(path
);
5266 location
->objectid
= 0;
5271 * when we hit a tree root in a directory, the btrfs part of the inode
5272 * needs to be changed to reflect the root directory of the tree root. This
5273 * is kind of like crossing a mount point.
5275 static int fixup_tree_root_location(struct btrfs_root
*root
,
5277 struct dentry
*dentry
,
5278 struct btrfs_key
*location
,
5279 struct btrfs_root
**sub_root
)
5281 struct btrfs_path
*path
;
5282 struct btrfs_root
*new_root
;
5283 struct btrfs_root_ref
*ref
;
5284 struct extent_buffer
*leaf
;
5285 struct btrfs_key key
;
5289 path
= btrfs_alloc_path();
5296 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5297 key
.type
= BTRFS_ROOT_REF_KEY
;
5298 key
.offset
= location
->objectid
;
5300 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
, &key
, path
,
5308 leaf
= path
->nodes
[0];
5309 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5310 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
5311 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5314 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5315 (unsigned long)(ref
+ 1),
5316 dentry
->d_name
.len
);
5320 btrfs_release_path(path
);
5322 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
5323 if (IS_ERR(new_root
)) {
5324 err
= PTR_ERR(new_root
);
5328 *sub_root
= new_root
;
5329 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5330 location
->type
= BTRFS_INODE_ITEM_KEY
;
5331 location
->offset
= 0;
5334 btrfs_free_path(path
);
5338 static void inode_tree_add(struct inode
*inode
)
5340 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5341 struct btrfs_inode
*entry
;
5343 struct rb_node
*parent
;
5344 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5345 u64 ino
= btrfs_ino(inode
);
5347 if (inode_unhashed(inode
))
5350 spin_lock(&root
->inode_lock
);
5351 p
= &root
->inode_tree
.rb_node
;
5354 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5356 if (ino
< btrfs_ino(&entry
->vfs_inode
))
5357 p
= &parent
->rb_left
;
5358 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
5359 p
= &parent
->rb_right
;
5361 WARN_ON(!(entry
->vfs_inode
.i_state
&
5362 (I_WILL_FREE
| I_FREEING
)));
5363 rb_replace_node(parent
, new, &root
->inode_tree
);
5364 RB_CLEAR_NODE(parent
);
5365 spin_unlock(&root
->inode_lock
);
5369 rb_link_node(new, parent
, p
);
5370 rb_insert_color(new, &root
->inode_tree
);
5371 spin_unlock(&root
->inode_lock
);
5374 static void inode_tree_del(struct inode
*inode
)
5376 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5379 spin_lock(&root
->inode_lock
);
5380 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5381 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5382 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5383 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5385 spin_unlock(&root
->inode_lock
);
5387 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5388 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
5389 spin_lock(&root
->inode_lock
);
5390 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5391 spin_unlock(&root
->inode_lock
);
5393 btrfs_add_dead_root(root
);
5397 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5399 struct rb_node
*node
;
5400 struct rb_node
*prev
;
5401 struct btrfs_inode
*entry
;
5402 struct inode
*inode
;
5405 if (!test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
5406 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5408 spin_lock(&root
->inode_lock
);
5410 node
= root
->inode_tree
.rb_node
;
5414 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5416 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
5417 node
= node
->rb_left
;
5418 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
5419 node
= node
->rb_right
;
5425 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5426 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
5430 prev
= rb_next(prev
);
5434 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5435 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
5436 inode
= igrab(&entry
->vfs_inode
);
5438 spin_unlock(&root
->inode_lock
);
5439 if (atomic_read(&inode
->i_count
) > 1)
5440 d_prune_aliases(inode
);
5442 * btrfs_drop_inode will have it removed from
5443 * the inode cache when its usage count
5448 spin_lock(&root
->inode_lock
);
5452 if (cond_resched_lock(&root
->inode_lock
))
5455 node
= rb_next(node
);
5457 spin_unlock(&root
->inode_lock
);
5460 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5462 struct btrfs_iget_args
*args
= p
;
5463 inode
->i_ino
= args
->location
->objectid
;
5464 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5465 sizeof(*args
->location
));
5466 BTRFS_I(inode
)->root
= args
->root
;
5470 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5472 struct btrfs_iget_args
*args
= opaque
;
5473 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5474 args
->root
== BTRFS_I(inode
)->root
;
5477 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5478 struct btrfs_key
*location
,
5479 struct btrfs_root
*root
)
5481 struct inode
*inode
;
5482 struct btrfs_iget_args args
;
5483 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5485 args
.location
= location
;
5488 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5489 btrfs_init_locked_inode
,
5494 /* Get an inode object given its location and corresponding root.
5495 * Returns in *is_new if the inode was read from disk
5497 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5498 struct btrfs_root
*root
, int *new)
5500 struct inode
*inode
;
5502 inode
= btrfs_iget_locked(s
, location
, root
);
5504 return ERR_PTR(-ENOMEM
);
5506 if (inode
->i_state
& I_NEW
) {
5507 btrfs_read_locked_inode(inode
);
5508 if (!is_bad_inode(inode
)) {
5509 inode_tree_add(inode
);
5510 unlock_new_inode(inode
);
5514 unlock_new_inode(inode
);
5516 inode
= ERR_PTR(-ESTALE
);
5523 static struct inode
*new_simple_dir(struct super_block
*s
,
5524 struct btrfs_key
*key
,
5525 struct btrfs_root
*root
)
5527 struct inode
*inode
= new_inode(s
);
5530 return ERR_PTR(-ENOMEM
);
5532 BTRFS_I(inode
)->root
= root
;
5533 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5534 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5536 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5537 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5538 inode
->i_fop
= &simple_dir_operations
;
5539 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5540 inode
->i_mtime
= CURRENT_TIME
;
5541 inode
->i_atime
= inode
->i_mtime
;
5542 inode
->i_ctime
= inode
->i_mtime
;
5543 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5548 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5550 struct inode
*inode
;
5551 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5552 struct btrfs_root
*sub_root
= root
;
5553 struct btrfs_key location
;
5557 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5558 return ERR_PTR(-ENAMETOOLONG
);
5560 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5562 return ERR_PTR(ret
);
5564 if (location
.objectid
== 0)
5565 return ERR_PTR(-ENOENT
);
5567 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5568 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5572 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5574 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
5575 ret
= fixup_tree_root_location(root
, dir
, dentry
,
5576 &location
, &sub_root
);
5579 inode
= ERR_PTR(ret
);
5581 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5583 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5585 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
5587 if (!IS_ERR(inode
) && root
!= sub_root
) {
5588 down_read(&root
->fs_info
->cleanup_work_sem
);
5589 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5590 ret
= btrfs_orphan_cleanup(sub_root
);
5591 up_read(&root
->fs_info
->cleanup_work_sem
);
5594 inode
= ERR_PTR(ret
);
5601 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5603 struct btrfs_root
*root
;
5604 struct inode
*inode
= d_inode(dentry
);
5606 if (!inode
&& !IS_ROOT(dentry
))
5607 inode
= d_inode(dentry
->d_parent
);
5610 root
= BTRFS_I(inode
)->root
;
5611 if (btrfs_root_refs(&root
->root_item
) == 0)
5614 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5620 static void btrfs_dentry_release(struct dentry
*dentry
)
5622 kfree(dentry
->d_fsdata
);
5625 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5628 struct inode
*inode
;
5630 inode
= btrfs_lookup_dentry(dir
, dentry
);
5631 if (IS_ERR(inode
)) {
5632 if (PTR_ERR(inode
) == -ENOENT
)
5635 return ERR_CAST(inode
);
5638 return d_splice_alias(inode
, dentry
);
5641 unsigned char btrfs_filetype_table
[] = {
5642 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5645 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5647 struct inode
*inode
= file_inode(file
);
5648 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5649 struct btrfs_item
*item
;
5650 struct btrfs_dir_item
*di
;
5651 struct btrfs_key key
;
5652 struct btrfs_key found_key
;
5653 struct btrfs_path
*path
;
5654 struct list_head ins_list
;
5655 struct list_head del_list
;
5657 struct extent_buffer
*leaf
;
5659 unsigned char d_type
;
5664 int key_type
= BTRFS_DIR_INDEX_KEY
;
5668 int is_curr
= 0; /* ctx->pos points to the current index? */
5671 /* FIXME, use a real flag for deciding about the key type */
5672 if (root
->fs_info
->tree_root
== root
)
5673 key_type
= BTRFS_DIR_ITEM_KEY
;
5675 if (!dir_emit_dots(file
, ctx
))
5678 path
= btrfs_alloc_path();
5684 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5685 INIT_LIST_HEAD(&ins_list
);
5686 INIT_LIST_HEAD(&del_list
);
5687 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
5690 key
.type
= key_type
;
5691 key
.offset
= ctx
->pos
;
5692 key
.objectid
= btrfs_ino(inode
);
5694 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5700 leaf
= path
->nodes
[0];
5701 slot
= path
->slots
[0];
5702 if (slot
>= btrfs_header_nritems(leaf
)) {
5703 ret
= btrfs_next_leaf(root
, path
);
5711 item
= btrfs_item_nr(slot
);
5712 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5714 if (found_key
.objectid
!= key
.objectid
)
5716 if (found_key
.type
!= key_type
)
5718 if (found_key
.offset
< ctx
->pos
)
5720 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5721 btrfs_should_delete_dir_index(&del_list
,
5725 ctx
->pos
= found_key
.offset
;
5728 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5730 di_total
= btrfs_item_size(leaf
, item
);
5732 while (di_cur
< di_total
) {
5733 struct btrfs_key location
;
5735 if (verify_dir_item(root
, leaf
, di
))
5738 name_len
= btrfs_dir_name_len(leaf
, di
);
5739 if (name_len
<= sizeof(tmp_name
)) {
5740 name_ptr
= tmp_name
;
5742 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
5748 read_extent_buffer(leaf
, name_ptr
,
5749 (unsigned long)(di
+ 1), name_len
);
5751 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5752 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5755 /* is this a reference to our own snapshot? If so
5758 * In contrast to old kernels, we insert the snapshot's
5759 * dir item and dir index after it has been created, so
5760 * we won't find a reference to our own snapshot. We
5761 * still keep the following code for backward
5764 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5765 location
.objectid
== root
->root_key
.objectid
) {
5769 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5770 location
.objectid
, d_type
);
5773 if (name_ptr
!= tmp_name
)
5779 di_len
= btrfs_dir_name_len(leaf
, di
) +
5780 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5782 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5788 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5791 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
, &emitted
);
5797 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5798 * it was was set to the termination value in previous call. We assume
5799 * that "." and ".." were emitted if we reach this point and set the
5800 * termination value as well for an empty directory.
5802 if (ctx
->pos
> 2 && !emitted
)
5805 /* Reached end of directory/root. Bump pos past the last item. */
5809 * Stop new entries from being returned after we return the last
5812 * New directory entries are assigned a strictly increasing
5813 * offset. This means that new entries created during readdir
5814 * are *guaranteed* to be seen in the future by that readdir.
5815 * This has broken buggy programs which operate on names as
5816 * they're returned by readdir. Until we re-use freed offsets
5817 * we have this hack to stop new entries from being returned
5818 * under the assumption that they'll never reach this huge
5821 * This is being careful not to overflow 32bit loff_t unless the
5822 * last entry requires it because doing so has broken 32bit apps
5825 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5826 if (ctx
->pos
>= INT_MAX
)
5827 ctx
->pos
= LLONG_MAX
;
5834 if (key_type
== BTRFS_DIR_INDEX_KEY
)
5835 btrfs_put_delayed_items(&ins_list
, &del_list
);
5836 btrfs_free_path(path
);
5840 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5842 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5843 struct btrfs_trans_handle
*trans
;
5845 bool nolock
= false;
5847 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5850 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5853 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5855 trans
= btrfs_join_transaction_nolock(root
);
5857 trans
= btrfs_join_transaction(root
);
5859 return PTR_ERR(trans
);
5860 ret
= btrfs_commit_transaction(trans
, root
);
5866 * This is somewhat expensive, updating the tree every time the
5867 * inode changes. But, it is most likely to find the inode in cache.
5868 * FIXME, needs more benchmarking...there are no reasons other than performance
5869 * to keep or drop this code.
5871 static int btrfs_dirty_inode(struct inode
*inode
)
5873 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5874 struct btrfs_trans_handle
*trans
;
5877 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5880 trans
= btrfs_join_transaction(root
);
5882 return PTR_ERR(trans
);
5884 ret
= btrfs_update_inode(trans
, root
, inode
);
5885 if (ret
&& ret
== -ENOSPC
) {
5886 /* whoops, lets try again with the full transaction */
5887 btrfs_end_transaction(trans
, root
);
5888 trans
= btrfs_start_transaction(root
, 1);
5890 return PTR_ERR(trans
);
5892 ret
= btrfs_update_inode(trans
, root
, inode
);
5894 btrfs_end_transaction(trans
, root
);
5895 if (BTRFS_I(inode
)->delayed_node
)
5896 btrfs_balance_delayed_items(root
);
5902 * This is a copy of file_update_time. We need this so we can return error on
5903 * ENOSPC for updating the inode in the case of file write and mmap writes.
5905 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
5908 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5910 if (btrfs_root_readonly(root
))
5913 if (flags
& S_VERSION
)
5914 inode_inc_iversion(inode
);
5915 if (flags
& S_CTIME
)
5916 inode
->i_ctime
= *now
;
5917 if (flags
& S_MTIME
)
5918 inode
->i_mtime
= *now
;
5919 if (flags
& S_ATIME
)
5920 inode
->i_atime
= *now
;
5921 return btrfs_dirty_inode(inode
);
5925 * find the highest existing sequence number in a directory
5926 * and then set the in-memory index_cnt variable to reflect
5927 * free sequence numbers
5929 static int btrfs_set_inode_index_count(struct inode
*inode
)
5931 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5932 struct btrfs_key key
, found_key
;
5933 struct btrfs_path
*path
;
5934 struct extent_buffer
*leaf
;
5937 key
.objectid
= btrfs_ino(inode
);
5938 key
.type
= BTRFS_DIR_INDEX_KEY
;
5939 key
.offset
= (u64
)-1;
5941 path
= btrfs_alloc_path();
5945 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5948 /* FIXME: we should be able to handle this */
5954 * MAGIC NUMBER EXPLANATION:
5955 * since we search a directory based on f_pos we have to start at 2
5956 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5957 * else has to start at 2
5959 if (path
->slots
[0] == 0) {
5960 BTRFS_I(inode
)->index_cnt
= 2;
5966 leaf
= path
->nodes
[0];
5967 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5969 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5970 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
5971 BTRFS_I(inode
)->index_cnt
= 2;
5975 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
5977 btrfs_free_path(path
);
5982 * helper to find a free sequence number in a given directory. This current
5983 * code is very simple, later versions will do smarter things in the btree
5985 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
5989 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
5990 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5992 ret
= btrfs_set_inode_index_count(dir
);
5998 *index
= BTRFS_I(dir
)->index_cnt
;
5999 BTRFS_I(dir
)->index_cnt
++;
6004 static int btrfs_insert_inode_locked(struct inode
*inode
)
6006 struct btrfs_iget_args args
;
6007 args
.location
= &BTRFS_I(inode
)->location
;
6008 args
.root
= BTRFS_I(inode
)->root
;
6010 return insert_inode_locked4(inode
,
6011 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6012 btrfs_find_actor
, &args
);
6015 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6016 struct btrfs_root
*root
,
6018 const char *name
, int name_len
,
6019 u64 ref_objectid
, u64 objectid
,
6020 umode_t mode
, u64
*index
)
6022 struct inode
*inode
;
6023 struct btrfs_inode_item
*inode_item
;
6024 struct btrfs_key
*location
;
6025 struct btrfs_path
*path
;
6026 struct btrfs_inode_ref
*ref
;
6027 struct btrfs_key key
[2];
6029 int nitems
= name
? 2 : 1;
6033 path
= btrfs_alloc_path();
6035 return ERR_PTR(-ENOMEM
);
6037 inode
= new_inode(root
->fs_info
->sb
);
6039 btrfs_free_path(path
);
6040 return ERR_PTR(-ENOMEM
);
6044 * O_TMPFILE, set link count to 0, so that after this point,
6045 * we fill in an inode item with the correct link count.
6048 set_nlink(inode
, 0);
6051 * we have to initialize this early, so we can reclaim the inode
6052 * number if we fail afterwards in this function.
6054 inode
->i_ino
= objectid
;
6057 trace_btrfs_inode_request(dir
);
6059 ret
= btrfs_set_inode_index(dir
, index
);
6061 btrfs_free_path(path
);
6063 return ERR_PTR(ret
);
6069 * index_cnt is ignored for everything but a dir,
6070 * btrfs_get_inode_index_count has an explanation for the magic
6073 BTRFS_I(inode
)->index_cnt
= 2;
6074 BTRFS_I(inode
)->dir_index
= *index
;
6075 BTRFS_I(inode
)->root
= root
;
6076 BTRFS_I(inode
)->generation
= trans
->transid
;
6077 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6080 * We could have gotten an inode number from somebody who was fsynced
6081 * and then removed in this same transaction, so let's just set full
6082 * sync since it will be a full sync anyway and this will blow away the
6083 * old info in the log.
6085 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6087 key
[0].objectid
= objectid
;
6088 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6091 sizes
[0] = sizeof(struct btrfs_inode_item
);
6095 * Start new inodes with an inode_ref. This is slightly more
6096 * efficient for small numbers of hard links since they will
6097 * be packed into one item. Extended refs will kick in if we
6098 * add more hard links than can fit in the ref item.
6100 key
[1].objectid
= objectid
;
6101 key
[1].type
= BTRFS_INODE_REF_KEY
;
6102 key
[1].offset
= ref_objectid
;
6104 sizes
[1] = name_len
+ sizeof(*ref
);
6107 location
= &BTRFS_I(inode
)->location
;
6108 location
->objectid
= objectid
;
6109 location
->offset
= 0;
6110 location
->type
= BTRFS_INODE_ITEM_KEY
;
6112 ret
= btrfs_insert_inode_locked(inode
);
6116 path
->leave_spinning
= 1;
6117 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6121 inode_init_owner(inode
, dir
, mode
);
6122 inode_set_bytes(inode
, 0);
6124 inode
->i_mtime
= CURRENT_TIME
;
6125 inode
->i_atime
= inode
->i_mtime
;
6126 inode
->i_ctime
= inode
->i_mtime
;
6127 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6129 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6130 struct btrfs_inode_item
);
6131 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
6132 sizeof(*inode_item
));
6133 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6136 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6137 struct btrfs_inode_ref
);
6138 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6139 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6140 ptr
= (unsigned long)(ref
+ 1);
6141 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6144 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6145 btrfs_free_path(path
);
6147 btrfs_inherit_iflags(inode
, dir
);
6149 if (S_ISREG(mode
)) {
6150 if (btrfs_test_opt(root
, NODATASUM
))
6151 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6152 if (btrfs_test_opt(root
, NODATACOW
))
6153 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6154 BTRFS_INODE_NODATASUM
;
6157 inode_tree_add(inode
);
6159 trace_btrfs_inode_new(inode
);
6160 btrfs_set_inode_last_trans(trans
, inode
);
6162 btrfs_update_root_times(trans
, root
);
6164 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6166 btrfs_err(root
->fs_info
,
6167 "error inheriting props for ino %llu (root %llu): %d",
6168 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
6173 unlock_new_inode(inode
);
6176 BTRFS_I(dir
)->index_cnt
--;
6177 btrfs_free_path(path
);
6179 return ERR_PTR(ret
);
6182 static inline u8
btrfs_inode_type(struct inode
*inode
)
6184 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6188 * utility function to add 'inode' into 'parent_inode' with
6189 * a give name and a given sequence number.
6190 * if 'add_backref' is true, also insert a backref from the
6191 * inode to the parent directory.
6193 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6194 struct inode
*parent_inode
, struct inode
*inode
,
6195 const char *name
, int name_len
, int add_backref
, u64 index
)
6198 struct btrfs_key key
;
6199 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
6200 u64 ino
= btrfs_ino(inode
);
6201 u64 parent_ino
= btrfs_ino(parent_inode
);
6203 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6204 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
6207 key
.type
= BTRFS_INODE_ITEM_KEY
;
6211 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6212 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
6213 key
.objectid
, root
->root_key
.objectid
,
6214 parent_ino
, index
, name
, name_len
);
6215 } else if (add_backref
) {
6216 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6220 /* Nothing to clean up yet */
6224 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6226 btrfs_inode_type(inode
), index
);
6227 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6230 btrfs_abort_transaction(trans
, root
, ret
);
6234 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
6236 inode_inc_iversion(parent_inode
);
6237 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
6238 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
6240 btrfs_abort_transaction(trans
, root
, ret
);
6244 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6247 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
6248 key
.objectid
, root
->root_key
.objectid
,
6249 parent_ino
, &local_index
, name
, name_len
);
6251 } else if (add_backref
) {
6255 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6256 ino
, parent_ino
, &local_index
);
6261 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6262 struct inode
*dir
, struct dentry
*dentry
,
6263 struct inode
*inode
, int backref
, u64 index
)
6265 int err
= btrfs_add_link(trans
, dir
, inode
,
6266 dentry
->d_name
.name
, dentry
->d_name
.len
,
6273 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6274 umode_t mode
, dev_t rdev
)
6276 struct btrfs_trans_handle
*trans
;
6277 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6278 struct inode
*inode
= NULL
;
6284 if (!new_valid_dev(rdev
))
6288 * 2 for inode item and ref
6290 * 1 for xattr if selinux is on
6292 trans
= btrfs_start_transaction(root
, 5);
6294 return PTR_ERR(trans
);
6296 err
= btrfs_find_free_ino(root
, &objectid
);
6300 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6301 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6303 if (IS_ERR(inode
)) {
6304 err
= PTR_ERR(inode
);
6309 * If the active LSM wants to access the inode during
6310 * d_instantiate it needs these. Smack checks to see
6311 * if the filesystem supports xattrs by looking at the
6314 inode
->i_op
= &btrfs_special_inode_operations
;
6315 init_special_inode(inode
, inode
->i_mode
, rdev
);
6317 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6319 goto out_unlock_inode
;
6321 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6323 goto out_unlock_inode
;
6325 btrfs_update_inode(trans
, root
, inode
);
6326 unlock_new_inode(inode
);
6327 d_instantiate(dentry
, inode
);
6331 btrfs_end_transaction(trans
, root
);
6332 btrfs_balance_delayed_items(root
);
6333 btrfs_btree_balance_dirty(root
);
6335 inode_dec_link_count(inode
);
6342 unlock_new_inode(inode
);
6347 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6348 umode_t mode
, bool excl
)
6350 struct btrfs_trans_handle
*trans
;
6351 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6352 struct inode
*inode
= NULL
;
6353 int drop_inode_on_err
= 0;
6359 * 2 for inode item and ref
6361 * 1 for xattr if selinux is on
6363 trans
= btrfs_start_transaction(root
, 5);
6365 return PTR_ERR(trans
);
6367 err
= btrfs_find_free_ino(root
, &objectid
);
6371 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6372 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6374 if (IS_ERR(inode
)) {
6375 err
= PTR_ERR(inode
);
6378 drop_inode_on_err
= 1;
6380 * If the active LSM wants to access the inode during
6381 * d_instantiate it needs these. Smack checks to see
6382 * if the filesystem supports xattrs by looking at the
6385 inode
->i_fop
= &btrfs_file_operations
;
6386 inode
->i_op
= &btrfs_file_inode_operations
;
6387 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6389 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6391 goto out_unlock_inode
;
6393 err
= btrfs_update_inode(trans
, root
, inode
);
6395 goto out_unlock_inode
;
6397 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6399 goto out_unlock_inode
;
6401 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6402 unlock_new_inode(inode
);
6403 d_instantiate(dentry
, inode
);
6406 btrfs_end_transaction(trans
, root
);
6407 if (err
&& drop_inode_on_err
) {
6408 inode_dec_link_count(inode
);
6411 btrfs_balance_delayed_items(root
);
6412 btrfs_btree_balance_dirty(root
);
6416 unlock_new_inode(inode
);
6421 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6422 struct dentry
*dentry
)
6424 struct btrfs_trans_handle
*trans
= NULL
;
6425 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6426 struct inode
*inode
= d_inode(old_dentry
);
6431 /* do not allow sys_link's with other subvols of the same device */
6432 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6435 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6438 err
= btrfs_set_inode_index(dir
, &index
);
6443 * 2 items for inode and inode ref
6444 * 2 items for dir items
6445 * 1 item for parent inode
6447 trans
= btrfs_start_transaction(root
, 5);
6448 if (IS_ERR(trans
)) {
6449 err
= PTR_ERR(trans
);
6454 /* There are several dir indexes for this inode, clear the cache. */
6455 BTRFS_I(inode
)->dir_index
= 0ULL;
6457 inode_inc_iversion(inode
);
6458 inode
->i_ctime
= CURRENT_TIME
;
6460 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6462 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
6467 struct dentry
*parent
= dentry
->d_parent
;
6468 err
= btrfs_update_inode(trans
, root
, inode
);
6471 if (inode
->i_nlink
== 1) {
6473 * If new hard link count is 1, it's a file created
6474 * with open(2) O_TMPFILE flag.
6476 err
= btrfs_orphan_del(trans
, inode
);
6480 d_instantiate(dentry
, inode
);
6481 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
6484 btrfs_balance_delayed_items(root
);
6487 btrfs_end_transaction(trans
, root
);
6489 inode_dec_link_count(inode
);
6492 btrfs_btree_balance_dirty(root
);
6496 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6498 struct inode
*inode
= NULL
;
6499 struct btrfs_trans_handle
*trans
;
6500 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6502 int drop_on_err
= 0;
6507 * 2 items for inode and ref
6508 * 2 items for dir items
6509 * 1 for xattr if selinux is on
6511 trans
= btrfs_start_transaction(root
, 5);
6513 return PTR_ERR(trans
);
6515 err
= btrfs_find_free_ino(root
, &objectid
);
6519 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6520 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6521 S_IFDIR
| mode
, &index
);
6522 if (IS_ERR(inode
)) {
6523 err
= PTR_ERR(inode
);
6528 /* these must be set before we unlock the inode */
6529 inode
->i_op
= &btrfs_dir_inode_operations
;
6530 inode
->i_fop
= &btrfs_dir_file_operations
;
6532 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6534 goto out_fail_inode
;
6536 btrfs_i_size_write(inode
, 0);
6537 err
= btrfs_update_inode(trans
, root
, inode
);
6539 goto out_fail_inode
;
6541 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
6542 dentry
->d_name
.len
, 0, index
);
6544 goto out_fail_inode
;
6546 d_instantiate(dentry
, inode
);
6548 * mkdir is special. We're unlocking after we call d_instantiate
6549 * to avoid a race with nfsd calling d_instantiate.
6551 unlock_new_inode(inode
);
6555 btrfs_end_transaction(trans
, root
);
6557 inode_dec_link_count(inode
);
6560 btrfs_balance_delayed_items(root
);
6561 btrfs_btree_balance_dirty(root
);
6565 unlock_new_inode(inode
);
6569 /* Find next extent map of a given extent map, caller needs to ensure locks */
6570 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6572 struct rb_node
*next
;
6574 next
= rb_next(&em
->rb_node
);
6577 return container_of(next
, struct extent_map
, rb_node
);
6580 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6582 struct rb_node
*prev
;
6584 prev
= rb_prev(&em
->rb_node
);
6587 return container_of(prev
, struct extent_map
, rb_node
);
6590 /* helper for btfs_get_extent. Given an existing extent in the tree,
6591 * the existing extent is the nearest extent to map_start,
6592 * and an extent that you want to insert, deal with overlap and insert
6593 * the best fitted new extent into the tree.
6595 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6596 struct extent_map
*existing
,
6597 struct extent_map
*em
,
6600 struct extent_map
*prev
;
6601 struct extent_map
*next
;
6606 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6608 if (existing
->start
> map_start
) {
6610 prev
= prev_extent_map(next
);
6613 next
= next_extent_map(prev
);
6616 start
= prev
? extent_map_end(prev
) : em
->start
;
6617 start
= max_t(u64
, start
, em
->start
);
6618 end
= next
? next
->start
: extent_map_end(em
);
6619 end
= min_t(u64
, end
, extent_map_end(em
));
6620 start_diff
= start
- em
->start
;
6622 em
->len
= end
- start
;
6623 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6624 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6625 em
->block_start
+= start_diff
;
6626 em
->block_len
-= start_diff
;
6628 return add_extent_mapping(em_tree
, em
, 0);
6631 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6632 struct inode
*inode
, struct page
*page
,
6633 size_t pg_offset
, u64 extent_offset
,
6634 struct btrfs_file_extent_item
*item
)
6637 struct extent_buffer
*leaf
= path
->nodes
[0];
6640 unsigned long inline_size
;
6644 WARN_ON(pg_offset
!= 0);
6645 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6646 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6647 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6648 btrfs_item_nr(path
->slots
[0]));
6649 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6652 ptr
= btrfs_file_extent_inline_start(item
);
6654 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6656 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
6657 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6658 extent_offset
, inline_size
, max_size
);
6664 * a bit scary, this does extent mapping from logical file offset to the disk.
6665 * the ugly parts come from merging extents from the disk with the in-ram
6666 * representation. This gets more complex because of the data=ordered code,
6667 * where the in-ram extents might be locked pending data=ordered completion.
6669 * This also copies inline extents directly into the page.
6672 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6673 size_t pg_offset
, u64 start
, u64 len
,
6678 u64 extent_start
= 0;
6680 u64 objectid
= btrfs_ino(inode
);
6682 struct btrfs_path
*path
= NULL
;
6683 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6684 struct btrfs_file_extent_item
*item
;
6685 struct extent_buffer
*leaf
;
6686 struct btrfs_key found_key
;
6687 struct extent_map
*em
= NULL
;
6688 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6689 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6690 struct btrfs_trans_handle
*trans
= NULL
;
6691 const bool new_inline
= !page
|| create
;
6694 read_lock(&em_tree
->lock
);
6695 em
= lookup_extent_mapping(em_tree
, start
, len
);
6697 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6698 read_unlock(&em_tree
->lock
);
6701 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6702 free_extent_map(em
);
6703 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6704 free_extent_map(em
);
6708 em
= alloc_extent_map();
6713 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6714 em
->start
= EXTENT_MAP_HOLE
;
6715 em
->orig_start
= EXTENT_MAP_HOLE
;
6717 em
->block_len
= (u64
)-1;
6720 path
= btrfs_alloc_path();
6726 * Chances are we'll be called again, so go ahead and do
6732 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6733 objectid
, start
, trans
!= NULL
);
6740 if (path
->slots
[0] == 0)
6745 leaf
= path
->nodes
[0];
6746 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6747 struct btrfs_file_extent_item
);
6748 /* are we inside the extent that was found? */
6749 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6750 found_type
= found_key
.type
;
6751 if (found_key
.objectid
!= objectid
||
6752 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6754 * If we backup past the first extent we want to move forward
6755 * and see if there is an extent in front of us, otherwise we'll
6756 * say there is a hole for our whole search range which can
6763 found_type
= btrfs_file_extent_type(leaf
, item
);
6764 extent_start
= found_key
.offset
;
6765 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6766 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6767 extent_end
= extent_start
+
6768 btrfs_file_extent_num_bytes(leaf
, item
);
6769 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6771 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6772 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6775 if (start
>= extent_end
) {
6777 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6778 ret
= btrfs_next_leaf(root
, path
);
6785 leaf
= path
->nodes
[0];
6787 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6788 if (found_key
.objectid
!= objectid
||
6789 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6791 if (start
+ len
<= found_key
.offset
)
6793 if (start
> found_key
.offset
)
6796 em
->orig_start
= start
;
6797 em
->len
= found_key
.offset
- start
;
6801 btrfs_extent_item_to_extent_map(inode
, path
, item
, new_inline
, em
);
6803 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6804 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6806 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6810 size_t extent_offset
;
6816 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6817 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6818 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
6819 size
- extent_offset
);
6820 em
->start
= extent_start
+ extent_offset
;
6821 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6822 em
->orig_block_len
= em
->len
;
6823 em
->orig_start
= em
->start
;
6824 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6825 if (create
== 0 && !PageUptodate(page
)) {
6826 if (btrfs_file_extent_compression(leaf
, item
) !=
6827 BTRFS_COMPRESS_NONE
) {
6828 ret
= uncompress_inline(path
, inode
, page
,
6830 extent_offset
, item
);
6837 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6839 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
6840 memset(map
+ pg_offset
+ copy_size
, 0,
6841 PAGE_CACHE_SIZE
- pg_offset
-
6846 flush_dcache_page(page
);
6847 } else if (create
&& PageUptodate(page
)) {
6851 free_extent_map(em
);
6854 btrfs_release_path(path
);
6855 trans
= btrfs_join_transaction(root
);
6858 return ERR_CAST(trans
);
6862 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6865 btrfs_mark_buffer_dirty(leaf
);
6867 set_extent_uptodate(io_tree
, em
->start
,
6868 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6873 em
->orig_start
= start
;
6876 em
->block_start
= EXTENT_MAP_HOLE
;
6877 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
6879 btrfs_release_path(path
);
6880 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6881 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6882 em
->start
, em
->len
, start
, len
);
6888 write_lock(&em_tree
->lock
);
6889 ret
= add_extent_mapping(em_tree
, em
, 0);
6890 /* it is possible that someone inserted the extent into the tree
6891 * while we had the lock dropped. It is also possible that
6892 * an overlapping map exists in the tree
6894 if (ret
== -EEXIST
) {
6895 struct extent_map
*existing
;
6899 existing
= search_extent_mapping(em_tree
, start
, len
);
6901 * existing will always be non-NULL, since there must be
6902 * extent causing the -EEXIST.
6904 if (start
>= extent_map_end(existing
) ||
6905 start
<= existing
->start
) {
6907 * The existing extent map is the one nearest to
6908 * the [start, start + len) range which overlaps
6910 err
= merge_extent_mapping(em_tree
, existing
,
6912 free_extent_map(existing
);
6914 free_extent_map(em
);
6918 free_extent_map(em
);
6923 write_unlock(&em_tree
->lock
);
6926 trace_btrfs_get_extent(root
, em
);
6929 btrfs_free_path(path
);
6931 ret
= btrfs_end_transaction(trans
, root
);
6936 free_extent_map(em
);
6937 return ERR_PTR(err
);
6939 BUG_ON(!em
); /* Error is always set */
6943 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
6944 size_t pg_offset
, u64 start
, u64 len
,
6947 struct extent_map
*em
;
6948 struct extent_map
*hole_em
= NULL
;
6949 u64 range_start
= start
;
6955 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
6962 * - a pre-alloc extent,
6963 * there might actually be delalloc bytes behind it.
6965 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6966 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6972 /* check to see if we've wrapped (len == -1 or similar) */
6981 /* ok, we didn't find anything, lets look for delalloc */
6982 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
6983 end
, len
, EXTENT_DELALLOC
, 1);
6984 found_end
= range_start
+ found
;
6985 if (found_end
< range_start
)
6986 found_end
= (u64
)-1;
6989 * we didn't find anything useful, return
6990 * the original results from get_extent()
6992 if (range_start
> end
|| found_end
<= start
) {
6998 /* adjust the range_start to make sure it doesn't
6999 * go backwards from the start they passed in
7001 range_start
= max(start
, range_start
);
7002 found
= found_end
- range_start
;
7005 u64 hole_start
= start
;
7008 em
= alloc_extent_map();
7014 * when btrfs_get_extent can't find anything it
7015 * returns one huge hole
7017 * make sure what it found really fits our range, and
7018 * adjust to make sure it is based on the start from
7022 u64 calc_end
= extent_map_end(hole_em
);
7024 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7025 free_extent_map(hole_em
);
7028 hole_start
= max(hole_em
->start
, start
);
7029 hole_len
= calc_end
- hole_start
;
7033 if (hole_em
&& range_start
> hole_start
) {
7034 /* our hole starts before our delalloc, so we
7035 * have to return just the parts of the hole
7036 * that go until the delalloc starts
7038 em
->len
= min(hole_len
,
7039 range_start
- hole_start
);
7040 em
->start
= hole_start
;
7041 em
->orig_start
= hole_start
;
7043 * don't adjust block start at all,
7044 * it is fixed at EXTENT_MAP_HOLE
7046 em
->block_start
= hole_em
->block_start
;
7047 em
->block_len
= hole_len
;
7048 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7049 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7051 em
->start
= range_start
;
7053 em
->orig_start
= range_start
;
7054 em
->block_start
= EXTENT_MAP_DELALLOC
;
7055 em
->block_len
= found
;
7057 } else if (hole_em
) {
7062 free_extent_map(hole_em
);
7064 free_extent_map(em
);
7065 return ERR_PTR(err
);
7070 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7073 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7074 struct extent_map
*em
;
7075 struct btrfs_key ins
;
7079 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7080 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
7081 alloc_hint
, &ins
, 1, 1);
7083 return ERR_PTR(ret
);
7085 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
7086 ins
.offset
, ins
.offset
, ins
.offset
, 0);
7088 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
7092 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
7093 ins
.offset
, ins
.offset
, 0);
7095 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
7096 free_extent_map(em
);
7097 return ERR_PTR(ret
);
7104 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7105 * block must be cow'd
7107 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7108 u64
*orig_start
, u64
*orig_block_len
,
7111 struct btrfs_trans_handle
*trans
;
7112 struct btrfs_path
*path
;
7114 struct extent_buffer
*leaf
;
7115 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7116 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7117 struct btrfs_file_extent_item
*fi
;
7118 struct btrfs_key key
;
7125 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7127 path
= btrfs_alloc_path();
7131 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
7136 slot
= path
->slots
[0];
7139 /* can't find the item, must cow */
7146 leaf
= path
->nodes
[0];
7147 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7148 if (key
.objectid
!= btrfs_ino(inode
) ||
7149 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7150 /* not our file or wrong item type, must cow */
7154 if (key
.offset
> offset
) {
7155 /* Wrong offset, must cow */
7159 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7160 found_type
= btrfs_file_extent_type(leaf
, fi
);
7161 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7162 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7163 /* not a regular extent, must cow */
7167 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7170 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7171 if (extent_end
<= offset
)
7174 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7175 if (disk_bytenr
== 0)
7178 if (btrfs_file_extent_compression(leaf
, fi
) ||
7179 btrfs_file_extent_encryption(leaf
, fi
) ||
7180 btrfs_file_extent_other_encoding(leaf
, fi
))
7183 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7186 *orig_start
= key
.offset
- backref_offset
;
7187 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7188 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7191 if (btrfs_extent_readonly(root
, disk_bytenr
))
7194 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7195 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7198 range_end
= round_up(offset
+ num_bytes
, root
->sectorsize
) - 1;
7199 ret
= test_range_bit(io_tree
, offset
, range_end
,
7200 EXTENT_DELALLOC
, 0, NULL
);
7207 btrfs_release_path(path
);
7210 * look for other files referencing this extent, if we
7211 * find any we must cow
7213 trans
= btrfs_join_transaction(root
);
7214 if (IS_ERR(trans
)) {
7219 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
7220 key
.offset
- backref_offset
, disk_bytenr
);
7221 btrfs_end_transaction(trans
, root
);
7228 * adjust disk_bytenr and num_bytes to cover just the bytes
7229 * in this extent we are about to write. If there
7230 * are any csums in that range we have to cow in order
7231 * to keep the csums correct
7233 disk_bytenr
+= backref_offset
;
7234 disk_bytenr
+= offset
- key
.offset
;
7235 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
7238 * all of the above have passed, it is safe to overwrite this extent
7244 btrfs_free_path(path
);
7248 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7250 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7252 void **pagep
= NULL
;
7253 struct page
*page
= NULL
;
7257 start_idx
= start
>> PAGE_CACHE_SHIFT
;
7260 * end is the last byte in the last page. end == start is legal
7262 end_idx
= end
>> PAGE_CACHE_SHIFT
;
7266 /* Most of the code in this while loop is lifted from
7267 * find_get_page. It's been modified to begin searching from a
7268 * page and return just the first page found in that range. If the
7269 * found idx is less than or equal to the end idx then we know that
7270 * a page exists. If no pages are found or if those pages are
7271 * outside of the range then we're fine (yay!) */
7272 while (page
== NULL
&&
7273 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7274 page
= radix_tree_deref_slot(pagep
);
7275 if (unlikely(!page
))
7278 if (radix_tree_exception(page
)) {
7279 if (radix_tree_deref_retry(page
)) {
7284 * Otherwise, shmem/tmpfs must be storing a swap entry
7285 * here as an exceptional entry: so return it without
7286 * attempting to raise page count.
7289 break; /* TODO: Is this relevant for this use case? */
7292 if (!page_cache_get_speculative(page
)) {
7298 * Has the page moved?
7299 * This is part of the lockless pagecache protocol. See
7300 * include/linux/pagemap.h for details.
7302 if (unlikely(page
!= *pagep
)) {
7303 page_cache_release(page
);
7309 if (page
->index
<= end_idx
)
7311 page_cache_release(page
);
7318 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7319 struct extent_state
**cached_state
, int writing
)
7321 struct btrfs_ordered_extent
*ordered
;
7325 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7328 * We're concerned with the entire range that we're going to be
7329 * doing DIO to, so we need to make sure theres no ordered
7330 * extents in this range.
7332 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
7333 lockend
- lockstart
+ 1);
7336 * We need to make sure there are no buffered pages in this
7337 * range either, we could have raced between the invalidate in
7338 * generic_file_direct_write and locking the extent. The
7339 * invalidate needs to happen so that reads after a write do not
7344 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7347 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7348 cached_state
, GFP_NOFS
);
7351 btrfs_start_ordered_extent(inode
, ordered
, 1);
7352 btrfs_put_ordered_extent(ordered
);
7354 /* Screw you mmap */
7355 ret
= btrfs_fdatawrite_range(inode
, lockstart
, lockend
);
7358 ret
= filemap_fdatawait_range(inode
->i_mapping
,
7365 * If we found a page that couldn't be invalidated just
7366 * fall back to buffered.
7368 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
7369 lockstart
>> PAGE_CACHE_SHIFT
,
7370 lockend
>> PAGE_CACHE_SHIFT
);
7381 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
7382 u64 len
, u64 orig_start
,
7383 u64 block_start
, u64 block_len
,
7384 u64 orig_block_len
, u64 ram_bytes
,
7387 struct extent_map_tree
*em_tree
;
7388 struct extent_map
*em
;
7389 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7392 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7393 em
= alloc_extent_map();
7395 return ERR_PTR(-ENOMEM
);
7398 em
->orig_start
= orig_start
;
7399 em
->mod_start
= start
;
7402 em
->block_len
= block_len
;
7403 em
->block_start
= block_start
;
7404 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7405 em
->orig_block_len
= orig_block_len
;
7406 em
->ram_bytes
= ram_bytes
;
7407 em
->generation
= -1;
7408 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7409 if (type
== BTRFS_ORDERED_PREALLOC
)
7410 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7413 btrfs_drop_extent_cache(inode
, em
->start
,
7414 em
->start
+ em
->len
- 1, 0);
7415 write_lock(&em_tree
->lock
);
7416 ret
= add_extent_mapping(em_tree
, em
, 1);
7417 write_unlock(&em_tree
->lock
);
7418 } while (ret
== -EEXIST
);
7421 free_extent_map(em
);
7422 return ERR_PTR(ret
);
7429 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7430 struct buffer_head
*bh_result
, int create
)
7432 struct extent_map
*em
;
7433 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7434 struct extent_state
*cached_state
= NULL
;
7435 u64 start
= iblock
<< inode
->i_blkbits
;
7436 u64 lockstart
, lockend
;
7437 u64 len
= bh_result
->b_size
;
7438 u64
*outstanding_extents
= NULL
;
7439 int unlock_bits
= EXTENT_LOCKED
;
7443 unlock_bits
|= EXTENT_DIRTY
;
7445 len
= min_t(u64
, len
, root
->sectorsize
);
7448 lockend
= start
+ len
- 1;
7450 if (current
->journal_info
) {
7452 * Need to pull our outstanding extents and set journal_info to NULL so
7453 * that anything that needs to check if there's a transction doesn't get
7456 outstanding_extents
= current
->journal_info
;
7457 current
->journal_info
= NULL
;
7461 * If this errors out it's because we couldn't invalidate pagecache for
7462 * this range and we need to fallback to buffered.
7464 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
7467 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
7474 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7475 * io. INLINE is special, and we could probably kludge it in here, but
7476 * it's still buffered so for safety lets just fall back to the generic
7479 * For COMPRESSED we _have_ to read the entire extent in so we can
7480 * decompress it, so there will be buffering required no matter what we
7481 * do, so go ahead and fallback to buffered.
7483 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7484 * to buffered IO. Don't blame me, this is the price we pay for using
7487 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7488 em
->block_start
== EXTENT_MAP_INLINE
) {
7489 free_extent_map(em
);
7494 /* Just a good old fashioned hole, return */
7495 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7496 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7497 free_extent_map(em
);
7502 * We don't allocate a new extent in the following cases
7504 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7506 * 2) The extent is marked as PREALLOC. We're good to go here and can
7507 * just use the extent.
7511 len
= min(len
, em
->len
- (start
- em
->start
));
7512 lockstart
= start
+ len
;
7516 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7517 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7518 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7520 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7522 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7523 type
= BTRFS_ORDERED_PREALLOC
;
7525 type
= BTRFS_ORDERED_NOCOW
;
7526 len
= min(len
, em
->len
- (start
- em
->start
));
7527 block_start
= em
->block_start
+ (start
- em
->start
);
7529 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7530 &orig_block_len
, &ram_bytes
) == 1) {
7531 if (type
== BTRFS_ORDERED_PREALLOC
) {
7532 free_extent_map(em
);
7533 em
= create_pinned_em(inode
, start
, len
,
7544 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
7545 block_start
, len
, len
, type
);
7547 free_extent_map(em
);
7555 * this will cow the extent, reset the len in case we changed
7558 len
= bh_result
->b_size
;
7559 free_extent_map(em
);
7560 em
= btrfs_new_extent_direct(inode
, start
, len
);
7565 len
= min(len
, em
->len
- (start
- em
->start
));
7567 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7569 bh_result
->b_size
= len
;
7570 bh_result
->b_bdev
= em
->bdev
;
7571 set_buffer_mapped(bh_result
);
7573 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7574 set_buffer_new(bh_result
);
7577 * Need to update the i_size under the extent lock so buffered
7578 * readers will get the updated i_size when we unlock.
7580 if (start
+ len
> i_size_read(inode
))
7581 i_size_write(inode
, start
+ len
);
7584 * If we have an outstanding_extents count still set then we're
7585 * within our reservation, otherwise we need to adjust our inode
7586 * counter appropriately.
7588 if (*outstanding_extents
) {
7589 (*outstanding_extents
)--;
7591 spin_lock(&BTRFS_I(inode
)->lock
);
7592 BTRFS_I(inode
)->outstanding_extents
++;
7593 spin_unlock(&BTRFS_I(inode
)->lock
);
7596 current
->journal_info
= outstanding_extents
;
7597 btrfs_free_reserved_data_space(inode
, len
);
7601 * In the case of write we need to clear and unlock the entire range,
7602 * in the case of read we need to unlock only the end area that we
7603 * aren't using if there is any left over space.
7605 if (lockstart
< lockend
) {
7606 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7607 lockend
, unlock_bits
, 1, 0,
7608 &cached_state
, GFP_NOFS
);
7610 free_extent_state(cached_state
);
7613 free_extent_map(em
);
7618 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7619 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7620 if (outstanding_extents
)
7621 current
->journal_info
= outstanding_extents
;
7625 static inline int submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7626 int rw
, int mirror_num
)
7628 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7631 BUG_ON(rw
& REQ_WRITE
);
7635 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
7636 BTRFS_WQ_ENDIO_DIO_REPAIR
);
7640 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
7646 static int btrfs_check_dio_repairable(struct inode
*inode
,
7647 struct bio
*failed_bio
,
7648 struct io_failure_record
*failrec
,
7653 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
7654 failrec
->logical
, failrec
->len
);
7655 if (num_copies
== 1) {
7657 * we only have a single copy of the data, so don't bother with
7658 * all the retry and error correction code that follows. no
7659 * matter what the error is, it is very likely to persist.
7661 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7662 num_copies
, failrec
->this_mirror
, failed_mirror
);
7666 failrec
->failed_mirror
= failed_mirror
;
7667 failrec
->this_mirror
++;
7668 if (failrec
->this_mirror
== failed_mirror
)
7669 failrec
->this_mirror
++;
7671 if (failrec
->this_mirror
> num_copies
) {
7672 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7673 num_copies
, failrec
->this_mirror
, failed_mirror
);
7680 static int dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7681 struct page
*page
, u64 start
, u64 end
,
7682 int failed_mirror
, bio_end_io_t
*repair_endio
,
7685 struct io_failure_record
*failrec
;
7691 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
7693 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7697 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7700 free_io_failure(inode
, failrec
);
7704 if (failed_bio
->bi_vcnt
> 1)
7705 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
7707 read_mode
= READ_SYNC
;
7709 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7710 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7711 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7712 0, isector
, repair_endio
, repair_arg
);
7714 free_io_failure(inode
, failrec
);
7718 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7719 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7720 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7722 ret
= submit_dio_repair_bio(inode
, bio
, read_mode
,
7723 failrec
->this_mirror
);
7725 free_io_failure(inode
, failrec
);
7732 struct btrfs_retry_complete
{
7733 struct completion done
;
7734 struct inode
*inode
;
7739 static void btrfs_retry_endio_nocsum(struct bio
*bio
, int err
)
7741 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7742 struct bio_vec
*bvec
;
7749 bio_for_each_segment_all(bvec
, bio
, i
)
7750 clean_io_failure(done
->inode
, done
->start
, bvec
->bv_page
, 0);
7752 complete(&done
->done
);
7756 static int __btrfs_correct_data_nocsum(struct inode
*inode
,
7757 struct btrfs_io_bio
*io_bio
)
7759 struct bio_vec
*bvec
;
7760 struct btrfs_retry_complete done
;
7765 start
= io_bio
->logical
;
7768 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7772 init_completion(&done
.done
);
7774 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
, start
,
7775 start
+ bvec
->bv_len
- 1,
7777 btrfs_retry_endio_nocsum
, &done
);
7781 wait_for_completion(&done
.done
);
7783 if (!done
.uptodate
) {
7784 /* We might have another mirror, so try again */
7788 start
+= bvec
->bv_len
;
7794 static void btrfs_retry_endio(struct bio
*bio
, int err
)
7796 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7797 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7798 struct bio_vec
*bvec
;
7807 bio_for_each_segment_all(bvec
, bio
, i
) {
7808 ret
= __readpage_endio_check(done
->inode
, io_bio
, i
,
7810 done
->start
, bvec
->bv_len
);
7812 clean_io_failure(done
->inode
, done
->start
,
7818 done
->uptodate
= uptodate
;
7820 complete(&done
->done
);
7824 static int __btrfs_subio_endio_read(struct inode
*inode
,
7825 struct btrfs_io_bio
*io_bio
, int err
)
7827 struct bio_vec
*bvec
;
7828 struct btrfs_retry_complete done
;
7835 start
= io_bio
->logical
;
7838 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7839 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7840 0, start
, bvec
->bv_len
);
7846 init_completion(&done
.done
);
7848 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
, start
,
7849 start
+ bvec
->bv_len
- 1,
7851 btrfs_retry_endio
, &done
);
7857 wait_for_completion(&done
.done
);
7859 if (!done
.uptodate
) {
7860 /* We might have another mirror, so try again */
7864 offset
+= bvec
->bv_len
;
7865 start
+= bvec
->bv_len
;
7871 static int btrfs_subio_endio_read(struct inode
*inode
,
7872 struct btrfs_io_bio
*io_bio
, int err
)
7874 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7878 return __btrfs_correct_data_nocsum(inode
, io_bio
);
7882 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
7886 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
7888 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7889 struct inode
*inode
= dip
->inode
;
7890 struct bio
*dio_bio
;
7891 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7893 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
7894 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
7896 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
7897 dip
->logical_offset
+ dip
->bytes
- 1);
7898 dio_bio
= dip
->dio_bio
;
7902 /* If we had a csum failure make sure to clear the uptodate flag */
7904 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7905 dio_end_io(dio_bio
, err
);
7908 io_bio
->end_io(io_bio
, err
);
7912 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
7914 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7915 struct inode
*inode
= dip
->inode
;
7916 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7917 struct btrfs_ordered_extent
*ordered
= NULL
;
7918 u64 ordered_offset
= dip
->logical_offset
;
7919 u64 ordered_bytes
= dip
->bytes
;
7920 struct bio
*dio_bio
;
7926 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7928 ordered_bytes
, !err
);
7932 btrfs_init_work(&ordered
->work
, btrfs_endio_write_helper
,
7933 finish_ordered_fn
, NULL
, NULL
);
7934 btrfs_queue_work(root
->fs_info
->endio_write_workers
,
7938 * our bio might span multiple ordered extents. If we haven't
7939 * completed the accounting for the whole dio, go back and try again
7941 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
7942 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
7948 dio_bio
= dip
->dio_bio
;
7952 /* If we had an error make sure to clear the uptodate flag */
7954 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7955 dio_end_io(dio_bio
, err
);
7959 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
7960 struct bio
*bio
, int mirror_num
,
7961 unsigned long bio_flags
, u64 offset
)
7964 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7965 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
7966 BUG_ON(ret
); /* -ENOMEM */
7970 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
7972 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7975 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
7976 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7977 btrfs_ino(dip
->inode
), bio
->bi_rw
,
7978 (unsigned long long)bio
->bi_iter
.bi_sector
,
7979 bio
->bi_iter
.bi_size
, err
);
7981 if (dip
->subio_endio
)
7982 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
7988 * before atomic variable goto zero, we must make sure
7989 * dip->errors is perceived to be set.
7991 smp_mb__before_atomic();
7994 /* if there are more bios still pending for this dio, just exit */
7995 if (!atomic_dec_and_test(&dip
->pending_bios
))
7999 bio_io_error(dip
->orig_bio
);
8001 set_bit(BIO_UPTODATE
, &dip
->dio_bio
->bi_flags
);
8002 bio_endio(dip
->orig_bio
, 0);
8008 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
8009 u64 first_sector
, gfp_t gfp_flags
)
8011 int nr_vecs
= bio_get_nr_vecs(bdev
);
8012 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
8015 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root
*root
,
8016 struct inode
*inode
,
8017 struct btrfs_dio_private
*dip
,
8021 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8022 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8026 * We load all the csum data we need when we submit
8027 * the first bio to reduce the csum tree search and
8030 if (dip
->logical_offset
== file_offset
) {
8031 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
->orig_bio
,
8037 if (bio
== dip
->orig_bio
)
8040 file_offset
-= dip
->logical_offset
;
8041 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8042 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8047 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
8048 int rw
, u64 file_offset
, int skip_sum
,
8051 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8052 int write
= rw
& REQ_WRITE
;
8053 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8057 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8062 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
8063 BTRFS_WQ_ENDIO_DATA
);
8071 if (write
&& async_submit
) {
8072 ret
= btrfs_wq_submit_bio(root
->fs_info
,
8073 inode
, rw
, bio
, 0, 0,
8075 __btrfs_submit_bio_start_direct_io
,
8076 __btrfs_submit_bio_done
);
8080 * If we aren't doing async submit, calculate the csum of the
8083 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
8087 ret
= btrfs_lookup_and_bind_dio_csum(root
, inode
, dip
, bio
,
8093 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
8099 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
8102 struct inode
*inode
= dip
->inode
;
8103 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8105 struct bio
*orig_bio
= dip
->orig_bio
;
8106 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
8107 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8108 u64 file_offset
= dip
->logical_offset
;
8113 int async_submit
= 0;
8115 map_length
= orig_bio
->bi_iter
.bi_size
;
8116 ret
= btrfs_map_block(root
->fs_info
, rw
, start_sector
<< 9,
8117 &map_length
, NULL
, 0);
8121 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
8123 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8127 /* async crcs make it difficult to collect full stripe writes. */
8128 if (btrfs_get_alloc_profile(root
, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8133 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
8137 bio
->bi_private
= dip
;
8138 bio
->bi_end_io
= btrfs_end_dio_bio
;
8139 btrfs_io_bio(bio
)->logical
= file_offset
;
8140 atomic_inc(&dip
->pending_bios
);
8142 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
8143 if (map_length
< submit_len
+ bvec
->bv_len
||
8144 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
8145 bvec
->bv_offset
) < bvec
->bv_len
) {
8147 * inc the count before we submit the bio so
8148 * we know the end IO handler won't happen before
8149 * we inc the count. Otherwise, the dip might get freed
8150 * before we're done setting it up
8152 atomic_inc(&dip
->pending_bios
);
8153 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
8154 file_offset
, skip_sum
,
8158 atomic_dec(&dip
->pending_bios
);
8162 start_sector
+= submit_len
>> 9;
8163 file_offset
+= submit_len
;
8168 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
8169 start_sector
, GFP_NOFS
);
8172 bio
->bi_private
= dip
;
8173 bio
->bi_end_io
= btrfs_end_dio_bio
;
8174 btrfs_io_bio(bio
)->logical
= file_offset
;
8176 map_length
= orig_bio
->bi_iter
.bi_size
;
8177 ret
= btrfs_map_block(root
->fs_info
, rw
,
8179 &map_length
, NULL
, 0);
8185 submit_len
+= bvec
->bv_len
;
8192 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
8201 * before atomic variable goto zero, we must
8202 * make sure dip->errors is perceived to be set.
8204 smp_mb__before_atomic();
8205 if (atomic_dec_and_test(&dip
->pending_bios
))
8206 bio_io_error(dip
->orig_bio
);
8208 /* bio_end_io() will handle error, so we needn't return it */
8212 static void btrfs_submit_direct(int rw
, struct bio
*dio_bio
,
8213 struct inode
*inode
, loff_t file_offset
)
8215 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8216 struct btrfs_dio_private
*dip
;
8218 struct btrfs_io_bio
*btrfs_bio
;
8220 int write
= rw
& REQ_WRITE
;
8223 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8225 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
8231 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8237 dip
->private = dio_bio
->bi_private
;
8239 dip
->logical_offset
= file_offset
;
8240 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8241 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8242 io_bio
->bi_private
= dip
;
8243 dip
->orig_bio
= io_bio
;
8244 dip
->dio_bio
= dio_bio
;
8245 atomic_set(&dip
->pending_bios
, 0);
8246 btrfs_bio
= btrfs_io_bio(io_bio
);
8247 btrfs_bio
->logical
= file_offset
;
8250 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
8252 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
8253 dip
->subio_endio
= btrfs_subio_endio_read
;
8256 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
8260 if (btrfs_bio
->end_io
)
8261 btrfs_bio
->end_io(btrfs_bio
, ret
);
8267 * If this is a write, we need to clean up the reserved space and kill
8268 * the ordered extent.
8271 struct btrfs_ordered_extent
*ordered
;
8272 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
8273 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
8274 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
8275 btrfs_free_reserved_extent(root
, ordered
->start
,
8276 ordered
->disk_len
, 1);
8277 btrfs_put_ordered_extent(ordered
);
8278 btrfs_put_ordered_extent(ordered
);
8280 bio_endio(dio_bio
, ret
);
8283 static ssize_t
check_direct_IO(struct btrfs_root
*root
, struct kiocb
*iocb
,
8284 const struct iov_iter
*iter
, loff_t offset
)
8288 unsigned blocksize_mask
= root
->sectorsize
- 1;
8289 ssize_t retval
= -EINVAL
;
8291 if (offset
& blocksize_mask
)
8294 if (iov_iter_alignment(iter
) & blocksize_mask
)
8297 /* If this is a write we don't need to check anymore */
8298 if (iov_iter_rw(iter
) == WRITE
)
8301 * Check to make sure we don't have duplicate iov_base's in this
8302 * iovec, if so return EINVAL, otherwise we'll get csum errors
8303 * when reading back.
8305 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8306 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8307 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8316 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
8319 struct file
*file
= iocb
->ki_filp
;
8320 struct inode
*inode
= file
->f_mapping
->host
;
8321 u64 outstanding_extents
= 0;
8325 bool relock
= false;
8328 if (check_direct_IO(BTRFS_I(inode
)->root
, iocb
, iter
, offset
))
8331 inode_dio_begin(inode
);
8332 smp_mb__after_atomic();
8335 * The generic stuff only does filemap_write_and_wait_range, which
8336 * isn't enough if we've written compressed pages to this area, so
8337 * we need to flush the dirty pages again to make absolutely sure
8338 * that any outstanding dirty pages are on disk.
8340 count
= iov_iter_count(iter
);
8341 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8342 &BTRFS_I(inode
)->runtime_flags
))
8343 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8344 offset
+ count
- 1);
8346 if (iov_iter_rw(iter
) == WRITE
) {
8348 * If the write DIO is beyond the EOF, we need update
8349 * the isize, but it is protected by i_mutex. So we can
8350 * not unlock the i_mutex at this case.
8352 if (offset
+ count
<= inode
->i_size
) {
8353 mutex_unlock(&inode
->i_mutex
);
8356 ret
= btrfs_delalloc_reserve_space(inode
, count
);
8359 outstanding_extents
= div64_u64(count
+
8360 BTRFS_MAX_EXTENT_SIZE
- 1,
8361 BTRFS_MAX_EXTENT_SIZE
);
8364 * We need to know how many extents we reserved so that we can
8365 * do the accounting properly if we go over the number we
8366 * originally calculated. Abuse current->journal_info for this.
8368 current
->journal_info
= &outstanding_extents
;
8369 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8370 &BTRFS_I(inode
)->runtime_flags
)) {
8371 inode_dio_end(inode
);
8372 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8376 ret
= __blockdev_direct_IO(iocb
, inode
,
8377 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
8378 iter
, offset
, btrfs_get_blocks_direct
, NULL
,
8379 btrfs_submit_direct
, flags
);
8380 if (iov_iter_rw(iter
) == WRITE
) {
8381 current
->journal_info
= NULL
;
8382 if (ret
< 0 && ret
!= -EIOCBQUEUED
)
8383 btrfs_delalloc_release_space(inode
, count
);
8384 else if (ret
>= 0 && (size_t)ret
< count
)
8385 btrfs_delalloc_release_space(inode
,
8386 count
- (size_t)ret
);
8390 inode_dio_end(inode
);
8392 mutex_lock(&inode
->i_mutex
);
8397 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8399 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8400 __u64 start
, __u64 len
)
8404 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8408 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8411 int btrfs_readpage(struct file
*file
, struct page
*page
)
8413 struct extent_io_tree
*tree
;
8414 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8415 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8418 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8420 struct extent_io_tree
*tree
;
8421 struct inode
*inode
= page
->mapping
->host
;
8424 if (current
->flags
& PF_MEMALLOC
) {
8425 redirty_page_for_writepage(wbc
, page
);
8431 * If we are under memory pressure we will call this directly from the
8432 * VM, we need to make sure we have the inode referenced for the ordered
8433 * extent. If not just return like we didn't do anything.
8435 if (!igrab(inode
)) {
8436 redirty_page_for_writepage(wbc
, page
);
8437 return AOP_WRITEPAGE_ACTIVATE
;
8439 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8440 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8441 btrfs_add_delayed_iput(inode
);
8445 static int btrfs_writepages(struct address_space
*mapping
,
8446 struct writeback_control
*wbc
)
8448 struct extent_io_tree
*tree
;
8450 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8451 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8455 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8456 struct list_head
*pages
, unsigned nr_pages
)
8458 struct extent_io_tree
*tree
;
8459 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8460 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8463 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8465 struct extent_io_tree
*tree
;
8466 struct extent_map_tree
*map
;
8469 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8470 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8471 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8473 ClearPagePrivate(page
);
8474 set_page_private(page
, 0);
8475 page_cache_release(page
);
8480 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8482 if (PageWriteback(page
) || PageDirty(page
))
8484 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
8487 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8488 unsigned int length
)
8490 struct inode
*inode
= page
->mapping
->host
;
8491 struct extent_io_tree
*tree
;
8492 struct btrfs_ordered_extent
*ordered
;
8493 struct extent_state
*cached_state
= NULL
;
8494 u64 page_start
= page_offset(page
);
8495 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
8496 int inode_evicting
= inode
->i_state
& I_FREEING
;
8499 * we have the page locked, so new writeback can't start,
8500 * and the dirty bit won't be cleared while we are here.
8502 * Wait for IO on this page so that we can safely clear
8503 * the PagePrivate2 bit and do ordered accounting
8505 wait_on_page_writeback(page
);
8507 tree
= &BTRFS_I(inode
)->io_tree
;
8509 btrfs_releasepage(page
, GFP_NOFS
);
8513 if (!inode_evicting
)
8514 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
8515 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
8518 * IO on this page will never be started, so we need
8519 * to account for any ordered extents now
8521 if (!inode_evicting
)
8522 clear_extent_bit(tree
, page_start
, page_end
,
8523 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8524 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8525 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8528 * whoever cleared the private bit is responsible
8529 * for the finish_ordered_io
8531 if (TestClearPagePrivate2(page
)) {
8532 struct btrfs_ordered_inode_tree
*tree
;
8535 tree
= &BTRFS_I(inode
)->ordered_tree
;
8537 spin_lock_irq(&tree
->lock
);
8538 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8539 new_len
= page_start
- ordered
->file_offset
;
8540 if (new_len
< ordered
->truncated_len
)
8541 ordered
->truncated_len
= new_len
;
8542 spin_unlock_irq(&tree
->lock
);
8544 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8546 PAGE_CACHE_SIZE
, 1))
8547 btrfs_finish_ordered_io(ordered
);
8549 btrfs_put_ordered_extent(ordered
);
8550 if (!inode_evicting
) {
8551 cached_state
= NULL
;
8552 lock_extent_bits(tree
, page_start
, page_end
, 0,
8557 if (!inode_evicting
) {
8558 clear_extent_bit(tree
, page_start
, page_end
,
8559 EXTENT_LOCKED
| EXTENT_DIRTY
|
8560 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8561 EXTENT_DEFRAG
, 1, 1,
8562 &cached_state
, GFP_NOFS
);
8564 __btrfs_releasepage(page
, GFP_NOFS
);
8567 ClearPageChecked(page
);
8568 if (PagePrivate(page
)) {
8569 ClearPagePrivate(page
);
8570 set_page_private(page
, 0);
8571 page_cache_release(page
);
8576 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8577 * called from a page fault handler when a page is first dirtied. Hence we must
8578 * be careful to check for EOF conditions here. We set the page up correctly
8579 * for a written page which means we get ENOSPC checking when writing into
8580 * holes and correct delalloc and unwritten extent mapping on filesystems that
8581 * support these features.
8583 * We are not allowed to take the i_mutex here so we have to play games to
8584 * protect against truncate races as the page could now be beyond EOF. Because
8585 * vmtruncate() writes the inode size before removing pages, once we have the
8586 * page lock we can determine safely if the page is beyond EOF. If it is not
8587 * beyond EOF, then the page is guaranteed safe against truncation until we
8590 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
8592 struct page
*page
= vmf
->page
;
8593 struct inode
*inode
= file_inode(vma
->vm_file
);
8594 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8595 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8596 struct btrfs_ordered_extent
*ordered
;
8597 struct extent_state
*cached_state
= NULL
;
8599 unsigned long zero_start
;
8606 sb_start_pagefault(inode
->i_sb
);
8607 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
8609 ret
= file_update_time(vma
->vm_file
);
8615 else /* -ENOSPC, -EIO, etc */
8616 ret
= VM_FAULT_SIGBUS
;
8622 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8625 size
= i_size_read(inode
);
8626 page_start
= page_offset(page
);
8627 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
8629 if ((page
->mapping
!= inode
->i_mapping
) ||
8630 (page_start
>= size
)) {
8631 /* page got truncated out from underneath us */
8634 wait_on_page_writeback(page
);
8636 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
8637 set_page_extent_mapped(page
);
8640 * we can't set the delalloc bits if there are pending ordered
8641 * extents. Drop our locks and wait for them to finish
8643 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
8645 unlock_extent_cached(io_tree
, page_start
, page_end
,
8646 &cached_state
, GFP_NOFS
);
8648 btrfs_start_ordered_extent(inode
, ordered
, 1);
8649 btrfs_put_ordered_extent(ordered
);
8654 * XXX - page_mkwrite gets called every time the page is dirtied, even
8655 * if it was already dirty, so for space accounting reasons we need to
8656 * clear any delalloc bits for the range we are fixing to save. There
8657 * is probably a better way to do this, but for now keep consistent with
8658 * prepare_pages in the normal write path.
8660 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
8661 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8662 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8663 0, 0, &cached_state
, GFP_NOFS
);
8665 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
8668 unlock_extent_cached(io_tree
, page_start
, page_end
,
8669 &cached_state
, GFP_NOFS
);
8670 ret
= VM_FAULT_SIGBUS
;
8675 /* page is wholly or partially inside EOF */
8676 if (page_start
+ PAGE_CACHE_SIZE
> size
)
8677 zero_start
= size
& ~PAGE_CACHE_MASK
;
8679 zero_start
= PAGE_CACHE_SIZE
;
8681 if (zero_start
!= PAGE_CACHE_SIZE
) {
8683 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
8684 flush_dcache_page(page
);
8687 ClearPageChecked(page
);
8688 set_page_dirty(page
);
8689 SetPageUptodate(page
);
8691 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
8692 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8693 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8695 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
8699 sb_end_pagefault(inode
->i_sb
);
8700 return VM_FAULT_LOCKED
;
8704 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
8706 sb_end_pagefault(inode
->i_sb
);
8710 static int btrfs_truncate(struct inode
*inode
)
8712 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8713 struct btrfs_block_rsv
*rsv
;
8716 struct btrfs_trans_handle
*trans
;
8717 u64 mask
= root
->sectorsize
- 1;
8718 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
8720 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8726 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8727 * 3 things going on here
8729 * 1) We need to reserve space for our orphan item and the space to
8730 * delete our orphan item. Lord knows we don't want to have a dangling
8731 * orphan item because we didn't reserve space to remove it.
8733 * 2) We need to reserve space to update our inode.
8735 * 3) We need to have something to cache all the space that is going to
8736 * be free'd up by the truncate operation, but also have some slack
8737 * space reserved in case it uses space during the truncate (thank you
8738 * very much snapshotting).
8740 * And we need these to all be seperate. The fact is we can use alot of
8741 * space doing the truncate, and we have no earthly idea how much space
8742 * we will use, so we need the truncate reservation to be seperate so it
8743 * doesn't end up using space reserved for updating the inode or
8744 * removing the orphan item. We also need to be able to stop the
8745 * transaction and start a new one, which means we need to be able to
8746 * update the inode several times, and we have no idea of knowing how
8747 * many times that will be, so we can't just reserve 1 item for the
8748 * entirety of the opration, so that has to be done seperately as well.
8749 * Then there is the orphan item, which does indeed need to be held on
8750 * to for the whole operation, and we need nobody to touch this reserved
8751 * space except the orphan code.
8753 * So that leaves us with
8755 * 1) root->orphan_block_rsv - for the orphan deletion.
8756 * 2) rsv - for the truncate reservation, which we will steal from the
8757 * transaction reservation.
8758 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8759 * updating the inode.
8761 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
8764 rsv
->size
= min_size
;
8768 * 1 for the truncate slack space
8769 * 1 for updating the inode.
8771 trans
= btrfs_start_transaction(root
, 2);
8772 if (IS_ERR(trans
)) {
8773 err
= PTR_ERR(trans
);
8777 /* Migrate the slack space for the truncate to our reserve */
8778 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
8783 * So if we truncate and then write and fsync we normally would just
8784 * write the extents that changed, which is a problem if we need to
8785 * first truncate that entire inode. So set this flag so we write out
8786 * all of the extents in the inode to the sync log so we're completely
8789 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
8790 trans
->block_rsv
= rsv
;
8793 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
8795 BTRFS_EXTENT_DATA_KEY
);
8796 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
8801 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
8802 ret
= btrfs_update_inode(trans
, root
, inode
);
8808 btrfs_end_transaction(trans
, root
);
8809 btrfs_btree_balance_dirty(root
);
8811 trans
= btrfs_start_transaction(root
, 2);
8812 if (IS_ERR(trans
)) {
8813 ret
= err
= PTR_ERR(trans
);
8818 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
8820 BUG_ON(ret
); /* shouldn't happen */
8821 trans
->block_rsv
= rsv
;
8824 if (ret
== 0 && inode
->i_nlink
> 0) {
8825 trans
->block_rsv
= root
->orphan_block_rsv
;
8826 ret
= btrfs_orphan_del(trans
, inode
);
8832 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
8833 ret
= btrfs_update_inode(trans
, root
, inode
);
8837 ret
= btrfs_end_transaction(trans
, root
);
8838 btrfs_btree_balance_dirty(root
);
8842 btrfs_free_block_rsv(root
, rsv
);
8851 * create a new subvolume directory/inode (helper for the ioctl).
8853 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
8854 struct btrfs_root
*new_root
,
8855 struct btrfs_root
*parent_root
,
8858 struct inode
*inode
;
8862 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
8863 new_dirid
, new_dirid
,
8864 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
8867 return PTR_ERR(inode
);
8868 inode
->i_op
= &btrfs_dir_inode_operations
;
8869 inode
->i_fop
= &btrfs_dir_file_operations
;
8871 set_nlink(inode
, 1);
8872 btrfs_i_size_write(inode
, 0);
8873 unlock_new_inode(inode
);
8875 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
8877 btrfs_err(new_root
->fs_info
,
8878 "error inheriting subvolume %llu properties: %d",
8879 new_root
->root_key
.objectid
, err
);
8881 err
= btrfs_update_inode(trans
, new_root
, inode
);
8887 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8889 struct btrfs_inode
*ei
;
8890 struct inode
*inode
;
8892 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
8899 ei
->last_sub_trans
= 0;
8900 ei
->logged_trans
= 0;
8901 ei
->delalloc_bytes
= 0;
8902 ei
->defrag_bytes
= 0;
8903 ei
->disk_i_size
= 0;
8906 ei
->index_cnt
= (u64
)-1;
8908 ei
->last_unlink_trans
= 0;
8909 ei
->last_log_commit
= 0;
8910 ei
->delayed_iput_count
= 0;
8912 spin_lock_init(&ei
->lock
);
8913 ei
->outstanding_extents
= 0;
8914 ei
->reserved_extents
= 0;
8916 ei
->runtime_flags
= 0;
8917 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
8919 ei
->delayed_node
= NULL
;
8921 ei
->i_otime
.tv_sec
= 0;
8922 ei
->i_otime
.tv_nsec
= 0;
8924 inode
= &ei
->vfs_inode
;
8925 extent_map_tree_init(&ei
->extent_tree
);
8926 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
8927 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
8928 ei
->io_tree
.track_uptodate
= 1;
8929 ei
->io_failure_tree
.track_uptodate
= 1;
8930 atomic_set(&ei
->sync_writers
, 0);
8931 mutex_init(&ei
->log_mutex
);
8932 mutex_init(&ei
->delalloc_mutex
);
8933 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8934 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8935 INIT_LIST_HEAD(&ei
->delayed_iput
);
8936 RB_CLEAR_NODE(&ei
->rb_node
);
8941 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8942 void btrfs_test_destroy_inode(struct inode
*inode
)
8944 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8945 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8949 static void btrfs_i_callback(struct rcu_head
*head
)
8951 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
8952 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8955 void btrfs_destroy_inode(struct inode
*inode
)
8957 struct btrfs_ordered_extent
*ordered
;
8958 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8960 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8961 WARN_ON(inode
->i_data
.nrpages
);
8962 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8963 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
8964 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8965 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8966 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
8969 * This can happen where we create an inode, but somebody else also
8970 * created the same inode and we need to destroy the one we already
8976 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
8977 &BTRFS_I(inode
)->runtime_flags
)) {
8978 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
8980 atomic_dec(&root
->orphan_inodes
);
8984 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8988 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
8989 ordered
->file_offset
, ordered
->len
);
8990 btrfs_remove_ordered_extent(inode
, ordered
);
8991 btrfs_put_ordered_extent(ordered
);
8992 btrfs_put_ordered_extent(ordered
);
8995 inode_tree_del(inode
);
8996 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8998 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9001 int btrfs_drop_inode(struct inode
*inode
)
9003 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9008 /* the snap/subvol tree is on deleting */
9009 if (btrfs_root_refs(&root
->root_item
) == 0)
9012 return generic_drop_inode(inode
);
9015 static void init_once(void *foo
)
9017 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9019 inode_init_once(&ei
->vfs_inode
);
9022 void btrfs_destroy_cachep(void)
9025 * Make sure all delayed rcu free inodes are flushed before we
9029 if (btrfs_inode_cachep
)
9030 kmem_cache_destroy(btrfs_inode_cachep
);
9031 if (btrfs_trans_handle_cachep
)
9032 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9033 if (btrfs_transaction_cachep
)
9034 kmem_cache_destroy(btrfs_transaction_cachep
);
9035 if (btrfs_path_cachep
)
9036 kmem_cache_destroy(btrfs_path_cachep
);
9037 if (btrfs_free_space_cachep
)
9038 kmem_cache_destroy(btrfs_free_space_cachep
);
9039 if (btrfs_delalloc_work_cachep
)
9040 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
9043 int btrfs_init_cachep(void)
9045 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9046 sizeof(struct btrfs_inode
), 0,
9047 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
9048 if (!btrfs_inode_cachep
)
9051 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9052 sizeof(struct btrfs_trans_handle
), 0,
9053 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9054 if (!btrfs_trans_handle_cachep
)
9057 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
9058 sizeof(struct btrfs_transaction
), 0,
9059 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9060 if (!btrfs_transaction_cachep
)
9063 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9064 sizeof(struct btrfs_path
), 0,
9065 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9066 if (!btrfs_path_cachep
)
9069 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9070 sizeof(struct btrfs_free_space
), 0,
9071 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9072 if (!btrfs_free_space_cachep
)
9075 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
9076 sizeof(struct btrfs_delalloc_work
), 0,
9077 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
9079 if (!btrfs_delalloc_work_cachep
)
9084 btrfs_destroy_cachep();
9088 static int btrfs_getattr(struct vfsmount
*mnt
,
9089 struct dentry
*dentry
, struct kstat
*stat
)
9092 struct inode
*inode
= d_inode(dentry
);
9093 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9095 generic_fillattr(inode
, stat
);
9096 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9097 stat
->blksize
= PAGE_CACHE_SIZE
;
9099 spin_lock(&BTRFS_I(inode
)->lock
);
9100 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
9101 spin_unlock(&BTRFS_I(inode
)->lock
);
9102 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9103 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9107 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9108 struct inode
*new_dir
, struct dentry
*new_dentry
)
9110 struct btrfs_trans_handle
*trans
;
9111 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9112 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9113 struct inode
*new_inode
= d_inode(new_dentry
);
9114 struct inode
*old_inode
= d_inode(old_dentry
);
9115 struct timespec ctime
= CURRENT_TIME
;
9119 u64 old_ino
= btrfs_ino(old_inode
);
9121 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9124 /* we only allow rename subvolume link between subvolumes */
9125 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9128 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9129 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
9132 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9133 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9137 /* check for collisions, even if the name isn't there */
9138 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9139 new_dentry
->d_name
.name
,
9140 new_dentry
->d_name
.len
);
9143 if (ret
== -EEXIST
) {
9145 * eexist without a new_inode */
9146 if (WARN_ON(!new_inode
)) {
9150 /* maybe -EOVERFLOW */
9157 * we're using rename to replace one file with another. Start IO on it
9158 * now so we don't add too much work to the end of the transaction
9160 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9161 filemap_flush(old_inode
->i_mapping
);
9163 /* close the racy window with snapshot create/destroy ioctl */
9164 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9165 down_read(&root
->fs_info
->subvol_sem
);
9167 * We want to reserve the absolute worst case amount of items. So if
9168 * both inodes are subvols and we need to unlink them then that would
9169 * require 4 item modifications, but if they are both normal inodes it
9170 * would require 5 item modifications, so we'll assume their normal
9171 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9172 * should cover the worst case number of items we'll modify.
9174 trans
= btrfs_start_transaction(root
, 11);
9175 if (IS_ERR(trans
)) {
9176 ret
= PTR_ERR(trans
);
9181 btrfs_record_root_in_trans(trans
, dest
);
9183 ret
= btrfs_set_inode_index(new_dir
, &index
);
9187 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9188 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9189 /* force full log commit if subvolume involved. */
9190 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9192 ret
= btrfs_insert_inode_ref(trans
, dest
,
9193 new_dentry
->d_name
.name
,
9194 new_dentry
->d_name
.len
,
9196 btrfs_ino(new_dir
), index
);
9200 * this is an ugly little race, but the rename is required
9201 * to make sure that if we crash, the inode is either at the
9202 * old name or the new one. pinning the log transaction lets
9203 * us make sure we don't allow a log commit to come in after
9204 * we unlink the name but before we add the new name back in.
9206 btrfs_pin_log_trans(root
);
9209 inode_inc_iversion(old_dir
);
9210 inode_inc_iversion(new_dir
);
9211 inode_inc_iversion(old_inode
);
9212 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9213 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9214 old_inode
->i_ctime
= ctime
;
9216 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9217 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9219 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9220 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9221 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9222 old_dentry
->d_name
.name
,
9223 old_dentry
->d_name
.len
);
9225 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9226 d_inode(old_dentry
),
9227 old_dentry
->d_name
.name
,
9228 old_dentry
->d_name
.len
);
9230 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9233 btrfs_abort_transaction(trans
, root
, ret
);
9238 inode_inc_iversion(new_inode
);
9239 new_inode
->i_ctime
= CURRENT_TIME
;
9240 if (unlikely(btrfs_ino(new_inode
) ==
9241 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9242 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9243 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9245 new_dentry
->d_name
.name
,
9246 new_dentry
->d_name
.len
);
9247 BUG_ON(new_inode
->i_nlink
== 0);
9249 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
9250 d_inode(new_dentry
),
9251 new_dentry
->d_name
.name
,
9252 new_dentry
->d_name
.len
);
9254 if (!ret
&& new_inode
->i_nlink
== 0)
9255 ret
= btrfs_orphan_add(trans
, d_inode(new_dentry
));
9257 btrfs_abort_transaction(trans
, root
, ret
);
9262 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9263 new_dentry
->d_name
.name
,
9264 new_dentry
->d_name
.len
, 0, index
);
9266 btrfs_abort_transaction(trans
, root
, ret
);
9270 if (old_inode
->i_nlink
== 1)
9271 BTRFS_I(old_inode
)->dir_index
= index
;
9273 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
9274 struct dentry
*parent
= new_dentry
->d_parent
;
9275 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9276 btrfs_end_log_trans(root
);
9279 btrfs_end_transaction(trans
, root
);
9281 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9282 up_read(&root
->fs_info
->subvol_sem
);
9287 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9288 struct inode
*new_dir
, struct dentry
*new_dentry
,
9291 if (flags
& ~RENAME_NOREPLACE
)
9294 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
9297 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9299 struct btrfs_delalloc_work
*delalloc_work
;
9300 struct inode
*inode
;
9302 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9304 inode
= delalloc_work
->inode
;
9305 if (delalloc_work
->wait
) {
9306 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
9308 filemap_flush(inode
->i_mapping
);
9309 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9310 &BTRFS_I(inode
)->runtime_flags
))
9311 filemap_flush(inode
->i_mapping
);
9314 if (delalloc_work
->delay_iput
)
9315 btrfs_add_delayed_iput(inode
);
9318 complete(&delalloc_work
->completion
);
9321 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
9322 int wait
, int delay_iput
)
9324 struct btrfs_delalloc_work
*work
;
9326 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
9330 init_completion(&work
->completion
);
9331 INIT_LIST_HEAD(&work
->list
);
9332 work
->inode
= inode
;
9334 work
->delay_iput
= delay_iput
;
9335 WARN_ON_ONCE(!inode
);
9336 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
9337 btrfs_run_delalloc_work
, NULL
, NULL
);
9342 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
9344 wait_for_completion(&work
->completion
);
9345 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
9349 * some fairly slow code that needs optimization. This walks the list
9350 * of all the inodes with pending delalloc and forces them to disk.
9352 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
9355 struct btrfs_inode
*binode
;
9356 struct inode
*inode
;
9357 struct btrfs_delalloc_work
*work
, *next
;
9358 struct list_head works
;
9359 struct list_head splice
;
9362 INIT_LIST_HEAD(&works
);
9363 INIT_LIST_HEAD(&splice
);
9365 mutex_lock(&root
->delalloc_mutex
);
9366 spin_lock(&root
->delalloc_lock
);
9367 list_splice_init(&root
->delalloc_inodes
, &splice
);
9368 while (!list_empty(&splice
)) {
9369 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9372 list_move_tail(&binode
->delalloc_inodes
,
9373 &root
->delalloc_inodes
);
9374 inode
= igrab(&binode
->vfs_inode
);
9376 cond_resched_lock(&root
->delalloc_lock
);
9379 spin_unlock(&root
->delalloc_lock
);
9381 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
9384 btrfs_add_delayed_iput(inode
);
9390 list_add_tail(&work
->list
, &works
);
9391 btrfs_queue_work(root
->fs_info
->flush_workers
,
9394 if (nr
!= -1 && ret
>= nr
)
9397 spin_lock(&root
->delalloc_lock
);
9399 spin_unlock(&root
->delalloc_lock
);
9402 list_for_each_entry_safe(work
, next
, &works
, list
) {
9403 list_del_init(&work
->list
);
9404 btrfs_wait_and_free_delalloc_work(work
);
9407 if (!list_empty_careful(&splice
)) {
9408 spin_lock(&root
->delalloc_lock
);
9409 list_splice_tail(&splice
, &root
->delalloc_inodes
);
9410 spin_unlock(&root
->delalloc_lock
);
9412 mutex_unlock(&root
->delalloc_mutex
);
9416 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
9420 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
9423 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
9427 * the filemap_flush will queue IO into the worker threads, but
9428 * we have to make sure the IO is actually started and that
9429 * ordered extents get created before we return
9431 atomic_inc(&root
->fs_info
->async_submit_draining
);
9432 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
9433 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
9434 wait_event(root
->fs_info
->async_submit_wait
,
9435 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
9436 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
9438 atomic_dec(&root
->fs_info
->async_submit_draining
);
9442 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
9445 struct btrfs_root
*root
;
9446 struct list_head splice
;
9449 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9452 INIT_LIST_HEAD(&splice
);
9454 mutex_lock(&fs_info
->delalloc_root_mutex
);
9455 spin_lock(&fs_info
->delalloc_root_lock
);
9456 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
9457 while (!list_empty(&splice
) && nr
) {
9458 root
= list_first_entry(&splice
, struct btrfs_root
,
9460 root
= btrfs_grab_fs_root(root
);
9462 list_move_tail(&root
->delalloc_root
,
9463 &fs_info
->delalloc_roots
);
9464 spin_unlock(&fs_info
->delalloc_root_lock
);
9466 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
9467 btrfs_put_fs_root(root
);
9475 spin_lock(&fs_info
->delalloc_root_lock
);
9477 spin_unlock(&fs_info
->delalloc_root_lock
);
9480 atomic_inc(&fs_info
->async_submit_draining
);
9481 while (atomic_read(&fs_info
->nr_async_submits
) ||
9482 atomic_read(&fs_info
->async_delalloc_pages
)) {
9483 wait_event(fs_info
->async_submit_wait
,
9484 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
9485 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
9487 atomic_dec(&fs_info
->async_submit_draining
);
9489 if (!list_empty_careful(&splice
)) {
9490 spin_lock(&fs_info
->delalloc_root_lock
);
9491 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
9492 spin_unlock(&fs_info
->delalloc_root_lock
);
9494 mutex_unlock(&fs_info
->delalloc_root_mutex
);
9498 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
9499 const char *symname
)
9501 struct btrfs_trans_handle
*trans
;
9502 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9503 struct btrfs_path
*path
;
9504 struct btrfs_key key
;
9505 struct inode
*inode
= NULL
;
9513 struct btrfs_file_extent_item
*ei
;
9514 struct extent_buffer
*leaf
;
9516 name_len
= strlen(symname
);
9517 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
9518 return -ENAMETOOLONG
;
9521 * 2 items for inode item and ref
9522 * 2 items for dir items
9523 * 1 item for updating parent inode item
9524 * 1 item for the inline extent item
9525 * 1 item for xattr if selinux is on
9527 trans
= btrfs_start_transaction(root
, 7);
9529 return PTR_ERR(trans
);
9531 err
= btrfs_find_free_ino(root
, &objectid
);
9535 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
9536 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
9537 S_IFLNK
|S_IRWXUGO
, &index
);
9538 if (IS_ERR(inode
)) {
9539 err
= PTR_ERR(inode
);
9544 * If the active LSM wants to access the inode during
9545 * d_instantiate it needs these. Smack checks to see
9546 * if the filesystem supports xattrs by looking at the
9549 inode
->i_fop
= &btrfs_file_operations
;
9550 inode
->i_op
= &btrfs_file_inode_operations
;
9551 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9552 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9554 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
9556 goto out_unlock_inode
;
9558 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
9560 goto out_unlock_inode
;
9562 path
= btrfs_alloc_path();
9565 goto out_unlock_inode
;
9567 key
.objectid
= btrfs_ino(inode
);
9569 key
.type
= BTRFS_EXTENT_DATA_KEY
;
9570 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
9571 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
9574 btrfs_free_path(path
);
9575 goto out_unlock_inode
;
9577 leaf
= path
->nodes
[0];
9578 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
9579 struct btrfs_file_extent_item
);
9580 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
9581 btrfs_set_file_extent_type(leaf
, ei
,
9582 BTRFS_FILE_EXTENT_INLINE
);
9583 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
9584 btrfs_set_file_extent_compression(leaf
, ei
, 0);
9585 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
9586 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
9588 ptr
= btrfs_file_extent_inline_start(ei
);
9589 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
9590 btrfs_mark_buffer_dirty(leaf
);
9591 btrfs_free_path(path
);
9593 inode
->i_op
= &btrfs_symlink_inode_operations
;
9594 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
9595 inode_set_bytes(inode
, name_len
);
9596 btrfs_i_size_write(inode
, name_len
);
9597 err
= btrfs_update_inode(trans
, root
, inode
);
9600 goto out_unlock_inode
;
9603 unlock_new_inode(inode
);
9604 d_instantiate(dentry
, inode
);
9607 btrfs_end_transaction(trans
, root
);
9609 inode_dec_link_count(inode
);
9612 btrfs_btree_balance_dirty(root
);
9617 unlock_new_inode(inode
);
9621 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9622 u64 start
, u64 num_bytes
, u64 min_size
,
9623 loff_t actual_len
, u64
*alloc_hint
,
9624 struct btrfs_trans_handle
*trans
)
9626 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
9627 struct extent_map
*em
;
9628 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9629 struct btrfs_key ins
;
9630 u64 cur_offset
= start
;
9634 bool own_trans
= true;
9638 while (num_bytes
> 0) {
9640 trans
= btrfs_start_transaction(root
, 3);
9641 if (IS_ERR(trans
)) {
9642 ret
= PTR_ERR(trans
);
9647 cur_bytes
= min(num_bytes
, 256ULL * 1024 * 1024);
9648 cur_bytes
= max(cur_bytes
, min_size
);
9649 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
9650 *alloc_hint
, &ins
, 1, 0);
9653 btrfs_end_transaction(trans
, root
);
9657 ret
= insert_reserved_file_extent(trans
, inode
,
9658 cur_offset
, ins
.objectid
,
9659 ins
.offset
, ins
.offset
,
9660 ins
.offset
, 0, 0, 0,
9661 BTRFS_FILE_EXTENT_PREALLOC
);
9663 btrfs_free_reserved_extent(root
, ins
.objectid
,
9665 btrfs_abort_transaction(trans
, root
, ret
);
9667 btrfs_end_transaction(trans
, root
);
9671 btrfs_drop_extent_cache(inode
, cur_offset
,
9672 cur_offset
+ ins
.offset
-1, 0);
9674 em
= alloc_extent_map();
9676 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
9677 &BTRFS_I(inode
)->runtime_flags
);
9681 em
->start
= cur_offset
;
9682 em
->orig_start
= cur_offset
;
9683 em
->len
= ins
.offset
;
9684 em
->block_start
= ins
.objectid
;
9685 em
->block_len
= ins
.offset
;
9686 em
->orig_block_len
= ins
.offset
;
9687 em
->ram_bytes
= ins
.offset
;
9688 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
9689 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
9690 em
->generation
= trans
->transid
;
9693 write_lock(&em_tree
->lock
);
9694 ret
= add_extent_mapping(em_tree
, em
, 1);
9695 write_unlock(&em_tree
->lock
);
9698 btrfs_drop_extent_cache(inode
, cur_offset
,
9699 cur_offset
+ ins
.offset
- 1,
9702 free_extent_map(em
);
9704 num_bytes
-= ins
.offset
;
9705 cur_offset
+= ins
.offset
;
9706 *alloc_hint
= ins
.objectid
+ ins
.offset
;
9708 inode_inc_iversion(inode
);
9709 inode
->i_ctime
= CURRENT_TIME
;
9710 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
9711 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
9712 (actual_len
> inode
->i_size
) &&
9713 (cur_offset
> inode
->i_size
)) {
9714 if (cur_offset
> actual_len
)
9715 i_size
= actual_len
;
9717 i_size
= cur_offset
;
9718 i_size_write(inode
, i_size
);
9719 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
9722 ret
= btrfs_update_inode(trans
, root
, inode
);
9725 btrfs_abort_transaction(trans
, root
, ret
);
9727 btrfs_end_transaction(trans
, root
);
9732 btrfs_end_transaction(trans
, root
);
9737 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9738 u64 start
, u64 num_bytes
, u64 min_size
,
9739 loff_t actual_len
, u64
*alloc_hint
)
9741 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9742 min_size
, actual_len
, alloc_hint
,
9746 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
9747 struct btrfs_trans_handle
*trans
, int mode
,
9748 u64 start
, u64 num_bytes
, u64 min_size
,
9749 loff_t actual_len
, u64
*alloc_hint
)
9751 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9752 min_size
, actual_len
, alloc_hint
, trans
);
9755 static int btrfs_set_page_dirty(struct page
*page
)
9757 return __set_page_dirty_nobuffers(page
);
9760 static int btrfs_permission(struct inode
*inode
, int mask
)
9762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9763 umode_t mode
= inode
->i_mode
;
9765 if (mask
& MAY_WRITE
&&
9766 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
9767 if (btrfs_root_readonly(root
))
9769 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
9772 return generic_permission(inode
, mask
);
9775 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
9777 struct btrfs_trans_handle
*trans
;
9778 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9779 struct inode
*inode
= NULL
;
9785 * 5 units required for adding orphan entry
9787 trans
= btrfs_start_transaction(root
, 5);
9789 return PTR_ERR(trans
);
9791 ret
= btrfs_find_free_ino(root
, &objectid
);
9795 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
9796 btrfs_ino(dir
), objectid
, mode
, &index
);
9797 if (IS_ERR(inode
)) {
9798 ret
= PTR_ERR(inode
);
9803 inode
->i_fop
= &btrfs_file_operations
;
9804 inode
->i_op
= &btrfs_file_inode_operations
;
9806 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9807 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9809 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
9813 ret
= btrfs_update_inode(trans
, root
, inode
);
9816 ret
= btrfs_orphan_add(trans
, inode
);
9821 * We set number of links to 0 in btrfs_new_inode(), and here we set
9822 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9825 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9827 set_nlink(inode
, 1);
9828 unlock_new_inode(inode
);
9829 d_tmpfile(dentry
, inode
);
9830 mark_inode_dirty(inode
);
9833 btrfs_end_transaction(trans
, root
);
9836 btrfs_balance_delayed_items(root
);
9837 btrfs_btree_balance_dirty(root
);
9841 unlock_new_inode(inode
);
9846 /* Inspired by filemap_check_errors() */
9847 int btrfs_inode_check_errors(struct inode
*inode
)
9851 if (test_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
) &&
9852 test_and_clear_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
))
9854 if (test_bit(AS_EIO
, &inode
->i_mapping
->flags
) &&
9855 test_and_clear_bit(AS_EIO
, &inode
->i_mapping
->flags
))
9861 static const struct inode_operations btrfs_dir_inode_operations
= {
9862 .getattr
= btrfs_getattr
,
9863 .lookup
= btrfs_lookup
,
9864 .create
= btrfs_create
,
9865 .unlink
= btrfs_unlink
,
9867 .mkdir
= btrfs_mkdir
,
9868 .rmdir
= btrfs_rmdir
,
9869 .rename2
= btrfs_rename2
,
9870 .symlink
= btrfs_symlink
,
9871 .setattr
= btrfs_setattr
,
9872 .mknod
= btrfs_mknod
,
9873 .setxattr
= btrfs_setxattr
,
9874 .getxattr
= btrfs_getxattr
,
9875 .listxattr
= btrfs_listxattr
,
9876 .removexattr
= btrfs_removexattr
,
9877 .permission
= btrfs_permission
,
9878 .get_acl
= btrfs_get_acl
,
9879 .set_acl
= btrfs_set_acl
,
9880 .update_time
= btrfs_update_time
,
9881 .tmpfile
= btrfs_tmpfile
,
9883 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
9884 .lookup
= btrfs_lookup
,
9885 .permission
= btrfs_permission
,
9886 .get_acl
= btrfs_get_acl
,
9887 .set_acl
= btrfs_set_acl
,
9888 .update_time
= btrfs_update_time
,
9891 static const struct file_operations btrfs_dir_file_operations
= {
9892 .llseek
= generic_file_llseek
,
9893 .read
= generic_read_dir
,
9894 .iterate
= btrfs_real_readdir
,
9895 .unlocked_ioctl
= btrfs_ioctl
,
9896 #ifdef CONFIG_COMPAT
9897 .compat_ioctl
= btrfs_compat_ioctl
,
9899 .release
= btrfs_release_file
,
9900 .fsync
= btrfs_sync_file
,
9903 static struct extent_io_ops btrfs_extent_io_ops
= {
9904 .fill_delalloc
= run_delalloc_range
,
9905 .submit_bio_hook
= btrfs_submit_bio_hook
,
9906 .merge_bio_hook
= btrfs_merge_bio_hook
,
9907 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
9908 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
9909 .writepage_start_hook
= btrfs_writepage_start_hook
,
9910 .set_bit_hook
= btrfs_set_bit_hook
,
9911 .clear_bit_hook
= btrfs_clear_bit_hook
,
9912 .merge_extent_hook
= btrfs_merge_extent_hook
,
9913 .split_extent_hook
= btrfs_split_extent_hook
,
9917 * btrfs doesn't support the bmap operation because swapfiles
9918 * use bmap to make a mapping of extents in the file. They assume
9919 * these extents won't change over the life of the file and they
9920 * use the bmap result to do IO directly to the drive.
9922 * the btrfs bmap call would return logical addresses that aren't
9923 * suitable for IO and they also will change frequently as COW
9924 * operations happen. So, swapfile + btrfs == corruption.
9926 * For now we're avoiding this by dropping bmap.
9928 static const struct address_space_operations btrfs_aops
= {
9929 .readpage
= btrfs_readpage
,
9930 .writepage
= btrfs_writepage
,
9931 .writepages
= btrfs_writepages
,
9932 .readpages
= btrfs_readpages
,
9933 .direct_IO
= btrfs_direct_IO
,
9934 .invalidatepage
= btrfs_invalidatepage
,
9935 .releasepage
= btrfs_releasepage
,
9936 .set_page_dirty
= btrfs_set_page_dirty
,
9937 .error_remove_page
= generic_error_remove_page
,
9940 static const struct address_space_operations btrfs_symlink_aops
= {
9941 .readpage
= btrfs_readpage
,
9942 .writepage
= btrfs_writepage
,
9943 .invalidatepage
= btrfs_invalidatepage
,
9944 .releasepage
= btrfs_releasepage
,
9947 static const struct inode_operations btrfs_file_inode_operations
= {
9948 .getattr
= btrfs_getattr
,
9949 .setattr
= btrfs_setattr
,
9950 .setxattr
= btrfs_setxattr
,
9951 .getxattr
= btrfs_getxattr
,
9952 .listxattr
= btrfs_listxattr
,
9953 .removexattr
= btrfs_removexattr
,
9954 .permission
= btrfs_permission
,
9955 .fiemap
= btrfs_fiemap
,
9956 .get_acl
= btrfs_get_acl
,
9957 .set_acl
= btrfs_set_acl
,
9958 .update_time
= btrfs_update_time
,
9960 static const struct inode_operations btrfs_special_inode_operations
= {
9961 .getattr
= btrfs_getattr
,
9962 .setattr
= btrfs_setattr
,
9963 .permission
= btrfs_permission
,
9964 .setxattr
= btrfs_setxattr
,
9965 .getxattr
= btrfs_getxattr
,
9966 .listxattr
= btrfs_listxattr
,
9967 .removexattr
= btrfs_removexattr
,
9968 .get_acl
= btrfs_get_acl
,
9969 .set_acl
= btrfs_set_acl
,
9970 .update_time
= btrfs_update_time
,
9972 static const struct inode_operations btrfs_symlink_inode_operations
= {
9973 .readlink
= generic_readlink
,
9974 .follow_link
= page_follow_link_light
,
9975 .put_link
= page_put_link
,
9976 .getattr
= btrfs_getattr
,
9977 .setattr
= btrfs_setattr
,
9978 .permission
= btrfs_permission
,
9979 .setxattr
= btrfs_setxattr
,
9980 .getxattr
= btrfs_getxattr
,
9981 .listxattr
= btrfs_listxattr
,
9982 .removexattr
= btrfs_removexattr
,
9983 .update_time
= btrfs_update_time
,
9986 const struct dentry_operations btrfs_dentry_operations
= {
9987 .d_delete
= btrfs_dentry_delete
,
9988 .d_release
= btrfs_dentry_release
,