gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / btrfs / inode.c
blob757a34bdd2b9fec3544370f7329932d18329d46a
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
110 static int btrfs_dirty_inode(struct inode *inode);
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
117 #endif
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
123 int err;
125 err = btrfs_init_acl(trans, inode, dir);
126 if (!err)
127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 return err;
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 struct btrfs_path *path, int extent_inserted,
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
140 int compress_type,
141 struct page **compressed_pages)
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
151 unsigned long offset;
153 if (compressed_size && compressed_pages)
154 cur_size = compressed_size;
156 inode_add_bytes(inode, size);
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
164 key.type = BTRFS_EXTENT_DATA_KEY;
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
185 if (compress_type != BTRFS_COMPRESS_NONE) {
186 struct page *cpage;
187 int i = 0;
188 while (compressed_size > 0) {
189 cpage = compressed_pages[i];
190 cur_size = min_t(unsigned long, compressed_size,
191 PAGE_CACHE_SIZE);
193 kaddr = kmap_atomic(cpage);
194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 kunmap_atomic(kaddr);
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
201 btrfs_set_file_extent_compression(leaf, ei,
202 compress_type);
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
207 kaddr = kmap_atomic(page);
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 kunmap_atomic(kaddr);
211 page_cache_release(page);
213 btrfs_mark_buffer_dirty(leaf);
214 btrfs_release_path(path);
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
225 BTRFS_I(inode)->disk_i_size = inode->i_size;
226 ret = btrfs_update_inode(trans, root, inode);
228 return ret;
229 fail:
230 return err;
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
245 struct btrfs_trans_handle *trans;
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
249 u64 aligned_end = ALIGN(end, root->sectorsize);
250 u64 data_len = inline_len;
251 int ret;
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
256 if (compressed_size)
257 data_len = compressed_size;
259 if (start > 0 ||
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
273 trans = btrfs_join_transaction(root);
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
276 return PTR_ERR(trans);
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
299 inline_len, compressed_size,
300 compress_type, compressed_pages);
301 if (ret && ret != -ENOSPC) {
302 btrfs_abort_transaction(trans, root, ret);
303 goto out;
304 } else if (ret == -ENOSPC) {
305 ret = 1;
306 goto out;
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 btrfs_free_path(path);
314 btrfs_end_transaction(trans, root);
315 return ret;
318 struct async_extent {
319 u64 start;
320 u64 ram_size;
321 u64 compressed_size;
322 struct page **pages;
323 unsigned long nr_pages;
324 int compress_type;
325 struct list_head list;
328 struct async_cow {
329 struct inode *inode;
330 struct btrfs_root *root;
331 struct page *locked_page;
332 u64 start;
333 u64 end;
334 struct list_head extents;
335 struct btrfs_work work;
338 static noinline int add_async_extent(struct async_cow *cow,
339 u64 start, u64 ram_size,
340 u64 compressed_size,
341 struct page **pages,
342 unsigned long nr_pages,
343 int compress_type)
345 struct async_extent *async_extent;
347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348 BUG_ON(!async_extent); /* -ENOMEM */
349 async_extent->start = start;
350 async_extent->ram_size = ram_size;
351 async_extent->compressed_size = compressed_size;
352 async_extent->pages = pages;
353 async_extent->nr_pages = nr_pages;
354 async_extent->compress_type = compress_type;
355 list_add_tail(&async_extent->list, &cow->extents);
356 return 0;
359 static inline int inode_need_compress(struct inode *inode)
361 struct btrfs_root *root = BTRFS_I(inode)->root;
363 /* force compress */
364 if (btrfs_test_opt(root, FORCE_COMPRESS))
365 return 1;
366 /* bad compression ratios */
367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 return 0;
369 if (btrfs_test_opt(root, COMPRESS) ||
370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 BTRFS_I(inode)->force_compress)
372 return 1;
373 return 0;
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
391 * down.
393 static noinline void compress_file_range(struct inode *inode,
394 struct page *locked_page,
395 u64 start, u64 end,
396 struct async_cow *async_cow,
397 int *num_added)
399 struct btrfs_root *root = BTRFS_I(inode)->root;
400 u64 num_bytes;
401 u64 blocksize = root->sectorsize;
402 u64 actual_end;
403 u64 isize = i_size_read(inode);
404 int ret = 0;
405 struct page **pages = NULL;
406 unsigned long nr_pages;
407 unsigned long nr_pages_ret = 0;
408 unsigned long total_compressed = 0;
409 unsigned long total_in = 0;
410 unsigned long max_compressed = 128 * 1024;
411 unsigned long max_uncompressed = 128 * 1024;
412 int i;
413 int will_compress;
414 int compress_type = root->fs_info->compress_type;
415 int redirty = 0;
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end - start + 1) < 16 * 1024 &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 btrfs_add_inode_defrag(NULL, inode);
422 actual_end = min_t(u64, isize, end + 1);
423 again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
441 total_compressed = actual_end - start;
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
447 if (total_compressed <= blocksize &&
448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 goto cleanup_and_bail_uncompressed;
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
461 total_compressed = min(total_compressed, max_uncompressed);
462 num_bytes = ALIGN(end - start + 1, blocksize);
463 num_bytes = max(blocksize, num_bytes);
464 total_in = 0;
465 ret = 0;
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
472 if (inode_need_compress(inode)) {
473 WARN_ON(pages);
474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
475 if (!pages) {
476 /* just bail out to the uncompressed code */
477 goto cont;
480 if (BTRFS_I(inode)->force_compress)
481 compress_type = BTRFS_I(inode)->force_compress;
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
492 extent_range_clear_dirty_for_io(inode, start, end);
493 redirty = 1;
494 ret = btrfs_compress_pages(compress_type,
495 inode->i_mapping, start,
496 total_compressed, pages,
497 nr_pages, &nr_pages_ret,
498 &total_in,
499 &total_compressed,
500 max_compressed);
502 if (!ret) {
503 unsigned long offset = total_compressed &
504 (PAGE_CACHE_SIZE - 1);
505 struct page *page = pages[nr_pages_ret - 1];
506 char *kaddr;
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
511 if (offset) {
512 kaddr = kmap_atomic(page);
513 memset(kaddr + offset, 0,
514 PAGE_CACHE_SIZE - offset);
515 kunmap_atomic(kaddr);
517 will_compress = 1;
520 cont:
521 if (start == 0) {
522 /* lets try to make an inline extent */
523 if (ret || total_in < (actual_end - start)) {
524 /* we didn't compress the entire range, try
525 * to make an uncompressed inline extent.
527 ret = cow_file_range_inline(root, inode, start, end,
528 0, 0, NULL);
529 } else {
530 /* try making a compressed inline extent */
531 ret = cow_file_range_inline(root, inode, start, end,
532 total_compressed,
533 compress_type, pages);
535 if (ret <= 0) {
536 unsigned long clear_flags = EXTENT_DELALLOC |
537 EXTENT_DEFRAG;
538 unsigned long page_error_op;
540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
548 extent_clear_unlock_delalloc(inode, start, end, NULL,
549 clear_flags, PAGE_UNLOCK |
550 PAGE_CLEAR_DIRTY |
551 PAGE_SET_WRITEBACK |
552 page_error_op |
553 PAGE_END_WRITEBACK);
554 goto free_pages_out;
558 if (will_compress) {
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
562 * things
564 total_compressed = ALIGN(total_compressed, blocksize);
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571 if (total_compressed >= total_in) {
572 will_compress = 0;
573 } else {
574 num_bytes = total_in;
577 if (!will_compress && pages) {
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
582 for (i = 0; i < nr_pages_ret; i++) {
583 WARN_ON(pages[i]->mapping);
584 page_cache_release(pages[i]);
586 kfree(pages);
587 pages = NULL;
588 total_compressed = 0;
589 nr_pages_ret = 0;
591 /* flag the file so we don't compress in the future */
592 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 !(BTRFS_I(inode)->force_compress)) {
594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
597 if (will_compress) {
598 *num_added += 1;
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
604 add_async_extent(async_cow, start, num_bytes,
605 total_compressed, pages, nr_pages_ret,
606 compress_type);
608 if (start + num_bytes < end) {
609 start += num_bytes;
610 pages = NULL;
611 cond_resched();
612 goto again;
614 } else {
615 cleanup_and_bail_uncompressed:
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
623 if (page_offset(locked_page) >= start &&
624 page_offset(locked_page) <= end) {
625 __set_page_dirty_nobuffers(locked_page);
626 /* unlocked later on in the async handlers */
628 if (redirty)
629 extent_range_redirty_for_io(inode, start, end);
630 add_async_extent(async_cow, start, end - start + 1,
631 0, NULL, 0, BTRFS_COMPRESS_NONE);
632 *num_added += 1;
635 return;
637 free_pages_out:
638 for (i = 0; i < nr_pages_ret; i++) {
639 WARN_ON(pages[i]->mapping);
640 page_cache_release(pages[i]);
642 kfree(pages);
645 static void free_async_extent_pages(struct async_extent *async_extent)
647 int i;
649 if (!async_extent->pages)
650 return;
652 for (i = 0; i < async_extent->nr_pages; i++) {
653 WARN_ON(async_extent->pages[i]->mapping);
654 page_cache_release(async_extent->pages[i]);
656 kfree(async_extent->pages);
657 async_extent->nr_pages = 0;
658 async_extent->pages = NULL;
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
667 static noinline void submit_compressed_extents(struct inode *inode,
668 struct async_cow *async_cow)
670 struct async_extent *async_extent;
671 u64 alloc_hint = 0;
672 struct btrfs_key ins;
673 struct extent_map *em;
674 struct btrfs_root *root = BTRFS_I(inode)->root;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct extent_io_tree *io_tree;
677 int ret = 0;
679 again:
680 while (!list_empty(&async_cow->extents)) {
681 async_extent = list_entry(async_cow->extents.next,
682 struct async_extent, list);
683 list_del(&async_extent->list);
685 io_tree = &BTRFS_I(inode)->io_tree;
687 retry:
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent->pages) {
690 int page_started = 0;
691 unsigned long nr_written = 0;
693 lock_extent(io_tree, async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1);
697 /* allocate blocks */
698 ret = cow_file_range(inode, async_cow->locked_page,
699 async_extent->start,
700 async_extent->start +
701 async_extent->ram_size - 1,
702 &page_started, &nr_written, 0);
704 /* JDM XXX */
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
712 if (!page_started && !ret)
713 extent_write_locked_range(io_tree,
714 inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1,
717 btrfs_get_extent,
718 WB_SYNC_ALL);
719 else if (ret)
720 unlock_page(async_cow->locked_page);
721 kfree(async_extent);
722 cond_resched();
723 continue;
726 lock_extent(io_tree, async_extent->start,
727 async_extent->start + async_extent->ram_size - 1);
729 ret = btrfs_reserve_extent(root,
730 async_extent->compressed_size,
731 async_extent->compressed_size,
732 0, alloc_hint, &ins, 1, 1);
733 if (ret) {
734 free_async_extent_pages(async_extent);
736 if (ret == -ENOSPC) {
737 unlock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
745 * layers.
747 extent_range_redirty_for_io(inode,
748 async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1);
752 goto retry;
754 goto out_free;
757 * here we're doing allocation and writeback of the
758 * compressed pages
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
764 em = alloc_extent_map();
765 if (!em) {
766 ret = -ENOMEM;
767 goto out_free_reserve;
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
771 em->orig_start = em->start;
772 em->mod_start = em->start;
773 em->mod_len = em->len;
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
777 em->orig_block_len = ins.offset;
778 em->ram_bytes = async_extent->ram_size;
779 em->bdev = root->fs_info->fs_devices->latest_bdev;
780 em->compress_type = async_extent->compress_type;
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 em->generation = -1;
785 while (1) {
786 write_lock(&em_tree->lock);
787 ret = add_extent_mapping(em_tree, em, 1);
788 write_unlock(&em_tree->lock);
789 if (ret != -EEXIST) {
790 free_extent_map(em);
791 break;
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
798 if (ret)
799 goto out_free_reserve;
801 ret = btrfs_add_ordered_extent_compress(inode,
802 async_extent->start,
803 ins.objectid,
804 async_extent->ram_size,
805 ins.offset,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
808 if (ret) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 goto out_free_reserve;
816 * clear dirty, set writeback and unlock the pages.
818 extent_clear_unlock_delalloc(inode, async_extent->start,
819 async_extent->start +
820 async_extent->ram_size - 1,
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 PAGE_SET_WRITEBACK);
824 ret = btrfs_submit_compressed_write(inode,
825 async_extent->start,
826 async_extent->ram_size,
827 ins.objectid,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
830 if (ret) {
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
838 NULL, 0);
839 p->mapping = NULL;
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 PAGE_END_WRITEBACK |
842 PAGE_SET_ERROR);
843 free_async_extent_pages(async_extent);
845 alloc_hint = ins.objectid + ins.offset;
846 kfree(async_extent);
847 cond_resched();
849 return;
850 out_free_reserve:
851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 extent_clear_unlock_delalloc(inode, async_extent->start,
854 async_extent->start +
855 async_extent->ram_size - 1,
856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 PAGE_SET_ERROR);
861 free_async_extent_pages(async_extent);
862 kfree(async_extent);
863 goto again;
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 u64 num_bytes)
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
871 u64 alloc_hint = 0;
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
875 if (em) {
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 free_extent_map(em);
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
886 if (em)
887 free_extent_map(em);
888 } else {
889 alloc_hint = em->block_start;
890 free_extent_map(em);
893 read_unlock(&em_tree->lock);
895 return alloc_hint;
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
909 * IO when we return.
911 static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
915 int unlock)
917 struct btrfs_root *root = BTRFS_I(inode)->root;
918 u64 alloc_hint = 0;
919 u64 num_bytes;
920 unsigned long ram_size;
921 u64 disk_num_bytes;
922 u64 cur_alloc_size;
923 u64 blocksize = root->sectorsize;
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 int ret = 0;
929 if (btrfs_is_free_space_inode(inode)) {
930 WARN_ON_ONCE(1);
931 ret = -EINVAL;
932 goto out_unlock;
935 num_bytes = ALIGN(end - start + 1, blocksize);
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 btrfs_add_inode_defrag(NULL, inode);
944 if (start == 0) {
945 /* lets try to make an inline extent */
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 NULL);
948 if (ret == 0) {
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
951 EXTENT_DEFRAG, PAGE_UNLOCK |
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 PAGE_END_WRITEBACK);
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 *page_started = 1;
958 goto out;
959 } else if (ret < 0) {
960 goto out_unlock;
964 BUG_ON(disk_num_bytes >
965 btrfs_super_total_bytes(root->fs_info->super_copy));
967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
970 while (disk_num_bytes > 0) {
971 unsigned long op;
973 cur_alloc_size = disk_num_bytes;
974 ret = btrfs_reserve_extent(root, cur_alloc_size,
975 root->sectorsize, 0, alloc_hint,
976 &ins, 1, 1);
977 if (ret < 0)
978 goto out_unlock;
980 em = alloc_extent_map();
981 if (!em) {
982 ret = -ENOMEM;
983 goto out_reserve;
985 em->start = start;
986 em->orig_start = em->start;
987 ram_size = ins.offset;
988 em->len = ins.offset;
989 em->mod_start = em->start;
990 em->mod_len = em->len;
992 em->block_start = ins.objectid;
993 em->block_len = ins.offset;
994 em->orig_block_len = ins.offset;
995 em->ram_bytes = ram_size;
996 em->bdev = root->fs_info->fs_devices->latest_bdev;
997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 em->generation = -1;
1000 while (1) {
1001 write_lock(&em_tree->lock);
1002 ret = add_extent_mapping(em_tree, em, 1);
1003 write_unlock(&em_tree->lock);
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1006 break;
1008 btrfs_drop_extent_cache(inode, start,
1009 start + ram_size - 1, 0);
1011 if (ret)
1012 goto out_reserve;
1014 cur_alloc_size = ins.offset;
1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 ram_size, cur_alloc_size, 0);
1017 if (ret)
1018 goto out_drop_extent_cache;
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1023 cur_alloc_size);
1024 if (ret)
1025 goto out_drop_extent_cache;
1028 if (disk_num_bytes < cur_alloc_size)
1029 break;
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1044 op);
1045 disk_num_bytes -= cur_alloc_size;
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
1050 out:
1051 return ret;
1053 out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 goto out;
1067 * work queue call back to started compression on a file and pages
1069 static noinline void async_cow_start(struct btrfs_work *work)
1071 struct async_cow *async_cow;
1072 int num_added = 0;
1073 async_cow = container_of(work, struct async_cow, work);
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1077 &num_added);
1078 if (num_added == 0) {
1079 btrfs_add_delayed_iput(async_cow->inode);
1080 async_cow->inode = NULL;
1085 * work queue call back to submit previously compressed pages
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1093 async_cow = container_of(work, struct async_cow, work);
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 PAGE_CACHE_SHIFT;
1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 5 * 1024 * 1024 &&
1101 waitqueue_active(&root->fs_info->async_submit_wait))
1102 wake_up(&root->fs_info->async_submit_wait);
1104 if (async_cow->inode)
1105 submit_compressed_extents(async_cow->inode, async_cow);
1108 static noinline void async_cow_free(struct btrfs_work *work)
1110 struct async_cow *async_cow;
1111 async_cow = container_of(work, struct async_cow, work);
1112 if (async_cow->inode)
1113 btrfs_add_delayed_iput(async_cow->inode);
1114 kfree(async_cow);
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 u64 start, u64 end, int *page_started,
1119 unsigned long *nr_written)
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root = BTRFS_I(inode)->root;
1123 unsigned long nr_pages;
1124 u64 cur_end;
1125 int limit = 10 * 1024 * 1024;
1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 1, 0, NULL, GFP_NOFS);
1129 while (start < end) {
1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 BUG_ON(!async_cow); /* -ENOMEM */
1132 async_cow->inode = igrab(inode);
1133 async_cow->root = root;
1134 async_cow->locked_page = locked_page;
1135 async_cow->start = start;
1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 !btrfs_test_opt(root, FORCE_COMPRESS))
1139 cur_end = end;
1140 else
1141 cur_end = min(end, start + 512 * 1024 - 1);
1143 async_cow->end = cur_end;
1144 INIT_LIST_HEAD(&async_cow->extents);
1146 btrfs_init_work(&async_cow->work,
1147 btrfs_delalloc_helper,
1148 async_cow_start, async_cow_submit,
1149 async_cow_free);
1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 PAGE_CACHE_SHIFT;
1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1155 btrfs_queue_work(root->fs_info->delalloc_workers,
1156 &async_cow->work);
1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 limit));
1164 while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 wait_event(root->fs_info->async_submit_wait,
1167 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 0));
1171 *nr_written += nr_pages;
1172 start = cur_end + 1;
1174 *page_started = 1;
1175 return 0;
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 u64 bytenr, u64 num_bytes)
1181 int ret;
1182 struct btrfs_ordered_sum *sums;
1183 LIST_HEAD(list);
1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 bytenr + num_bytes - 1, &list, 0);
1187 if (ret == 0 && list_empty(&list))
1188 return 0;
1190 while (!list_empty(&list)) {
1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 list_del(&sums->list);
1193 kfree(sums);
1195 return 1;
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 struct page *locked_page,
1207 u64 start, u64 end, int *page_started, int force,
1208 unsigned long *nr_written)
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1211 struct btrfs_trans_handle *trans;
1212 struct extent_buffer *leaf;
1213 struct btrfs_path *path;
1214 struct btrfs_file_extent_item *fi;
1215 struct btrfs_key found_key;
1216 u64 cow_start;
1217 u64 cur_offset;
1218 u64 extent_end;
1219 u64 extent_offset;
1220 u64 disk_bytenr;
1221 u64 num_bytes;
1222 u64 disk_num_bytes;
1223 u64 ram_bytes;
1224 int extent_type;
1225 int ret, err;
1226 int type;
1227 int nocow;
1228 int check_prev = 1;
1229 bool nolock;
1230 u64 ino = btrfs_ino(inode);
1232 path = btrfs_alloc_path();
1233 if (!path) {
1234 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 EXTENT_LOCKED | EXTENT_DELALLOC |
1236 EXTENT_DO_ACCOUNTING |
1237 EXTENT_DEFRAG, PAGE_UNLOCK |
1238 PAGE_CLEAR_DIRTY |
1239 PAGE_SET_WRITEBACK |
1240 PAGE_END_WRITEBACK);
1241 return -ENOMEM;
1244 nolock = btrfs_is_free_space_inode(inode);
1246 if (nolock)
1247 trans = btrfs_join_transaction_nolock(root);
1248 else
1249 trans = btrfs_join_transaction(root);
1251 if (IS_ERR(trans)) {
1252 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 EXTENT_LOCKED | EXTENT_DELALLOC |
1254 EXTENT_DO_ACCOUNTING |
1255 EXTENT_DEFRAG, PAGE_UNLOCK |
1256 PAGE_CLEAR_DIRTY |
1257 PAGE_SET_WRITEBACK |
1258 PAGE_END_WRITEBACK);
1259 btrfs_free_path(path);
1260 return PTR_ERR(trans);
1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1265 cow_start = (u64)-1;
1266 cur_offset = start;
1267 while (1) {
1268 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 cur_offset, 0);
1270 if (ret < 0)
1271 goto error;
1272 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &found_key,
1275 path->slots[0] - 1);
1276 if (found_key.objectid == ino &&
1277 found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 path->slots[0]--;
1280 check_prev = 0;
1281 next_slot:
1282 leaf = path->nodes[0];
1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
1285 if (ret < 0)
1286 goto error;
1287 if (ret > 0)
1288 break;
1289 leaf = path->nodes[0];
1292 nocow = 0;
1293 disk_bytenr = 0;
1294 num_bytes = 0;
1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1297 if (found_key.objectid > ino)
1298 break;
1299 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1300 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1301 path->slots[0]++;
1302 goto next_slot;
1304 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1305 found_key.offset > end)
1306 break;
1308 if (found_key.offset > cur_offset) {
1309 extent_end = found_key.offset;
1310 extent_type = 0;
1311 goto out_check;
1314 fi = btrfs_item_ptr(leaf, path->slots[0],
1315 struct btrfs_file_extent_item);
1316 extent_type = btrfs_file_extent_type(leaf, fi);
1318 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1319 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1320 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1321 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1322 extent_offset = btrfs_file_extent_offset(leaf, fi);
1323 extent_end = found_key.offset +
1324 btrfs_file_extent_num_bytes(leaf, fi);
1325 disk_num_bytes =
1326 btrfs_file_extent_disk_num_bytes(leaf, fi);
1327 if (extent_end <= start) {
1328 path->slots[0]++;
1329 goto next_slot;
1331 if (disk_bytenr == 0)
1332 goto out_check;
1333 if (btrfs_file_extent_compression(leaf, fi) ||
1334 btrfs_file_extent_encryption(leaf, fi) ||
1335 btrfs_file_extent_other_encoding(leaf, fi))
1336 goto out_check;
1337 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1338 goto out_check;
1339 if (btrfs_extent_readonly(root, disk_bytenr))
1340 goto out_check;
1341 if (btrfs_cross_ref_exist(trans, root, ino,
1342 found_key.offset -
1343 extent_offset, disk_bytenr))
1344 goto out_check;
1345 disk_bytenr += extent_offset;
1346 disk_bytenr += cur_offset - found_key.offset;
1347 num_bytes = min(end + 1, extent_end) - cur_offset;
1349 * if there are pending snapshots for this root,
1350 * we fall into common COW way.
1352 if (!nolock) {
1353 err = btrfs_start_write_no_snapshoting(root);
1354 if (!err)
1355 goto out_check;
1358 * force cow if csum exists in the range.
1359 * this ensure that csum for a given extent are
1360 * either valid or do not exist.
1362 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1363 goto out_check;
1364 nocow = 1;
1365 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1366 extent_end = found_key.offset +
1367 btrfs_file_extent_inline_len(leaf,
1368 path->slots[0], fi);
1369 extent_end = ALIGN(extent_end, root->sectorsize);
1370 } else {
1371 BUG_ON(1);
1373 out_check:
1374 if (extent_end <= start) {
1375 path->slots[0]++;
1376 if (!nolock && nocow)
1377 btrfs_end_write_no_snapshoting(root);
1378 goto next_slot;
1380 if (!nocow) {
1381 if (cow_start == (u64)-1)
1382 cow_start = cur_offset;
1383 cur_offset = extent_end;
1384 if (cur_offset > end)
1385 break;
1386 path->slots[0]++;
1387 goto next_slot;
1390 btrfs_release_path(path);
1391 if (cow_start != (u64)-1) {
1392 ret = cow_file_range(inode, locked_page,
1393 cow_start, found_key.offset - 1,
1394 page_started, nr_written, 1);
1395 if (ret) {
1396 if (!nolock && nocow)
1397 btrfs_end_write_no_snapshoting(root);
1398 goto error;
1400 cow_start = (u64)-1;
1403 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1404 struct extent_map *em;
1405 struct extent_map_tree *em_tree;
1406 em_tree = &BTRFS_I(inode)->extent_tree;
1407 em = alloc_extent_map();
1408 BUG_ON(!em); /* -ENOMEM */
1409 em->start = cur_offset;
1410 em->orig_start = found_key.offset - extent_offset;
1411 em->len = num_bytes;
1412 em->block_len = num_bytes;
1413 em->block_start = disk_bytenr;
1414 em->orig_block_len = disk_num_bytes;
1415 em->ram_bytes = ram_bytes;
1416 em->bdev = root->fs_info->fs_devices->latest_bdev;
1417 em->mod_start = em->start;
1418 em->mod_len = em->len;
1419 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1420 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1421 em->generation = -1;
1422 while (1) {
1423 write_lock(&em_tree->lock);
1424 ret = add_extent_mapping(em_tree, em, 1);
1425 write_unlock(&em_tree->lock);
1426 if (ret != -EEXIST) {
1427 free_extent_map(em);
1428 break;
1430 btrfs_drop_extent_cache(inode, em->start,
1431 em->start + em->len - 1, 0);
1433 type = BTRFS_ORDERED_PREALLOC;
1434 } else {
1435 type = BTRFS_ORDERED_NOCOW;
1438 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1439 num_bytes, num_bytes, type);
1440 BUG_ON(ret); /* -ENOMEM */
1442 if (root->root_key.objectid ==
1443 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1444 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1445 num_bytes);
1446 if (ret) {
1447 if (!nolock && nocow)
1448 btrfs_end_write_no_snapshoting(root);
1449 goto error;
1453 extent_clear_unlock_delalloc(inode, cur_offset,
1454 cur_offset + num_bytes - 1,
1455 locked_page, EXTENT_LOCKED |
1456 EXTENT_DELALLOC, PAGE_UNLOCK |
1457 PAGE_SET_PRIVATE2);
1458 if (!nolock && nocow)
1459 btrfs_end_write_no_snapshoting(root);
1460 cur_offset = extent_end;
1461 if (cur_offset > end)
1462 break;
1464 btrfs_release_path(path);
1466 if (cur_offset <= end && cow_start == (u64)-1) {
1467 cow_start = cur_offset;
1468 cur_offset = end;
1471 if (cow_start != (u64)-1) {
1472 ret = cow_file_range(inode, locked_page, cow_start, end,
1473 page_started, nr_written, 1);
1474 if (ret)
1475 goto error;
1478 error:
1479 err = btrfs_end_transaction(trans, root);
1480 if (!ret)
1481 ret = err;
1483 if (ret && cur_offset < end)
1484 extent_clear_unlock_delalloc(inode, cur_offset, end,
1485 locked_page, EXTENT_LOCKED |
1486 EXTENT_DELALLOC | EXTENT_DEFRAG |
1487 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1488 PAGE_CLEAR_DIRTY |
1489 PAGE_SET_WRITEBACK |
1490 PAGE_END_WRITEBACK);
1491 btrfs_free_path(path);
1492 return ret;
1495 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1498 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1499 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1500 return 0;
1503 * @defrag_bytes is a hint value, no spinlock held here,
1504 * if is not zero, it means the file is defragging.
1505 * Force cow if given extent needs to be defragged.
1507 if (BTRFS_I(inode)->defrag_bytes &&
1508 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1509 EXTENT_DEFRAG, 0, NULL))
1510 return 1;
1512 return 0;
1516 * extent_io.c call back to do delayed allocation processing
1518 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1519 u64 start, u64 end, int *page_started,
1520 unsigned long *nr_written)
1522 int ret;
1523 int force_cow = need_force_cow(inode, start, end);
1525 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1526 ret = run_delalloc_nocow(inode, locked_page, start, end,
1527 page_started, 1, nr_written);
1528 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1529 ret = run_delalloc_nocow(inode, locked_page, start, end,
1530 page_started, 0, nr_written);
1531 } else if (!inode_need_compress(inode)) {
1532 ret = cow_file_range(inode, locked_page, start, end,
1533 page_started, nr_written, 1);
1534 } else {
1535 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1536 &BTRFS_I(inode)->runtime_flags);
1537 ret = cow_file_range_async(inode, locked_page, start, end,
1538 page_started, nr_written);
1540 return ret;
1543 static void btrfs_split_extent_hook(struct inode *inode,
1544 struct extent_state *orig, u64 split)
1546 u64 size;
1548 /* not delalloc, ignore it */
1549 if (!(orig->state & EXTENT_DELALLOC))
1550 return;
1552 size = orig->end - orig->start + 1;
1553 if (size > BTRFS_MAX_EXTENT_SIZE) {
1554 u64 num_extents;
1555 u64 new_size;
1558 * See the explanation in btrfs_merge_extent_hook, the same
1559 * applies here, just in reverse.
1561 new_size = orig->end - split + 1;
1562 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1563 BTRFS_MAX_EXTENT_SIZE);
1564 new_size = split - orig->start;
1565 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1566 BTRFS_MAX_EXTENT_SIZE);
1567 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1568 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1569 return;
1572 spin_lock(&BTRFS_I(inode)->lock);
1573 BTRFS_I(inode)->outstanding_extents++;
1574 spin_unlock(&BTRFS_I(inode)->lock);
1578 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1579 * extents so we can keep track of new extents that are just merged onto old
1580 * extents, such as when we are doing sequential writes, so we can properly
1581 * account for the metadata space we'll need.
1583 static void btrfs_merge_extent_hook(struct inode *inode,
1584 struct extent_state *new,
1585 struct extent_state *other)
1587 u64 new_size, old_size;
1588 u64 num_extents;
1590 /* not delalloc, ignore it */
1591 if (!(other->state & EXTENT_DELALLOC))
1592 return;
1594 if (new->start > other->start)
1595 new_size = new->end - other->start + 1;
1596 else
1597 new_size = other->end - new->start + 1;
1599 /* we're not bigger than the max, unreserve the space and go */
1600 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1601 spin_lock(&BTRFS_I(inode)->lock);
1602 BTRFS_I(inode)->outstanding_extents--;
1603 spin_unlock(&BTRFS_I(inode)->lock);
1604 return;
1608 * We have to add up either side to figure out how many extents were
1609 * accounted for before we merged into one big extent. If the number of
1610 * extents we accounted for is <= the amount we need for the new range
1611 * then we can return, otherwise drop. Think of it like this
1613 * [ 4k][MAX_SIZE]
1615 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1616 * need 2 outstanding extents, on one side we have 1 and the other side
1617 * we have 1 so they are == and we can return. But in this case
1619 * [MAX_SIZE+4k][MAX_SIZE+4k]
1621 * Each range on their own accounts for 2 extents, but merged together
1622 * they are only 3 extents worth of accounting, so we need to drop in
1623 * this case.
1625 old_size = other->end - other->start + 1;
1626 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 BTRFS_MAX_EXTENT_SIZE);
1628 old_size = new->end - new->start + 1;
1629 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1630 BTRFS_MAX_EXTENT_SIZE);
1632 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1633 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1634 return;
1636 spin_lock(&BTRFS_I(inode)->lock);
1637 BTRFS_I(inode)->outstanding_extents--;
1638 spin_unlock(&BTRFS_I(inode)->lock);
1641 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1642 struct inode *inode)
1644 spin_lock(&root->delalloc_lock);
1645 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1646 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1647 &root->delalloc_inodes);
1648 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1649 &BTRFS_I(inode)->runtime_flags);
1650 root->nr_delalloc_inodes++;
1651 if (root->nr_delalloc_inodes == 1) {
1652 spin_lock(&root->fs_info->delalloc_root_lock);
1653 BUG_ON(!list_empty(&root->delalloc_root));
1654 list_add_tail(&root->delalloc_root,
1655 &root->fs_info->delalloc_roots);
1656 spin_unlock(&root->fs_info->delalloc_root_lock);
1659 spin_unlock(&root->delalloc_lock);
1662 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1663 struct inode *inode)
1665 spin_lock(&root->delalloc_lock);
1666 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1667 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1668 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1669 &BTRFS_I(inode)->runtime_flags);
1670 root->nr_delalloc_inodes--;
1671 if (!root->nr_delalloc_inodes) {
1672 spin_lock(&root->fs_info->delalloc_root_lock);
1673 BUG_ON(list_empty(&root->delalloc_root));
1674 list_del_init(&root->delalloc_root);
1675 spin_unlock(&root->fs_info->delalloc_root_lock);
1678 spin_unlock(&root->delalloc_lock);
1682 * extent_io.c set_bit_hook, used to track delayed allocation
1683 * bytes in this file, and to maintain the list of inodes that
1684 * have pending delalloc work to be done.
1686 static void btrfs_set_bit_hook(struct inode *inode,
1687 struct extent_state *state, unsigned *bits)
1690 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1691 WARN_ON(1);
1693 * set_bit and clear bit hooks normally require _irqsave/restore
1694 * but in this case, we are only testing for the DELALLOC
1695 * bit, which is only set or cleared with irqs on
1697 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1698 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 u64 len = state->end + 1 - state->start;
1700 bool do_list = !btrfs_is_free_space_inode(inode);
1702 if (*bits & EXTENT_FIRST_DELALLOC) {
1703 *bits &= ~EXTENT_FIRST_DELALLOC;
1704 } else {
1705 spin_lock(&BTRFS_I(inode)->lock);
1706 BTRFS_I(inode)->outstanding_extents++;
1707 spin_unlock(&BTRFS_I(inode)->lock);
1710 /* For sanity tests */
1711 if (btrfs_test_is_dummy_root(root))
1712 return;
1714 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1715 root->fs_info->delalloc_batch);
1716 spin_lock(&BTRFS_I(inode)->lock);
1717 BTRFS_I(inode)->delalloc_bytes += len;
1718 if (*bits & EXTENT_DEFRAG)
1719 BTRFS_I(inode)->defrag_bytes += len;
1720 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 &BTRFS_I(inode)->runtime_flags))
1722 btrfs_add_delalloc_inodes(root, inode);
1723 spin_unlock(&BTRFS_I(inode)->lock);
1728 * extent_io.c clear_bit_hook, see set_bit_hook for why
1730 static void btrfs_clear_bit_hook(struct inode *inode,
1731 struct extent_state *state,
1732 unsigned *bits)
1734 u64 len = state->end + 1 - state->start;
1735 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1736 BTRFS_MAX_EXTENT_SIZE);
1738 spin_lock(&BTRFS_I(inode)->lock);
1739 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1740 BTRFS_I(inode)->defrag_bytes -= len;
1741 spin_unlock(&BTRFS_I(inode)->lock);
1744 * set_bit and clear bit hooks normally require _irqsave/restore
1745 * but in this case, we are only testing for the DELALLOC
1746 * bit, which is only set or cleared with irqs on
1748 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1749 struct btrfs_root *root = BTRFS_I(inode)->root;
1750 bool do_list = !btrfs_is_free_space_inode(inode);
1752 if (*bits & EXTENT_FIRST_DELALLOC) {
1753 *bits &= ~EXTENT_FIRST_DELALLOC;
1754 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1755 spin_lock(&BTRFS_I(inode)->lock);
1756 BTRFS_I(inode)->outstanding_extents -= num_extents;
1757 spin_unlock(&BTRFS_I(inode)->lock);
1761 * We don't reserve metadata space for space cache inodes so we
1762 * don't need to call dellalloc_release_metadata if there is an
1763 * error.
1765 if (*bits & EXTENT_DO_ACCOUNTING &&
1766 root != root->fs_info->tree_root)
1767 btrfs_delalloc_release_metadata(inode, len);
1769 /* For sanity tests. */
1770 if (btrfs_test_is_dummy_root(root))
1771 return;
1773 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1774 && do_list && !(state->state & EXTENT_NORESERVE))
1775 btrfs_free_reserved_data_space(inode, len);
1777 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1778 root->fs_info->delalloc_batch);
1779 spin_lock(&BTRFS_I(inode)->lock);
1780 BTRFS_I(inode)->delalloc_bytes -= len;
1781 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1782 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1783 &BTRFS_I(inode)->runtime_flags))
1784 btrfs_del_delalloc_inode(root, inode);
1785 spin_unlock(&BTRFS_I(inode)->lock);
1790 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1791 * we don't create bios that span stripes or chunks
1793 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1794 size_t size, struct bio *bio,
1795 unsigned long bio_flags)
1797 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1798 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1799 u64 length = 0;
1800 u64 map_length;
1801 int ret;
1803 if (bio_flags & EXTENT_BIO_COMPRESSED)
1804 return 0;
1806 length = bio->bi_iter.bi_size;
1807 map_length = length;
1808 ret = btrfs_map_block(root->fs_info, rw, logical,
1809 &map_length, NULL, 0);
1810 /* Will always return 0 with map_multi == NULL */
1811 BUG_ON(ret < 0);
1812 if (map_length < length + size)
1813 return 1;
1814 return 0;
1818 * in order to insert checksums into the metadata in large chunks,
1819 * we wait until bio submission time. All the pages in the bio are
1820 * checksummed and sums are attached onto the ordered extent record.
1822 * At IO completion time the cums attached on the ordered extent record
1823 * are inserted into the btree
1825 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1826 struct bio *bio, int mirror_num,
1827 unsigned long bio_flags,
1828 u64 bio_offset)
1830 struct btrfs_root *root = BTRFS_I(inode)->root;
1831 int ret = 0;
1833 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1834 BUG_ON(ret); /* -ENOMEM */
1835 return 0;
1839 * in order to insert checksums into the metadata in large chunks,
1840 * we wait until bio submission time. All the pages in the bio are
1841 * checksummed and sums are attached onto the ordered extent record.
1843 * At IO completion time the cums attached on the ordered extent record
1844 * are inserted into the btree
1846 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1847 int mirror_num, unsigned long bio_flags,
1848 u64 bio_offset)
1850 struct btrfs_root *root = BTRFS_I(inode)->root;
1851 int ret;
1853 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1854 if (ret)
1855 bio_endio(bio, ret);
1856 return ret;
1860 * extent_io.c submission hook. This does the right thing for csum calculation
1861 * on write, or reading the csums from the tree before a read
1863 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1864 int mirror_num, unsigned long bio_flags,
1865 u64 bio_offset)
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 int ret = 0;
1869 int skip_sum;
1870 int metadata = 0;
1871 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1873 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1875 if (btrfs_is_free_space_inode(inode))
1876 metadata = 2;
1878 if (!(rw & REQ_WRITE)) {
1879 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1880 if (ret)
1881 goto out;
1883 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1884 ret = btrfs_submit_compressed_read(inode, bio,
1885 mirror_num,
1886 bio_flags);
1887 goto out;
1888 } else if (!skip_sum) {
1889 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1890 if (ret)
1891 goto out;
1893 goto mapit;
1894 } else if (async && !skip_sum) {
1895 /* csum items have already been cloned */
1896 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1897 goto mapit;
1898 /* we're doing a write, do the async checksumming */
1899 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1900 inode, rw, bio, mirror_num,
1901 bio_flags, bio_offset,
1902 __btrfs_submit_bio_start,
1903 __btrfs_submit_bio_done);
1904 goto out;
1905 } else if (!skip_sum) {
1906 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1907 if (ret)
1908 goto out;
1911 mapit:
1912 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1914 out:
1915 if (ret < 0)
1916 bio_endio(bio, ret);
1917 return ret;
1921 * given a list of ordered sums record them in the inode. This happens
1922 * at IO completion time based on sums calculated at bio submission time.
1924 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1925 struct inode *inode, u64 file_offset,
1926 struct list_head *list)
1928 struct btrfs_ordered_sum *sum;
1930 list_for_each_entry(sum, list, list) {
1931 trans->adding_csums = 1;
1932 btrfs_csum_file_blocks(trans,
1933 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1934 trans->adding_csums = 0;
1936 return 0;
1939 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1940 struct extent_state **cached_state)
1942 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1943 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1944 cached_state, GFP_NOFS);
1947 /* see btrfs_writepage_start_hook for details on why this is required */
1948 struct btrfs_writepage_fixup {
1949 struct page *page;
1950 struct btrfs_work work;
1953 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1955 struct btrfs_writepage_fixup *fixup;
1956 struct btrfs_ordered_extent *ordered;
1957 struct extent_state *cached_state = NULL;
1958 struct page *page;
1959 struct inode *inode;
1960 u64 page_start;
1961 u64 page_end;
1962 int ret;
1964 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1965 page = fixup->page;
1966 again:
1967 lock_page(page);
1968 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1969 ClearPageChecked(page);
1970 goto out_page;
1973 inode = page->mapping->host;
1974 page_start = page_offset(page);
1975 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1977 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1978 &cached_state);
1980 /* already ordered? We're done */
1981 if (PagePrivate2(page))
1982 goto out;
1984 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1985 if (ordered) {
1986 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1987 page_end, &cached_state, GFP_NOFS);
1988 unlock_page(page);
1989 btrfs_start_ordered_extent(inode, ordered, 1);
1990 btrfs_put_ordered_extent(ordered);
1991 goto again;
1994 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1995 if (ret) {
1996 mapping_set_error(page->mapping, ret);
1997 end_extent_writepage(page, ret, page_start, page_end);
1998 ClearPageChecked(page);
1999 goto out;
2002 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2003 ClearPageChecked(page);
2004 set_page_dirty(page);
2005 out:
2006 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2007 &cached_state, GFP_NOFS);
2008 out_page:
2009 unlock_page(page);
2010 page_cache_release(page);
2011 kfree(fixup);
2015 * There are a few paths in the higher layers of the kernel that directly
2016 * set the page dirty bit without asking the filesystem if it is a
2017 * good idea. This causes problems because we want to make sure COW
2018 * properly happens and the data=ordered rules are followed.
2020 * In our case any range that doesn't have the ORDERED bit set
2021 * hasn't been properly setup for IO. We kick off an async process
2022 * to fix it up. The async helper will wait for ordered extents, set
2023 * the delalloc bit and make it safe to write the page.
2025 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2027 struct inode *inode = page->mapping->host;
2028 struct btrfs_writepage_fixup *fixup;
2029 struct btrfs_root *root = BTRFS_I(inode)->root;
2031 /* this page is properly in the ordered list */
2032 if (TestClearPagePrivate2(page))
2033 return 0;
2035 if (PageChecked(page))
2036 return -EAGAIN;
2038 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2039 if (!fixup)
2040 return -EAGAIN;
2042 SetPageChecked(page);
2043 page_cache_get(page);
2044 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2045 btrfs_writepage_fixup_worker, NULL, NULL);
2046 fixup->page = page;
2047 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2048 return -EBUSY;
2051 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2052 struct inode *inode, u64 file_pos,
2053 u64 disk_bytenr, u64 disk_num_bytes,
2054 u64 num_bytes, u64 ram_bytes,
2055 u8 compression, u8 encryption,
2056 u16 other_encoding, int extent_type)
2058 struct btrfs_root *root = BTRFS_I(inode)->root;
2059 struct btrfs_file_extent_item *fi;
2060 struct btrfs_path *path;
2061 struct extent_buffer *leaf;
2062 struct btrfs_key ins;
2063 int extent_inserted = 0;
2064 int ret;
2066 path = btrfs_alloc_path();
2067 if (!path)
2068 return -ENOMEM;
2071 * we may be replacing one extent in the tree with another.
2072 * The new extent is pinned in the extent map, and we don't want
2073 * to drop it from the cache until it is completely in the btree.
2075 * So, tell btrfs_drop_extents to leave this extent in the cache.
2076 * the caller is expected to unpin it and allow it to be merged
2077 * with the others.
2079 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2080 file_pos + num_bytes, NULL, 0,
2081 1, sizeof(*fi), &extent_inserted);
2082 if (ret)
2083 goto out;
2085 if (!extent_inserted) {
2086 ins.objectid = btrfs_ino(inode);
2087 ins.offset = file_pos;
2088 ins.type = BTRFS_EXTENT_DATA_KEY;
2090 path->leave_spinning = 1;
2091 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2092 sizeof(*fi));
2093 if (ret)
2094 goto out;
2096 leaf = path->nodes[0];
2097 fi = btrfs_item_ptr(leaf, path->slots[0],
2098 struct btrfs_file_extent_item);
2099 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2100 btrfs_set_file_extent_type(leaf, fi, extent_type);
2101 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2102 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2103 btrfs_set_file_extent_offset(leaf, fi, 0);
2104 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2105 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2106 btrfs_set_file_extent_compression(leaf, fi, compression);
2107 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2108 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2110 btrfs_mark_buffer_dirty(leaf);
2111 btrfs_release_path(path);
2113 inode_add_bytes(inode, num_bytes);
2115 ins.objectid = disk_bytenr;
2116 ins.offset = disk_num_bytes;
2117 ins.type = BTRFS_EXTENT_ITEM_KEY;
2118 ret = btrfs_alloc_reserved_file_extent(trans, root,
2119 root->root_key.objectid,
2120 btrfs_ino(inode), file_pos, &ins);
2121 out:
2122 btrfs_free_path(path);
2124 return ret;
2127 /* snapshot-aware defrag */
2128 struct sa_defrag_extent_backref {
2129 struct rb_node node;
2130 struct old_sa_defrag_extent *old;
2131 u64 root_id;
2132 u64 inum;
2133 u64 file_pos;
2134 u64 extent_offset;
2135 u64 num_bytes;
2136 u64 generation;
2139 struct old_sa_defrag_extent {
2140 struct list_head list;
2141 struct new_sa_defrag_extent *new;
2143 u64 extent_offset;
2144 u64 bytenr;
2145 u64 offset;
2146 u64 len;
2147 int count;
2150 struct new_sa_defrag_extent {
2151 struct rb_root root;
2152 struct list_head head;
2153 struct btrfs_path *path;
2154 struct inode *inode;
2155 u64 file_pos;
2156 u64 len;
2157 u64 bytenr;
2158 u64 disk_len;
2159 u8 compress_type;
2162 static int backref_comp(struct sa_defrag_extent_backref *b1,
2163 struct sa_defrag_extent_backref *b2)
2165 if (b1->root_id < b2->root_id)
2166 return -1;
2167 else if (b1->root_id > b2->root_id)
2168 return 1;
2170 if (b1->inum < b2->inum)
2171 return -1;
2172 else if (b1->inum > b2->inum)
2173 return 1;
2175 if (b1->file_pos < b2->file_pos)
2176 return -1;
2177 else if (b1->file_pos > b2->file_pos)
2178 return 1;
2181 * [------------------------------] ===> (a range of space)
2182 * |<--->| |<---->| =============> (fs/file tree A)
2183 * |<---------------------------->| ===> (fs/file tree B)
2185 * A range of space can refer to two file extents in one tree while
2186 * refer to only one file extent in another tree.
2188 * So we may process a disk offset more than one time(two extents in A)
2189 * and locate at the same extent(one extent in B), then insert two same
2190 * backrefs(both refer to the extent in B).
2192 return 0;
2195 static void backref_insert(struct rb_root *root,
2196 struct sa_defrag_extent_backref *backref)
2198 struct rb_node **p = &root->rb_node;
2199 struct rb_node *parent = NULL;
2200 struct sa_defrag_extent_backref *entry;
2201 int ret;
2203 while (*p) {
2204 parent = *p;
2205 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2207 ret = backref_comp(backref, entry);
2208 if (ret < 0)
2209 p = &(*p)->rb_left;
2210 else
2211 p = &(*p)->rb_right;
2214 rb_link_node(&backref->node, parent, p);
2215 rb_insert_color(&backref->node, root);
2219 * Note the backref might has changed, and in this case we just return 0.
2221 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2222 void *ctx)
2224 struct btrfs_file_extent_item *extent;
2225 struct btrfs_fs_info *fs_info;
2226 struct old_sa_defrag_extent *old = ctx;
2227 struct new_sa_defrag_extent *new = old->new;
2228 struct btrfs_path *path = new->path;
2229 struct btrfs_key key;
2230 struct btrfs_root *root;
2231 struct sa_defrag_extent_backref *backref;
2232 struct extent_buffer *leaf;
2233 struct inode *inode = new->inode;
2234 int slot;
2235 int ret;
2236 u64 extent_offset;
2237 u64 num_bytes;
2239 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2240 inum == btrfs_ino(inode))
2241 return 0;
2243 key.objectid = root_id;
2244 key.type = BTRFS_ROOT_ITEM_KEY;
2245 key.offset = (u64)-1;
2247 fs_info = BTRFS_I(inode)->root->fs_info;
2248 root = btrfs_read_fs_root_no_name(fs_info, &key);
2249 if (IS_ERR(root)) {
2250 if (PTR_ERR(root) == -ENOENT)
2251 return 0;
2252 WARN_ON(1);
2253 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2254 inum, offset, root_id);
2255 return PTR_ERR(root);
2258 key.objectid = inum;
2259 key.type = BTRFS_EXTENT_DATA_KEY;
2260 if (offset > (u64)-1 << 32)
2261 key.offset = 0;
2262 else
2263 key.offset = offset;
2265 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2266 if (WARN_ON(ret < 0))
2267 return ret;
2268 ret = 0;
2270 while (1) {
2271 cond_resched();
2273 leaf = path->nodes[0];
2274 slot = path->slots[0];
2276 if (slot >= btrfs_header_nritems(leaf)) {
2277 ret = btrfs_next_leaf(root, path);
2278 if (ret < 0) {
2279 goto out;
2280 } else if (ret > 0) {
2281 ret = 0;
2282 goto out;
2284 continue;
2287 path->slots[0]++;
2289 btrfs_item_key_to_cpu(leaf, &key, slot);
2291 if (key.objectid > inum)
2292 goto out;
2294 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2295 continue;
2297 extent = btrfs_item_ptr(leaf, slot,
2298 struct btrfs_file_extent_item);
2300 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2301 continue;
2304 * 'offset' refers to the exact key.offset,
2305 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2306 * (key.offset - extent_offset).
2308 if (key.offset != offset)
2309 continue;
2311 extent_offset = btrfs_file_extent_offset(leaf, extent);
2312 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2314 if (extent_offset >= old->extent_offset + old->offset +
2315 old->len || extent_offset + num_bytes <=
2316 old->extent_offset + old->offset)
2317 continue;
2318 break;
2321 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2322 if (!backref) {
2323 ret = -ENOENT;
2324 goto out;
2327 backref->root_id = root_id;
2328 backref->inum = inum;
2329 backref->file_pos = offset;
2330 backref->num_bytes = num_bytes;
2331 backref->extent_offset = extent_offset;
2332 backref->generation = btrfs_file_extent_generation(leaf, extent);
2333 backref->old = old;
2334 backref_insert(&new->root, backref);
2335 old->count++;
2336 out:
2337 btrfs_release_path(path);
2338 WARN_ON(ret);
2339 return ret;
2342 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2343 struct new_sa_defrag_extent *new)
2345 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2346 struct old_sa_defrag_extent *old, *tmp;
2347 int ret;
2349 new->path = path;
2351 list_for_each_entry_safe(old, tmp, &new->head, list) {
2352 ret = iterate_inodes_from_logical(old->bytenr +
2353 old->extent_offset, fs_info,
2354 path, record_one_backref,
2355 old);
2356 if (ret < 0 && ret != -ENOENT)
2357 return false;
2359 /* no backref to be processed for this extent */
2360 if (!old->count) {
2361 list_del(&old->list);
2362 kfree(old);
2366 if (list_empty(&new->head))
2367 return false;
2369 return true;
2372 static int relink_is_mergable(struct extent_buffer *leaf,
2373 struct btrfs_file_extent_item *fi,
2374 struct new_sa_defrag_extent *new)
2376 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2377 return 0;
2379 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2380 return 0;
2382 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2383 return 0;
2385 if (btrfs_file_extent_encryption(leaf, fi) ||
2386 btrfs_file_extent_other_encoding(leaf, fi))
2387 return 0;
2389 return 1;
2393 * Note the backref might has changed, and in this case we just return 0.
2395 static noinline int relink_extent_backref(struct btrfs_path *path,
2396 struct sa_defrag_extent_backref *prev,
2397 struct sa_defrag_extent_backref *backref)
2399 struct btrfs_file_extent_item *extent;
2400 struct btrfs_file_extent_item *item;
2401 struct btrfs_ordered_extent *ordered;
2402 struct btrfs_trans_handle *trans;
2403 struct btrfs_fs_info *fs_info;
2404 struct btrfs_root *root;
2405 struct btrfs_key key;
2406 struct extent_buffer *leaf;
2407 struct old_sa_defrag_extent *old = backref->old;
2408 struct new_sa_defrag_extent *new = old->new;
2409 struct inode *src_inode = new->inode;
2410 struct inode *inode;
2411 struct extent_state *cached = NULL;
2412 int ret = 0;
2413 u64 start;
2414 u64 len;
2415 u64 lock_start;
2416 u64 lock_end;
2417 bool merge = false;
2418 int index;
2420 if (prev && prev->root_id == backref->root_id &&
2421 prev->inum == backref->inum &&
2422 prev->file_pos + prev->num_bytes == backref->file_pos)
2423 merge = true;
2425 /* step 1: get root */
2426 key.objectid = backref->root_id;
2427 key.type = BTRFS_ROOT_ITEM_KEY;
2428 key.offset = (u64)-1;
2430 fs_info = BTRFS_I(src_inode)->root->fs_info;
2431 index = srcu_read_lock(&fs_info->subvol_srcu);
2433 root = btrfs_read_fs_root_no_name(fs_info, &key);
2434 if (IS_ERR(root)) {
2435 srcu_read_unlock(&fs_info->subvol_srcu, index);
2436 if (PTR_ERR(root) == -ENOENT)
2437 return 0;
2438 return PTR_ERR(root);
2441 if (btrfs_root_readonly(root)) {
2442 srcu_read_unlock(&fs_info->subvol_srcu, index);
2443 return 0;
2446 /* step 2: get inode */
2447 key.objectid = backref->inum;
2448 key.type = BTRFS_INODE_ITEM_KEY;
2449 key.offset = 0;
2451 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2452 if (IS_ERR(inode)) {
2453 srcu_read_unlock(&fs_info->subvol_srcu, index);
2454 return 0;
2457 srcu_read_unlock(&fs_info->subvol_srcu, index);
2459 /* step 3: relink backref */
2460 lock_start = backref->file_pos;
2461 lock_end = backref->file_pos + backref->num_bytes - 1;
2462 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2463 0, &cached);
2465 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2466 if (ordered) {
2467 btrfs_put_ordered_extent(ordered);
2468 goto out_unlock;
2471 trans = btrfs_join_transaction(root);
2472 if (IS_ERR(trans)) {
2473 ret = PTR_ERR(trans);
2474 goto out_unlock;
2477 key.objectid = backref->inum;
2478 key.type = BTRFS_EXTENT_DATA_KEY;
2479 key.offset = backref->file_pos;
2481 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482 if (ret < 0) {
2483 goto out_free_path;
2484 } else if (ret > 0) {
2485 ret = 0;
2486 goto out_free_path;
2489 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2490 struct btrfs_file_extent_item);
2492 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2493 backref->generation)
2494 goto out_free_path;
2496 btrfs_release_path(path);
2498 start = backref->file_pos;
2499 if (backref->extent_offset < old->extent_offset + old->offset)
2500 start += old->extent_offset + old->offset -
2501 backref->extent_offset;
2503 len = min(backref->extent_offset + backref->num_bytes,
2504 old->extent_offset + old->offset + old->len);
2505 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2507 ret = btrfs_drop_extents(trans, root, inode, start,
2508 start + len, 1);
2509 if (ret)
2510 goto out_free_path;
2511 again:
2512 key.objectid = btrfs_ino(inode);
2513 key.type = BTRFS_EXTENT_DATA_KEY;
2514 key.offset = start;
2516 path->leave_spinning = 1;
2517 if (merge) {
2518 struct btrfs_file_extent_item *fi;
2519 u64 extent_len;
2520 struct btrfs_key found_key;
2522 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2523 if (ret < 0)
2524 goto out_free_path;
2526 path->slots[0]--;
2527 leaf = path->nodes[0];
2528 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2530 fi = btrfs_item_ptr(leaf, path->slots[0],
2531 struct btrfs_file_extent_item);
2532 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2534 if (extent_len + found_key.offset == start &&
2535 relink_is_mergable(leaf, fi, new)) {
2536 btrfs_set_file_extent_num_bytes(leaf, fi,
2537 extent_len + len);
2538 btrfs_mark_buffer_dirty(leaf);
2539 inode_add_bytes(inode, len);
2541 ret = 1;
2542 goto out_free_path;
2543 } else {
2544 merge = false;
2545 btrfs_release_path(path);
2546 goto again;
2550 ret = btrfs_insert_empty_item(trans, root, path, &key,
2551 sizeof(*extent));
2552 if (ret) {
2553 btrfs_abort_transaction(trans, root, ret);
2554 goto out_free_path;
2557 leaf = path->nodes[0];
2558 item = btrfs_item_ptr(leaf, path->slots[0],
2559 struct btrfs_file_extent_item);
2560 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2561 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2562 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2563 btrfs_set_file_extent_num_bytes(leaf, item, len);
2564 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2565 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2566 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2567 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2568 btrfs_set_file_extent_encryption(leaf, item, 0);
2569 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2571 btrfs_mark_buffer_dirty(leaf);
2572 inode_add_bytes(inode, len);
2573 btrfs_release_path(path);
2575 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2576 new->disk_len, 0,
2577 backref->root_id, backref->inum,
2578 new->file_pos, 0); /* start - extent_offset */
2579 if (ret) {
2580 btrfs_abort_transaction(trans, root, ret);
2581 goto out_free_path;
2584 ret = 1;
2585 out_free_path:
2586 btrfs_release_path(path);
2587 path->leave_spinning = 0;
2588 btrfs_end_transaction(trans, root);
2589 out_unlock:
2590 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2591 &cached, GFP_NOFS);
2592 iput(inode);
2593 return ret;
2596 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2598 struct old_sa_defrag_extent *old, *tmp;
2600 if (!new)
2601 return;
2603 list_for_each_entry_safe(old, tmp, &new->head, list) {
2604 list_del(&old->list);
2605 kfree(old);
2607 kfree(new);
2610 static void relink_file_extents(struct new_sa_defrag_extent *new)
2612 struct btrfs_path *path;
2613 struct sa_defrag_extent_backref *backref;
2614 struct sa_defrag_extent_backref *prev = NULL;
2615 struct inode *inode;
2616 struct btrfs_root *root;
2617 struct rb_node *node;
2618 int ret;
2620 inode = new->inode;
2621 root = BTRFS_I(inode)->root;
2623 path = btrfs_alloc_path();
2624 if (!path)
2625 return;
2627 if (!record_extent_backrefs(path, new)) {
2628 btrfs_free_path(path);
2629 goto out;
2631 btrfs_release_path(path);
2633 while (1) {
2634 node = rb_first(&new->root);
2635 if (!node)
2636 break;
2637 rb_erase(node, &new->root);
2639 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2641 ret = relink_extent_backref(path, prev, backref);
2642 WARN_ON(ret < 0);
2644 kfree(prev);
2646 if (ret == 1)
2647 prev = backref;
2648 else
2649 prev = NULL;
2650 cond_resched();
2652 kfree(prev);
2654 btrfs_free_path(path);
2655 out:
2656 free_sa_defrag_extent(new);
2658 atomic_dec(&root->fs_info->defrag_running);
2659 wake_up(&root->fs_info->transaction_wait);
2662 static struct new_sa_defrag_extent *
2663 record_old_file_extents(struct inode *inode,
2664 struct btrfs_ordered_extent *ordered)
2666 struct btrfs_root *root = BTRFS_I(inode)->root;
2667 struct btrfs_path *path;
2668 struct btrfs_key key;
2669 struct old_sa_defrag_extent *old;
2670 struct new_sa_defrag_extent *new;
2671 int ret;
2673 new = kmalloc(sizeof(*new), GFP_NOFS);
2674 if (!new)
2675 return NULL;
2677 new->inode = inode;
2678 new->file_pos = ordered->file_offset;
2679 new->len = ordered->len;
2680 new->bytenr = ordered->start;
2681 new->disk_len = ordered->disk_len;
2682 new->compress_type = ordered->compress_type;
2683 new->root = RB_ROOT;
2684 INIT_LIST_HEAD(&new->head);
2686 path = btrfs_alloc_path();
2687 if (!path)
2688 goto out_kfree;
2690 key.objectid = btrfs_ino(inode);
2691 key.type = BTRFS_EXTENT_DATA_KEY;
2692 key.offset = new->file_pos;
2694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2695 if (ret < 0)
2696 goto out_free_path;
2697 if (ret > 0 && path->slots[0] > 0)
2698 path->slots[0]--;
2700 /* find out all the old extents for the file range */
2701 while (1) {
2702 struct btrfs_file_extent_item *extent;
2703 struct extent_buffer *l;
2704 int slot;
2705 u64 num_bytes;
2706 u64 offset;
2707 u64 end;
2708 u64 disk_bytenr;
2709 u64 extent_offset;
2711 l = path->nodes[0];
2712 slot = path->slots[0];
2714 if (slot >= btrfs_header_nritems(l)) {
2715 ret = btrfs_next_leaf(root, path);
2716 if (ret < 0)
2717 goto out_free_path;
2718 else if (ret > 0)
2719 break;
2720 continue;
2723 btrfs_item_key_to_cpu(l, &key, slot);
2725 if (key.objectid != btrfs_ino(inode))
2726 break;
2727 if (key.type != BTRFS_EXTENT_DATA_KEY)
2728 break;
2729 if (key.offset >= new->file_pos + new->len)
2730 break;
2732 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2734 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2735 if (key.offset + num_bytes < new->file_pos)
2736 goto next;
2738 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2739 if (!disk_bytenr)
2740 goto next;
2742 extent_offset = btrfs_file_extent_offset(l, extent);
2744 old = kmalloc(sizeof(*old), GFP_NOFS);
2745 if (!old)
2746 goto out_free_path;
2748 offset = max(new->file_pos, key.offset);
2749 end = min(new->file_pos + new->len, key.offset + num_bytes);
2751 old->bytenr = disk_bytenr;
2752 old->extent_offset = extent_offset;
2753 old->offset = offset - key.offset;
2754 old->len = end - offset;
2755 old->new = new;
2756 old->count = 0;
2757 list_add_tail(&old->list, &new->head);
2758 next:
2759 path->slots[0]++;
2760 cond_resched();
2763 btrfs_free_path(path);
2764 atomic_inc(&root->fs_info->defrag_running);
2766 return new;
2768 out_free_path:
2769 btrfs_free_path(path);
2770 out_kfree:
2771 free_sa_defrag_extent(new);
2772 return NULL;
2775 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2776 u64 start, u64 len)
2778 struct btrfs_block_group_cache *cache;
2780 cache = btrfs_lookup_block_group(root->fs_info, start);
2781 ASSERT(cache);
2783 spin_lock(&cache->lock);
2784 cache->delalloc_bytes -= len;
2785 spin_unlock(&cache->lock);
2787 btrfs_put_block_group(cache);
2790 /* as ordered data IO finishes, this gets called so we can finish
2791 * an ordered extent if the range of bytes in the file it covers are
2792 * fully written.
2794 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2796 struct inode *inode = ordered_extent->inode;
2797 struct btrfs_root *root = BTRFS_I(inode)->root;
2798 struct btrfs_trans_handle *trans = NULL;
2799 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2800 struct extent_state *cached_state = NULL;
2801 struct new_sa_defrag_extent *new = NULL;
2802 int compress_type = 0;
2803 int ret = 0;
2804 u64 logical_len = ordered_extent->len;
2805 bool nolock;
2806 bool truncated = false;
2808 nolock = btrfs_is_free_space_inode(inode);
2810 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2811 ret = -EIO;
2812 goto out;
2815 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2816 ordered_extent->file_offset +
2817 ordered_extent->len - 1);
2819 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2820 truncated = true;
2821 logical_len = ordered_extent->truncated_len;
2822 /* Truncated the entire extent, don't bother adding */
2823 if (!logical_len)
2824 goto out;
2827 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2828 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2829 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2830 if (nolock)
2831 trans = btrfs_join_transaction_nolock(root);
2832 else
2833 trans = btrfs_join_transaction(root);
2834 if (IS_ERR(trans)) {
2835 ret = PTR_ERR(trans);
2836 trans = NULL;
2837 goto out;
2839 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2840 ret = btrfs_update_inode_fallback(trans, root, inode);
2841 if (ret) /* -ENOMEM or corruption */
2842 btrfs_abort_transaction(trans, root, ret);
2843 goto out;
2846 lock_extent_bits(io_tree, ordered_extent->file_offset,
2847 ordered_extent->file_offset + ordered_extent->len - 1,
2848 0, &cached_state);
2850 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2851 ordered_extent->file_offset + ordered_extent->len - 1,
2852 EXTENT_DEFRAG, 1, cached_state);
2853 if (ret) {
2854 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2855 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2856 /* the inode is shared */
2857 new = record_old_file_extents(inode, ordered_extent);
2859 clear_extent_bit(io_tree, ordered_extent->file_offset,
2860 ordered_extent->file_offset + ordered_extent->len - 1,
2861 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2864 if (nolock)
2865 trans = btrfs_join_transaction_nolock(root);
2866 else
2867 trans = btrfs_join_transaction(root);
2868 if (IS_ERR(trans)) {
2869 ret = PTR_ERR(trans);
2870 trans = NULL;
2871 goto out_unlock;
2874 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2876 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2877 compress_type = ordered_extent->compress_type;
2878 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2879 BUG_ON(compress_type);
2880 ret = btrfs_mark_extent_written(trans, inode,
2881 ordered_extent->file_offset,
2882 ordered_extent->file_offset +
2883 logical_len);
2884 } else {
2885 BUG_ON(root == root->fs_info->tree_root);
2886 ret = insert_reserved_file_extent(trans, inode,
2887 ordered_extent->file_offset,
2888 ordered_extent->start,
2889 ordered_extent->disk_len,
2890 logical_len, logical_len,
2891 compress_type, 0, 0,
2892 BTRFS_FILE_EXTENT_REG);
2893 if (!ret)
2894 btrfs_release_delalloc_bytes(root,
2895 ordered_extent->start,
2896 ordered_extent->disk_len);
2898 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2899 ordered_extent->file_offset, ordered_extent->len,
2900 trans->transid);
2901 if (ret < 0) {
2902 btrfs_abort_transaction(trans, root, ret);
2903 goto out_unlock;
2906 add_pending_csums(trans, inode, ordered_extent->file_offset,
2907 &ordered_extent->list);
2909 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2910 ret = btrfs_update_inode_fallback(trans, root, inode);
2911 if (ret) { /* -ENOMEM or corruption */
2912 btrfs_abort_transaction(trans, root, ret);
2913 goto out_unlock;
2915 ret = 0;
2916 out_unlock:
2917 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2918 ordered_extent->file_offset +
2919 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2920 out:
2921 if (root != root->fs_info->tree_root)
2922 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2923 if (trans)
2924 btrfs_end_transaction(trans, root);
2926 if (ret || truncated) {
2927 u64 start, end;
2929 if (truncated)
2930 start = ordered_extent->file_offset + logical_len;
2931 else
2932 start = ordered_extent->file_offset;
2933 end = ordered_extent->file_offset + ordered_extent->len - 1;
2934 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2936 /* Drop the cache for the part of the extent we didn't write. */
2937 btrfs_drop_extent_cache(inode, start, end, 0);
2940 * If the ordered extent had an IOERR or something else went
2941 * wrong we need to return the space for this ordered extent
2942 * back to the allocator. We only free the extent in the
2943 * truncated case if we didn't write out the extent at all.
2945 if ((ret || !logical_len) &&
2946 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2947 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2948 btrfs_free_reserved_extent(root, ordered_extent->start,
2949 ordered_extent->disk_len, 1);
2954 * This needs to be done to make sure anybody waiting knows we are done
2955 * updating everything for this ordered extent.
2957 btrfs_remove_ordered_extent(inode, ordered_extent);
2959 /* for snapshot-aware defrag */
2960 if (new) {
2961 if (ret) {
2962 free_sa_defrag_extent(new);
2963 atomic_dec(&root->fs_info->defrag_running);
2964 } else {
2965 relink_file_extents(new);
2969 /* once for us */
2970 btrfs_put_ordered_extent(ordered_extent);
2971 /* once for the tree */
2972 btrfs_put_ordered_extent(ordered_extent);
2974 return ret;
2977 static void finish_ordered_fn(struct btrfs_work *work)
2979 struct btrfs_ordered_extent *ordered_extent;
2980 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2981 btrfs_finish_ordered_io(ordered_extent);
2984 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2985 struct extent_state *state, int uptodate)
2987 struct inode *inode = page->mapping->host;
2988 struct btrfs_root *root = BTRFS_I(inode)->root;
2989 struct btrfs_ordered_extent *ordered_extent = NULL;
2990 struct btrfs_workqueue *wq;
2991 btrfs_work_func_t func;
2993 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2995 ClearPagePrivate2(page);
2996 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2997 end - start + 1, uptodate))
2998 return 0;
3000 if (btrfs_is_free_space_inode(inode)) {
3001 wq = root->fs_info->endio_freespace_worker;
3002 func = btrfs_freespace_write_helper;
3003 } else {
3004 wq = root->fs_info->endio_write_workers;
3005 func = btrfs_endio_write_helper;
3008 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3009 NULL);
3010 btrfs_queue_work(wq, &ordered_extent->work);
3012 return 0;
3015 static int __readpage_endio_check(struct inode *inode,
3016 struct btrfs_io_bio *io_bio,
3017 int icsum, struct page *page,
3018 int pgoff, u64 start, size_t len)
3020 char *kaddr;
3021 u32 csum_expected;
3022 u32 csum = ~(u32)0;
3023 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3024 DEFAULT_RATELIMIT_BURST);
3026 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3028 kaddr = kmap_atomic(page);
3029 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3030 btrfs_csum_final(csum, (char *)&csum);
3031 if (csum != csum_expected)
3032 goto zeroit;
3034 kunmap_atomic(kaddr);
3035 return 0;
3036 zeroit:
3037 if (__ratelimit(&_rs))
3038 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3039 "csum failed ino %llu off %llu csum %u expected csum %u",
3040 btrfs_ino(inode), start, csum, csum_expected);
3041 memset(kaddr + pgoff, 1, len);
3042 flush_dcache_page(page);
3043 kunmap_atomic(kaddr);
3044 if (csum_expected == 0)
3045 return 0;
3046 return -EIO;
3050 * when reads are done, we need to check csums to verify the data is correct
3051 * if there's a match, we allow the bio to finish. If not, the code in
3052 * extent_io.c will try to find good copies for us.
3054 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3055 u64 phy_offset, struct page *page,
3056 u64 start, u64 end, int mirror)
3058 size_t offset = start - page_offset(page);
3059 struct inode *inode = page->mapping->host;
3060 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3061 struct btrfs_root *root = BTRFS_I(inode)->root;
3063 if (PageChecked(page)) {
3064 ClearPageChecked(page);
3065 return 0;
3068 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3069 return 0;
3071 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3072 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3073 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3074 GFP_NOFS);
3075 return 0;
3078 phy_offset >>= inode->i_sb->s_blocksize_bits;
3079 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3080 start, (size_t)(end - start + 1));
3083 void btrfs_add_delayed_iput(struct inode *inode)
3085 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3086 struct btrfs_inode *binode = BTRFS_I(inode);
3088 if (atomic_add_unless(&inode->i_count, -1, 1))
3089 return;
3091 spin_lock(&fs_info->delayed_iput_lock);
3092 if (binode->delayed_iput_count == 0) {
3093 ASSERT(list_empty(&binode->delayed_iput));
3094 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3095 } else {
3096 binode->delayed_iput_count++;
3098 spin_unlock(&fs_info->delayed_iput_lock);
3101 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3103 struct btrfs_fs_info *fs_info = root->fs_info;
3105 spin_lock(&fs_info->delayed_iput_lock);
3106 while (!list_empty(&fs_info->delayed_iputs)) {
3107 struct btrfs_inode *inode;
3109 inode = list_first_entry(&fs_info->delayed_iputs,
3110 struct btrfs_inode, delayed_iput);
3111 if (inode->delayed_iput_count) {
3112 inode->delayed_iput_count--;
3113 list_move_tail(&inode->delayed_iput,
3114 &fs_info->delayed_iputs);
3115 } else {
3116 list_del_init(&inode->delayed_iput);
3118 spin_unlock(&fs_info->delayed_iput_lock);
3119 iput(&inode->vfs_inode);
3120 spin_lock(&fs_info->delayed_iput_lock);
3122 spin_unlock(&fs_info->delayed_iput_lock);
3126 * This is called in transaction commit time. If there are no orphan
3127 * files in the subvolume, it removes orphan item and frees block_rsv
3128 * structure.
3130 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3131 struct btrfs_root *root)
3133 struct btrfs_block_rsv *block_rsv;
3134 int ret;
3136 if (atomic_read(&root->orphan_inodes) ||
3137 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3138 return;
3140 spin_lock(&root->orphan_lock);
3141 if (atomic_read(&root->orphan_inodes)) {
3142 spin_unlock(&root->orphan_lock);
3143 return;
3146 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3147 spin_unlock(&root->orphan_lock);
3148 return;
3151 block_rsv = root->orphan_block_rsv;
3152 root->orphan_block_rsv = NULL;
3153 spin_unlock(&root->orphan_lock);
3155 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3156 btrfs_root_refs(&root->root_item) > 0) {
3157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3158 root->root_key.objectid);
3159 if (ret)
3160 btrfs_abort_transaction(trans, root, ret);
3161 else
3162 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3163 &root->state);
3166 if (block_rsv) {
3167 WARN_ON(block_rsv->size > 0);
3168 btrfs_free_block_rsv(root, block_rsv);
3173 * This creates an orphan entry for the given inode in case something goes
3174 * wrong in the middle of an unlink/truncate.
3176 * NOTE: caller of this function should reserve 5 units of metadata for
3177 * this function.
3179 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3181 struct btrfs_root *root = BTRFS_I(inode)->root;
3182 struct btrfs_block_rsv *block_rsv = NULL;
3183 int reserve = 0;
3184 int insert = 0;
3185 int ret;
3187 if (!root->orphan_block_rsv) {
3188 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3189 if (!block_rsv)
3190 return -ENOMEM;
3193 spin_lock(&root->orphan_lock);
3194 if (!root->orphan_block_rsv) {
3195 root->orphan_block_rsv = block_rsv;
3196 } else if (block_rsv) {
3197 btrfs_free_block_rsv(root, block_rsv);
3198 block_rsv = NULL;
3201 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3202 &BTRFS_I(inode)->runtime_flags)) {
3203 #if 0
3205 * For proper ENOSPC handling, we should do orphan
3206 * cleanup when mounting. But this introduces backward
3207 * compatibility issue.
3209 if (!xchg(&root->orphan_item_inserted, 1))
3210 insert = 2;
3211 else
3212 insert = 1;
3213 #endif
3214 insert = 1;
3215 atomic_inc(&root->orphan_inodes);
3218 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3219 &BTRFS_I(inode)->runtime_flags))
3220 reserve = 1;
3221 spin_unlock(&root->orphan_lock);
3223 /* grab metadata reservation from transaction handle */
3224 if (reserve) {
3225 ret = btrfs_orphan_reserve_metadata(trans, inode);
3226 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3229 /* insert an orphan item to track this unlinked/truncated file */
3230 if (insert >= 1) {
3231 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3232 if (ret) {
3233 atomic_dec(&root->orphan_inodes);
3234 if (reserve) {
3235 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3236 &BTRFS_I(inode)->runtime_flags);
3237 btrfs_orphan_release_metadata(inode);
3239 if (ret != -EEXIST) {
3240 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3241 &BTRFS_I(inode)->runtime_flags);
3242 btrfs_abort_transaction(trans, root, ret);
3243 return ret;
3246 ret = 0;
3249 /* insert an orphan item to track subvolume contains orphan files */
3250 if (insert >= 2) {
3251 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3252 root->root_key.objectid);
3253 if (ret && ret != -EEXIST) {
3254 btrfs_abort_transaction(trans, root, ret);
3255 return ret;
3258 return 0;
3262 * We have done the truncate/delete so we can go ahead and remove the orphan
3263 * item for this particular inode.
3265 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3266 struct inode *inode)
3268 struct btrfs_root *root = BTRFS_I(inode)->root;
3269 int delete_item = 0;
3270 int release_rsv = 0;
3271 int ret = 0;
3273 spin_lock(&root->orphan_lock);
3274 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 &BTRFS_I(inode)->runtime_flags))
3276 delete_item = 1;
3278 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3279 &BTRFS_I(inode)->runtime_flags))
3280 release_rsv = 1;
3281 spin_unlock(&root->orphan_lock);
3283 if (delete_item) {
3284 atomic_dec(&root->orphan_inodes);
3285 if (trans)
3286 ret = btrfs_del_orphan_item(trans, root,
3287 btrfs_ino(inode));
3290 if (release_rsv)
3291 btrfs_orphan_release_metadata(inode);
3293 return ret;
3297 * this cleans up any orphans that may be left on the list from the last use
3298 * of this root.
3300 int btrfs_orphan_cleanup(struct btrfs_root *root)
3302 struct btrfs_path *path;
3303 struct extent_buffer *leaf;
3304 struct btrfs_key key, found_key;
3305 struct btrfs_trans_handle *trans;
3306 struct inode *inode;
3307 u64 last_objectid = 0;
3308 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3310 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3311 return 0;
3313 path = btrfs_alloc_path();
3314 if (!path) {
3315 ret = -ENOMEM;
3316 goto out;
3318 path->reada = -1;
3320 key.objectid = BTRFS_ORPHAN_OBJECTID;
3321 key.type = BTRFS_ORPHAN_ITEM_KEY;
3322 key.offset = (u64)-1;
3324 while (1) {
3325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3326 if (ret < 0)
3327 goto out;
3330 * if ret == 0 means we found what we were searching for, which
3331 * is weird, but possible, so only screw with path if we didn't
3332 * find the key and see if we have stuff that matches
3334 if (ret > 0) {
3335 ret = 0;
3336 if (path->slots[0] == 0)
3337 break;
3338 path->slots[0]--;
3341 /* pull out the item */
3342 leaf = path->nodes[0];
3343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3345 /* make sure the item matches what we want */
3346 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3347 break;
3348 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3349 break;
3351 /* release the path since we're done with it */
3352 btrfs_release_path(path);
3355 * this is where we are basically btrfs_lookup, without the
3356 * crossing root thing. we store the inode number in the
3357 * offset of the orphan item.
3360 if (found_key.offset == last_objectid) {
3361 btrfs_err(root->fs_info,
3362 "Error removing orphan entry, stopping orphan cleanup");
3363 ret = -EINVAL;
3364 goto out;
3367 last_objectid = found_key.offset;
3369 found_key.objectid = found_key.offset;
3370 found_key.type = BTRFS_INODE_ITEM_KEY;
3371 found_key.offset = 0;
3372 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3373 ret = PTR_ERR_OR_ZERO(inode);
3374 if (ret && ret != -ESTALE)
3375 goto out;
3377 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3378 struct btrfs_root *dead_root;
3379 struct btrfs_fs_info *fs_info = root->fs_info;
3380 int is_dead_root = 0;
3383 * this is an orphan in the tree root. Currently these
3384 * could come from 2 sources:
3385 * a) a snapshot deletion in progress
3386 * b) a free space cache inode
3387 * We need to distinguish those two, as the snapshot
3388 * orphan must not get deleted.
3389 * find_dead_roots already ran before us, so if this
3390 * is a snapshot deletion, we should find the root
3391 * in the dead_roots list
3393 spin_lock(&fs_info->trans_lock);
3394 list_for_each_entry(dead_root, &fs_info->dead_roots,
3395 root_list) {
3396 if (dead_root->root_key.objectid ==
3397 found_key.objectid) {
3398 is_dead_root = 1;
3399 break;
3402 spin_unlock(&fs_info->trans_lock);
3403 if (is_dead_root) {
3404 /* prevent this orphan from being found again */
3405 key.offset = found_key.objectid - 1;
3406 continue;
3410 * Inode is already gone but the orphan item is still there,
3411 * kill the orphan item.
3413 if (ret == -ESTALE) {
3414 trans = btrfs_start_transaction(root, 1);
3415 if (IS_ERR(trans)) {
3416 ret = PTR_ERR(trans);
3417 goto out;
3419 btrfs_debug(root->fs_info, "auto deleting %Lu",
3420 found_key.objectid);
3421 ret = btrfs_del_orphan_item(trans, root,
3422 found_key.objectid);
3423 btrfs_end_transaction(trans, root);
3424 if (ret)
3425 goto out;
3426 continue;
3430 * add this inode to the orphan list so btrfs_orphan_del does
3431 * the proper thing when we hit it
3433 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3434 &BTRFS_I(inode)->runtime_flags);
3435 atomic_inc(&root->orphan_inodes);
3437 /* if we have links, this was a truncate, lets do that */
3438 if (inode->i_nlink) {
3439 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3440 iput(inode);
3441 continue;
3443 nr_truncate++;
3445 /* 1 for the orphan item deletion. */
3446 trans = btrfs_start_transaction(root, 1);
3447 if (IS_ERR(trans)) {
3448 iput(inode);
3449 ret = PTR_ERR(trans);
3450 goto out;
3452 ret = btrfs_orphan_add(trans, inode);
3453 btrfs_end_transaction(trans, root);
3454 if (ret) {
3455 iput(inode);
3456 goto out;
3459 ret = btrfs_truncate(inode);
3460 if (ret)
3461 btrfs_orphan_del(NULL, inode);
3462 } else {
3463 nr_unlink++;
3466 /* this will do delete_inode and everything for us */
3467 iput(inode);
3468 if (ret)
3469 goto out;
3471 /* release the path since we're done with it */
3472 btrfs_release_path(path);
3474 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3476 if (root->orphan_block_rsv)
3477 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3478 (u64)-1);
3480 if (root->orphan_block_rsv ||
3481 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3482 trans = btrfs_join_transaction(root);
3483 if (!IS_ERR(trans))
3484 btrfs_end_transaction(trans, root);
3487 if (nr_unlink)
3488 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3489 if (nr_truncate)
3490 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3492 out:
3493 if (ret)
3494 btrfs_err(root->fs_info,
3495 "could not do orphan cleanup %d", ret);
3496 btrfs_free_path(path);
3497 return ret;
3501 * very simple check to peek ahead in the leaf looking for xattrs. If we
3502 * don't find any xattrs, we know there can't be any acls.
3504 * slot is the slot the inode is in, objectid is the objectid of the inode
3506 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3507 int slot, u64 objectid,
3508 int *first_xattr_slot)
3510 u32 nritems = btrfs_header_nritems(leaf);
3511 struct btrfs_key found_key;
3512 static u64 xattr_access = 0;
3513 static u64 xattr_default = 0;
3514 int scanned = 0;
3516 if (!xattr_access) {
3517 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3518 strlen(POSIX_ACL_XATTR_ACCESS));
3519 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3520 strlen(POSIX_ACL_XATTR_DEFAULT));
3523 slot++;
3524 *first_xattr_slot = -1;
3525 while (slot < nritems) {
3526 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3528 /* we found a different objectid, there must not be acls */
3529 if (found_key.objectid != objectid)
3530 return 0;
3532 /* we found an xattr, assume we've got an acl */
3533 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3534 if (*first_xattr_slot == -1)
3535 *first_xattr_slot = slot;
3536 if (found_key.offset == xattr_access ||
3537 found_key.offset == xattr_default)
3538 return 1;
3542 * we found a key greater than an xattr key, there can't
3543 * be any acls later on
3545 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3546 return 0;
3548 slot++;
3549 scanned++;
3552 * it goes inode, inode backrefs, xattrs, extents,
3553 * so if there are a ton of hard links to an inode there can
3554 * be a lot of backrefs. Don't waste time searching too hard,
3555 * this is just an optimization
3557 if (scanned >= 8)
3558 break;
3560 /* we hit the end of the leaf before we found an xattr or
3561 * something larger than an xattr. We have to assume the inode
3562 * has acls
3564 if (*first_xattr_slot == -1)
3565 *first_xattr_slot = slot;
3566 return 1;
3570 * read an inode from the btree into the in-memory inode
3572 static void btrfs_read_locked_inode(struct inode *inode)
3574 struct btrfs_path *path;
3575 struct extent_buffer *leaf;
3576 struct btrfs_inode_item *inode_item;
3577 struct btrfs_root *root = BTRFS_I(inode)->root;
3578 struct btrfs_key location;
3579 unsigned long ptr;
3580 int maybe_acls;
3581 u32 rdev;
3582 int ret;
3583 bool filled = false;
3584 int first_xattr_slot;
3586 ret = btrfs_fill_inode(inode, &rdev);
3587 if (!ret)
3588 filled = true;
3590 path = btrfs_alloc_path();
3591 if (!path)
3592 goto make_bad;
3594 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3596 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3597 if (ret)
3598 goto make_bad;
3600 leaf = path->nodes[0];
3602 if (filled)
3603 goto cache_index;
3605 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3606 struct btrfs_inode_item);
3607 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3608 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3609 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3610 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3611 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3613 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3614 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3616 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3617 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3619 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3620 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3622 BTRFS_I(inode)->i_otime.tv_sec =
3623 btrfs_timespec_sec(leaf, &inode_item->otime);
3624 BTRFS_I(inode)->i_otime.tv_nsec =
3625 btrfs_timespec_nsec(leaf, &inode_item->otime);
3627 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3628 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3629 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3631 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3632 inode->i_generation = BTRFS_I(inode)->generation;
3633 inode->i_rdev = 0;
3634 rdev = btrfs_inode_rdev(leaf, inode_item);
3636 BTRFS_I(inode)->index_cnt = (u64)-1;
3637 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3639 cache_index:
3641 * If we were modified in the current generation and evicted from memory
3642 * and then re-read we need to do a full sync since we don't have any
3643 * idea about which extents were modified before we were evicted from
3644 * cache.
3646 * This is required for both inode re-read from disk and delayed inode
3647 * in delayed_nodes_tree.
3649 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3650 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3651 &BTRFS_I(inode)->runtime_flags);
3653 path->slots[0]++;
3654 if (inode->i_nlink != 1 ||
3655 path->slots[0] >= btrfs_header_nritems(leaf))
3656 goto cache_acl;
3658 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3659 if (location.objectid != btrfs_ino(inode))
3660 goto cache_acl;
3662 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3663 if (location.type == BTRFS_INODE_REF_KEY) {
3664 struct btrfs_inode_ref *ref;
3666 ref = (struct btrfs_inode_ref *)ptr;
3667 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3668 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3669 struct btrfs_inode_extref *extref;
3671 extref = (struct btrfs_inode_extref *)ptr;
3672 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3673 extref);
3675 cache_acl:
3677 * try to precache a NULL acl entry for files that don't have
3678 * any xattrs or acls
3680 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3681 btrfs_ino(inode), &first_xattr_slot);
3682 if (first_xattr_slot != -1) {
3683 path->slots[0] = first_xattr_slot;
3684 ret = btrfs_load_inode_props(inode, path);
3685 if (ret)
3686 btrfs_err(root->fs_info,
3687 "error loading props for ino %llu (root %llu): %d",
3688 btrfs_ino(inode),
3689 root->root_key.objectid, ret);
3691 btrfs_free_path(path);
3693 if (!maybe_acls)
3694 cache_no_acl(inode);
3696 switch (inode->i_mode & S_IFMT) {
3697 case S_IFREG:
3698 inode->i_mapping->a_ops = &btrfs_aops;
3699 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3700 inode->i_fop = &btrfs_file_operations;
3701 inode->i_op = &btrfs_file_inode_operations;
3702 break;
3703 case S_IFDIR:
3704 inode->i_fop = &btrfs_dir_file_operations;
3705 if (root == root->fs_info->tree_root)
3706 inode->i_op = &btrfs_dir_ro_inode_operations;
3707 else
3708 inode->i_op = &btrfs_dir_inode_operations;
3709 break;
3710 case S_IFLNK:
3711 inode->i_op = &btrfs_symlink_inode_operations;
3712 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3713 break;
3714 default:
3715 inode->i_op = &btrfs_special_inode_operations;
3716 init_special_inode(inode, inode->i_mode, rdev);
3717 break;
3720 btrfs_update_iflags(inode);
3721 return;
3723 make_bad:
3724 btrfs_free_path(path);
3725 make_bad_inode(inode);
3729 * given a leaf and an inode, copy the inode fields into the leaf
3731 static void fill_inode_item(struct btrfs_trans_handle *trans,
3732 struct extent_buffer *leaf,
3733 struct btrfs_inode_item *item,
3734 struct inode *inode)
3736 struct btrfs_map_token token;
3738 btrfs_init_map_token(&token);
3740 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3741 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3742 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3743 &token);
3744 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3745 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3747 btrfs_set_token_timespec_sec(leaf, &item->atime,
3748 inode->i_atime.tv_sec, &token);
3749 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3750 inode->i_atime.tv_nsec, &token);
3752 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3753 inode->i_mtime.tv_sec, &token);
3754 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3755 inode->i_mtime.tv_nsec, &token);
3757 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3758 inode->i_ctime.tv_sec, &token);
3759 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3760 inode->i_ctime.tv_nsec, &token);
3762 btrfs_set_token_timespec_sec(leaf, &item->otime,
3763 BTRFS_I(inode)->i_otime.tv_sec, &token);
3764 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3765 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3767 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3768 &token);
3769 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3770 &token);
3771 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3772 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3773 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3774 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3775 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3779 * copy everything in the in-memory inode into the btree.
3781 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3782 struct btrfs_root *root, struct inode *inode)
3784 struct btrfs_inode_item *inode_item;
3785 struct btrfs_path *path;
3786 struct extent_buffer *leaf;
3787 int ret;
3789 path = btrfs_alloc_path();
3790 if (!path)
3791 return -ENOMEM;
3793 path->leave_spinning = 1;
3794 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3796 if (ret) {
3797 if (ret > 0)
3798 ret = -ENOENT;
3799 goto failed;
3802 leaf = path->nodes[0];
3803 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3804 struct btrfs_inode_item);
3806 fill_inode_item(trans, leaf, inode_item, inode);
3807 btrfs_mark_buffer_dirty(leaf);
3808 btrfs_set_inode_last_trans(trans, inode);
3809 ret = 0;
3810 failed:
3811 btrfs_free_path(path);
3812 return ret;
3816 * copy everything in the in-memory inode into the btree.
3818 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *root, struct inode *inode)
3821 int ret;
3824 * If the inode is a free space inode, we can deadlock during commit
3825 * if we put it into the delayed code.
3827 * The data relocation inode should also be directly updated
3828 * without delay
3830 if (!btrfs_is_free_space_inode(inode)
3831 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3832 && !root->fs_info->log_root_recovering) {
3833 btrfs_update_root_times(trans, root);
3835 ret = btrfs_delayed_update_inode(trans, root, inode);
3836 if (!ret)
3837 btrfs_set_inode_last_trans(trans, inode);
3838 return ret;
3841 return btrfs_update_inode_item(trans, root, inode);
3844 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3845 struct btrfs_root *root,
3846 struct inode *inode)
3848 int ret;
3850 ret = btrfs_update_inode(trans, root, inode);
3851 if (ret == -ENOSPC)
3852 return btrfs_update_inode_item(trans, root, inode);
3853 return ret;
3857 * unlink helper that gets used here in inode.c and in the tree logging
3858 * recovery code. It remove a link in a directory with a given name, and
3859 * also drops the back refs in the inode to the directory
3861 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *root,
3863 struct inode *dir, struct inode *inode,
3864 const char *name, int name_len)
3866 struct btrfs_path *path;
3867 int ret = 0;
3868 struct extent_buffer *leaf;
3869 struct btrfs_dir_item *di;
3870 struct btrfs_key key;
3871 u64 index;
3872 u64 ino = btrfs_ino(inode);
3873 u64 dir_ino = btrfs_ino(dir);
3875 path = btrfs_alloc_path();
3876 if (!path) {
3877 ret = -ENOMEM;
3878 goto out;
3881 path->leave_spinning = 1;
3882 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3883 name, name_len, -1);
3884 if (IS_ERR(di)) {
3885 ret = PTR_ERR(di);
3886 goto err;
3888 if (!di) {
3889 ret = -ENOENT;
3890 goto err;
3892 leaf = path->nodes[0];
3893 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3894 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3895 if (ret)
3896 goto err;
3897 btrfs_release_path(path);
3900 * If we don't have dir index, we have to get it by looking up
3901 * the inode ref, since we get the inode ref, remove it directly,
3902 * it is unnecessary to do delayed deletion.
3904 * But if we have dir index, needn't search inode ref to get it.
3905 * Since the inode ref is close to the inode item, it is better
3906 * that we delay to delete it, and just do this deletion when
3907 * we update the inode item.
3909 if (BTRFS_I(inode)->dir_index) {
3910 ret = btrfs_delayed_delete_inode_ref(inode);
3911 if (!ret) {
3912 index = BTRFS_I(inode)->dir_index;
3913 goto skip_backref;
3917 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3918 dir_ino, &index);
3919 if (ret) {
3920 btrfs_info(root->fs_info,
3921 "failed to delete reference to %.*s, inode %llu parent %llu",
3922 name_len, name, ino, dir_ino);
3923 btrfs_abort_transaction(trans, root, ret);
3924 goto err;
3926 skip_backref:
3927 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3928 if (ret) {
3929 btrfs_abort_transaction(trans, root, ret);
3930 goto err;
3933 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3934 inode, dir_ino);
3935 if (ret != 0 && ret != -ENOENT) {
3936 btrfs_abort_transaction(trans, root, ret);
3937 goto err;
3940 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3941 dir, index);
3942 if (ret == -ENOENT)
3943 ret = 0;
3944 else if (ret)
3945 btrfs_abort_transaction(trans, root, ret);
3946 err:
3947 btrfs_free_path(path);
3948 if (ret)
3949 goto out;
3951 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3952 inode_inc_iversion(inode);
3953 inode_inc_iversion(dir);
3954 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3955 ret = btrfs_update_inode(trans, root, dir);
3956 out:
3957 return ret;
3960 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3961 struct btrfs_root *root,
3962 struct inode *dir, struct inode *inode,
3963 const char *name, int name_len)
3965 int ret;
3966 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3967 if (!ret) {
3968 drop_nlink(inode);
3969 ret = btrfs_update_inode(trans, root, inode);
3971 return ret;
3975 * helper to start transaction for unlink and rmdir.
3977 * unlink and rmdir are special in btrfs, they do not always free space, so
3978 * if we cannot make our reservations the normal way try and see if there is
3979 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3980 * allow the unlink to occur.
3982 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3984 struct btrfs_trans_handle *trans;
3985 struct btrfs_root *root = BTRFS_I(dir)->root;
3986 int ret;
3989 * 1 for the possible orphan item
3990 * 1 for the dir item
3991 * 1 for the dir index
3992 * 1 for the inode ref
3993 * 1 for the inode
3995 trans = btrfs_start_transaction(root, 5);
3996 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3997 return trans;
3999 if (PTR_ERR(trans) == -ENOSPC) {
4000 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4002 trans = btrfs_start_transaction(root, 0);
4003 if (IS_ERR(trans))
4004 return trans;
4005 ret = btrfs_cond_migrate_bytes(root->fs_info,
4006 &root->fs_info->trans_block_rsv,
4007 num_bytes, 5);
4008 if (ret) {
4009 btrfs_end_transaction(trans, root);
4010 return ERR_PTR(ret);
4012 trans->block_rsv = &root->fs_info->trans_block_rsv;
4013 trans->bytes_reserved = num_bytes;
4015 return trans;
4018 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4020 struct btrfs_root *root = BTRFS_I(dir)->root;
4021 struct btrfs_trans_handle *trans;
4022 struct inode *inode = d_inode(dentry);
4023 int ret;
4025 trans = __unlink_start_trans(dir);
4026 if (IS_ERR(trans))
4027 return PTR_ERR(trans);
4029 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4031 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4032 dentry->d_name.name, dentry->d_name.len);
4033 if (ret)
4034 goto out;
4036 if (inode->i_nlink == 0) {
4037 ret = btrfs_orphan_add(trans, inode);
4038 if (ret)
4039 goto out;
4042 out:
4043 btrfs_end_transaction(trans, root);
4044 btrfs_btree_balance_dirty(root);
4045 return ret;
4048 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4049 struct btrfs_root *root,
4050 struct inode *dir, u64 objectid,
4051 const char *name, int name_len)
4053 struct btrfs_path *path;
4054 struct extent_buffer *leaf;
4055 struct btrfs_dir_item *di;
4056 struct btrfs_key key;
4057 u64 index;
4058 int ret;
4059 u64 dir_ino = btrfs_ino(dir);
4061 path = btrfs_alloc_path();
4062 if (!path)
4063 return -ENOMEM;
4065 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4066 name, name_len, -1);
4067 if (IS_ERR_OR_NULL(di)) {
4068 if (!di)
4069 ret = -ENOENT;
4070 else
4071 ret = PTR_ERR(di);
4072 goto out;
4075 leaf = path->nodes[0];
4076 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4077 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4078 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4079 if (ret) {
4080 btrfs_abort_transaction(trans, root, ret);
4081 goto out;
4083 btrfs_release_path(path);
4085 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4086 objectid, root->root_key.objectid,
4087 dir_ino, &index, name, name_len);
4088 if (ret < 0) {
4089 if (ret != -ENOENT) {
4090 btrfs_abort_transaction(trans, root, ret);
4091 goto out;
4093 di = btrfs_search_dir_index_item(root, path, dir_ino,
4094 name, name_len);
4095 if (IS_ERR_OR_NULL(di)) {
4096 if (!di)
4097 ret = -ENOENT;
4098 else
4099 ret = PTR_ERR(di);
4100 btrfs_abort_transaction(trans, root, ret);
4101 goto out;
4104 leaf = path->nodes[0];
4105 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4106 btrfs_release_path(path);
4107 index = key.offset;
4109 btrfs_release_path(path);
4111 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4112 if (ret) {
4113 btrfs_abort_transaction(trans, root, ret);
4114 goto out;
4117 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4118 inode_inc_iversion(dir);
4119 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4120 ret = btrfs_update_inode_fallback(trans, root, dir);
4121 if (ret)
4122 btrfs_abort_transaction(trans, root, ret);
4123 out:
4124 btrfs_free_path(path);
4125 return ret;
4128 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4130 struct inode *inode = d_inode(dentry);
4131 int err = 0;
4132 struct btrfs_root *root = BTRFS_I(dir)->root;
4133 struct btrfs_trans_handle *trans;
4135 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4136 return -ENOTEMPTY;
4137 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4138 return -EPERM;
4140 trans = __unlink_start_trans(dir);
4141 if (IS_ERR(trans))
4142 return PTR_ERR(trans);
4144 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4145 err = btrfs_unlink_subvol(trans, root, dir,
4146 BTRFS_I(inode)->location.objectid,
4147 dentry->d_name.name,
4148 dentry->d_name.len);
4149 goto out;
4152 err = btrfs_orphan_add(trans, inode);
4153 if (err)
4154 goto out;
4156 /* now the directory is empty */
4157 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4158 dentry->d_name.name, dentry->d_name.len);
4159 if (!err)
4160 btrfs_i_size_write(inode, 0);
4161 out:
4162 btrfs_end_transaction(trans, root);
4163 btrfs_btree_balance_dirty(root);
4165 return err;
4168 static int truncate_space_check(struct btrfs_trans_handle *trans,
4169 struct btrfs_root *root,
4170 u64 bytes_deleted)
4172 int ret;
4174 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4175 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4176 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4177 if (!ret)
4178 trans->bytes_reserved += bytes_deleted;
4179 return ret;
4183 static int truncate_inline_extent(struct inode *inode,
4184 struct btrfs_path *path,
4185 struct btrfs_key *found_key,
4186 const u64 item_end,
4187 const u64 new_size)
4189 struct extent_buffer *leaf = path->nodes[0];
4190 int slot = path->slots[0];
4191 struct btrfs_file_extent_item *fi;
4192 u32 size = (u32)(new_size - found_key->offset);
4193 struct btrfs_root *root = BTRFS_I(inode)->root;
4195 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4197 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4198 loff_t offset = new_size;
4199 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4202 * Zero out the remaining of the last page of our inline extent,
4203 * instead of directly truncating our inline extent here - that
4204 * would be much more complex (decompressing all the data, then
4205 * compressing the truncated data, which might be bigger than
4206 * the size of the inline extent, resize the extent, etc).
4207 * We release the path because to get the page we might need to
4208 * read the extent item from disk (data not in the page cache).
4210 btrfs_release_path(path);
4211 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4214 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4215 size = btrfs_file_extent_calc_inline_size(size);
4216 btrfs_truncate_item(root, path, size, 1);
4218 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4219 inode_sub_bytes(inode, item_end + 1 - new_size);
4221 return 0;
4225 * this can truncate away extent items, csum items and directory items.
4226 * It starts at a high offset and removes keys until it can't find
4227 * any higher than new_size
4229 * csum items that cross the new i_size are truncated to the new size
4230 * as well.
4232 * min_type is the minimum key type to truncate down to. If set to 0, this
4233 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4235 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4236 struct btrfs_root *root,
4237 struct inode *inode,
4238 u64 new_size, u32 min_type)
4240 struct btrfs_path *path;
4241 struct extent_buffer *leaf;
4242 struct btrfs_file_extent_item *fi;
4243 struct btrfs_key key;
4244 struct btrfs_key found_key;
4245 u64 extent_start = 0;
4246 u64 extent_num_bytes = 0;
4247 u64 extent_offset = 0;
4248 u64 item_end = 0;
4249 u64 last_size = (u64)-1;
4250 u32 found_type = (u8)-1;
4251 int found_extent;
4252 int del_item;
4253 int pending_del_nr = 0;
4254 int pending_del_slot = 0;
4255 int extent_type = -1;
4256 int ret;
4257 int err = 0;
4258 u64 ino = btrfs_ino(inode);
4259 u64 bytes_deleted = 0;
4260 bool be_nice = 0;
4261 bool should_throttle = 0;
4262 bool should_end = 0;
4264 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4267 * for non-free space inodes and ref cows, we want to back off from
4268 * time to time
4270 if (!btrfs_is_free_space_inode(inode) &&
4271 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4272 be_nice = 1;
4274 path = btrfs_alloc_path();
4275 if (!path)
4276 return -ENOMEM;
4277 path->reada = -1;
4280 * We want to drop from the next block forward in case this new size is
4281 * not block aligned since we will be keeping the last block of the
4282 * extent just the way it is.
4284 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4285 root == root->fs_info->tree_root)
4286 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4287 root->sectorsize), (u64)-1, 0);
4290 * This function is also used to drop the items in the log tree before
4291 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4292 * it is used to drop the loged items. So we shouldn't kill the delayed
4293 * items.
4295 if (min_type == 0 && root == BTRFS_I(inode)->root)
4296 btrfs_kill_delayed_inode_items(inode);
4298 key.objectid = ino;
4299 key.offset = (u64)-1;
4300 key.type = (u8)-1;
4302 search_again:
4304 * with a 16K leaf size and 128MB extents, you can actually queue
4305 * up a huge file in a single leaf. Most of the time that
4306 * bytes_deleted is > 0, it will be huge by the time we get here
4308 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4309 if (btrfs_should_end_transaction(trans, root)) {
4310 err = -EAGAIN;
4311 goto error;
4316 path->leave_spinning = 1;
4317 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4318 if (ret < 0) {
4319 err = ret;
4320 goto out;
4323 if (ret > 0) {
4324 /* there are no items in the tree for us to truncate, we're
4325 * done
4327 if (path->slots[0] == 0)
4328 goto out;
4329 path->slots[0]--;
4332 while (1) {
4333 fi = NULL;
4334 leaf = path->nodes[0];
4335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4336 found_type = found_key.type;
4338 if (found_key.objectid != ino)
4339 break;
4341 if (found_type < min_type)
4342 break;
4344 item_end = found_key.offset;
4345 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4346 fi = btrfs_item_ptr(leaf, path->slots[0],
4347 struct btrfs_file_extent_item);
4348 extent_type = btrfs_file_extent_type(leaf, fi);
4349 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4350 item_end +=
4351 btrfs_file_extent_num_bytes(leaf, fi);
4352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4353 item_end += btrfs_file_extent_inline_len(leaf,
4354 path->slots[0], fi);
4356 item_end--;
4358 if (found_type > min_type) {
4359 del_item = 1;
4360 } else {
4361 if (item_end < new_size)
4362 break;
4363 if (found_key.offset >= new_size)
4364 del_item = 1;
4365 else
4366 del_item = 0;
4368 found_extent = 0;
4369 /* FIXME, shrink the extent if the ref count is only 1 */
4370 if (found_type != BTRFS_EXTENT_DATA_KEY)
4371 goto delete;
4373 if (del_item)
4374 last_size = found_key.offset;
4375 else
4376 last_size = new_size;
4378 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4379 u64 num_dec;
4380 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4381 if (!del_item) {
4382 u64 orig_num_bytes =
4383 btrfs_file_extent_num_bytes(leaf, fi);
4384 extent_num_bytes = ALIGN(new_size -
4385 found_key.offset,
4386 root->sectorsize);
4387 btrfs_set_file_extent_num_bytes(leaf, fi,
4388 extent_num_bytes);
4389 num_dec = (orig_num_bytes -
4390 extent_num_bytes);
4391 if (test_bit(BTRFS_ROOT_REF_COWS,
4392 &root->state) &&
4393 extent_start != 0)
4394 inode_sub_bytes(inode, num_dec);
4395 btrfs_mark_buffer_dirty(leaf);
4396 } else {
4397 extent_num_bytes =
4398 btrfs_file_extent_disk_num_bytes(leaf,
4399 fi);
4400 extent_offset = found_key.offset -
4401 btrfs_file_extent_offset(leaf, fi);
4403 /* FIXME blocksize != 4096 */
4404 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4405 if (extent_start != 0) {
4406 found_extent = 1;
4407 if (test_bit(BTRFS_ROOT_REF_COWS,
4408 &root->state))
4409 inode_sub_bytes(inode, num_dec);
4412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4414 * we can't truncate inline items that have had
4415 * special encodings
4417 if (!del_item &&
4418 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4419 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4422 * Need to release path in order to truncate a
4423 * compressed extent. So delete any accumulated
4424 * extent items so far.
4426 if (btrfs_file_extent_compression(leaf, fi) !=
4427 BTRFS_COMPRESS_NONE && pending_del_nr) {
4428 err = btrfs_del_items(trans, root, path,
4429 pending_del_slot,
4430 pending_del_nr);
4431 if (err) {
4432 btrfs_abort_transaction(trans,
4433 root,
4434 err);
4435 goto error;
4437 pending_del_nr = 0;
4440 err = truncate_inline_extent(inode, path,
4441 &found_key,
4442 item_end,
4443 new_size);
4444 if (err) {
4445 btrfs_abort_transaction(trans,
4446 root, err);
4447 goto error;
4449 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4450 &root->state)) {
4451 inode_sub_bytes(inode, item_end + 1 - new_size);
4454 delete:
4455 if (del_item) {
4456 if (!pending_del_nr) {
4457 /* no pending yet, add ourselves */
4458 pending_del_slot = path->slots[0];
4459 pending_del_nr = 1;
4460 } else if (pending_del_nr &&
4461 path->slots[0] + 1 == pending_del_slot) {
4462 /* hop on the pending chunk */
4463 pending_del_nr++;
4464 pending_del_slot = path->slots[0];
4465 } else {
4466 BUG();
4468 } else {
4469 break;
4471 should_throttle = 0;
4473 if (found_extent &&
4474 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4475 root == root->fs_info->tree_root)) {
4476 btrfs_set_path_blocking(path);
4477 bytes_deleted += extent_num_bytes;
4478 ret = btrfs_free_extent(trans, root, extent_start,
4479 extent_num_bytes, 0,
4480 btrfs_header_owner(leaf),
4481 ino, extent_offset, 0);
4482 BUG_ON(ret);
4483 if (btrfs_should_throttle_delayed_refs(trans, root))
4484 btrfs_async_run_delayed_refs(root,
4485 trans->delayed_ref_updates * 2, 0);
4486 if (be_nice) {
4487 if (truncate_space_check(trans, root,
4488 extent_num_bytes)) {
4489 should_end = 1;
4491 if (btrfs_should_throttle_delayed_refs(trans,
4492 root)) {
4493 should_throttle = 1;
4498 if (found_type == BTRFS_INODE_ITEM_KEY)
4499 break;
4501 if (path->slots[0] == 0 ||
4502 path->slots[0] != pending_del_slot ||
4503 should_throttle || should_end) {
4504 if (pending_del_nr) {
4505 ret = btrfs_del_items(trans, root, path,
4506 pending_del_slot,
4507 pending_del_nr);
4508 if (ret) {
4509 btrfs_abort_transaction(trans,
4510 root, ret);
4511 goto error;
4513 pending_del_nr = 0;
4515 btrfs_release_path(path);
4516 if (should_throttle) {
4517 unsigned long updates = trans->delayed_ref_updates;
4518 if (updates) {
4519 trans->delayed_ref_updates = 0;
4520 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4521 if (ret && !err)
4522 err = ret;
4526 * if we failed to refill our space rsv, bail out
4527 * and let the transaction restart
4529 if (should_end) {
4530 err = -EAGAIN;
4531 goto error;
4533 goto search_again;
4534 } else {
4535 path->slots[0]--;
4538 out:
4539 if (pending_del_nr) {
4540 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4541 pending_del_nr);
4542 if (ret)
4543 btrfs_abort_transaction(trans, root, ret);
4545 error:
4546 if (last_size != (u64)-1 &&
4547 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4548 btrfs_ordered_update_i_size(inode, last_size, NULL);
4550 btrfs_free_path(path);
4552 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4553 unsigned long updates = trans->delayed_ref_updates;
4554 if (updates) {
4555 trans->delayed_ref_updates = 0;
4556 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4557 if (ret && !err)
4558 err = ret;
4561 return err;
4565 * btrfs_truncate_page - read, zero a chunk and write a page
4566 * @inode - inode that we're zeroing
4567 * @from - the offset to start zeroing
4568 * @len - the length to zero, 0 to zero the entire range respective to the
4569 * offset
4570 * @front - zero up to the offset instead of from the offset on
4572 * This will find the page for the "from" offset and cow the page and zero the
4573 * part we want to zero. This is used with truncate and hole punching.
4575 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4576 int front)
4578 struct address_space *mapping = inode->i_mapping;
4579 struct btrfs_root *root = BTRFS_I(inode)->root;
4580 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4581 struct btrfs_ordered_extent *ordered;
4582 struct extent_state *cached_state = NULL;
4583 char *kaddr;
4584 u32 blocksize = root->sectorsize;
4585 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4586 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4587 struct page *page;
4588 gfp_t mask = btrfs_alloc_write_mask(mapping);
4589 int ret = 0;
4590 u64 page_start;
4591 u64 page_end;
4593 if ((offset & (blocksize - 1)) == 0 &&
4594 (!len || ((len & (blocksize - 1)) == 0)))
4595 goto out;
4596 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4597 if (ret)
4598 goto out;
4600 again:
4601 page = find_or_create_page(mapping, index, mask);
4602 if (!page) {
4603 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4604 ret = -ENOMEM;
4605 goto out;
4608 page_start = page_offset(page);
4609 page_end = page_start + PAGE_CACHE_SIZE - 1;
4611 if (!PageUptodate(page)) {
4612 ret = btrfs_readpage(NULL, page);
4613 lock_page(page);
4614 if (page->mapping != mapping) {
4615 unlock_page(page);
4616 page_cache_release(page);
4617 goto again;
4619 if (!PageUptodate(page)) {
4620 ret = -EIO;
4621 goto out_unlock;
4624 wait_on_page_writeback(page);
4626 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4627 set_page_extent_mapped(page);
4629 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4630 if (ordered) {
4631 unlock_extent_cached(io_tree, page_start, page_end,
4632 &cached_state, GFP_NOFS);
4633 unlock_page(page);
4634 page_cache_release(page);
4635 btrfs_start_ordered_extent(inode, ordered, 1);
4636 btrfs_put_ordered_extent(ordered);
4637 goto again;
4640 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4641 EXTENT_DIRTY | EXTENT_DELALLOC |
4642 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4643 0, 0, &cached_state, GFP_NOFS);
4645 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4646 &cached_state);
4647 if (ret) {
4648 unlock_extent_cached(io_tree, page_start, page_end,
4649 &cached_state, GFP_NOFS);
4650 goto out_unlock;
4653 if (offset != PAGE_CACHE_SIZE) {
4654 if (!len)
4655 len = PAGE_CACHE_SIZE - offset;
4656 kaddr = kmap(page);
4657 if (front)
4658 memset(kaddr, 0, offset);
4659 else
4660 memset(kaddr + offset, 0, len);
4661 flush_dcache_page(page);
4662 kunmap(page);
4664 ClearPageChecked(page);
4665 set_page_dirty(page);
4666 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4667 GFP_NOFS);
4669 out_unlock:
4670 if (ret)
4671 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4672 unlock_page(page);
4673 page_cache_release(page);
4674 out:
4675 return ret;
4678 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4679 u64 offset, u64 len)
4681 struct btrfs_trans_handle *trans;
4682 int ret;
4685 * Still need to make sure the inode looks like it's been updated so
4686 * that any holes get logged if we fsync.
4688 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4689 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4690 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4691 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4692 return 0;
4696 * 1 - for the one we're dropping
4697 * 1 - for the one we're adding
4698 * 1 - for updating the inode.
4700 trans = btrfs_start_transaction(root, 3);
4701 if (IS_ERR(trans))
4702 return PTR_ERR(trans);
4704 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4705 if (ret) {
4706 btrfs_abort_transaction(trans, root, ret);
4707 btrfs_end_transaction(trans, root);
4708 return ret;
4711 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4712 0, 0, len, 0, len, 0, 0, 0);
4713 if (ret)
4714 btrfs_abort_transaction(trans, root, ret);
4715 else
4716 btrfs_update_inode(trans, root, inode);
4717 btrfs_end_transaction(trans, root);
4718 return ret;
4722 * This function puts in dummy file extents for the area we're creating a hole
4723 * for. So if we are truncating this file to a larger size we need to insert
4724 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4725 * the range between oldsize and size
4727 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4729 struct btrfs_root *root = BTRFS_I(inode)->root;
4730 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4731 struct extent_map *em = NULL;
4732 struct extent_state *cached_state = NULL;
4733 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4734 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4735 u64 block_end = ALIGN(size, root->sectorsize);
4736 u64 last_byte;
4737 u64 cur_offset;
4738 u64 hole_size;
4739 int err = 0;
4742 * If our size started in the middle of a page we need to zero out the
4743 * rest of the page before we expand the i_size, otherwise we could
4744 * expose stale data.
4746 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4747 if (err)
4748 return err;
4750 if (size <= hole_start)
4751 return 0;
4753 while (1) {
4754 struct btrfs_ordered_extent *ordered;
4756 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4757 &cached_state);
4758 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4759 block_end - hole_start);
4760 if (!ordered)
4761 break;
4762 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4763 &cached_state, GFP_NOFS);
4764 btrfs_start_ordered_extent(inode, ordered, 1);
4765 btrfs_put_ordered_extent(ordered);
4768 cur_offset = hole_start;
4769 while (1) {
4770 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4771 block_end - cur_offset, 0);
4772 if (IS_ERR(em)) {
4773 err = PTR_ERR(em);
4774 em = NULL;
4775 break;
4777 last_byte = min(extent_map_end(em), block_end);
4778 last_byte = ALIGN(last_byte , root->sectorsize);
4779 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4780 struct extent_map *hole_em;
4781 hole_size = last_byte - cur_offset;
4783 err = maybe_insert_hole(root, inode, cur_offset,
4784 hole_size);
4785 if (err)
4786 break;
4787 btrfs_drop_extent_cache(inode, cur_offset,
4788 cur_offset + hole_size - 1, 0);
4789 hole_em = alloc_extent_map();
4790 if (!hole_em) {
4791 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4792 &BTRFS_I(inode)->runtime_flags);
4793 goto next;
4795 hole_em->start = cur_offset;
4796 hole_em->len = hole_size;
4797 hole_em->orig_start = cur_offset;
4799 hole_em->block_start = EXTENT_MAP_HOLE;
4800 hole_em->block_len = 0;
4801 hole_em->orig_block_len = 0;
4802 hole_em->ram_bytes = hole_size;
4803 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4804 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4805 hole_em->generation = root->fs_info->generation;
4807 while (1) {
4808 write_lock(&em_tree->lock);
4809 err = add_extent_mapping(em_tree, hole_em, 1);
4810 write_unlock(&em_tree->lock);
4811 if (err != -EEXIST)
4812 break;
4813 btrfs_drop_extent_cache(inode, cur_offset,
4814 cur_offset +
4815 hole_size - 1, 0);
4817 free_extent_map(hole_em);
4819 next:
4820 free_extent_map(em);
4821 em = NULL;
4822 cur_offset = last_byte;
4823 if (cur_offset >= block_end)
4824 break;
4826 free_extent_map(em);
4827 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4828 GFP_NOFS);
4829 return err;
4832 static int wait_snapshoting_atomic_t(atomic_t *a)
4834 schedule();
4835 return 0;
4838 static void wait_for_snapshot_creation(struct btrfs_root *root)
4840 while (true) {
4841 int ret;
4843 ret = btrfs_start_write_no_snapshoting(root);
4844 if (ret)
4845 break;
4846 wait_on_atomic_t(&root->will_be_snapshoted,
4847 wait_snapshoting_atomic_t,
4848 TASK_UNINTERRUPTIBLE);
4852 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4854 struct btrfs_root *root = BTRFS_I(inode)->root;
4855 struct btrfs_trans_handle *trans;
4856 loff_t oldsize = i_size_read(inode);
4857 loff_t newsize = attr->ia_size;
4858 int mask = attr->ia_valid;
4859 int ret;
4862 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4863 * special case where we need to update the times despite not having
4864 * these flags set. For all other operations the VFS set these flags
4865 * explicitly if it wants a timestamp update.
4867 if (newsize != oldsize) {
4868 inode_inc_iversion(inode);
4869 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4870 inode->i_ctime = inode->i_mtime =
4871 current_fs_time(inode->i_sb);
4874 if (newsize > oldsize) {
4875 truncate_pagecache(inode, newsize);
4877 * Don't do an expanding truncate while snapshoting is ongoing.
4878 * This is to ensure the snapshot captures a fully consistent
4879 * state of this file - if the snapshot captures this expanding
4880 * truncation, it must capture all writes that happened before
4881 * this truncation.
4883 wait_for_snapshot_creation(root);
4884 ret = btrfs_cont_expand(inode, oldsize, newsize);
4885 if (ret) {
4886 btrfs_end_write_no_snapshoting(root);
4887 return ret;
4890 trans = btrfs_start_transaction(root, 1);
4891 if (IS_ERR(trans)) {
4892 btrfs_end_write_no_snapshoting(root);
4893 return PTR_ERR(trans);
4896 i_size_write(inode, newsize);
4897 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4898 ret = btrfs_update_inode(trans, root, inode);
4899 btrfs_end_write_no_snapshoting(root);
4900 btrfs_end_transaction(trans, root);
4901 } else {
4904 * We're truncating a file that used to have good data down to
4905 * zero. Make sure it gets into the ordered flush list so that
4906 * any new writes get down to disk quickly.
4908 if (newsize == 0)
4909 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4910 &BTRFS_I(inode)->runtime_flags);
4913 * 1 for the orphan item we're going to add
4914 * 1 for the orphan item deletion.
4916 trans = btrfs_start_transaction(root, 2);
4917 if (IS_ERR(trans))
4918 return PTR_ERR(trans);
4921 * We need to do this in case we fail at _any_ point during the
4922 * actual truncate. Once we do the truncate_setsize we could
4923 * invalidate pages which forces any outstanding ordered io to
4924 * be instantly completed which will give us extents that need
4925 * to be truncated. If we fail to get an orphan inode down we
4926 * could have left over extents that were never meant to live,
4927 * so we need to garuntee from this point on that everything
4928 * will be consistent.
4930 ret = btrfs_orphan_add(trans, inode);
4931 btrfs_end_transaction(trans, root);
4932 if (ret)
4933 return ret;
4935 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4936 truncate_setsize(inode, newsize);
4938 /* Disable nonlocked read DIO to avoid the end less truncate */
4939 btrfs_inode_block_unlocked_dio(inode);
4940 inode_dio_wait(inode);
4941 btrfs_inode_resume_unlocked_dio(inode);
4943 ret = btrfs_truncate(inode);
4944 if (ret && inode->i_nlink) {
4945 int err;
4948 * failed to truncate, disk_i_size is only adjusted down
4949 * as we remove extents, so it should represent the true
4950 * size of the inode, so reset the in memory size and
4951 * delete our orphan entry.
4953 trans = btrfs_join_transaction(root);
4954 if (IS_ERR(trans)) {
4955 btrfs_orphan_del(NULL, inode);
4956 return ret;
4958 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4959 err = btrfs_orphan_del(trans, inode);
4960 if (err)
4961 btrfs_abort_transaction(trans, root, err);
4962 btrfs_end_transaction(trans, root);
4966 return ret;
4969 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4971 struct inode *inode = d_inode(dentry);
4972 struct btrfs_root *root = BTRFS_I(inode)->root;
4973 int err;
4975 if (btrfs_root_readonly(root))
4976 return -EROFS;
4978 err = setattr_prepare(dentry, attr);
4979 if (err)
4980 return err;
4982 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4983 err = btrfs_setsize(inode, attr);
4984 if (err)
4985 return err;
4988 if (attr->ia_valid) {
4989 setattr_copy(inode, attr);
4990 inode_inc_iversion(inode);
4991 err = btrfs_dirty_inode(inode);
4993 if (!err && attr->ia_valid & ATTR_MODE)
4994 err = posix_acl_chmod(inode, inode->i_mode);
4997 return err;
5001 * While truncating the inode pages during eviction, we get the VFS calling
5002 * btrfs_invalidatepage() against each page of the inode. This is slow because
5003 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5004 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5005 * extent_state structures over and over, wasting lots of time.
5007 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5008 * those expensive operations on a per page basis and do only the ordered io
5009 * finishing, while we release here the extent_map and extent_state structures,
5010 * without the excessive merging and splitting.
5012 static void evict_inode_truncate_pages(struct inode *inode)
5014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5015 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5016 struct rb_node *node;
5018 ASSERT(inode->i_state & I_FREEING);
5019 truncate_inode_pages_final(&inode->i_data);
5021 write_lock(&map_tree->lock);
5022 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5023 struct extent_map *em;
5025 node = rb_first(&map_tree->map);
5026 em = rb_entry(node, struct extent_map, rb_node);
5027 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5028 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5029 remove_extent_mapping(map_tree, em);
5030 free_extent_map(em);
5031 if (need_resched()) {
5032 write_unlock(&map_tree->lock);
5033 cond_resched();
5034 write_lock(&map_tree->lock);
5037 write_unlock(&map_tree->lock);
5039 spin_lock(&io_tree->lock);
5040 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5041 struct extent_state *state;
5042 struct extent_state *cached_state = NULL;
5044 node = rb_first(&io_tree->state);
5045 state = rb_entry(node, struct extent_state, rb_node);
5046 atomic_inc(&state->refs);
5047 spin_unlock(&io_tree->lock);
5049 lock_extent_bits(io_tree, state->start, state->end,
5050 0, &cached_state);
5051 clear_extent_bit(io_tree, state->start, state->end,
5052 EXTENT_LOCKED | EXTENT_DIRTY |
5053 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5054 EXTENT_DEFRAG, 1, 1,
5055 &cached_state, GFP_NOFS);
5056 free_extent_state(state);
5058 cond_resched();
5059 spin_lock(&io_tree->lock);
5061 spin_unlock(&io_tree->lock);
5064 void btrfs_evict_inode(struct inode *inode)
5066 struct btrfs_trans_handle *trans;
5067 struct btrfs_root *root = BTRFS_I(inode)->root;
5068 struct btrfs_block_rsv *rsv, *global_rsv;
5069 int steal_from_global = 0;
5070 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5071 int ret;
5073 trace_btrfs_inode_evict(inode);
5075 evict_inode_truncate_pages(inode);
5077 if (inode->i_nlink &&
5078 ((btrfs_root_refs(&root->root_item) != 0 &&
5079 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5080 btrfs_is_free_space_inode(inode)))
5081 goto no_delete;
5083 if (is_bad_inode(inode)) {
5084 btrfs_orphan_del(NULL, inode);
5085 goto no_delete;
5087 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5088 if (!special_file(inode->i_mode))
5089 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5091 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5093 if (root->fs_info->log_root_recovering) {
5094 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5095 &BTRFS_I(inode)->runtime_flags));
5096 goto no_delete;
5099 if (inode->i_nlink > 0) {
5100 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5101 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5102 goto no_delete;
5105 ret = btrfs_commit_inode_delayed_inode(inode);
5106 if (ret) {
5107 btrfs_orphan_del(NULL, inode);
5108 goto no_delete;
5111 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5112 if (!rsv) {
5113 btrfs_orphan_del(NULL, inode);
5114 goto no_delete;
5116 rsv->size = min_size;
5117 rsv->failfast = 1;
5118 global_rsv = &root->fs_info->global_block_rsv;
5120 btrfs_i_size_write(inode, 0);
5123 * This is a bit simpler than btrfs_truncate since we've already
5124 * reserved our space for our orphan item in the unlink, so we just
5125 * need to reserve some slack space in case we add bytes and update
5126 * inode item when doing the truncate.
5128 while (1) {
5129 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5130 BTRFS_RESERVE_FLUSH_LIMIT);
5133 * Try and steal from the global reserve since we will
5134 * likely not use this space anyway, we want to try as
5135 * hard as possible to get this to work.
5137 if (ret)
5138 steal_from_global++;
5139 else
5140 steal_from_global = 0;
5141 ret = 0;
5144 * steal_from_global == 0: we reserved stuff, hooray!
5145 * steal_from_global == 1: we didn't reserve stuff, boo!
5146 * steal_from_global == 2: we've committed, still not a lot of
5147 * room but maybe we'll have room in the global reserve this
5148 * time.
5149 * steal_from_global == 3: abandon all hope!
5151 if (steal_from_global > 2) {
5152 btrfs_warn(root->fs_info,
5153 "Could not get space for a delete, will truncate on mount %d",
5154 ret);
5155 btrfs_orphan_del(NULL, inode);
5156 btrfs_free_block_rsv(root, rsv);
5157 goto no_delete;
5160 trans = btrfs_join_transaction(root);
5161 if (IS_ERR(trans)) {
5162 btrfs_orphan_del(NULL, inode);
5163 btrfs_free_block_rsv(root, rsv);
5164 goto no_delete;
5168 * We can't just steal from the global reserve, we need tomake
5169 * sure there is room to do it, if not we need to commit and try
5170 * again.
5172 if (steal_from_global) {
5173 if (!btrfs_check_space_for_delayed_refs(trans, root))
5174 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5175 min_size);
5176 else
5177 ret = -ENOSPC;
5181 * Couldn't steal from the global reserve, we have too much
5182 * pending stuff built up, commit the transaction and try it
5183 * again.
5185 if (ret) {
5186 ret = btrfs_commit_transaction(trans, root);
5187 if (ret) {
5188 btrfs_orphan_del(NULL, inode);
5189 btrfs_free_block_rsv(root, rsv);
5190 goto no_delete;
5192 continue;
5193 } else {
5194 steal_from_global = 0;
5197 trans->block_rsv = rsv;
5199 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5200 if (ret != -ENOSPC && ret != -EAGAIN)
5201 break;
5203 trans->block_rsv = &root->fs_info->trans_block_rsv;
5204 btrfs_end_transaction(trans, root);
5205 trans = NULL;
5206 btrfs_btree_balance_dirty(root);
5209 btrfs_free_block_rsv(root, rsv);
5212 * Errors here aren't a big deal, it just means we leave orphan items
5213 * in the tree. They will be cleaned up on the next mount.
5215 if (ret == 0) {
5216 trans->block_rsv = root->orphan_block_rsv;
5217 btrfs_orphan_del(trans, inode);
5218 } else {
5219 btrfs_orphan_del(NULL, inode);
5222 trans->block_rsv = &root->fs_info->trans_block_rsv;
5223 if (!(root == root->fs_info->tree_root ||
5224 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5225 btrfs_return_ino(root, btrfs_ino(inode));
5227 btrfs_end_transaction(trans, root);
5228 btrfs_btree_balance_dirty(root);
5229 no_delete:
5230 btrfs_remove_delayed_node(inode);
5231 clear_inode(inode);
5232 return;
5236 * this returns the key found in the dir entry in the location pointer.
5237 * If no dir entries were found, location->objectid is 0.
5239 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5240 struct btrfs_key *location)
5242 const char *name = dentry->d_name.name;
5243 int namelen = dentry->d_name.len;
5244 struct btrfs_dir_item *di;
5245 struct btrfs_path *path;
5246 struct btrfs_root *root = BTRFS_I(dir)->root;
5247 int ret = 0;
5249 path = btrfs_alloc_path();
5250 if (!path)
5251 return -ENOMEM;
5253 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5254 namelen, 0);
5255 if (IS_ERR(di))
5256 ret = PTR_ERR(di);
5258 if (IS_ERR_OR_NULL(di))
5259 goto out_err;
5261 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5262 out:
5263 btrfs_free_path(path);
5264 return ret;
5265 out_err:
5266 location->objectid = 0;
5267 goto out;
5271 * when we hit a tree root in a directory, the btrfs part of the inode
5272 * needs to be changed to reflect the root directory of the tree root. This
5273 * is kind of like crossing a mount point.
5275 static int fixup_tree_root_location(struct btrfs_root *root,
5276 struct inode *dir,
5277 struct dentry *dentry,
5278 struct btrfs_key *location,
5279 struct btrfs_root **sub_root)
5281 struct btrfs_path *path;
5282 struct btrfs_root *new_root;
5283 struct btrfs_root_ref *ref;
5284 struct extent_buffer *leaf;
5285 struct btrfs_key key;
5286 int ret;
5287 int err = 0;
5289 path = btrfs_alloc_path();
5290 if (!path) {
5291 err = -ENOMEM;
5292 goto out;
5295 err = -ENOENT;
5296 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5297 key.type = BTRFS_ROOT_REF_KEY;
5298 key.offset = location->objectid;
5300 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5301 0, 0);
5302 if (ret) {
5303 if (ret < 0)
5304 err = ret;
5305 goto out;
5308 leaf = path->nodes[0];
5309 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5310 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5311 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5312 goto out;
5314 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5315 (unsigned long)(ref + 1),
5316 dentry->d_name.len);
5317 if (ret)
5318 goto out;
5320 btrfs_release_path(path);
5322 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5323 if (IS_ERR(new_root)) {
5324 err = PTR_ERR(new_root);
5325 goto out;
5328 *sub_root = new_root;
5329 location->objectid = btrfs_root_dirid(&new_root->root_item);
5330 location->type = BTRFS_INODE_ITEM_KEY;
5331 location->offset = 0;
5332 err = 0;
5333 out:
5334 btrfs_free_path(path);
5335 return err;
5338 static void inode_tree_add(struct inode *inode)
5340 struct btrfs_root *root = BTRFS_I(inode)->root;
5341 struct btrfs_inode *entry;
5342 struct rb_node **p;
5343 struct rb_node *parent;
5344 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5345 u64 ino = btrfs_ino(inode);
5347 if (inode_unhashed(inode))
5348 return;
5349 parent = NULL;
5350 spin_lock(&root->inode_lock);
5351 p = &root->inode_tree.rb_node;
5352 while (*p) {
5353 parent = *p;
5354 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5356 if (ino < btrfs_ino(&entry->vfs_inode))
5357 p = &parent->rb_left;
5358 else if (ino > btrfs_ino(&entry->vfs_inode))
5359 p = &parent->rb_right;
5360 else {
5361 WARN_ON(!(entry->vfs_inode.i_state &
5362 (I_WILL_FREE | I_FREEING)));
5363 rb_replace_node(parent, new, &root->inode_tree);
5364 RB_CLEAR_NODE(parent);
5365 spin_unlock(&root->inode_lock);
5366 return;
5369 rb_link_node(new, parent, p);
5370 rb_insert_color(new, &root->inode_tree);
5371 spin_unlock(&root->inode_lock);
5374 static void inode_tree_del(struct inode *inode)
5376 struct btrfs_root *root = BTRFS_I(inode)->root;
5377 int empty = 0;
5379 spin_lock(&root->inode_lock);
5380 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5381 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5382 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5383 empty = RB_EMPTY_ROOT(&root->inode_tree);
5385 spin_unlock(&root->inode_lock);
5387 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5388 synchronize_srcu(&root->fs_info->subvol_srcu);
5389 spin_lock(&root->inode_lock);
5390 empty = RB_EMPTY_ROOT(&root->inode_tree);
5391 spin_unlock(&root->inode_lock);
5392 if (empty)
5393 btrfs_add_dead_root(root);
5397 void btrfs_invalidate_inodes(struct btrfs_root *root)
5399 struct rb_node *node;
5400 struct rb_node *prev;
5401 struct btrfs_inode *entry;
5402 struct inode *inode;
5403 u64 objectid = 0;
5405 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5406 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5408 spin_lock(&root->inode_lock);
5409 again:
5410 node = root->inode_tree.rb_node;
5411 prev = NULL;
5412 while (node) {
5413 prev = node;
5414 entry = rb_entry(node, struct btrfs_inode, rb_node);
5416 if (objectid < btrfs_ino(&entry->vfs_inode))
5417 node = node->rb_left;
5418 else if (objectid > btrfs_ino(&entry->vfs_inode))
5419 node = node->rb_right;
5420 else
5421 break;
5423 if (!node) {
5424 while (prev) {
5425 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5426 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5427 node = prev;
5428 break;
5430 prev = rb_next(prev);
5433 while (node) {
5434 entry = rb_entry(node, struct btrfs_inode, rb_node);
5435 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5436 inode = igrab(&entry->vfs_inode);
5437 if (inode) {
5438 spin_unlock(&root->inode_lock);
5439 if (atomic_read(&inode->i_count) > 1)
5440 d_prune_aliases(inode);
5442 * btrfs_drop_inode will have it removed from
5443 * the inode cache when its usage count
5444 * hits zero.
5446 iput(inode);
5447 cond_resched();
5448 spin_lock(&root->inode_lock);
5449 goto again;
5452 if (cond_resched_lock(&root->inode_lock))
5453 goto again;
5455 node = rb_next(node);
5457 spin_unlock(&root->inode_lock);
5460 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5462 struct btrfs_iget_args *args = p;
5463 inode->i_ino = args->location->objectid;
5464 memcpy(&BTRFS_I(inode)->location, args->location,
5465 sizeof(*args->location));
5466 BTRFS_I(inode)->root = args->root;
5467 return 0;
5470 static int btrfs_find_actor(struct inode *inode, void *opaque)
5472 struct btrfs_iget_args *args = opaque;
5473 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5474 args->root == BTRFS_I(inode)->root;
5477 static struct inode *btrfs_iget_locked(struct super_block *s,
5478 struct btrfs_key *location,
5479 struct btrfs_root *root)
5481 struct inode *inode;
5482 struct btrfs_iget_args args;
5483 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5485 args.location = location;
5486 args.root = root;
5488 inode = iget5_locked(s, hashval, btrfs_find_actor,
5489 btrfs_init_locked_inode,
5490 (void *)&args);
5491 return inode;
5494 /* Get an inode object given its location and corresponding root.
5495 * Returns in *is_new if the inode was read from disk
5497 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5498 struct btrfs_root *root, int *new)
5500 struct inode *inode;
5502 inode = btrfs_iget_locked(s, location, root);
5503 if (!inode)
5504 return ERR_PTR(-ENOMEM);
5506 if (inode->i_state & I_NEW) {
5507 btrfs_read_locked_inode(inode);
5508 if (!is_bad_inode(inode)) {
5509 inode_tree_add(inode);
5510 unlock_new_inode(inode);
5511 if (new)
5512 *new = 1;
5513 } else {
5514 unlock_new_inode(inode);
5515 iput(inode);
5516 inode = ERR_PTR(-ESTALE);
5520 return inode;
5523 static struct inode *new_simple_dir(struct super_block *s,
5524 struct btrfs_key *key,
5525 struct btrfs_root *root)
5527 struct inode *inode = new_inode(s);
5529 if (!inode)
5530 return ERR_PTR(-ENOMEM);
5532 BTRFS_I(inode)->root = root;
5533 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5534 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5536 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5537 inode->i_op = &btrfs_dir_ro_inode_operations;
5538 inode->i_fop = &simple_dir_operations;
5539 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5540 inode->i_mtime = CURRENT_TIME;
5541 inode->i_atime = inode->i_mtime;
5542 inode->i_ctime = inode->i_mtime;
5543 BTRFS_I(inode)->i_otime = inode->i_mtime;
5545 return inode;
5548 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5550 struct inode *inode;
5551 struct btrfs_root *root = BTRFS_I(dir)->root;
5552 struct btrfs_root *sub_root = root;
5553 struct btrfs_key location;
5554 int index;
5555 int ret = 0;
5557 if (dentry->d_name.len > BTRFS_NAME_LEN)
5558 return ERR_PTR(-ENAMETOOLONG);
5560 ret = btrfs_inode_by_name(dir, dentry, &location);
5561 if (ret < 0)
5562 return ERR_PTR(ret);
5564 if (location.objectid == 0)
5565 return ERR_PTR(-ENOENT);
5567 if (location.type == BTRFS_INODE_ITEM_KEY) {
5568 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5569 return inode;
5572 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5574 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5575 ret = fixup_tree_root_location(root, dir, dentry,
5576 &location, &sub_root);
5577 if (ret < 0) {
5578 if (ret != -ENOENT)
5579 inode = ERR_PTR(ret);
5580 else
5581 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5582 } else {
5583 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5585 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5587 if (!IS_ERR(inode) && root != sub_root) {
5588 down_read(&root->fs_info->cleanup_work_sem);
5589 if (!(inode->i_sb->s_flags & MS_RDONLY))
5590 ret = btrfs_orphan_cleanup(sub_root);
5591 up_read(&root->fs_info->cleanup_work_sem);
5592 if (ret) {
5593 iput(inode);
5594 inode = ERR_PTR(ret);
5598 return inode;
5601 static int btrfs_dentry_delete(const struct dentry *dentry)
5603 struct btrfs_root *root;
5604 struct inode *inode = d_inode(dentry);
5606 if (!inode && !IS_ROOT(dentry))
5607 inode = d_inode(dentry->d_parent);
5609 if (inode) {
5610 root = BTRFS_I(inode)->root;
5611 if (btrfs_root_refs(&root->root_item) == 0)
5612 return 1;
5614 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5615 return 1;
5617 return 0;
5620 static void btrfs_dentry_release(struct dentry *dentry)
5622 kfree(dentry->d_fsdata);
5625 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5626 unsigned int flags)
5628 struct inode *inode;
5630 inode = btrfs_lookup_dentry(dir, dentry);
5631 if (IS_ERR(inode)) {
5632 if (PTR_ERR(inode) == -ENOENT)
5633 inode = NULL;
5634 else
5635 return ERR_CAST(inode);
5638 return d_splice_alias(inode, dentry);
5641 unsigned char btrfs_filetype_table[] = {
5642 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5645 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5647 struct inode *inode = file_inode(file);
5648 struct btrfs_root *root = BTRFS_I(inode)->root;
5649 struct btrfs_item *item;
5650 struct btrfs_dir_item *di;
5651 struct btrfs_key key;
5652 struct btrfs_key found_key;
5653 struct btrfs_path *path;
5654 struct list_head ins_list;
5655 struct list_head del_list;
5656 int ret;
5657 struct extent_buffer *leaf;
5658 int slot;
5659 unsigned char d_type;
5660 int over = 0;
5661 u32 di_cur;
5662 u32 di_total;
5663 u32 di_len;
5664 int key_type = BTRFS_DIR_INDEX_KEY;
5665 char tmp_name[32];
5666 char *name_ptr;
5667 int name_len;
5668 int is_curr = 0; /* ctx->pos points to the current index? */
5669 bool emitted;
5671 /* FIXME, use a real flag for deciding about the key type */
5672 if (root->fs_info->tree_root == root)
5673 key_type = BTRFS_DIR_ITEM_KEY;
5675 if (!dir_emit_dots(file, ctx))
5676 return 0;
5678 path = btrfs_alloc_path();
5679 if (!path)
5680 return -ENOMEM;
5682 path->reada = 1;
5684 if (key_type == BTRFS_DIR_INDEX_KEY) {
5685 INIT_LIST_HEAD(&ins_list);
5686 INIT_LIST_HEAD(&del_list);
5687 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5690 key.type = key_type;
5691 key.offset = ctx->pos;
5692 key.objectid = btrfs_ino(inode);
5694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5695 if (ret < 0)
5696 goto err;
5698 emitted = false;
5699 while (1) {
5700 leaf = path->nodes[0];
5701 slot = path->slots[0];
5702 if (slot >= btrfs_header_nritems(leaf)) {
5703 ret = btrfs_next_leaf(root, path);
5704 if (ret < 0)
5705 goto err;
5706 else if (ret > 0)
5707 break;
5708 continue;
5711 item = btrfs_item_nr(slot);
5712 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5714 if (found_key.objectid != key.objectid)
5715 break;
5716 if (found_key.type != key_type)
5717 break;
5718 if (found_key.offset < ctx->pos)
5719 goto next;
5720 if (key_type == BTRFS_DIR_INDEX_KEY &&
5721 btrfs_should_delete_dir_index(&del_list,
5722 found_key.offset))
5723 goto next;
5725 ctx->pos = found_key.offset;
5726 is_curr = 1;
5728 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5729 di_cur = 0;
5730 di_total = btrfs_item_size(leaf, item);
5732 while (di_cur < di_total) {
5733 struct btrfs_key location;
5735 if (verify_dir_item(root, leaf, di))
5736 break;
5738 name_len = btrfs_dir_name_len(leaf, di);
5739 if (name_len <= sizeof(tmp_name)) {
5740 name_ptr = tmp_name;
5741 } else {
5742 name_ptr = kmalloc(name_len, GFP_NOFS);
5743 if (!name_ptr) {
5744 ret = -ENOMEM;
5745 goto err;
5748 read_extent_buffer(leaf, name_ptr,
5749 (unsigned long)(di + 1), name_len);
5751 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5752 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5755 /* is this a reference to our own snapshot? If so
5756 * skip it.
5758 * In contrast to old kernels, we insert the snapshot's
5759 * dir item and dir index after it has been created, so
5760 * we won't find a reference to our own snapshot. We
5761 * still keep the following code for backward
5762 * compatibility.
5764 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5765 location.objectid == root->root_key.objectid) {
5766 over = 0;
5767 goto skip;
5769 over = !dir_emit(ctx, name_ptr, name_len,
5770 location.objectid, d_type);
5772 skip:
5773 if (name_ptr != tmp_name)
5774 kfree(name_ptr);
5776 if (over)
5777 goto nopos;
5778 emitted = true;
5779 di_len = btrfs_dir_name_len(leaf, di) +
5780 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5781 di_cur += di_len;
5782 di = (struct btrfs_dir_item *)((char *)di + di_len);
5784 next:
5785 path->slots[0]++;
5788 if (key_type == BTRFS_DIR_INDEX_KEY) {
5789 if (is_curr)
5790 ctx->pos++;
5791 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5792 if (ret)
5793 goto nopos;
5797 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5798 * it was was set to the termination value in previous call. We assume
5799 * that "." and ".." were emitted if we reach this point and set the
5800 * termination value as well for an empty directory.
5802 if (ctx->pos > 2 && !emitted)
5803 goto nopos;
5805 /* Reached end of directory/root. Bump pos past the last item. */
5806 ctx->pos++;
5809 * Stop new entries from being returned after we return the last
5810 * entry.
5812 * New directory entries are assigned a strictly increasing
5813 * offset. This means that new entries created during readdir
5814 * are *guaranteed* to be seen in the future by that readdir.
5815 * This has broken buggy programs which operate on names as
5816 * they're returned by readdir. Until we re-use freed offsets
5817 * we have this hack to stop new entries from being returned
5818 * under the assumption that they'll never reach this huge
5819 * offset.
5821 * This is being careful not to overflow 32bit loff_t unless the
5822 * last entry requires it because doing so has broken 32bit apps
5823 * in the past.
5825 if (key_type == BTRFS_DIR_INDEX_KEY) {
5826 if (ctx->pos >= INT_MAX)
5827 ctx->pos = LLONG_MAX;
5828 else
5829 ctx->pos = INT_MAX;
5831 nopos:
5832 ret = 0;
5833 err:
5834 if (key_type == BTRFS_DIR_INDEX_KEY)
5835 btrfs_put_delayed_items(&ins_list, &del_list);
5836 btrfs_free_path(path);
5837 return ret;
5840 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5842 struct btrfs_root *root = BTRFS_I(inode)->root;
5843 struct btrfs_trans_handle *trans;
5844 int ret = 0;
5845 bool nolock = false;
5847 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5848 return 0;
5850 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5851 nolock = true;
5853 if (wbc->sync_mode == WB_SYNC_ALL) {
5854 if (nolock)
5855 trans = btrfs_join_transaction_nolock(root);
5856 else
5857 trans = btrfs_join_transaction(root);
5858 if (IS_ERR(trans))
5859 return PTR_ERR(trans);
5860 ret = btrfs_commit_transaction(trans, root);
5862 return ret;
5866 * This is somewhat expensive, updating the tree every time the
5867 * inode changes. But, it is most likely to find the inode in cache.
5868 * FIXME, needs more benchmarking...there are no reasons other than performance
5869 * to keep or drop this code.
5871 static int btrfs_dirty_inode(struct inode *inode)
5873 struct btrfs_root *root = BTRFS_I(inode)->root;
5874 struct btrfs_trans_handle *trans;
5875 int ret;
5877 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5878 return 0;
5880 trans = btrfs_join_transaction(root);
5881 if (IS_ERR(trans))
5882 return PTR_ERR(trans);
5884 ret = btrfs_update_inode(trans, root, inode);
5885 if (ret && ret == -ENOSPC) {
5886 /* whoops, lets try again with the full transaction */
5887 btrfs_end_transaction(trans, root);
5888 trans = btrfs_start_transaction(root, 1);
5889 if (IS_ERR(trans))
5890 return PTR_ERR(trans);
5892 ret = btrfs_update_inode(trans, root, inode);
5894 btrfs_end_transaction(trans, root);
5895 if (BTRFS_I(inode)->delayed_node)
5896 btrfs_balance_delayed_items(root);
5898 return ret;
5902 * This is a copy of file_update_time. We need this so we can return error on
5903 * ENOSPC for updating the inode in the case of file write and mmap writes.
5905 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5906 int flags)
5908 struct btrfs_root *root = BTRFS_I(inode)->root;
5910 if (btrfs_root_readonly(root))
5911 return -EROFS;
5913 if (flags & S_VERSION)
5914 inode_inc_iversion(inode);
5915 if (flags & S_CTIME)
5916 inode->i_ctime = *now;
5917 if (flags & S_MTIME)
5918 inode->i_mtime = *now;
5919 if (flags & S_ATIME)
5920 inode->i_atime = *now;
5921 return btrfs_dirty_inode(inode);
5925 * find the highest existing sequence number in a directory
5926 * and then set the in-memory index_cnt variable to reflect
5927 * free sequence numbers
5929 static int btrfs_set_inode_index_count(struct inode *inode)
5931 struct btrfs_root *root = BTRFS_I(inode)->root;
5932 struct btrfs_key key, found_key;
5933 struct btrfs_path *path;
5934 struct extent_buffer *leaf;
5935 int ret;
5937 key.objectid = btrfs_ino(inode);
5938 key.type = BTRFS_DIR_INDEX_KEY;
5939 key.offset = (u64)-1;
5941 path = btrfs_alloc_path();
5942 if (!path)
5943 return -ENOMEM;
5945 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5946 if (ret < 0)
5947 goto out;
5948 /* FIXME: we should be able to handle this */
5949 if (ret == 0)
5950 goto out;
5951 ret = 0;
5954 * MAGIC NUMBER EXPLANATION:
5955 * since we search a directory based on f_pos we have to start at 2
5956 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5957 * else has to start at 2
5959 if (path->slots[0] == 0) {
5960 BTRFS_I(inode)->index_cnt = 2;
5961 goto out;
5964 path->slots[0]--;
5966 leaf = path->nodes[0];
5967 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5969 if (found_key.objectid != btrfs_ino(inode) ||
5970 found_key.type != BTRFS_DIR_INDEX_KEY) {
5971 BTRFS_I(inode)->index_cnt = 2;
5972 goto out;
5975 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5976 out:
5977 btrfs_free_path(path);
5978 return ret;
5982 * helper to find a free sequence number in a given directory. This current
5983 * code is very simple, later versions will do smarter things in the btree
5985 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5987 int ret = 0;
5989 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5990 ret = btrfs_inode_delayed_dir_index_count(dir);
5991 if (ret) {
5992 ret = btrfs_set_inode_index_count(dir);
5993 if (ret)
5994 return ret;
5998 *index = BTRFS_I(dir)->index_cnt;
5999 BTRFS_I(dir)->index_cnt++;
6001 return ret;
6004 static int btrfs_insert_inode_locked(struct inode *inode)
6006 struct btrfs_iget_args args;
6007 args.location = &BTRFS_I(inode)->location;
6008 args.root = BTRFS_I(inode)->root;
6010 return insert_inode_locked4(inode,
6011 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6012 btrfs_find_actor, &args);
6015 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6016 struct btrfs_root *root,
6017 struct inode *dir,
6018 const char *name, int name_len,
6019 u64 ref_objectid, u64 objectid,
6020 umode_t mode, u64 *index)
6022 struct inode *inode;
6023 struct btrfs_inode_item *inode_item;
6024 struct btrfs_key *location;
6025 struct btrfs_path *path;
6026 struct btrfs_inode_ref *ref;
6027 struct btrfs_key key[2];
6028 u32 sizes[2];
6029 int nitems = name ? 2 : 1;
6030 unsigned long ptr;
6031 int ret;
6033 path = btrfs_alloc_path();
6034 if (!path)
6035 return ERR_PTR(-ENOMEM);
6037 inode = new_inode(root->fs_info->sb);
6038 if (!inode) {
6039 btrfs_free_path(path);
6040 return ERR_PTR(-ENOMEM);
6044 * O_TMPFILE, set link count to 0, so that after this point,
6045 * we fill in an inode item with the correct link count.
6047 if (!name)
6048 set_nlink(inode, 0);
6051 * we have to initialize this early, so we can reclaim the inode
6052 * number if we fail afterwards in this function.
6054 inode->i_ino = objectid;
6056 if (dir && name) {
6057 trace_btrfs_inode_request(dir);
6059 ret = btrfs_set_inode_index(dir, index);
6060 if (ret) {
6061 btrfs_free_path(path);
6062 iput(inode);
6063 return ERR_PTR(ret);
6065 } else if (dir) {
6066 *index = 0;
6069 * index_cnt is ignored for everything but a dir,
6070 * btrfs_get_inode_index_count has an explanation for the magic
6071 * number
6073 BTRFS_I(inode)->index_cnt = 2;
6074 BTRFS_I(inode)->dir_index = *index;
6075 BTRFS_I(inode)->root = root;
6076 BTRFS_I(inode)->generation = trans->transid;
6077 inode->i_generation = BTRFS_I(inode)->generation;
6080 * We could have gotten an inode number from somebody who was fsynced
6081 * and then removed in this same transaction, so let's just set full
6082 * sync since it will be a full sync anyway and this will blow away the
6083 * old info in the log.
6085 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6087 key[0].objectid = objectid;
6088 key[0].type = BTRFS_INODE_ITEM_KEY;
6089 key[0].offset = 0;
6091 sizes[0] = sizeof(struct btrfs_inode_item);
6093 if (name) {
6095 * Start new inodes with an inode_ref. This is slightly more
6096 * efficient for small numbers of hard links since they will
6097 * be packed into one item. Extended refs will kick in if we
6098 * add more hard links than can fit in the ref item.
6100 key[1].objectid = objectid;
6101 key[1].type = BTRFS_INODE_REF_KEY;
6102 key[1].offset = ref_objectid;
6104 sizes[1] = name_len + sizeof(*ref);
6107 location = &BTRFS_I(inode)->location;
6108 location->objectid = objectid;
6109 location->offset = 0;
6110 location->type = BTRFS_INODE_ITEM_KEY;
6112 ret = btrfs_insert_inode_locked(inode);
6113 if (ret < 0)
6114 goto fail;
6116 path->leave_spinning = 1;
6117 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6118 if (ret != 0)
6119 goto fail_unlock;
6121 inode_init_owner(inode, dir, mode);
6122 inode_set_bytes(inode, 0);
6124 inode->i_mtime = CURRENT_TIME;
6125 inode->i_atime = inode->i_mtime;
6126 inode->i_ctime = inode->i_mtime;
6127 BTRFS_I(inode)->i_otime = inode->i_mtime;
6129 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6130 struct btrfs_inode_item);
6131 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6132 sizeof(*inode_item));
6133 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6135 if (name) {
6136 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6137 struct btrfs_inode_ref);
6138 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6139 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6140 ptr = (unsigned long)(ref + 1);
6141 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6144 btrfs_mark_buffer_dirty(path->nodes[0]);
6145 btrfs_free_path(path);
6147 btrfs_inherit_iflags(inode, dir);
6149 if (S_ISREG(mode)) {
6150 if (btrfs_test_opt(root, NODATASUM))
6151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6152 if (btrfs_test_opt(root, NODATACOW))
6153 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6154 BTRFS_INODE_NODATASUM;
6157 inode_tree_add(inode);
6159 trace_btrfs_inode_new(inode);
6160 btrfs_set_inode_last_trans(trans, inode);
6162 btrfs_update_root_times(trans, root);
6164 ret = btrfs_inode_inherit_props(trans, inode, dir);
6165 if (ret)
6166 btrfs_err(root->fs_info,
6167 "error inheriting props for ino %llu (root %llu): %d",
6168 btrfs_ino(inode), root->root_key.objectid, ret);
6170 return inode;
6172 fail_unlock:
6173 unlock_new_inode(inode);
6174 fail:
6175 if (dir && name)
6176 BTRFS_I(dir)->index_cnt--;
6177 btrfs_free_path(path);
6178 iput(inode);
6179 return ERR_PTR(ret);
6182 static inline u8 btrfs_inode_type(struct inode *inode)
6184 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6188 * utility function to add 'inode' into 'parent_inode' with
6189 * a give name and a given sequence number.
6190 * if 'add_backref' is true, also insert a backref from the
6191 * inode to the parent directory.
6193 int btrfs_add_link(struct btrfs_trans_handle *trans,
6194 struct inode *parent_inode, struct inode *inode,
6195 const char *name, int name_len, int add_backref, u64 index)
6197 int ret = 0;
6198 struct btrfs_key key;
6199 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6200 u64 ino = btrfs_ino(inode);
6201 u64 parent_ino = btrfs_ino(parent_inode);
6203 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6204 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6205 } else {
6206 key.objectid = ino;
6207 key.type = BTRFS_INODE_ITEM_KEY;
6208 key.offset = 0;
6211 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6212 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6213 key.objectid, root->root_key.objectid,
6214 parent_ino, index, name, name_len);
6215 } else if (add_backref) {
6216 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6217 parent_ino, index);
6220 /* Nothing to clean up yet */
6221 if (ret)
6222 return ret;
6224 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6225 parent_inode, &key,
6226 btrfs_inode_type(inode), index);
6227 if (ret == -EEXIST || ret == -EOVERFLOW)
6228 goto fail_dir_item;
6229 else if (ret) {
6230 btrfs_abort_transaction(trans, root, ret);
6231 return ret;
6234 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6235 name_len * 2);
6236 inode_inc_iversion(parent_inode);
6237 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6238 ret = btrfs_update_inode(trans, root, parent_inode);
6239 if (ret)
6240 btrfs_abort_transaction(trans, root, ret);
6241 return ret;
6243 fail_dir_item:
6244 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6245 u64 local_index;
6246 int err;
6247 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6248 key.objectid, root->root_key.objectid,
6249 parent_ino, &local_index, name, name_len);
6251 } else if (add_backref) {
6252 u64 local_index;
6253 int err;
6255 err = btrfs_del_inode_ref(trans, root, name, name_len,
6256 ino, parent_ino, &local_index);
6258 return ret;
6261 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6262 struct inode *dir, struct dentry *dentry,
6263 struct inode *inode, int backref, u64 index)
6265 int err = btrfs_add_link(trans, dir, inode,
6266 dentry->d_name.name, dentry->d_name.len,
6267 backref, index);
6268 if (err > 0)
6269 err = -EEXIST;
6270 return err;
6273 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6274 umode_t mode, dev_t rdev)
6276 struct btrfs_trans_handle *trans;
6277 struct btrfs_root *root = BTRFS_I(dir)->root;
6278 struct inode *inode = NULL;
6279 int err;
6280 int drop_inode = 0;
6281 u64 objectid;
6282 u64 index = 0;
6284 if (!new_valid_dev(rdev))
6285 return -EINVAL;
6288 * 2 for inode item and ref
6289 * 2 for dir items
6290 * 1 for xattr if selinux is on
6292 trans = btrfs_start_transaction(root, 5);
6293 if (IS_ERR(trans))
6294 return PTR_ERR(trans);
6296 err = btrfs_find_free_ino(root, &objectid);
6297 if (err)
6298 goto out_unlock;
6300 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6301 dentry->d_name.len, btrfs_ino(dir), objectid,
6302 mode, &index);
6303 if (IS_ERR(inode)) {
6304 err = PTR_ERR(inode);
6305 goto out_unlock;
6309 * If the active LSM wants to access the inode during
6310 * d_instantiate it needs these. Smack checks to see
6311 * if the filesystem supports xattrs by looking at the
6312 * ops vector.
6314 inode->i_op = &btrfs_special_inode_operations;
6315 init_special_inode(inode, inode->i_mode, rdev);
6317 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6318 if (err)
6319 goto out_unlock_inode;
6321 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6322 if (err) {
6323 goto out_unlock_inode;
6324 } else {
6325 btrfs_update_inode(trans, root, inode);
6326 unlock_new_inode(inode);
6327 d_instantiate(dentry, inode);
6330 out_unlock:
6331 btrfs_end_transaction(trans, root);
6332 btrfs_balance_delayed_items(root);
6333 btrfs_btree_balance_dirty(root);
6334 if (drop_inode) {
6335 inode_dec_link_count(inode);
6336 iput(inode);
6338 return err;
6340 out_unlock_inode:
6341 drop_inode = 1;
6342 unlock_new_inode(inode);
6343 goto out_unlock;
6347 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6348 umode_t mode, bool excl)
6350 struct btrfs_trans_handle *trans;
6351 struct btrfs_root *root = BTRFS_I(dir)->root;
6352 struct inode *inode = NULL;
6353 int drop_inode_on_err = 0;
6354 int err;
6355 u64 objectid;
6356 u64 index = 0;
6359 * 2 for inode item and ref
6360 * 2 for dir items
6361 * 1 for xattr if selinux is on
6363 trans = btrfs_start_transaction(root, 5);
6364 if (IS_ERR(trans))
6365 return PTR_ERR(trans);
6367 err = btrfs_find_free_ino(root, &objectid);
6368 if (err)
6369 goto out_unlock;
6371 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6372 dentry->d_name.len, btrfs_ino(dir), objectid,
6373 mode, &index);
6374 if (IS_ERR(inode)) {
6375 err = PTR_ERR(inode);
6376 goto out_unlock;
6378 drop_inode_on_err = 1;
6380 * If the active LSM wants to access the inode during
6381 * d_instantiate it needs these. Smack checks to see
6382 * if the filesystem supports xattrs by looking at the
6383 * ops vector.
6385 inode->i_fop = &btrfs_file_operations;
6386 inode->i_op = &btrfs_file_inode_operations;
6387 inode->i_mapping->a_ops = &btrfs_aops;
6389 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6390 if (err)
6391 goto out_unlock_inode;
6393 err = btrfs_update_inode(trans, root, inode);
6394 if (err)
6395 goto out_unlock_inode;
6397 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6398 if (err)
6399 goto out_unlock_inode;
6401 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6402 unlock_new_inode(inode);
6403 d_instantiate(dentry, inode);
6405 out_unlock:
6406 btrfs_end_transaction(trans, root);
6407 if (err && drop_inode_on_err) {
6408 inode_dec_link_count(inode);
6409 iput(inode);
6411 btrfs_balance_delayed_items(root);
6412 btrfs_btree_balance_dirty(root);
6413 return err;
6415 out_unlock_inode:
6416 unlock_new_inode(inode);
6417 goto out_unlock;
6421 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6422 struct dentry *dentry)
6424 struct btrfs_trans_handle *trans = NULL;
6425 struct btrfs_root *root = BTRFS_I(dir)->root;
6426 struct inode *inode = d_inode(old_dentry);
6427 u64 index;
6428 int err;
6429 int drop_inode = 0;
6431 /* do not allow sys_link's with other subvols of the same device */
6432 if (root->objectid != BTRFS_I(inode)->root->objectid)
6433 return -EXDEV;
6435 if (inode->i_nlink >= BTRFS_LINK_MAX)
6436 return -EMLINK;
6438 err = btrfs_set_inode_index(dir, &index);
6439 if (err)
6440 goto fail;
6443 * 2 items for inode and inode ref
6444 * 2 items for dir items
6445 * 1 item for parent inode
6447 trans = btrfs_start_transaction(root, 5);
6448 if (IS_ERR(trans)) {
6449 err = PTR_ERR(trans);
6450 trans = NULL;
6451 goto fail;
6454 /* There are several dir indexes for this inode, clear the cache. */
6455 BTRFS_I(inode)->dir_index = 0ULL;
6456 inc_nlink(inode);
6457 inode_inc_iversion(inode);
6458 inode->i_ctime = CURRENT_TIME;
6459 ihold(inode);
6460 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6462 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6464 if (err) {
6465 drop_inode = 1;
6466 } else {
6467 struct dentry *parent = dentry->d_parent;
6468 err = btrfs_update_inode(trans, root, inode);
6469 if (err)
6470 goto fail;
6471 if (inode->i_nlink == 1) {
6473 * If new hard link count is 1, it's a file created
6474 * with open(2) O_TMPFILE flag.
6476 err = btrfs_orphan_del(trans, inode);
6477 if (err)
6478 goto fail;
6480 d_instantiate(dentry, inode);
6481 btrfs_log_new_name(trans, inode, NULL, parent);
6484 btrfs_balance_delayed_items(root);
6485 fail:
6486 if (trans)
6487 btrfs_end_transaction(trans, root);
6488 if (drop_inode) {
6489 inode_dec_link_count(inode);
6490 iput(inode);
6492 btrfs_btree_balance_dirty(root);
6493 return err;
6496 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6498 struct inode *inode = NULL;
6499 struct btrfs_trans_handle *trans;
6500 struct btrfs_root *root = BTRFS_I(dir)->root;
6501 int err = 0;
6502 int drop_on_err = 0;
6503 u64 objectid = 0;
6504 u64 index = 0;
6507 * 2 items for inode and ref
6508 * 2 items for dir items
6509 * 1 for xattr if selinux is on
6511 trans = btrfs_start_transaction(root, 5);
6512 if (IS_ERR(trans))
6513 return PTR_ERR(trans);
6515 err = btrfs_find_free_ino(root, &objectid);
6516 if (err)
6517 goto out_fail;
6519 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6520 dentry->d_name.len, btrfs_ino(dir), objectid,
6521 S_IFDIR | mode, &index);
6522 if (IS_ERR(inode)) {
6523 err = PTR_ERR(inode);
6524 goto out_fail;
6527 drop_on_err = 1;
6528 /* these must be set before we unlock the inode */
6529 inode->i_op = &btrfs_dir_inode_operations;
6530 inode->i_fop = &btrfs_dir_file_operations;
6532 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6533 if (err)
6534 goto out_fail_inode;
6536 btrfs_i_size_write(inode, 0);
6537 err = btrfs_update_inode(trans, root, inode);
6538 if (err)
6539 goto out_fail_inode;
6541 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6542 dentry->d_name.len, 0, index);
6543 if (err)
6544 goto out_fail_inode;
6546 d_instantiate(dentry, inode);
6548 * mkdir is special. We're unlocking after we call d_instantiate
6549 * to avoid a race with nfsd calling d_instantiate.
6551 unlock_new_inode(inode);
6552 drop_on_err = 0;
6554 out_fail:
6555 btrfs_end_transaction(trans, root);
6556 if (drop_on_err) {
6557 inode_dec_link_count(inode);
6558 iput(inode);
6560 btrfs_balance_delayed_items(root);
6561 btrfs_btree_balance_dirty(root);
6562 return err;
6564 out_fail_inode:
6565 unlock_new_inode(inode);
6566 goto out_fail;
6569 /* Find next extent map of a given extent map, caller needs to ensure locks */
6570 static struct extent_map *next_extent_map(struct extent_map *em)
6572 struct rb_node *next;
6574 next = rb_next(&em->rb_node);
6575 if (!next)
6576 return NULL;
6577 return container_of(next, struct extent_map, rb_node);
6580 static struct extent_map *prev_extent_map(struct extent_map *em)
6582 struct rb_node *prev;
6584 prev = rb_prev(&em->rb_node);
6585 if (!prev)
6586 return NULL;
6587 return container_of(prev, struct extent_map, rb_node);
6590 /* helper for btfs_get_extent. Given an existing extent in the tree,
6591 * the existing extent is the nearest extent to map_start,
6592 * and an extent that you want to insert, deal with overlap and insert
6593 * the best fitted new extent into the tree.
6595 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6596 struct extent_map *existing,
6597 struct extent_map *em,
6598 u64 map_start)
6600 struct extent_map *prev;
6601 struct extent_map *next;
6602 u64 start;
6603 u64 end;
6604 u64 start_diff;
6606 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6608 if (existing->start > map_start) {
6609 next = existing;
6610 prev = prev_extent_map(next);
6611 } else {
6612 prev = existing;
6613 next = next_extent_map(prev);
6616 start = prev ? extent_map_end(prev) : em->start;
6617 start = max_t(u64, start, em->start);
6618 end = next ? next->start : extent_map_end(em);
6619 end = min_t(u64, end, extent_map_end(em));
6620 start_diff = start - em->start;
6621 em->start = start;
6622 em->len = end - start;
6623 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6624 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6625 em->block_start += start_diff;
6626 em->block_len -= start_diff;
6628 return add_extent_mapping(em_tree, em, 0);
6631 static noinline int uncompress_inline(struct btrfs_path *path,
6632 struct inode *inode, struct page *page,
6633 size_t pg_offset, u64 extent_offset,
6634 struct btrfs_file_extent_item *item)
6636 int ret;
6637 struct extent_buffer *leaf = path->nodes[0];
6638 char *tmp;
6639 size_t max_size;
6640 unsigned long inline_size;
6641 unsigned long ptr;
6642 int compress_type;
6644 WARN_ON(pg_offset != 0);
6645 compress_type = btrfs_file_extent_compression(leaf, item);
6646 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6647 inline_size = btrfs_file_extent_inline_item_len(leaf,
6648 btrfs_item_nr(path->slots[0]));
6649 tmp = kmalloc(inline_size, GFP_NOFS);
6650 if (!tmp)
6651 return -ENOMEM;
6652 ptr = btrfs_file_extent_inline_start(item);
6654 read_extent_buffer(leaf, tmp, ptr, inline_size);
6656 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6657 ret = btrfs_decompress(compress_type, tmp, page,
6658 extent_offset, inline_size, max_size);
6659 kfree(tmp);
6660 return ret;
6664 * a bit scary, this does extent mapping from logical file offset to the disk.
6665 * the ugly parts come from merging extents from the disk with the in-ram
6666 * representation. This gets more complex because of the data=ordered code,
6667 * where the in-ram extents might be locked pending data=ordered completion.
6669 * This also copies inline extents directly into the page.
6672 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6673 size_t pg_offset, u64 start, u64 len,
6674 int create)
6676 int ret;
6677 int err = 0;
6678 u64 extent_start = 0;
6679 u64 extent_end = 0;
6680 u64 objectid = btrfs_ino(inode);
6681 u32 found_type;
6682 struct btrfs_path *path = NULL;
6683 struct btrfs_root *root = BTRFS_I(inode)->root;
6684 struct btrfs_file_extent_item *item;
6685 struct extent_buffer *leaf;
6686 struct btrfs_key found_key;
6687 struct extent_map *em = NULL;
6688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6690 struct btrfs_trans_handle *trans = NULL;
6691 const bool new_inline = !page || create;
6693 again:
6694 read_lock(&em_tree->lock);
6695 em = lookup_extent_mapping(em_tree, start, len);
6696 if (em)
6697 em->bdev = root->fs_info->fs_devices->latest_bdev;
6698 read_unlock(&em_tree->lock);
6700 if (em) {
6701 if (em->start > start || em->start + em->len <= start)
6702 free_extent_map(em);
6703 else if (em->block_start == EXTENT_MAP_INLINE && page)
6704 free_extent_map(em);
6705 else
6706 goto out;
6708 em = alloc_extent_map();
6709 if (!em) {
6710 err = -ENOMEM;
6711 goto out;
6713 em->bdev = root->fs_info->fs_devices->latest_bdev;
6714 em->start = EXTENT_MAP_HOLE;
6715 em->orig_start = EXTENT_MAP_HOLE;
6716 em->len = (u64)-1;
6717 em->block_len = (u64)-1;
6719 if (!path) {
6720 path = btrfs_alloc_path();
6721 if (!path) {
6722 err = -ENOMEM;
6723 goto out;
6726 * Chances are we'll be called again, so go ahead and do
6727 * readahead
6729 path->reada = 1;
6732 ret = btrfs_lookup_file_extent(trans, root, path,
6733 objectid, start, trans != NULL);
6734 if (ret < 0) {
6735 err = ret;
6736 goto out;
6739 if (ret != 0) {
6740 if (path->slots[0] == 0)
6741 goto not_found;
6742 path->slots[0]--;
6745 leaf = path->nodes[0];
6746 item = btrfs_item_ptr(leaf, path->slots[0],
6747 struct btrfs_file_extent_item);
6748 /* are we inside the extent that was found? */
6749 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6750 found_type = found_key.type;
6751 if (found_key.objectid != objectid ||
6752 found_type != BTRFS_EXTENT_DATA_KEY) {
6754 * If we backup past the first extent we want to move forward
6755 * and see if there is an extent in front of us, otherwise we'll
6756 * say there is a hole for our whole search range which can
6757 * cause problems.
6759 extent_end = start;
6760 goto next;
6763 found_type = btrfs_file_extent_type(leaf, item);
6764 extent_start = found_key.offset;
6765 if (found_type == BTRFS_FILE_EXTENT_REG ||
6766 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6767 extent_end = extent_start +
6768 btrfs_file_extent_num_bytes(leaf, item);
6769 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6770 size_t size;
6771 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6772 extent_end = ALIGN(extent_start + size, root->sectorsize);
6774 next:
6775 if (start >= extent_end) {
6776 path->slots[0]++;
6777 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6778 ret = btrfs_next_leaf(root, path);
6779 if (ret < 0) {
6780 err = ret;
6781 goto out;
6783 if (ret > 0)
6784 goto not_found;
6785 leaf = path->nodes[0];
6787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6788 if (found_key.objectid != objectid ||
6789 found_key.type != BTRFS_EXTENT_DATA_KEY)
6790 goto not_found;
6791 if (start + len <= found_key.offset)
6792 goto not_found;
6793 if (start > found_key.offset)
6794 goto next;
6795 em->start = start;
6796 em->orig_start = start;
6797 em->len = found_key.offset - start;
6798 goto not_found_em;
6801 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6803 if (found_type == BTRFS_FILE_EXTENT_REG ||
6804 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6805 goto insert;
6806 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6807 unsigned long ptr;
6808 char *map;
6809 size_t size;
6810 size_t extent_offset;
6811 size_t copy_size;
6813 if (new_inline)
6814 goto out;
6816 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6817 extent_offset = page_offset(page) + pg_offset - extent_start;
6818 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6819 size - extent_offset);
6820 em->start = extent_start + extent_offset;
6821 em->len = ALIGN(copy_size, root->sectorsize);
6822 em->orig_block_len = em->len;
6823 em->orig_start = em->start;
6824 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6825 if (create == 0 && !PageUptodate(page)) {
6826 if (btrfs_file_extent_compression(leaf, item) !=
6827 BTRFS_COMPRESS_NONE) {
6828 ret = uncompress_inline(path, inode, page,
6829 pg_offset,
6830 extent_offset, item);
6831 if (ret) {
6832 err = ret;
6833 goto out;
6835 } else {
6836 map = kmap(page);
6837 read_extent_buffer(leaf, map + pg_offset, ptr,
6838 copy_size);
6839 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6840 memset(map + pg_offset + copy_size, 0,
6841 PAGE_CACHE_SIZE - pg_offset -
6842 copy_size);
6844 kunmap(page);
6846 flush_dcache_page(page);
6847 } else if (create && PageUptodate(page)) {
6848 BUG();
6849 if (!trans) {
6850 kunmap(page);
6851 free_extent_map(em);
6852 em = NULL;
6854 btrfs_release_path(path);
6855 trans = btrfs_join_transaction(root);
6857 if (IS_ERR(trans))
6858 return ERR_CAST(trans);
6859 goto again;
6861 map = kmap(page);
6862 write_extent_buffer(leaf, map + pg_offset, ptr,
6863 copy_size);
6864 kunmap(page);
6865 btrfs_mark_buffer_dirty(leaf);
6867 set_extent_uptodate(io_tree, em->start,
6868 extent_map_end(em) - 1, NULL, GFP_NOFS);
6869 goto insert;
6871 not_found:
6872 em->start = start;
6873 em->orig_start = start;
6874 em->len = len;
6875 not_found_em:
6876 em->block_start = EXTENT_MAP_HOLE;
6877 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6878 insert:
6879 btrfs_release_path(path);
6880 if (em->start > start || extent_map_end(em) <= start) {
6881 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6882 em->start, em->len, start, len);
6883 err = -EIO;
6884 goto out;
6887 err = 0;
6888 write_lock(&em_tree->lock);
6889 ret = add_extent_mapping(em_tree, em, 0);
6890 /* it is possible that someone inserted the extent into the tree
6891 * while we had the lock dropped. It is also possible that
6892 * an overlapping map exists in the tree
6894 if (ret == -EEXIST) {
6895 struct extent_map *existing;
6897 ret = 0;
6899 existing = search_extent_mapping(em_tree, start, len);
6901 * existing will always be non-NULL, since there must be
6902 * extent causing the -EEXIST.
6904 if (start >= extent_map_end(existing) ||
6905 start <= existing->start) {
6907 * The existing extent map is the one nearest to
6908 * the [start, start + len) range which overlaps
6910 err = merge_extent_mapping(em_tree, existing,
6911 em, start);
6912 free_extent_map(existing);
6913 if (err) {
6914 free_extent_map(em);
6915 em = NULL;
6917 } else {
6918 free_extent_map(em);
6919 em = existing;
6920 err = 0;
6923 write_unlock(&em_tree->lock);
6924 out:
6926 trace_btrfs_get_extent(root, em);
6928 if (path)
6929 btrfs_free_path(path);
6930 if (trans) {
6931 ret = btrfs_end_transaction(trans, root);
6932 if (!err)
6933 err = ret;
6935 if (err) {
6936 free_extent_map(em);
6937 return ERR_PTR(err);
6939 BUG_ON(!em); /* Error is always set */
6940 return em;
6943 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6944 size_t pg_offset, u64 start, u64 len,
6945 int create)
6947 struct extent_map *em;
6948 struct extent_map *hole_em = NULL;
6949 u64 range_start = start;
6950 u64 end;
6951 u64 found;
6952 u64 found_end;
6953 int err = 0;
6955 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6956 if (IS_ERR(em))
6957 return em;
6958 if (em) {
6960 * if our em maps to
6961 * - a hole or
6962 * - a pre-alloc extent,
6963 * there might actually be delalloc bytes behind it.
6965 if (em->block_start != EXTENT_MAP_HOLE &&
6966 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6967 return em;
6968 else
6969 hole_em = em;
6972 /* check to see if we've wrapped (len == -1 or similar) */
6973 end = start + len;
6974 if (end < start)
6975 end = (u64)-1;
6976 else
6977 end -= 1;
6979 em = NULL;
6981 /* ok, we didn't find anything, lets look for delalloc */
6982 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6983 end, len, EXTENT_DELALLOC, 1);
6984 found_end = range_start + found;
6985 if (found_end < range_start)
6986 found_end = (u64)-1;
6989 * we didn't find anything useful, return
6990 * the original results from get_extent()
6992 if (range_start > end || found_end <= start) {
6993 em = hole_em;
6994 hole_em = NULL;
6995 goto out;
6998 /* adjust the range_start to make sure it doesn't
6999 * go backwards from the start they passed in
7001 range_start = max(start, range_start);
7002 found = found_end - range_start;
7004 if (found > 0) {
7005 u64 hole_start = start;
7006 u64 hole_len = len;
7008 em = alloc_extent_map();
7009 if (!em) {
7010 err = -ENOMEM;
7011 goto out;
7014 * when btrfs_get_extent can't find anything it
7015 * returns one huge hole
7017 * make sure what it found really fits our range, and
7018 * adjust to make sure it is based on the start from
7019 * the caller
7021 if (hole_em) {
7022 u64 calc_end = extent_map_end(hole_em);
7024 if (calc_end <= start || (hole_em->start > end)) {
7025 free_extent_map(hole_em);
7026 hole_em = NULL;
7027 } else {
7028 hole_start = max(hole_em->start, start);
7029 hole_len = calc_end - hole_start;
7032 em->bdev = NULL;
7033 if (hole_em && range_start > hole_start) {
7034 /* our hole starts before our delalloc, so we
7035 * have to return just the parts of the hole
7036 * that go until the delalloc starts
7038 em->len = min(hole_len,
7039 range_start - hole_start);
7040 em->start = hole_start;
7041 em->orig_start = hole_start;
7043 * don't adjust block start at all,
7044 * it is fixed at EXTENT_MAP_HOLE
7046 em->block_start = hole_em->block_start;
7047 em->block_len = hole_len;
7048 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7049 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7050 } else {
7051 em->start = range_start;
7052 em->len = found;
7053 em->orig_start = range_start;
7054 em->block_start = EXTENT_MAP_DELALLOC;
7055 em->block_len = found;
7057 } else if (hole_em) {
7058 return hole_em;
7060 out:
7062 free_extent_map(hole_em);
7063 if (err) {
7064 free_extent_map(em);
7065 return ERR_PTR(err);
7067 return em;
7070 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7071 u64 start, u64 len)
7073 struct btrfs_root *root = BTRFS_I(inode)->root;
7074 struct extent_map *em;
7075 struct btrfs_key ins;
7076 u64 alloc_hint;
7077 int ret;
7079 alloc_hint = get_extent_allocation_hint(inode, start, len);
7080 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7081 alloc_hint, &ins, 1, 1);
7082 if (ret)
7083 return ERR_PTR(ret);
7085 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7086 ins.offset, ins.offset, ins.offset, 0);
7087 if (IS_ERR(em)) {
7088 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7089 return em;
7092 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7093 ins.offset, ins.offset, 0);
7094 if (ret) {
7095 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7096 free_extent_map(em);
7097 return ERR_PTR(ret);
7100 return em;
7104 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7105 * block must be cow'd
7107 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7108 u64 *orig_start, u64 *orig_block_len,
7109 u64 *ram_bytes)
7111 struct btrfs_trans_handle *trans;
7112 struct btrfs_path *path;
7113 int ret;
7114 struct extent_buffer *leaf;
7115 struct btrfs_root *root = BTRFS_I(inode)->root;
7116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7117 struct btrfs_file_extent_item *fi;
7118 struct btrfs_key key;
7119 u64 disk_bytenr;
7120 u64 backref_offset;
7121 u64 extent_end;
7122 u64 num_bytes;
7123 int slot;
7124 int found_type;
7125 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7127 path = btrfs_alloc_path();
7128 if (!path)
7129 return -ENOMEM;
7131 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7132 offset, 0);
7133 if (ret < 0)
7134 goto out;
7136 slot = path->slots[0];
7137 if (ret == 1) {
7138 if (slot == 0) {
7139 /* can't find the item, must cow */
7140 ret = 0;
7141 goto out;
7143 slot--;
7145 ret = 0;
7146 leaf = path->nodes[0];
7147 btrfs_item_key_to_cpu(leaf, &key, slot);
7148 if (key.objectid != btrfs_ino(inode) ||
7149 key.type != BTRFS_EXTENT_DATA_KEY) {
7150 /* not our file or wrong item type, must cow */
7151 goto out;
7154 if (key.offset > offset) {
7155 /* Wrong offset, must cow */
7156 goto out;
7159 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7160 found_type = btrfs_file_extent_type(leaf, fi);
7161 if (found_type != BTRFS_FILE_EXTENT_REG &&
7162 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7163 /* not a regular extent, must cow */
7164 goto out;
7167 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7168 goto out;
7170 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7171 if (extent_end <= offset)
7172 goto out;
7174 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7175 if (disk_bytenr == 0)
7176 goto out;
7178 if (btrfs_file_extent_compression(leaf, fi) ||
7179 btrfs_file_extent_encryption(leaf, fi) ||
7180 btrfs_file_extent_other_encoding(leaf, fi))
7181 goto out;
7183 backref_offset = btrfs_file_extent_offset(leaf, fi);
7185 if (orig_start) {
7186 *orig_start = key.offset - backref_offset;
7187 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7188 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7191 if (btrfs_extent_readonly(root, disk_bytenr))
7192 goto out;
7194 num_bytes = min(offset + *len, extent_end) - offset;
7195 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7196 u64 range_end;
7198 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7199 ret = test_range_bit(io_tree, offset, range_end,
7200 EXTENT_DELALLOC, 0, NULL);
7201 if (ret) {
7202 ret = -EAGAIN;
7203 goto out;
7207 btrfs_release_path(path);
7210 * look for other files referencing this extent, if we
7211 * find any we must cow
7213 trans = btrfs_join_transaction(root);
7214 if (IS_ERR(trans)) {
7215 ret = 0;
7216 goto out;
7219 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7220 key.offset - backref_offset, disk_bytenr);
7221 btrfs_end_transaction(trans, root);
7222 if (ret) {
7223 ret = 0;
7224 goto out;
7228 * adjust disk_bytenr and num_bytes to cover just the bytes
7229 * in this extent we are about to write. If there
7230 * are any csums in that range we have to cow in order
7231 * to keep the csums correct
7233 disk_bytenr += backref_offset;
7234 disk_bytenr += offset - key.offset;
7235 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7236 goto out;
7238 * all of the above have passed, it is safe to overwrite this extent
7239 * without cow
7241 *len = num_bytes;
7242 ret = 1;
7243 out:
7244 btrfs_free_path(path);
7245 return ret;
7248 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7250 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7251 int found = false;
7252 void **pagep = NULL;
7253 struct page *page = NULL;
7254 int start_idx;
7255 int end_idx;
7257 start_idx = start >> PAGE_CACHE_SHIFT;
7260 * end is the last byte in the last page. end == start is legal
7262 end_idx = end >> PAGE_CACHE_SHIFT;
7264 rcu_read_lock();
7266 /* Most of the code in this while loop is lifted from
7267 * find_get_page. It's been modified to begin searching from a
7268 * page and return just the first page found in that range. If the
7269 * found idx is less than or equal to the end idx then we know that
7270 * a page exists. If no pages are found or if those pages are
7271 * outside of the range then we're fine (yay!) */
7272 while (page == NULL &&
7273 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7274 page = radix_tree_deref_slot(pagep);
7275 if (unlikely(!page))
7276 break;
7278 if (radix_tree_exception(page)) {
7279 if (radix_tree_deref_retry(page)) {
7280 page = NULL;
7281 continue;
7284 * Otherwise, shmem/tmpfs must be storing a swap entry
7285 * here as an exceptional entry: so return it without
7286 * attempting to raise page count.
7288 page = NULL;
7289 break; /* TODO: Is this relevant for this use case? */
7292 if (!page_cache_get_speculative(page)) {
7293 page = NULL;
7294 continue;
7298 * Has the page moved?
7299 * This is part of the lockless pagecache protocol. See
7300 * include/linux/pagemap.h for details.
7302 if (unlikely(page != *pagep)) {
7303 page_cache_release(page);
7304 page = NULL;
7308 if (page) {
7309 if (page->index <= end_idx)
7310 found = true;
7311 page_cache_release(page);
7314 rcu_read_unlock();
7315 return found;
7318 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7319 struct extent_state **cached_state, int writing)
7321 struct btrfs_ordered_extent *ordered;
7322 int ret = 0;
7324 while (1) {
7325 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7326 0, cached_state);
7328 * We're concerned with the entire range that we're going to be
7329 * doing DIO to, so we need to make sure theres no ordered
7330 * extents in this range.
7332 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7333 lockend - lockstart + 1);
7336 * We need to make sure there are no buffered pages in this
7337 * range either, we could have raced between the invalidate in
7338 * generic_file_direct_write and locking the extent. The
7339 * invalidate needs to happen so that reads after a write do not
7340 * get stale data.
7342 if (!ordered &&
7343 (!writing ||
7344 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7345 break;
7347 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7348 cached_state, GFP_NOFS);
7350 if (ordered) {
7351 btrfs_start_ordered_extent(inode, ordered, 1);
7352 btrfs_put_ordered_extent(ordered);
7353 } else {
7354 /* Screw you mmap */
7355 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7356 if (ret)
7357 break;
7358 ret = filemap_fdatawait_range(inode->i_mapping,
7359 lockstart,
7360 lockend);
7361 if (ret)
7362 break;
7365 * If we found a page that couldn't be invalidated just
7366 * fall back to buffered.
7368 ret = invalidate_inode_pages2_range(inode->i_mapping,
7369 lockstart >> PAGE_CACHE_SHIFT,
7370 lockend >> PAGE_CACHE_SHIFT);
7371 if (ret)
7372 break;
7375 cond_resched();
7378 return ret;
7381 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7382 u64 len, u64 orig_start,
7383 u64 block_start, u64 block_len,
7384 u64 orig_block_len, u64 ram_bytes,
7385 int type)
7387 struct extent_map_tree *em_tree;
7388 struct extent_map *em;
7389 struct btrfs_root *root = BTRFS_I(inode)->root;
7390 int ret;
7392 em_tree = &BTRFS_I(inode)->extent_tree;
7393 em = alloc_extent_map();
7394 if (!em)
7395 return ERR_PTR(-ENOMEM);
7397 em->start = start;
7398 em->orig_start = orig_start;
7399 em->mod_start = start;
7400 em->mod_len = len;
7401 em->len = len;
7402 em->block_len = block_len;
7403 em->block_start = block_start;
7404 em->bdev = root->fs_info->fs_devices->latest_bdev;
7405 em->orig_block_len = orig_block_len;
7406 em->ram_bytes = ram_bytes;
7407 em->generation = -1;
7408 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7409 if (type == BTRFS_ORDERED_PREALLOC)
7410 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7412 do {
7413 btrfs_drop_extent_cache(inode, em->start,
7414 em->start + em->len - 1, 0);
7415 write_lock(&em_tree->lock);
7416 ret = add_extent_mapping(em_tree, em, 1);
7417 write_unlock(&em_tree->lock);
7418 } while (ret == -EEXIST);
7420 if (ret) {
7421 free_extent_map(em);
7422 return ERR_PTR(ret);
7425 return em;
7429 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7430 struct buffer_head *bh_result, int create)
7432 struct extent_map *em;
7433 struct btrfs_root *root = BTRFS_I(inode)->root;
7434 struct extent_state *cached_state = NULL;
7435 u64 start = iblock << inode->i_blkbits;
7436 u64 lockstart, lockend;
7437 u64 len = bh_result->b_size;
7438 u64 *outstanding_extents = NULL;
7439 int unlock_bits = EXTENT_LOCKED;
7440 int ret = 0;
7442 if (create)
7443 unlock_bits |= EXTENT_DIRTY;
7444 else
7445 len = min_t(u64, len, root->sectorsize);
7447 lockstart = start;
7448 lockend = start + len - 1;
7450 if (current->journal_info) {
7452 * Need to pull our outstanding extents and set journal_info to NULL so
7453 * that anything that needs to check if there's a transction doesn't get
7454 * confused.
7456 outstanding_extents = current->journal_info;
7457 current->journal_info = NULL;
7461 * If this errors out it's because we couldn't invalidate pagecache for
7462 * this range and we need to fallback to buffered.
7464 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7465 return -ENOTBLK;
7467 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7468 if (IS_ERR(em)) {
7469 ret = PTR_ERR(em);
7470 goto unlock_err;
7474 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7475 * io. INLINE is special, and we could probably kludge it in here, but
7476 * it's still buffered so for safety lets just fall back to the generic
7477 * buffered path.
7479 * For COMPRESSED we _have_ to read the entire extent in so we can
7480 * decompress it, so there will be buffering required no matter what we
7481 * do, so go ahead and fallback to buffered.
7483 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7484 * to buffered IO. Don't blame me, this is the price we pay for using
7485 * the generic code.
7487 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7488 em->block_start == EXTENT_MAP_INLINE) {
7489 free_extent_map(em);
7490 ret = -ENOTBLK;
7491 goto unlock_err;
7494 /* Just a good old fashioned hole, return */
7495 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7496 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7497 free_extent_map(em);
7498 goto unlock_err;
7502 * We don't allocate a new extent in the following cases
7504 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7505 * existing extent.
7506 * 2) The extent is marked as PREALLOC. We're good to go here and can
7507 * just use the extent.
7510 if (!create) {
7511 len = min(len, em->len - (start - em->start));
7512 lockstart = start + len;
7513 goto unlock;
7516 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7517 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7518 em->block_start != EXTENT_MAP_HOLE)) {
7519 int type;
7520 u64 block_start, orig_start, orig_block_len, ram_bytes;
7522 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7523 type = BTRFS_ORDERED_PREALLOC;
7524 else
7525 type = BTRFS_ORDERED_NOCOW;
7526 len = min(len, em->len - (start - em->start));
7527 block_start = em->block_start + (start - em->start);
7529 if (can_nocow_extent(inode, start, &len, &orig_start,
7530 &orig_block_len, &ram_bytes) == 1) {
7531 if (type == BTRFS_ORDERED_PREALLOC) {
7532 free_extent_map(em);
7533 em = create_pinned_em(inode, start, len,
7534 orig_start,
7535 block_start, len,
7536 orig_block_len,
7537 ram_bytes, type);
7538 if (IS_ERR(em)) {
7539 ret = PTR_ERR(em);
7540 goto unlock_err;
7544 ret = btrfs_add_ordered_extent_dio(inode, start,
7545 block_start, len, len, type);
7546 if (ret) {
7547 free_extent_map(em);
7548 goto unlock_err;
7550 goto unlock;
7555 * this will cow the extent, reset the len in case we changed
7556 * it above
7558 len = bh_result->b_size;
7559 free_extent_map(em);
7560 em = btrfs_new_extent_direct(inode, start, len);
7561 if (IS_ERR(em)) {
7562 ret = PTR_ERR(em);
7563 goto unlock_err;
7565 len = min(len, em->len - (start - em->start));
7566 unlock:
7567 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7568 inode->i_blkbits;
7569 bh_result->b_size = len;
7570 bh_result->b_bdev = em->bdev;
7571 set_buffer_mapped(bh_result);
7572 if (create) {
7573 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7574 set_buffer_new(bh_result);
7577 * Need to update the i_size under the extent lock so buffered
7578 * readers will get the updated i_size when we unlock.
7580 if (start + len > i_size_read(inode))
7581 i_size_write(inode, start + len);
7584 * If we have an outstanding_extents count still set then we're
7585 * within our reservation, otherwise we need to adjust our inode
7586 * counter appropriately.
7588 if (*outstanding_extents) {
7589 (*outstanding_extents)--;
7590 } else {
7591 spin_lock(&BTRFS_I(inode)->lock);
7592 BTRFS_I(inode)->outstanding_extents++;
7593 spin_unlock(&BTRFS_I(inode)->lock);
7596 current->journal_info = outstanding_extents;
7597 btrfs_free_reserved_data_space(inode, len);
7601 * In the case of write we need to clear and unlock the entire range,
7602 * in the case of read we need to unlock only the end area that we
7603 * aren't using if there is any left over space.
7605 if (lockstart < lockend) {
7606 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7607 lockend, unlock_bits, 1, 0,
7608 &cached_state, GFP_NOFS);
7609 } else {
7610 free_extent_state(cached_state);
7613 free_extent_map(em);
7615 return 0;
7617 unlock_err:
7618 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7619 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7620 if (outstanding_extents)
7621 current->journal_info = outstanding_extents;
7622 return ret;
7625 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7626 int rw, int mirror_num)
7628 struct btrfs_root *root = BTRFS_I(inode)->root;
7629 int ret;
7631 BUG_ON(rw & REQ_WRITE);
7633 bio_get(bio);
7635 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7636 BTRFS_WQ_ENDIO_DIO_REPAIR);
7637 if (ret)
7638 goto err;
7640 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7641 err:
7642 bio_put(bio);
7643 return ret;
7646 static int btrfs_check_dio_repairable(struct inode *inode,
7647 struct bio *failed_bio,
7648 struct io_failure_record *failrec,
7649 int failed_mirror)
7651 int num_copies;
7653 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7654 failrec->logical, failrec->len);
7655 if (num_copies == 1) {
7657 * we only have a single copy of the data, so don't bother with
7658 * all the retry and error correction code that follows. no
7659 * matter what the error is, it is very likely to persist.
7661 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7662 num_copies, failrec->this_mirror, failed_mirror);
7663 return 0;
7666 failrec->failed_mirror = failed_mirror;
7667 failrec->this_mirror++;
7668 if (failrec->this_mirror == failed_mirror)
7669 failrec->this_mirror++;
7671 if (failrec->this_mirror > num_copies) {
7672 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7673 num_copies, failrec->this_mirror, failed_mirror);
7674 return 0;
7677 return 1;
7680 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7681 struct page *page, u64 start, u64 end,
7682 int failed_mirror, bio_end_io_t *repair_endio,
7683 void *repair_arg)
7685 struct io_failure_record *failrec;
7686 struct bio *bio;
7687 int isector;
7688 int read_mode;
7689 int ret;
7691 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7693 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7694 if (ret)
7695 return ret;
7697 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7698 failed_mirror);
7699 if (!ret) {
7700 free_io_failure(inode, failrec);
7701 return -EIO;
7704 if (failed_bio->bi_vcnt > 1)
7705 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7706 else
7707 read_mode = READ_SYNC;
7709 isector = start - btrfs_io_bio(failed_bio)->logical;
7710 isector >>= inode->i_sb->s_blocksize_bits;
7711 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7712 0, isector, repair_endio, repair_arg);
7713 if (!bio) {
7714 free_io_failure(inode, failrec);
7715 return -EIO;
7718 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7719 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7720 read_mode, failrec->this_mirror, failrec->in_validation);
7722 ret = submit_dio_repair_bio(inode, bio, read_mode,
7723 failrec->this_mirror);
7724 if (ret) {
7725 free_io_failure(inode, failrec);
7726 bio_put(bio);
7729 return ret;
7732 struct btrfs_retry_complete {
7733 struct completion done;
7734 struct inode *inode;
7735 u64 start;
7736 int uptodate;
7739 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7741 struct btrfs_retry_complete *done = bio->bi_private;
7742 struct bio_vec *bvec;
7743 int i;
7745 if (err)
7746 goto end;
7748 done->uptodate = 1;
7749 bio_for_each_segment_all(bvec, bio, i)
7750 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7751 end:
7752 complete(&done->done);
7753 bio_put(bio);
7756 static int __btrfs_correct_data_nocsum(struct inode *inode,
7757 struct btrfs_io_bio *io_bio)
7759 struct bio_vec *bvec;
7760 struct btrfs_retry_complete done;
7761 u64 start;
7762 int i;
7763 int ret;
7765 start = io_bio->logical;
7766 done.inode = inode;
7768 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7769 try_again:
7770 done.uptodate = 0;
7771 done.start = start;
7772 init_completion(&done.done);
7774 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7775 start + bvec->bv_len - 1,
7776 io_bio->mirror_num,
7777 btrfs_retry_endio_nocsum, &done);
7778 if (ret)
7779 return ret;
7781 wait_for_completion(&done.done);
7783 if (!done.uptodate) {
7784 /* We might have another mirror, so try again */
7785 goto try_again;
7788 start += bvec->bv_len;
7791 return 0;
7794 static void btrfs_retry_endio(struct bio *bio, int err)
7796 struct btrfs_retry_complete *done = bio->bi_private;
7797 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7798 struct bio_vec *bvec;
7799 int uptodate;
7800 int ret;
7801 int i;
7803 if (err)
7804 goto end;
7806 uptodate = 1;
7807 bio_for_each_segment_all(bvec, bio, i) {
7808 ret = __readpage_endio_check(done->inode, io_bio, i,
7809 bvec->bv_page, 0,
7810 done->start, bvec->bv_len);
7811 if (!ret)
7812 clean_io_failure(done->inode, done->start,
7813 bvec->bv_page, 0);
7814 else
7815 uptodate = 0;
7818 done->uptodate = uptodate;
7819 end:
7820 complete(&done->done);
7821 bio_put(bio);
7824 static int __btrfs_subio_endio_read(struct inode *inode,
7825 struct btrfs_io_bio *io_bio, int err)
7827 struct bio_vec *bvec;
7828 struct btrfs_retry_complete done;
7829 u64 start;
7830 u64 offset = 0;
7831 int i;
7832 int ret;
7834 err = 0;
7835 start = io_bio->logical;
7836 done.inode = inode;
7838 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7839 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7840 0, start, bvec->bv_len);
7841 if (likely(!ret))
7842 goto next;
7843 try_again:
7844 done.uptodate = 0;
7845 done.start = start;
7846 init_completion(&done.done);
7848 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7849 start + bvec->bv_len - 1,
7850 io_bio->mirror_num,
7851 btrfs_retry_endio, &done);
7852 if (ret) {
7853 err = ret;
7854 goto next;
7857 wait_for_completion(&done.done);
7859 if (!done.uptodate) {
7860 /* We might have another mirror, so try again */
7861 goto try_again;
7863 next:
7864 offset += bvec->bv_len;
7865 start += bvec->bv_len;
7868 return err;
7871 static int btrfs_subio_endio_read(struct inode *inode,
7872 struct btrfs_io_bio *io_bio, int err)
7874 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7876 if (skip_csum) {
7877 if (unlikely(err))
7878 return __btrfs_correct_data_nocsum(inode, io_bio);
7879 else
7880 return 0;
7881 } else {
7882 return __btrfs_subio_endio_read(inode, io_bio, err);
7886 static void btrfs_endio_direct_read(struct bio *bio, int err)
7888 struct btrfs_dio_private *dip = bio->bi_private;
7889 struct inode *inode = dip->inode;
7890 struct bio *dio_bio;
7891 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7893 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7894 err = btrfs_subio_endio_read(inode, io_bio, err);
7896 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7897 dip->logical_offset + dip->bytes - 1);
7898 dio_bio = dip->dio_bio;
7900 kfree(dip);
7902 /* If we had a csum failure make sure to clear the uptodate flag */
7903 if (err)
7904 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7905 dio_end_io(dio_bio, err);
7907 if (io_bio->end_io)
7908 io_bio->end_io(io_bio, err);
7909 bio_put(bio);
7912 static void btrfs_endio_direct_write(struct bio *bio, int err)
7914 struct btrfs_dio_private *dip = bio->bi_private;
7915 struct inode *inode = dip->inode;
7916 struct btrfs_root *root = BTRFS_I(inode)->root;
7917 struct btrfs_ordered_extent *ordered = NULL;
7918 u64 ordered_offset = dip->logical_offset;
7919 u64 ordered_bytes = dip->bytes;
7920 struct bio *dio_bio;
7921 int ret;
7923 if (err)
7924 goto out_done;
7925 again:
7926 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7927 &ordered_offset,
7928 ordered_bytes, !err);
7929 if (!ret)
7930 goto out_test;
7932 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7933 finish_ordered_fn, NULL, NULL);
7934 btrfs_queue_work(root->fs_info->endio_write_workers,
7935 &ordered->work);
7936 out_test:
7938 * our bio might span multiple ordered extents. If we haven't
7939 * completed the accounting for the whole dio, go back and try again
7941 if (ordered_offset < dip->logical_offset + dip->bytes) {
7942 ordered_bytes = dip->logical_offset + dip->bytes -
7943 ordered_offset;
7944 ordered = NULL;
7945 goto again;
7947 out_done:
7948 dio_bio = dip->dio_bio;
7950 kfree(dip);
7952 /* If we had an error make sure to clear the uptodate flag */
7953 if (err)
7954 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7955 dio_end_io(dio_bio, err);
7956 bio_put(bio);
7959 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7960 struct bio *bio, int mirror_num,
7961 unsigned long bio_flags, u64 offset)
7963 int ret;
7964 struct btrfs_root *root = BTRFS_I(inode)->root;
7965 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7966 BUG_ON(ret); /* -ENOMEM */
7967 return 0;
7970 static void btrfs_end_dio_bio(struct bio *bio, int err)
7972 struct btrfs_dio_private *dip = bio->bi_private;
7974 if (err)
7975 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7976 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7977 btrfs_ino(dip->inode), bio->bi_rw,
7978 (unsigned long long)bio->bi_iter.bi_sector,
7979 bio->bi_iter.bi_size, err);
7981 if (dip->subio_endio)
7982 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7984 if (err) {
7985 dip->errors = 1;
7988 * before atomic variable goto zero, we must make sure
7989 * dip->errors is perceived to be set.
7991 smp_mb__before_atomic();
7994 /* if there are more bios still pending for this dio, just exit */
7995 if (!atomic_dec_and_test(&dip->pending_bios))
7996 goto out;
7998 if (dip->errors) {
7999 bio_io_error(dip->orig_bio);
8000 } else {
8001 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
8002 bio_endio(dip->orig_bio, 0);
8004 out:
8005 bio_put(bio);
8008 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8009 u64 first_sector, gfp_t gfp_flags)
8011 int nr_vecs = bio_get_nr_vecs(bdev);
8012 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
8015 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8016 struct inode *inode,
8017 struct btrfs_dio_private *dip,
8018 struct bio *bio,
8019 u64 file_offset)
8021 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8022 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8023 int ret;
8026 * We load all the csum data we need when we submit
8027 * the first bio to reduce the csum tree search and
8028 * contention.
8030 if (dip->logical_offset == file_offset) {
8031 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8032 file_offset);
8033 if (ret)
8034 return ret;
8037 if (bio == dip->orig_bio)
8038 return 0;
8040 file_offset -= dip->logical_offset;
8041 file_offset >>= inode->i_sb->s_blocksize_bits;
8042 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8044 return 0;
8047 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8048 int rw, u64 file_offset, int skip_sum,
8049 int async_submit)
8051 struct btrfs_dio_private *dip = bio->bi_private;
8052 int write = rw & REQ_WRITE;
8053 struct btrfs_root *root = BTRFS_I(inode)->root;
8054 int ret;
8056 if (async_submit)
8057 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8059 bio_get(bio);
8061 if (!write) {
8062 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8063 BTRFS_WQ_ENDIO_DATA);
8064 if (ret)
8065 goto err;
8068 if (skip_sum)
8069 goto map;
8071 if (write && async_submit) {
8072 ret = btrfs_wq_submit_bio(root->fs_info,
8073 inode, rw, bio, 0, 0,
8074 file_offset,
8075 __btrfs_submit_bio_start_direct_io,
8076 __btrfs_submit_bio_done);
8077 goto err;
8078 } else if (write) {
8080 * If we aren't doing async submit, calculate the csum of the
8081 * bio now.
8083 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8084 if (ret)
8085 goto err;
8086 } else {
8087 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8088 file_offset);
8089 if (ret)
8090 goto err;
8092 map:
8093 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8094 err:
8095 bio_put(bio);
8096 return ret;
8099 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8100 int skip_sum)
8102 struct inode *inode = dip->inode;
8103 struct btrfs_root *root = BTRFS_I(inode)->root;
8104 struct bio *bio;
8105 struct bio *orig_bio = dip->orig_bio;
8106 struct bio_vec *bvec = orig_bio->bi_io_vec;
8107 u64 start_sector = orig_bio->bi_iter.bi_sector;
8108 u64 file_offset = dip->logical_offset;
8109 u64 submit_len = 0;
8110 u64 map_length;
8111 int nr_pages = 0;
8112 int ret;
8113 int async_submit = 0;
8115 map_length = orig_bio->bi_iter.bi_size;
8116 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8117 &map_length, NULL, 0);
8118 if (ret)
8119 return -EIO;
8121 if (map_length >= orig_bio->bi_iter.bi_size) {
8122 bio = orig_bio;
8123 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8124 goto submit;
8127 /* async crcs make it difficult to collect full stripe writes. */
8128 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8129 async_submit = 0;
8130 else
8131 async_submit = 1;
8133 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8134 if (!bio)
8135 return -ENOMEM;
8137 bio->bi_private = dip;
8138 bio->bi_end_io = btrfs_end_dio_bio;
8139 btrfs_io_bio(bio)->logical = file_offset;
8140 atomic_inc(&dip->pending_bios);
8142 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8143 if (map_length < submit_len + bvec->bv_len ||
8144 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8145 bvec->bv_offset) < bvec->bv_len) {
8147 * inc the count before we submit the bio so
8148 * we know the end IO handler won't happen before
8149 * we inc the count. Otherwise, the dip might get freed
8150 * before we're done setting it up
8152 atomic_inc(&dip->pending_bios);
8153 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8154 file_offset, skip_sum,
8155 async_submit);
8156 if (ret) {
8157 bio_put(bio);
8158 atomic_dec(&dip->pending_bios);
8159 goto out_err;
8162 start_sector += submit_len >> 9;
8163 file_offset += submit_len;
8165 submit_len = 0;
8166 nr_pages = 0;
8168 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8169 start_sector, GFP_NOFS);
8170 if (!bio)
8171 goto out_err;
8172 bio->bi_private = dip;
8173 bio->bi_end_io = btrfs_end_dio_bio;
8174 btrfs_io_bio(bio)->logical = file_offset;
8176 map_length = orig_bio->bi_iter.bi_size;
8177 ret = btrfs_map_block(root->fs_info, rw,
8178 start_sector << 9,
8179 &map_length, NULL, 0);
8180 if (ret) {
8181 bio_put(bio);
8182 goto out_err;
8184 } else {
8185 submit_len += bvec->bv_len;
8186 nr_pages++;
8187 bvec++;
8191 submit:
8192 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8193 async_submit);
8194 if (!ret)
8195 return 0;
8197 bio_put(bio);
8198 out_err:
8199 dip->errors = 1;
8201 * before atomic variable goto zero, we must
8202 * make sure dip->errors is perceived to be set.
8204 smp_mb__before_atomic();
8205 if (atomic_dec_and_test(&dip->pending_bios))
8206 bio_io_error(dip->orig_bio);
8208 /* bio_end_io() will handle error, so we needn't return it */
8209 return 0;
8212 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8213 struct inode *inode, loff_t file_offset)
8215 struct btrfs_root *root = BTRFS_I(inode)->root;
8216 struct btrfs_dio_private *dip;
8217 struct bio *io_bio;
8218 struct btrfs_io_bio *btrfs_bio;
8219 int skip_sum;
8220 int write = rw & REQ_WRITE;
8221 int ret = 0;
8223 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8225 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8226 if (!io_bio) {
8227 ret = -ENOMEM;
8228 goto free_ordered;
8231 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8232 if (!dip) {
8233 ret = -ENOMEM;
8234 goto free_io_bio;
8237 dip->private = dio_bio->bi_private;
8238 dip->inode = inode;
8239 dip->logical_offset = file_offset;
8240 dip->bytes = dio_bio->bi_iter.bi_size;
8241 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8242 io_bio->bi_private = dip;
8243 dip->orig_bio = io_bio;
8244 dip->dio_bio = dio_bio;
8245 atomic_set(&dip->pending_bios, 0);
8246 btrfs_bio = btrfs_io_bio(io_bio);
8247 btrfs_bio->logical = file_offset;
8249 if (write) {
8250 io_bio->bi_end_io = btrfs_endio_direct_write;
8251 } else {
8252 io_bio->bi_end_io = btrfs_endio_direct_read;
8253 dip->subio_endio = btrfs_subio_endio_read;
8256 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8257 if (!ret)
8258 return;
8260 if (btrfs_bio->end_io)
8261 btrfs_bio->end_io(btrfs_bio, ret);
8262 free_io_bio:
8263 bio_put(io_bio);
8265 free_ordered:
8267 * If this is a write, we need to clean up the reserved space and kill
8268 * the ordered extent.
8270 if (write) {
8271 struct btrfs_ordered_extent *ordered;
8272 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8273 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8274 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8275 btrfs_free_reserved_extent(root, ordered->start,
8276 ordered->disk_len, 1);
8277 btrfs_put_ordered_extent(ordered);
8278 btrfs_put_ordered_extent(ordered);
8280 bio_endio(dio_bio, ret);
8283 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8284 const struct iov_iter *iter, loff_t offset)
8286 int seg;
8287 int i;
8288 unsigned blocksize_mask = root->sectorsize - 1;
8289 ssize_t retval = -EINVAL;
8291 if (offset & blocksize_mask)
8292 goto out;
8294 if (iov_iter_alignment(iter) & blocksize_mask)
8295 goto out;
8297 /* If this is a write we don't need to check anymore */
8298 if (iov_iter_rw(iter) == WRITE)
8299 return 0;
8301 * Check to make sure we don't have duplicate iov_base's in this
8302 * iovec, if so return EINVAL, otherwise we'll get csum errors
8303 * when reading back.
8305 for (seg = 0; seg < iter->nr_segs; seg++) {
8306 for (i = seg + 1; i < iter->nr_segs; i++) {
8307 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8308 goto out;
8311 retval = 0;
8312 out:
8313 return retval;
8316 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8317 loff_t offset)
8319 struct file *file = iocb->ki_filp;
8320 struct inode *inode = file->f_mapping->host;
8321 u64 outstanding_extents = 0;
8322 size_t count = 0;
8323 int flags = 0;
8324 bool wakeup = true;
8325 bool relock = false;
8326 ssize_t ret;
8328 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8329 return 0;
8331 inode_dio_begin(inode);
8332 smp_mb__after_atomic();
8335 * The generic stuff only does filemap_write_and_wait_range, which
8336 * isn't enough if we've written compressed pages to this area, so
8337 * we need to flush the dirty pages again to make absolutely sure
8338 * that any outstanding dirty pages are on disk.
8340 count = iov_iter_count(iter);
8341 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8342 &BTRFS_I(inode)->runtime_flags))
8343 filemap_fdatawrite_range(inode->i_mapping, offset,
8344 offset + count - 1);
8346 if (iov_iter_rw(iter) == WRITE) {
8348 * If the write DIO is beyond the EOF, we need update
8349 * the isize, but it is protected by i_mutex. So we can
8350 * not unlock the i_mutex at this case.
8352 if (offset + count <= inode->i_size) {
8353 mutex_unlock(&inode->i_mutex);
8354 relock = true;
8356 ret = btrfs_delalloc_reserve_space(inode, count);
8357 if (ret)
8358 goto out;
8359 outstanding_extents = div64_u64(count +
8360 BTRFS_MAX_EXTENT_SIZE - 1,
8361 BTRFS_MAX_EXTENT_SIZE);
8364 * We need to know how many extents we reserved so that we can
8365 * do the accounting properly if we go over the number we
8366 * originally calculated. Abuse current->journal_info for this.
8368 current->journal_info = &outstanding_extents;
8369 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8370 &BTRFS_I(inode)->runtime_flags)) {
8371 inode_dio_end(inode);
8372 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8373 wakeup = false;
8376 ret = __blockdev_direct_IO(iocb, inode,
8377 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8378 iter, offset, btrfs_get_blocks_direct, NULL,
8379 btrfs_submit_direct, flags);
8380 if (iov_iter_rw(iter) == WRITE) {
8381 current->journal_info = NULL;
8382 if (ret < 0 && ret != -EIOCBQUEUED)
8383 btrfs_delalloc_release_space(inode, count);
8384 else if (ret >= 0 && (size_t)ret < count)
8385 btrfs_delalloc_release_space(inode,
8386 count - (size_t)ret);
8388 out:
8389 if (wakeup)
8390 inode_dio_end(inode);
8391 if (relock)
8392 mutex_lock(&inode->i_mutex);
8394 return ret;
8397 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8399 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8400 __u64 start, __u64 len)
8402 int ret;
8404 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8405 if (ret)
8406 return ret;
8408 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8411 int btrfs_readpage(struct file *file, struct page *page)
8413 struct extent_io_tree *tree;
8414 tree = &BTRFS_I(page->mapping->host)->io_tree;
8415 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8418 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8420 struct extent_io_tree *tree;
8421 struct inode *inode = page->mapping->host;
8422 int ret;
8424 if (current->flags & PF_MEMALLOC) {
8425 redirty_page_for_writepage(wbc, page);
8426 unlock_page(page);
8427 return 0;
8431 * If we are under memory pressure we will call this directly from the
8432 * VM, we need to make sure we have the inode referenced for the ordered
8433 * extent. If not just return like we didn't do anything.
8435 if (!igrab(inode)) {
8436 redirty_page_for_writepage(wbc, page);
8437 return AOP_WRITEPAGE_ACTIVATE;
8439 tree = &BTRFS_I(page->mapping->host)->io_tree;
8440 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8441 btrfs_add_delayed_iput(inode);
8442 return ret;
8445 static int btrfs_writepages(struct address_space *mapping,
8446 struct writeback_control *wbc)
8448 struct extent_io_tree *tree;
8450 tree = &BTRFS_I(mapping->host)->io_tree;
8451 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8454 static int
8455 btrfs_readpages(struct file *file, struct address_space *mapping,
8456 struct list_head *pages, unsigned nr_pages)
8458 struct extent_io_tree *tree;
8459 tree = &BTRFS_I(mapping->host)->io_tree;
8460 return extent_readpages(tree, mapping, pages, nr_pages,
8461 btrfs_get_extent);
8463 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8465 struct extent_io_tree *tree;
8466 struct extent_map_tree *map;
8467 int ret;
8469 tree = &BTRFS_I(page->mapping->host)->io_tree;
8470 map = &BTRFS_I(page->mapping->host)->extent_tree;
8471 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8472 if (ret == 1) {
8473 ClearPagePrivate(page);
8474 set_page_private(page, 0);
8475 page_cache_release(page);
8477 return ret;
8480 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8482 if (PageWriteback(page) || PageDirty(page))
8483 return 0;
8484 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8487 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8488 unsigned int length)
8490 struct inode *inode = page->mapping->host;
8491 struct extent_io_tree *tree;
8492 struct btrfs_ordered_extent *ordered;
8493 struct extent_state *cached_state = NULL;
8494 u64 page_start = page_offset(page);
8495 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8496 int inode_evicting = inode->i_state & I_FREEING;
8499 * we have the page locked, so new writeback can't start,
8500 * and the dirty bit won't be cleared while we are here.
8502 * Wait for IO on this page so that we can safely clear
8503 * the PagePrivate2 bit and do ordered accounting
8505 wait_on_page_writeback(page);
8507 tree = &BTRFS_I(inode)->io_tree;
8508 if (offset) {
8509 btrfs_releasepage(page, GFP_NOFS);
8510 return;
8513 if (!inode_evicting)
8514 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8515 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8516 if (ordered) {
8518 * IO on this page will never be started, so we need
8519 * to account for any ordered extents now
8521 if (!inode_evicting)
8522 clear_extent_bit(tree, page_start, page_end,
8523 EXTENT_DIRTY | EXTENT_DELALLOC |
8524 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8525 EXTENT_DEFRAG, 1, 0, &cached_state,
8526 GFP_NOFS);
8528 * whoever cleared the private bit is responsible
8529 * for the finish_ordered_io
8531 if (TestClearPagePrivate2(page)) {
8532 struct btrfs_ordered_inode_tree *tree;
8533 u64 new_len;
8535 tree = &BTRFS_I(inode)->ordered_tree;
8537 spin_lock_irq(&tree->lock);
8538 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8539 new_len = page_start - ordered->file_offset;
8540 if (new_len < ordered->truncated_len)
8541 ordered->truncated_len = new_len;
8542 spin_unlock_irq(&tree->lock);
8544 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8545 page_start,
8546 PAGE_CACHE_SIZE, 1))
8547 btrfs_finish_ordered_io(ordered);
8549 btrfs_put_ordered_extent(ordered);
8550 if (!inode_evicting) {
8551 cached_state = NULL;
8552 lock_extent_bits(tree, page_start, page_end, 0,
8553 &cached_state);
8557 if (!inode_evicting) {
8558 clear_extent_bit(tree, page_start, page_end,
8559 EXTENT_LOCKED | EXTENT_DIRTY |
8560 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8561 EXTENT_DEFRAG, 1, 1,
8562 &cached_state, GFP_NOFS);
8564 __btrfs_releasepage(page, GFP_NOFS);
8567 ClearPageChecked(page);
8568 if (PagePrivate(page)) {
8569 ClearPagePrivate(page);
8570 set_page_private(page, 0);
8571 page_cache_release(page);
8576 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8577 * called from a page fault handler when a page is first dirtied. Hence we must
8578 * be careful to check for EOF conditions here. We set the page up correctly
8579 * for a written page which means we get ENOSPC checking when writing into
8580 * holes and correct delalloc and unwritten extent mapping on filesystems that
8581 * support these features.
8583 * We are not allowed to take the i_mutex here so we have to play games to
8584 * protect against truncate races as the page could now be beyond EOF. Because
8585 * vmtruncate() writes the inode size before removing pages, once we have the
8586 * page lock we can determine safely if the page is beyond EOF. If it is not
8587 * beyond EOF, then the page is guaranteed safe against truncation until we
8588 * unlock the page.
8590 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8592 struct page *page = vmf->page;
8593 struct inode *inode = file_inode(vma->vm_file);
8594 struct btrfs_root *root = BTRFS_I(inode)->root;
8595 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8596 struct btrfs_ordered_extent *ordered;
8597 struct extent_state *cached_state = NULL;
8598 char *kaddr;
8599 unsigned long zero_start;
8600 loff_t size;
8601 int ret;
8602 int reserved = 0;
8603 u64 page_start;
8604 u64 page_end;
8606 sb_start_pagefault(inode->i_sb);
8607 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8608 if (!ret) {
8609 ret = file_update_time(vma->vm_file);
8610 reserved = 1;
8612 if (ret) {
8613 if (ret == -ENOMEM)
8614 ret = VM_FAULT_OOM;
8615 else /* -ENOSPC, -EIO, etc */
8616 ret = VM_FAULT_SIGBUS;
8617 if (reserved)
8618 goto out;
8619 goto out_noreserve;
8622 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8623 again:
8624 lock_page(page);
8625 size = i_size_read(inode);
8626 page_start = page_offset(page);
8627 page_end = page_start + PAGE_CACHE_SIZE - 1;
8629 if ((page->mapping != inode->i_mapping) ||
8630 (page_start >= size)) {
8631 /* page got truncated out from underneath us */
8632 goto out_unlock;
8634 wait_on_page_writeback(page);
8636 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8637 set_page_extent_mapped(page);
8640 * we can't set the delalloc bits if there are pending ordered
8641 * extents. Drop our locks and wait for them to finish
8643 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8644 if (ordered) {
8645 unlock_extent_cached(io_tree, page_start, page_end,
8646 &cached_state, GFP_NOFS);
8647 unlock_page(page);
8648 btrfs_start_ordered_extent(inode, ordered, 1);
8649 btrfs_put_ordered_extent(ordered);
8650 goto again;
8654 * XXX - page_mkwrite gets called every time the page is dirtied, even
8655 * if it was already dirty, so for space accounting reasons we need to
8656 * clear any delalloc bits for the range we are fixing to save. There
8657 * is probably a better way to do this, but for now keep consistent with
8658 * prepare_pages in the normal write path.
8660 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8661 EXTENT_DIRTY | EXTENT_DELALLOC |
8662 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8663 0, 0, &cached_state, GFP_NOFS);
8665 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8666 &cached_state);
8667 if (ret) {
8668 unlock_extent_cached(io_tree, page_start, page_end,
8669 &cached_state, GFP_NOFS);
8670 ret = VM_FAULT_SIGBUS;
8671 goto out_unlock;
8673 ret = 0;
8675 /* page is wholly or partially inside EOF */
8676 if (page_start + PAGE_CACHE_SIZE > size)
8677 zero_start = size & ~PAGE_CACHE_MASK;
8678 else
8679 zero_start = PAGE_CACHE_SIZE;
8681 if (zero_start != PAGE_CACHE_SIZE) {
8682 kaddr = kmap(page);
8683 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8684 flush_dcache_page(page);
8685 kunmap(page);
8687 ClearPageChecked(page);
8688 set_page_dirty(page);
8689 SetPageUptodate(page);
8691 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8692 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8693 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8695 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8697 out_unlock:
8698 if (!ret) {
8699 sb_end_pagefault(inode->i_sb);
8700 return VM_FAULT_LOCKED;
8702 unlock_page(page);
8703 out:
8704 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8705 out_noreserve:
8706 sb_end_pagefault(inode->i_sb);
8707 return ret;
8710 static int btrfs_truncate(struct inode *inode)
8712 struct btrfs_root *root = BTRFS_I(inode)->root;
8713 struct btrfs_block_rsv *rsv;
8714 int ret = 0;
8715 int err = 0;
8716 struct btrfs_trans_handle *trans;
8717 u64 mask = root->sectorsize - 1;
8718 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8720 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8721 (u64)-1);
8722 if (ret)
8723 return ret;
8726 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8727 * 3 things going on here
8729 * 1) We need to reserve space for our orphan item and the space to
8730 * delete our orphan item. Lord knows we don't want to have a dangling
8731 * orphan item because we didn't reserve space to remove it.
8733 * 2) We need to reserve space to update our inode.
8735 * 3) We need to have something to cache all the space that is going to
8736 * be free'd up by the truncate operation, but also have some slack
8737 * space reserved in case it uses space during the truncate (thank you
8738 * very much snapshotting).
8740 * And we need these to all be seperate. The fact is we can use alot of
8741 * space doing the truncate, and we have no earthly idea how much space
8742 * we will use, so we need the truncate reservation to be seperate so it
8743 * doesn't end up using space reserved for updating the inode or
8744 * removing the orphan item. We also need to be able to stop the
8745 * transaction and start a new one, which means we need to be able to
8746 * update the inode several times, and we have no idea of knowing how
8747 * many times that will be, so we can't just reserve 1 item for the
8748 * entirety of the opration, so that has to be done seperately as well.
8749 * Then there is the orphan item, which does indeed need to be held on
8750 * to for the whole operation, and we need nobody to touch this reserved
8751 * space except the orphan code.
8753 * So that leaves us with
8755 * 1) root->orphan_block_rsv - for the orphan deletion.
8756 * 2) rsv - for the truncate reservation, which we will steal from the
8757 * transaction reservation.
8758 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8759 * updating the inode.
8761 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8762 if (!rsv)
8763 return -ENOMEM;
8764 rsv->size = min_size;
8765 rsv->failfast = 1;
8768 * 1 for the truncate slack space
8769 * 1 for updating the inode.
8771 trans = btrfs_start_transaction(root, 2);
8772 if (IS_ERR(trans)) {
8773 err = PTR_ERR(trans);
8774 goto out;
8777 /* Migrate the slack space for the truncate to our reserve */
8778 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8779 min_size);
8780 BUG_ON(ret);
8783 * So if we truncate and then write and fsync we normally would just
8784 * write the extents that changed, which is a problem if we need to
8785 * first truncate that entire inode. So set this flag so we write out
8786 * all of the extents in the inode to the sync log so we're completely
8787 * safe.
8789 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8790 trans->block_rsv = rsv;
8792 while (1) {
8793 ret = btrfs_truncate_inode_items(trans, root, inode,
8794 inode->i_size,
8795 BTRFS_EXTENT_DATA_KEY);
8796 if (ret != -ENOSPC && ret != -EAGAIN) {
8797 err = ret;
8798 break;
8801 trans->block_rsv = &root->fs_info->trans_block_rsv;
8802 ret = btrfs_update_inode(trans, root, inode);
8803 if (ret) {
8804 err = ret;
8805 break;
8808 btrfs_end_transaction(trans, root);
8809 btrfs_btree_balance_dirty(root);
8811 trans = btrfs_start_transaction(root, 2);
8812 if (IS_ERR(trans)) {
8813 ret = err = PTR_ERR(trans);
8814 trans = NULL;
8815 break;
8818 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8819 rsv, min_size);
8820 BUG_ON(ret); /* shouldn't happen */
8821 trans->block_rsv = rsv;
8824 if (ret == 0 && inode->i_nlink > 0) {
8825 trans->block_rsv = root->orphan_block_rsv;
8826 ret = btrfs_orphan_del(trans, inode);
8827 if (ret)
8828 err = ret;
8831 if (trans) {
8832 trans->block_rsv = &root->fs_info->trans_block_rsv;
8833 ret = btrfs_update_inode(trans, root, inode);
8834 if (ret && !err)
8835 err = ret;
8837 ret = btrfs_end_transaction(trans, root);
8838 btrfs_btree_balance_dirty(root);
8841 out:
8842 btrfs_free_block_rsv(root, rsv);
8844 if (ret && !err)
8845 err = ret;
8847 return err;
8851 * create a new subvolume directory/inode (helper for the ioctl).
8853 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8854 struct btrfs_root *new_root,
8855 struct btrfs_root *parent_root,
8856 u64 new_dirid)
8858 struct inode *inode;
8859 int err;
8860 u64 index = 0;
8862 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8863 new_dirid, new_dirid,
8864 S_IFDIR | (~current_umask() & S_IRWXUGO),
8865 &index);
8866 if (IS_ERR(inode))
8867 return PTR_ERR(inode);
8868 inode->i_op = &btrfs_dir_inode_operations;
8869 inode->i_fop = &btrfs_dir_file_operations;
8871 set_nlink(inode, 1);
8872 btrfs_i_size_write(inode, 0);
8873 unlock_new_inode(inode);
8875 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8876 if (err)
8877 btrfs_err(new_root->fs_info,
8878 "error inheriting subvolume %llu properties: %d",
8879 new_root->root_key.objectid, err);
8881 err = btrfs_update_inode(trans, new_root, inode);
8883 iput(inode);
8884 return err;
8887 struct inode *btrfs_alloc_inode(struct super_block *sb)
8889 struct btrfs_inode *ei;
8890 struct inode *inode;
8892 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8893 if (!ei)
8894 return NULL;
8896 ei->root = NULL;
8897 ei->generation = 0;
8898 ei->last_trans = 0;
8899 ei->last_sub_trans = 0;
8900 ei->logged_trans = 0;
8901 ei->delalloc_bytes = 0;
8902 ei->defrag_bytes = 0;
8903 ei->disk_i_size = 0;
8904 ei->flags = 0;
8905 ei->csum_bytes = 0;
8906 ei->index_cnt = (u64)-1;
8907 ei->dir_index = 0;
8908 ei->last_unlink_trans = 0;
8909 ei->last_log_commit = 0;
8910 ei->delayed_iput_count = 0;
8912 spin_lock_init(&ei->lock);
8913 ei->outstanding_extents = 0;
8914 ei->reserved_extents = 0;
8916 ei->runtime_flags = 0;
8917 ei->force_compress = BTRFS_COMPRESS_NONE;
8919 ei->delayed_node = NULL;
8921 ei->i_otime.tv_sec = 0;
8922 ei->i_otime.tv_nsec = 0;
8924 inode = &ei->vfs_inode;
8925 extent_map_tree_init(&ei->extent_tree);
8926 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8927 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8928 ei->io_tree.track_uptodate = 1;
8929 ei->io_failure_tree.track_uptodate = 1;
8930 atomic_set(&ei->sync_writers, 0);
8931 mutex_init(&ei->log_mutex);
8932 mutex_init(&ei->delalloc_mutex);
8933 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8934 INIT_LIST_HEAD(&ei->delalloc_inodes);
8935 INIT_LIST_HEAD(&ei->delayed_iput);
8936 RB_CLEAR_NODE(&ei->rb_node);
8938 return inode;
8941 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8942 void btrfs_test_destroy_inode(struct inode *inode)
8944 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8945 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8947 #endif
8949 static void btrfs_i_callback(struct rcu_head *head)
8951 struct inode *inode = container_of(head, struct inode, i_rcu);
8952 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8955 void btrfs_destroy_inode(struct inode *inode)
8957 struct btrfs_ordered_extent *ordered;
8958 struct btrfs_root *root = BTRFS_I(inode)->root;
8960 WARN_ON(!hlist_empty(&inode->i_dentry));
8961 WARN_ON(inode->i_data.nrpages);
8962 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8963 WARN_ON(BTRFS_I(inode)->reserved_extents);
8964 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8965 WARN_ON(BTRFS_I(inode)->csum_bytes);
8966 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8969 * This can happen where we create an inode, but somebody else also
8970 * created the same inode and we need to destroy the one we already
8971 * created.
8973 if (!root)
8974 goto free;
8976 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8977 &BTRFS_I(inode)->runtime_flags)) {
8978 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8979 btrfs_ino(inode));
8980 atomic_dec(&root->orphan_inodes);
8983 while (1) {
8984 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8985 if (!ordered)
8986 break;
8987 else {
8988 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8989 ordered->file_offset, ordered->len);
8990 btrfs_remove_ordered_extent(inode, ordered);
8991 btrfs_put_ordered_extent(ordered);
8992 btrfs_put_ordered_extent(ordered);
8995 inode_tree_del(inode);
8996 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8997 free:
8998 call_rcu(&inode->i_rcu, btrfs_i_callback);
9001 int btrfs_drop_inode(struct inode *inode)
9003 struct btrfs_root *root = BTRFS_I(inode)->root;
9005 if (root == NULL)
9006 return 1;
9008 /* the snap/subvol tree is on deleting */
9009 if (btrfs_root_refs(&root->root_item) == 0)
9010 return 1;
9011 else
9012 return generic_drop_inode(inode);
9015 static void init_once(void *foo)
9017 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9019 inode_init_once(&ei->vfs_inode);
9022 void btrfs_destroy_cachep(void)
9025 * Make sure all delayed rcu free inodes are flushed before we
9026 * destroy cache.
9028 rcu_barrier();
9029 if (btrfs_inode_cachep)
9030 kmem_cache_destroy(btrfs_inode_cachep);
9031 if (btrfs_trans_handle_cachep)
9032 kmem_cache_destroy(btrfs_trans_handle_cachep);
9033 if (btrfs_transaction_cachep)
9034 kmem_cache_destroy(btrfs_transaction_cachep);
9035 if (btrfs_path_cachep)
9036 kmem_cache_destroy(btrfs_path_cachep);
9037 if (btrfs_free_space_cachep)
9038 kmem_cache_destroy(btrfs_free_space_cachep);
9039 if (btrfs_delalloc_work_cachep)
9040 kmem_cache_destroy(btrfs_delalloc_work_cachep);
9043 int btrfs_init_cachep(void)
9045 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9046 sizeof(struct btrfs_inode), 0,
9047 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9048 if (!btrfs_inode_cachep)
9049 goto fail;
9051 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9052 sizeof(struct btrfs_trans_handle), 0,
9053 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9054 if (!btrfs_trans_handle_cachep)
9055 goto fail;
9057 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9058 sizeof(struct btrfs_transaction), 0,
9059 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9060 if (!btrfs_transaction_cachep)
9061 goto fail;
9063 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9064 sizeof(struct btrfs_path), 0,
9065 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9066 if (!btrfs_path_cachep)
9067 goto fail;
9069 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9070 sizeof(struct btrfs_free_space), 0,
9071 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9072 if (!btrfs_free_space_cachep)
9073 goto fail;
9075 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9076 sizeof(struct btrfs_delalloc_work), 0,
9077 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9078 NULL);
9079 if (!btrfs_delalloc_work_cachep)
9080 goto fail;
9082 return 0;
9083 fail:
9084 btrfs_destroy_cachep();
9085 return -ENOMEM;
9088 static int btrfs_getattr(struct vfsmount *mnt,
9089 struct dentry *dentry, struct kstat *stat)
9091 u64 delalloc_bytes;
9092 struct inode *inode = d_inode(dentry);
9093 u32 blocksize = inode->i_sb->s_blocksize;
9095 generic_fillattr(inode, stat);
9096 stat->dev = BTRFS_I(inode)->root->anon_dev;
9097 stat->blksize = PAGE_CACHE_SIZE;
9099 spin_lock(&BTRFS_I(inode)->lock);
9100 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9101 spin_unlock(&BTRFS_I(inode)->lock);
9102 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9103 ALIGN(delalloc_bytes, blocksize)) >> 9;
9104 return 0;
9107 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9108 struct inode *new_dir, struct dentry *new_dentry)
9110 struct btrfs_trans_handle *trans;
9111 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9112 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9113 struct inode *new_inode = d_inode(new_dentry);
9114 struct inode *old_inode = d_inode(old_dentry);
9115 struct timespec ctime = CURRENT_TIME;
9116 u64 index = 0;
9117 u64 root_objectid;
9118 int ret;
9119 u64 old_ino = btrfs_ino(old_inode);
9121 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9122 return -EPERM;
9124 /* we only allow rename subvolume link between subvolumes */
9125 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9126 return -EXDEV;
9128 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9129 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9130 return -ENOTEMPTY;
9132 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9133 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9134 return -ENOTEMPTY;
9137 /* check for collisions, even if the name isn't there */
9138 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9139 new_dentry->d_name.name,
9140 new_dentry->d_name.len);
9142 if (ret) {
9143 if (ret == -EEXIST) {
9144 /* we shouldn't get
9145 * eexist without a new_inode */
9146 if (WARN_ON(!new_inode)) {
9147 return ret;
9149 } else {
9150 /* maybe -EOVERFLOW */
9151 return ret;
9154 ret = 0;
9157 * we're using rename to replace one file with another. Start IO on it
9158 * now so we don't add too much work to the end of the transaction
9160 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9161 filemap_flush(old_inode->i_mapping);
9163 /* close the racy window with snapshot create/destroy ioctl */
9164 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9165 down_read(&root->fs_info->subvol_sem);
9167 * We want to reserve the absolute worst case amount of items. So if
9168 * both inodes are subvols and we need to unlink them then that would
9169 * require 4 item modifications, but if they are both normal inodes it
9170 * would require 5 item modifications, so we'll assume their normal
9171 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9172 * should cover the worst case number of items we'll modify.
9174 trans = btrfs_start_transaction(root, 11);
9175 if (IS_ERR(trans)) {
9176 ret = PTR_ERR(trans);
9177 goto out_notrans;
9180 if (dest != root)
9181 btrfs_record_root_in_trans(trans, dest);
9183 ret = btrfs_set_inode_index(new_dir, &index);
9184 if (ret)
9185 goto out_fail;
9187 BTRFS_I(old_inode)->dir_index = 0ULL;
9188 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9189 /* force full log commit if subvolume involved. */
9190 btrfs_set_log_full_commit(root->fs_info, trans);
9191 } else {
9192 ret = btrfs_insert_inode_ref(trans, dest,
9193 new_dentry->d_name.name,
9194 new_dentry->d_name.len,
9195 old_ino,
9196 btrfs_ino(new_dir), index);
9197 if (ret)
9198 goto out_fail;
9200 * this is an ugly little race, but the rename is required
9201 * to make sure that if we crash, the inode is either at the
9202 * old name or the new one. pinning the log transaction lets
9203 * us make sure we don't allow a log commit to come in after
9204 * we unlink the name but before we add the new name back in.
9206 btrfs_pin_log_trans(root);
9209 inode_inc_iversion(old_dir);
9210 inode_inc_iversion(new_dir);
9211 inode_inc_iversion(old_inode);
9212 old_dir->i_ctime = old_dir->i_mtime = ctime;
9213 new_dir->i_ctime = new_dir->i_mtime = ctime;
9214 old_inode->i_ctime = ctime;
9216 if (old_dentry->d_parent != new_dentry->d_parent)
9217 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9219 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9220 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9221 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9222 old_dentry->d_name.name,
9223 old_dentry->d_name.len);
9224 } else {
9225 ret = __btrfs_unlink_inode(trans, root, old_dir,
9226 d_inode(old_dentry),
9227 old_dentry->d_name.name,
9228 old_dentry->d_name.len);
9229 if (!ret)
9230 ret = btrfs_update_inode(trans, root, old_inode);
9232 if (ret) {
9233 btrfs_abort_transaction(trans, root, ret);
9234 goto out_fail;
9237 if (new_inode) {
9238 inode_inc_iversion(new_inode);
9239 new_inode->i_ctime = CURRENT_TIME;
9240 if (unlikely(btrfs_ino(new_inode) ==
9241 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9242 root_objectid = BTRFS_I(new_inode)->location.objectid;
9243 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9244 root_objectid,
9245 new_dentry->d_name.name,
9246 new_dentry->d_name.len);
9247 BUG_ON(new_inode->i_nlink == 0);
9248 } else {
9249 ret = btrfs_unlink_inode(trans, dest, new_dir,
9250 d_inode(new_dentry),
9251 new_dentry->d_name.name,
9252 new_dentry->d_name.len);
9254 if (!ret && new_inode->i_nlink == 0)
9255 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9256 if (ret) {
9257 btrfs_abort_transaction(trans, root, ret);
9258 goto out_fail;
9262 ret = btrfs_add_link(trans, new_dir, old_inode,
9263 new_dentry->d_name.name,
9264 new_dentry->d_name.len, 0, index);
9265 if (ret) {
9266 btrfs_abort_transaction(trans, root, ret);
9267 goto out_fail;
9270 if (old_inode->i_nlink == 1)
9271 BTRFS_I(old_inode)->dir_index = index;
9273 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9274 struct dentry *parent = new_dentry->d_parent;
9275 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9276 btrfs_end_log_trans(root);
9278 out_fail:
9279 btrfs_end_transaction(trans, root);
9280 out_notrans:
9281 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9282 up_read(&root->fs_info->subvol_sem);
9284 return ret;
9287 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9288 struct inode *new_dir, struct dentry *new_dentry,
9289 unsigned int flags)
9291 if (flags & ~RENAME_NOREPLACE)
9292 return -EINVAL;
9294 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9297 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9299 struct btrfs_delalloc_work *delalloc_work;
9300 struct inode *inode;
9302 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9303 work);
9304 inode = delalloc_work->inode;
9305 if (delalloc_work->wait) {
9306 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9307 } else {
9308 filemap_flush(inode->i_mapping);
9309 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9310 &BTRFS_I(inode)->runtime_flags))
9311 filemap_flush(inode->i_mapping);
9314 if (delalloc_work->delay_iput)
9315 btrfs_add_delayed_iput(inode);
9316 else
9317 iput(inode);
9318 complete(&delalloc_work->completion);
9321 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9322 int wait, int delay_iput)
9324 struct btrfs_delalloc_work *work;
9326 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9327 if (!work)
9328 return NULL;
9330 init_completion(&work->completion);
9331 INIT_LIST_HEAD(&work->list);
9332 work->inode = inode;
9333 work->wait = wait;
9334 work->delay_iput = delay_iput;
9335 WARN_ON_ONCE(!inode);
9336 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9337 btrfs_run_delalloc_work, NULL, NULL);
9339 return work;
9342 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9344 wait_for_completion(&work->completion);
9345 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9349 * some fairly slow code that needs optimization. This walks the list
9350 * of all the inodes with pending delalloc and forces them to disk.
9352 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9353 int nr)
9355 struct btrfs_inode *binode;
9356 struct inode *inode;
9357 struct btrfs_delalloc_work *work, *next;
9358 struct list_head works;
9359 struct list_head splice;
9360 int ret = 0;
9362 INIT_LIST_HEAD(&works);
9363 INIT_LIST_HEAD(&splice);
9365 mutex_lock(&root->delalloc_mutex);
9366 spin_lock(&root->delalloc_lock);
9367 list_splice_init(&root->delalloc_inodes, &splice);
9368 while (!list_empty(&splice)) {
9369 binode = list_entry(splice.next, struct btrfs_inode,
9370 delalloc_inodes);
9372 list_move_tail(&binode->delalloc_inodes,
9373 &root->delalloc_inodes);
9374 inode = igrab(&binode->vfs_inode);
9375 if (!inode) {
9376 cond_resched_lock(&root->delalloc_lock);
9377 continue;
9379 spin_unlock(&root->delalloc_lock);
9381 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9382 if (!work) {
9383 if (delay_iput)
9384 btrfs_add_delayed_iput(inode);
9385 else
9386 iput(inode);
9387 ret = -ENOMEM;
9388 goto out;
9390 list_add_tail(&work->list, &works);
9391 btrfs_queue_work(root->fs_info->flush_workers,
9392 &work->work);
9393 ret++;
9394 if (nr != -1 && ret >= nr)
9395 goto out;
9396 cond_resched();
9397 spin_lock(&root->delalloc_lock);
9399 spin_unlock(&root->delalloc_lock);
9401 out:
9402 list_for_each_entry_safe(work, next, &works, list) {
9403 list_del_init(&work->list);
9404 btrfs_wait_and_free_delalloc_work(work);
9407 if (!list_empty_careful(&splice)) {
9408 spin_lock(&root->delalloc_lock);
9409 list_splice_tail(&splice, &root->delalloc_inodes);
9410 spin_unlock(&root->delalloc_lock);
9412 mutex_unlock(&root->delalloc_mutex);
9413 return ret;
9416 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9418 int ret;
9420 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9421 return -EROFS;
9423 ret = __start_delalloc_inodes(root, delay_iput, -1);
9424 if (ret > 0)
9425 ret = 0;
9427 * the filemap_flush will queue IO into the worker threads, but
9428 * we have to make sure the IO is actually started and that
9429 * ordered extents get created before we return
9431 atomic_inc(&root->fs_info->async_submit_draining);
9432 while (atomic_read(&root->fs_info->nr_async_submits) ||
9433 atomic_read(&root->fs_info->async_delalloc_pages)) {
9434 wait_event(root->fs_info->async_submit_wait,
9435 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9436 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9438 atomic_dec(&root->fs_info->async_submit_draining);
9439 return ret;
9442 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9443 int nr)
9445 struct btrfs_root *root;
9446 struct list_head splice;
9447 int ret;
9449 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9450 return -EROFS;
9452 INIT_LIST_HEAD(&splice);
9454 mutex_lock(&fs_info->delalloc_root_mutex);
9455 spin_lock(&fs_info->delalloc_root_lock);
9456 list_splice_init(&fs_info->delalloc_roots, &splice);
9457 while (!list_empty(&splice) && nr) {
9458 root = list_first_entry(&splice, struct btrfs_root,
9459 delalloc_root);
9460 root = btrfs_grab_fs_root(root);
9461 BUG_ON(!root);
9462 list_move_tail(&root->delalloc_root,
9463 &fs_info->delalloc_roots);
9464 spin_unlock(&fs_info->delalloc_root_lock);
9466 ret = __start_delalloc_inodes(root, delay_iput, nr);
9467 btrfs_put_fs_root(root);
9468 if (ret < 0)
9469 goto out;
9471 if (nr != -1) {
9472 nr -= ret;
9473 WARN_ON(nr < 0);
9475 spin_lock(&fs_info->delalloc_root_lock);
9477 spin_unlock(&fs_info->delalloc_root_lock);
9479 ret = 0;
9480 atomic_inc(&fs_info->async_submit_draining);
9481 while (atomic_read(&fs_info->nr_async_submits) ||
9482 atomic_read(&fs_info->async_delalloc_pages)) {
9483 wait_event(fs_info->async_submit_wait,
9484 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9485 atomic_read(&fs_info->async_delalloc_pages) == 0));
9487 atomic_dec(&fs_info->async_submit_draining);
9488 out:
9489 if (!list_empty_careful(&splice)) {
9490 spin_lock(&fs_info->delalloc_root_lock);
9491 list_splice_tail(&splice, &fs_info->delalloc_roots);
9492 spin_unlock(&fs_info->delalloc_root_lock);
9494 mutex_unlock(&fs_info->delalloc_root_mutex);
9495 return ret;
9498 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9499 const char *symname)
9501 struct btrfs_trans_handle *trans;
9502 struct btrfs_root *root = BTRFS_I(dir)->root;
9503 struct btrfs_path *path;
9504 struct btrfs_key key;
9505 struct inode *inode = NULL;
9506 int err;
9507 int drop_inode = 0;
9508 u64 objectid;
9509 u64 index = 0;
9510 int name_len;
9511 int datasize;
9512 unsigned long ptr;
9513 struct btrfs_file_extent_item *ei;
9514 struct extent_buffer *leaf;
9516 name_len = strlen(symname);
9517 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9518 return -ENAMETOOLONG;
9521 * 2 items for inode item and ref
9522 * 2 items for dir items
9523 * 1 item for updating parent inode item
9524 * 1 item for the inline extent item
9525 * 1 item for xattr if selinux is on
9527 trans = btrfs_start_transaction(root, 7);
9528 if (IS_ERR(trans))
9529 return PTR_ERR(trans);
9531 err = btrfs_find_free_ino(root, &objectid);
9532 if (err)
9533 goto out_unlock;
9535 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9536 dentry->d_name.len, btrfs_ino(dir), objectid,
9537 S_IFLNK|S_IRWXUGO, &index);
9538 if (IS_ERR(inode)) {
9539 err = PTR_ERR(inode);
9540 goto out_unlock;
9544 * If the active LSM wants to access the inode during
9545 * d_instantiate it needs these. Smack checks to see
9546 * if the filesystem supports xattrs by looking at the
9547 * ops vector.
9549 inode->i_fop = &btrfs_file_operations;
9550 inode->i_op = &btrfs_file_inode_operations;
9551 inode->i_mapping->a_ops = &btrfs_aops;
9552 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9554 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9555 if (err)
9556 goto out_unlock_inode;
9558 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9559 if (err)
9560 goto out_unlock_inode;
9562 path = btrfs_alloc_path();
9563 if (!path) {
9564 err = -ENOMEM;
9565 goto out_unlock_inode;
9567 key.objectid = btrfs_ino(inode);
9568 key.offset = 0;
9569 key.type = BTRFS_EXTENT_DATA_KEY;
9570 datasize = btrfs_file_extent_calc_inline_size(name_len);
9571 err = btrfs_insert_empty_item(trans, root, path, &key,
9572 datasize);
9573 if (err) {
9574 btrfs_free_path(path);
9575 goto out_unlock_inode;
9577 leaf = path->nodes[0];
9578 ei = btrfs_item_ptr(leaf, path->slots[0],
9579 struct btrfs_file_extent_item);
9580 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9581 btrfs_set_file_extent_type(leaf, ei,
9582 BTRFS_FILE_EXTENT_INLINE);
9583 btrfs_set_file_extent_encryption(leaf, ei, 0);
9584 btrfs_set_file_extent_compression(leaf, ei, 0);
9585 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9586 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9588 ptr = btrfs_file_extent_inline_start(ei);
9589 write_extent_buffer(leaf, symname, ptr, name_len);
9590 btrfs_mark_buffer_dirty(leaf);
9591 btrfs_free_path(path);
9593 inode->i_op = &btrfs_symlink_inode_operations;
9594 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9595 inode_set_bytes(inode, name_len);
9596 btrfs_i_size_write(inode, name_len);
9597 err = btrfs_update_inode(trans, root, inode);
9598 if (err) {
9599 drop_inode = 1;
9600 goto out_unlock_inode;
9603 unlock_new_inode(inode);
9604 d_instantiate(dentry, inode);
9606 out_unlock:
9607 btrfs_end_transaction(trans, root);
9608 if (drop_inode) {
9609 inode_dec_link_count(inode);
9610 iput(inode);
9612 btrfs_btree_balance_dirty(root);
9613 return err;
9615 out_unlock_inode:
9616 drop_inode = 1;
9617 unlock_new_inode(inode);
9618 goto out_unlock;
9621 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9622 u64 start, u64 num_bytes, u64 min_size,
9623 loff_t actual_len, u64 *alloc_hint,
9624 struct btrfs_trans_handle *trans)
9626 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9627 struct extent_map *em;
9628 struct btrfs_root *root = BTRFS_I(inode)->root;
9629 struct btrfs_key ins;
9630 u64 cur_offset = start;
9631 u64 i_size;
9632 u64 cur_bytes;
9633 int ret = 0;
9634 bool own_trans = true;
9636 if (trans)
9637 own_trans = false;
9638 while (num_bytes > 0) {
9639 if (own_trans) {
9640 trans = btrfs_start_transaction(root, 3);
9641 if (IS_ERR(trans)) {
9642 ret = PTR_ERR(trans);
9643 break;
9647 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9648 cur_bytes = max(cur_bytes, min_size);
9649 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9650 *alloc_hint, &ins, 1, 0);
9651 if (ret) {
9652 if (own_trans)
9653 btrfs_end_transaction(trans, root);
9654 break;
9657 ret = insert_reserved_file_extent(trans, inode,
9658 cur_offset, ins.objectid,
9659 ins.offset, ins.offset,
9660 ins.offset, 0, 0, 0,
9661 BTRFS_FILE_EXTENT_PREALLOC);
9662 if (ret) {
9663 btrfs_free_reserved_extent(root, ins.objectid,
9664 ins.offset, 0);
9665 btrfs_abort_transaction(trans, root, ret);
9666 if (own_trans)
9667 btrfs_end_transaction(trans, root);
9668 break;
9671 btrfs_drop_extent_cache(inode, cur_offset,
9672 cur_offset + ins.offset -1, 0);
9674 em = alloc_extent_map();
9675 if (!em) {
9676 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9677 &BTRFS_I(inode)->runtime_flags);
9678 goto next;
9681 em->start = cur_offset;
9682 em->orig_start = cur_offset;
9683 em->len = ins.offset;
9684 em->block_start = ins.objectid;
9685 em->block_len = ins.offset;
9686 em->orig_block_len = ins.offset;
9687 em->ram_bytes = ins.offset;
9688 em->bdev = root->fs_info->fs_devices->latest_bdev;
9689 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9690 em->generation = trans->transid;
9692 while (1) {
9693 write_lock(&em_tree->lock);
9694 ret = add_extent_mapping(em_tree, em, 1);
9695 write_unlock(&em_tree->lock);
9696 if (ret != -EEXIST)
9697 break;
9698 btrfs_drop_extent_cache(inode, cur_offset,
9699 cur_offset + ins.offset - 1,
9702 free_extent_map(em);
9703 next:
9704 num_bytes -= ins.offset;
9705 cur_offset += ins.offset;
9706 *alloc_hint = ins.objectid + ins.offset;
9708 inode_inc_iversion(inode);
9709 inode->i_ctime = CURRENT_TIME;
9710 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9711 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9712 (actual_len > inode->i_size) &&
9713 (cur_offset > inode->i_size)) {
9714 if (cur_offset > actual_len)
9715 i_size = actual_len;
9716 else
9717 i_size = cur_offset;
9718 i_size_write(inode, i_size);
9719 btrfs_ordered_update_i_size(inode, i_size, NULL);
9722 ret = btrfs_update_inode(trans, root, inode);
9724 if (ret) {
9725 btrfs_abort_transaction(trans, root, ret);
9726 if (own_trans)
9727 btrfs_end_transaction(trans, root);
9728 break;
9731 if (own_trans)
9732 btrfs_end_transaction(trans, root);
9734 return ret;
9737 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9738 u64 start, u64 num_bytes, u64 min_size,
9739 loff_t actual_len, u64 *alloc_hint)
9741 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9742 min_size, actual_len, alloc_hint,
9743 NULL);
9746 int btrfs_prealloc_file_range_trans(struct inode *inode,
9747 struct btrfs_trans_handle *trans, int mode,
9748 u64 start, u64 num_bytes, u64 min_size,
9749 loff_t actual_len, u64 *alloc_hint)
9751 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9752 min_size, actual_len, alloc_hint, trans);
9755 static int btrfs_set_page_dirty(struct page *page)
9757 return __set_page_dirty_nobuffers(page);
9760 static int btrfs_permission(struct inode *inode, int mask)
9762 struct btrfs_root *root = BTRFS_I(inode)->root;
9763 umode_t mode = inode->i_mode;
9765 if (mask & MAY_WRITE &&
9766 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9767 if (btrfs_root_readonly(root))
9768 return -EROFS;
9769 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9770 return -EACCES;
9772 return generic_permission(inode, mask);
9775 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9777 struct btrfs_trans_handle *trans;
9778 struct btrfs_root *root = BTRFS_I(dir)->root;
9779 struct inode *inode = NULL;
9780 u64 objectid;
9781 u64 index;
9782 int ret = 0;
9785 * 5 units required for adding orphan entry
9787 trans = btrfs_start_transaction(root, 5);
9788 if (IS_ERR(trans))
9789 return PTR_ERR(trans);
9791 ret = btrfs_find_free_ino(root, &objectid);
9792 if (ret)
9793 goto out;
9795 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9796 btrfs_ino(dir), objectid, mode, &index);
9797 if (IS_ERR(inode)) {
9798 ret = PTR_ERR(inode);
9799 inode = NULL;
9800 goto out;
9803 inode->i_fop = &btrfs_file_operations;
9804 inode->i_op = &btrfs_file_inode_operations;
9806 inode->i_mapping->a_ops = &btrfs_aops;
9807 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9809 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9810 if (ret)
9811 goto out_inode;
9813 ret = btrfs_update_inode(trans, root, inode);
9814 if (ret)
9815 goto out_inode;
9816 ret = btrfs_orphan_add(trans, inode);
9817 if (ret)
9818 goto out_inode;
9821 * We set number of links to 0 in btrfs_new_inode(), and here we set
9822 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9823 * through:
9825 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9827 set_nlink(inode, 1);
9828 unlock_new_inode(inode);
9829 d_tmpfile(dentry, inode);
9830 mark_inode_dirty(inode);
9832 out:
9833 btrfs_end_transaction(trans, root);
9834 if (ret)
9835 iput(inode);
9836 btrfs_balance_delayed_items(root);
9837 btrfs_btree_balance_dirty(root);
9838 return ret;
9840 out_inode:
9841 unlock_new_inode(inode);
9842 goto out;
9846 /* Inspired by filemap_check_errors() */
9847 int btrfs_inode_check_errors(struct inode *inode)
9849 int ret = 0;
9851 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9852 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9853 ret = -ENOSPC;
9854 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9855 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9856 ret = -EIO;
9858 return ret;
9861 static const struct inode_operations btrfs_dir_inode_operations = {
9862 .getattr = btrfs_getattr,
9863 .lookup = btrfs_lookup,
9864 .create = btrfs_create,
9865 .unlink = btrfs_unlink,
9866 .link = btrfs_link,
9867 .mkdir = btrfs_mkdir,
9868 .rmdir = btrfs_rmdir,
9869 .rename2 = btrfs_rename2,
9870 .symlink = btrfs_symlink,
9871 .setattr = btrfs_setattr,
9872 .mknod = btrfs_mknod,
9873 .setxattr = btrfs_setxattr,
9874 .getxattr = btrfs_getxattr,
9875 .listxattr = btrfs_listxattr,
9876 .removexattr = btrfs_removexattr,
9877 .permission = btrfs_permission,
9878 .get_acl = btrfs_get_acl,
9879 .set_acl = btrfs_set_acl,
9880 .update_time = btrfs_update_time,
9881 .tmpfile = btrfs_tmpfile,
9883 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9884 .lookup = btrfs_lookup,
9885 .permission = btrfs_permission,
9886 .get_acl = btrfs_get_acl,
9887 .set_acl = btrfs_set_acl,
9888 .update_time = btrfs_update_time,
9891 static const struct file_operations btrfs_dir_file_operations = {
9892 .llseek = generic_file_llseek,
9893 .read = generic_read_dir,
9894 .iterate = btrfs_real_readdir,
9895 .unlocked_ioctl = btrfs_ioctl,
9896 #ifdef CONFIG_COMPAT
9897 .compat_ioctl = btrfs_compat_ioctl,
9898 #endif
9899 .release = btrfs_release_file,
9900 .fsync = btrfs_sync_file,
9903 static struct extent_io_ops btrfs_extent_io_ops = {
9904 .fill_delalloc = run_delalloc_range,
9905 .submit_bio_hook = btrfs_submit_bio_hook,
9906 .merge_bio_hook = btrfs_merge_bio_hook,
9907 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9908 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9909 .writepage_start_hook = btrfs_writepage_start_hook,
9910 .set_bit_hook = btrfs_set_bit_hook,
9911 .clear_bit_hook = btrfs_clear_bit_hook,
9912 .merge_extent_hook = btrfs_merge_extent_hook,
9913 .split_extent_hook = btrfs_split_extent_hook,
9917 * btrfs doesn't support the bmap operation because swapfiles
9918 * use bmap to make a mapping of extents in the file. They assume
9919 * these extents won't change over the life of the file and they
9920 * use the bmap result to do IO directly to the drive.
9922 * the btrfs bmap call would return logical addresses that aren't
9923 * suitable for IO and they also will change frequently as COW
9924 * operations happen. So, swapfile + btrfs == corruption.
9926 * For now we're avoiding this by dropping bmap.
9928 static const struct address_space_operations btrfs_aops = {
9929 .readpage = btrfs_readpage,
9930 .writepage = btrfs_writepage,
9931 .writepages = btrfs_writepages,
9932 .readpages = btrfs_readpages,
9933 .direct_IO = btrfs_direct_IO,
9934 .invalidatepage = btrfs_invalidatepage,
9935 .releasepage = btrfs_releasepage,
9936 .set_page_dirty = btrfs_set_page_dirty,
9937 .error_remove_page = generic_error_remove_page,
9940 static const struct address_space_operations btrfs_symlink_aops = {
9941 .readpage = btrfs_readpage,
9942 .writepage = btrfs_writepage,
9943 .invalidatepage = btrfs_invalidatepage,
9944 .releasepage = btrfs_releasepage,
9947 static const struct inode_operations btrfs_file_inode_operations = {
9948 .getattr = btrfs_getattr,
9949 .setattr = btrfs_setattr,
9950 .setxattr = btrfs_setxattr,
9951 .getxattr = btrfs_getxattr,
9952 .listxattr = btrfs_listxattr,
9953 .removexattr = btrfs_removexattr,
9954 .permission = btrfs_permission,
9955 .fiemap = btrfs_fiemap,
9956 .get_acl = btrfs_get_acl,
9957 .set_acl = btrfs_set_acl,
9958 .update_time = btrfs_update_time,
9960 static const struct inode_operations btrfs_special_inode_operations = {
9961 .getattr = btrfs_getattr,
9962 .setattr = btrfs_setattr,
9963 .permission = btrfs_permission,
9964 .setxattr = btrfs_setxattr,
9965 .getxattr = btrfs_getxattr,
9966 .listxattr = btrfs_listxattr,
9967 .removexattr = btrfs_removexattr,
9968 .get_acl = btrfs_get_acl,
9969 .set_acl = btrfs_set_acl,
9970 .update_time = btrfs_update_time,
9972 static const struct inode_operations btrfs_symlink_inode_operations = {
9973 .readlink = generic_readlink,
9974 .follow_link = page_follow_link_light,
9975 .put_link = page_put_link,
9976 .getattr = btrfs_getattr,
9977 .setattr = btrfs_setattr,
9978 .permission = btrfs_permission,
9979 .setxattr = btrfs_setxattr,
9980 .getxattr = btrfs_getxattr,
9981 .listxattr = btrfs_listxattr,
9982 .removexattr = btrfs_removexattr,
9983 .update_time = btrfs_update_time,
9986 const struct dentry_operations btrfs_dentry_operations = {
9987 .d_delete = btrfs_dentry_delete,
9988 .d_release = btrfs_dentry_release,