gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / btrfs / send.c
blobb2c1ab7cae78f1a5a277c2578f350f9c45582558
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose = 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
49 struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
55 char *buf;
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
58 char inline_buf[];
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
65 char pad[256];
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 /* reused for each extent */
73 struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
78 u64 found_refs;
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84 struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
115 u64 cur_inode_rdev;
116 u64 cur_inode_last_extent;
118 u64 send_progress;
120 struct list_head new_refs;
121 struct list_head deleted_refs;
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
125 int name_cache_size;
127 struct file_ra_state ra;
129 char *read_buf;
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
142 * Tree state when the first send was performed:
145 * |-- a (ino 257)
146 * |-- b (ino 258)
149 * |-- c (ino 259)
150 * | |-- d (ino 260)
152 * |-- c2 (ino 261)
154 * Tree state when the second (incremental) send is performed:
157 * |-- a (ino 257)
158 * |-- b (ino 258)
159 * |-- c2 (ino 261)
160 * |-- d2 (ino 260)
161 * |-- cc (ino 259)
163 * The sequence of steps that lead to the second state was:
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
183 struct rb_root waiting_dir_moves;
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
191 * Parent snapshot:
193 * . (ino 256)
194 * |-- a/ (ino 257)
195 * |-- b/ (ino 258)
196 * |-- c/ (ino 259)
197 * | |-- x/ (ino 260)
199 * |-- y/ (ino 261)
201 * Send snapshot:
203 * . (ino 256)
204 * |-- a/ (ino 257)
205 * |-- b/ (ino 258)
206 * |-- YY/ (ino 261)
207 * |-- x/ (ino 260)
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
211 * mv /a/b/y /a/b/YY
212 * mv /a/b/c/x /a/b/YY
213 * rmdir /a/b/c
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
222 * Indexed by the inode number of the directory to be deleted.
224 struct rb_root orphan_dirs;
227 struct pending_dir_move {
228 struct rb_node node;
229 struct list_head list;
230 u64 parent_ino;
231 u64 ino;
232 u64 gen;
233 bool is_orphan;
234 struct list_head update_refs;
237 struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 u64 rmdir_ino;
248 struct orphan_dir_info {
249 struct rb_node node;
250 u64 ino;
251 u64 gen;
254 struct name_cache_entry {
255 struct list_head list;
257 * radix_tree has only 32bit entries but we need to handle 64bit inums.
258 * We use the lower 32bit of the 64bit inum to store it in the tree. If
259 * more then one inum would fall into the same entry, we use radix_list
260 * to store the additional entries. radix_list is also used to store
261 * entries where two entries have the same inum but different
262 * generations.
264 struct list_head radix_list;
265 u64 ino;
266 u64 gen;
267 u64 parent_ino;
268 u64 parent_gen;
269 int ret;
270 int need_later_update;
271 int name_len;
272 char name[];
275 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277 static struct waiting_dir_move *
278 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282 static int need_send_hole(struct send_ctx *sctx)
284 return (sctx->parent_root && !sctx->cur_inode_new &&
285 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
286 S_ISREG(sctx->cur_inode_mode));
289 static void fs_path_reset(struct fs_path *p)
291 if (p->reversed) {
292 p->start = p->buf + p->buf_len - 1;
293 p->end = p->start;
294 *p->start = 0;
295 } else {
296 p->start = p->buf;
297 p->end = p->start;
298 *p->start = 0;
302 static struct fs_path *fs_path_alloc(void)
304 struct fs_path *p;
306 p = kmalloc(sizeof(*p), GFP_NOFS);
307 if (!p)
308 return NULL;
309 p->reversed = 0;
310 p->buf = p->inline_buf;
311 p->buf_len = FS_PATH_INLINE_SIZE;
312 fs_path_reset(p);
313 return p;
316 static struct fs_path *fs_path_alloc_reversed(void)
318 struct fs_path *p;
320 p = fs_path_alloc();
321 if (!p)
322 return NULL;
323 p->reversed = 1;
324 fs_path_reset(p);
325 return p;
328 static void fs_path_free(struct fs_path *p)
330 if (!p)
331 return;
332 if (p->buf != p->inline_buf)
333 kfree(p->buf);
334 kfree(p);
337 static int fs_path_len(struct fs_path *p)
339 return p->end - p->start;
342 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 char *tmp_buf;
345 int path_len;
346 int old_buf_len;
348 len++;
350 if (p->buf_len >= len)
351 return 0;
353 if (len > PATH_MAX) {
354 WARN_ON(1);
355 return -ENOMEM;
358 path_len = p->end - p->start;
359 old_buf_len = p->buf_len;
362 * First time the inline_buf does not suffice
364 if (p->buf == p->inline_buf) {
365 tmp_buf = kmalloc(len, GFP_NOFS);
366 if (tmp_buf)
367 memcpy(tmp_buf, p->buf, old_buf_len);
368 } else {
369 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371 if (!tmp_buf)
372 return -ENOMEM;
373 p->buf = tmp_buf;
375 * The real size of the buffer is bigger, this will let the fast path
376 * happen most of the time
378 p->buf_len = ksize(p->buf);
380 if (p->reversed) {
381 tmp_buf = p->buf + old_buf_len - path_len - 1;
382 p->end = p->buf + p->buf_len - 1;
383 p->start = p->end - path_len;
384 memmove(p->start, tmp_buf, path_len + 1);
385 } else {
386 p->start = p->buf;
387 p->end = p->start + path_len;
389 return 0;
392 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
393 char **prepared)
395 int ret;
396 int new_len;
398 new_len = p->end - p->start + name_len;
399 if (p->start != p->end)
400 new_len++;
401 ret = fs_path_ensure_buf(p, new_len);
402 if (ret < 0)
403 goto out;
405 if (p->reversed) {
406 if (p->start != p->end)
407 *--p->start = '/';
408 p->start -= name_len;
409 *prepared = p->start;
410 } else {
411 if (p->start != p->end)
412 *p->end++ = '/';
413 *prepared = p->end;
414 p->end += name_len;
415 *p->end = 0;
418 out:
419 return ret;
422 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 int ret;
425 char *prepared;
427 ret = fs_path_prepare_for_add(p, name_len, &prepared);
428 if (ret < 0)
429 goto out;
430 memcpy(prepared, name, name_len);
432 out:
433 return ret;
436 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 int ret;
439 char *prepared;
441 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
442 if (ret < 0)
443 goto out;
444 memcpy(prepared, p2->start, p2->end - p2->start);
446 out:
447 return ret;
450 static int fs_path_add_from_extent_buffer(struct fs_path *p,
451 struct extent_buffer *eb,
452 unsigned long off, int len)
454 int ret;
455 char *prepared;
457 ret = fs_path_prepare_for_add(p, len, &prepared);
458 if (ret < 0)
459 goto out;
461 read_extent_buffer(eb, prepared, off, len);
463 out:
464 return ret;
467 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 int ret;
471 p->reversed = from->reversed;
472 fs_path_reset(p);
474 ret = fs_path_add_path(p, from);
476 return ret;
480 static void fs_path_unreverse(struct fs_path *p)
482 char *tmp;
483 int len;
485 if (!p->reversed)
486 return;
488 tmp = p->start;
489 len = p->end - p->start;
490 p->start = p->buf;
491 p->end = p->start + len;
492 memmove(p->start, tmp, len + 1);
493 p->reversed = 0;
496 static struct btrfs_path *alloc_path_for_send(void)
498 struct btrfs_path *path;
500 path = btrfs_alloc_path();
501 if (!path)
502 return NULL;
503 path->search_commit_root = 1;
504 path->skip_locking = 1;
505 path->need_commit_sem = 1;
506 return path;
509 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 int ret;
512 mm_segment_t old_fs;
513 u32 pos = 0;
515 old_fs = get_fs();
516 set_fs(KERNEL_DS);
518 while (pos < len) {
519 ret = vfs_write(filp, (__force const char __user *)buf + pos,
520 len - pos, off);
521 /* TODO handle that correctly */
522 /*if (ret == -ERESTARTSYS) {
523 continue;
525 if (ret < 0)
526 goto out;
527 if (ret == 0) {
528 ret = -EIO;
529 goto out;
531 pos += ret;
534 ret = 0;
536 out:
537 set_fs(old_fs);
538 return ret;
541 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 struct btrfs_tlv_header *hdr;
544 int total_len = sizeof(*hdr) + len;
545 int left = sctx->send_max_size - sctx->send_size;
547 if (unlikely(left < total_len))
548 return -EOVERFLOW;
550 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
551 hdr->tlv_type = cpu_to_le16(attr);
552 hdr->tlv_len = cpu_to_le16(len);
553 memcpy(hdr + 1, data, len);
554 sctx->send_size += total_len;
556 return 0;
559 #define TLV_PUT_DEFINE_INT(bits) \
560 static int tlv_put_u##bits(struct send_ctx *sctx, \
561 u##bits attr, u##bits value) \
563 __le##bits __tmp = cpu_to_le##bits(value); \
564 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
567 TLV_PUT_DEFINE_INT(64)
569 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
570 const char *str, int len)
572 if (len == -1)
573 len = strlen(str);
574 return tlv_put(sctx, attr, str, len);
577 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
578 const u8 *uuid)
580 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
583 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
584 struct extent_buffer *eb,
585 struct btrfs_timespec *ts)
587 struct btrfs_timespec bts;
588 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
589 return tlv_put(sctx, attr, &bts, sizeof(bts));
593 #define TLV_PUT(sctx, attrtype, attrlen, data) \
594 do { \
595 ret = tlv_put(sctx, attrtype, attrlen, data); \
596 if (ret < 0) \
597 goto tlv_put_failure; \
598 } while (0)
600 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
601 do { \
602 ret = tlv_put_u##bits(sctx, attrtype, value); \
603 if (ret < 0) \
604 goto tlv_put_failure; \
605 } while (0)
607 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
608 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
609 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
610 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
611 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
612 do { \
613 ret = tlv_put_string(sctx, attrtype, str, len); \
614 if (ret < 0) \
615 goto tlv_put_failure; \
616 } while (0)
617 #define TLV_PUT_PATH(sctx, attrtype, p) \
618 do { \
619 ret = tlv_put_string(sctx, attrtype, p->start, \
620 p->end - p->start); \
621 if (ret < 0) \
622 goto tlv_put_failure; \
623 } while(0)
624 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
625 do { \
626 ret = tlv_put_uuid(sctx, attrtype, uuid); \
627 if (ret < 0) \
628 goto tlv_put_failure; \
629 } while (0)
630 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
631 do { \
632 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
637 static int send_header(struct send_ctx *sctx)
639 struct btrfs_stream_header hdr;
641 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
642 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
645 &sctx->send_off);
649 * For each command/item we want to send to userspace, we call this function.
651 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 struct btrfs_cmd_header *hdr;
655 if (WARN_ON(!sctx->send_buf))
656 return -EINVAL;
658 BUG_ON(sctx->send_size);
660 sctx->send_size += sizeof(*hdr);
661 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
662 hdr->cmd = cpu_to_le16(cmd);
664 return 0;
667 static int send_cmd(struct send_ctx *sctx)
669 int ret;
670 struct btrfs_cmd_header *hdr;
671 u32 crc;
673 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
675 hdr->crc = 0;
677 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
678 hdr->crc = cpu_to_le32(crc);
680 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
681 &sctx->send_off);
683 sctx->total_send_size += sctx->send_size;
684 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
685 sctx->send_size = 0;
687 return ret;
691 * Sends a move instruction to user space
693 static int send_rename(struct send_ctx *sctx,
694 struct fs_path *from, struct fs_path *to)
696 int ret;
698 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
701 if (ret < 0)
702 goto out;
704 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707 ret = send_cmd(sctx);
709 tlv_put_failure:
710 out:
711 return ret;
715 * Sends a link instruction to user space
717 static int send_link(struct send_ctx *sctx,
718 struct fs_path *path, struct fs_path *lnk)
720 int ret;
722 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
725 if (ret < 0)
726 goto out;
728 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731 ret = send_cmd(sctx);
733 tlv_put_failure:
734 out:
735 return ret;
739 * Sends an unlink instruction to user space
741 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 int ret;
745 verbose_printk("btrfs: send_unlink %s\n", path->start);
747 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
748 if (ret < 0)
749 goto out;
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753 ret = send_cmd(sctx);
755 tlv_put_failure:
756 out:
757 return ret;
761 * Sends a rmdir instruction to user space
763 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 int ret;
767 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
770 if (ret < 0)
771 goto out;
773 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775 ret = send_cmd(sctx);
777 tlv_put_failure:
778 out:
779 return ret;
783 * Helper function to retrieve some fields from an inode item.
785 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
786 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
787 u64 *gid, u64 *rdev)
789 int ret;
790 struct btrfs_inode_item *ii;
791 struct btrfs_key key;
793 key.objectid = ino;
794 key.type = BTRFS_INODE_ITEM_KEY;
795 key.offset = 0;
796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
797 if (ret) {
798 if (ret > 0)
799 ret = -ENOENT;
800 return ret;
803 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
804 struct btrfs_inode_item);
805 if (size)
806 *size = btrfs_inode_size(path->nodes[0], ii);
807 if (gen)
808 *gen = btrfs_inode_generation(path->nodes[0], ii);
809 if (mode)
810 *mode = btrfs_inode_mode(path->nodes[0], ii);
811 if (uid)
812 *uid = btrfs_inode_uid(path->nodes[0], ii);
813 if (gid)
814 *gid = btrfs_inode_gid(path->nodes[0], ii);
815 if (rdev)
816 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
818 return ret;
821 static int get_inode_info(struct btrfs_root *root,
822 u64 ino, u64 *size, u64 *gen,
823 u64 *mode, u64 *uid, u64 *gid,
824 u64 *rdev)
826 struct btrfs_path *path;
827 int ret;
829 path = alloc_path_for_send();
830 if (!path)
831 return -ENOMEM;
832 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
833 rdev);
834 btrfs_free_path(path);
835 return ret;
838 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
839 struct fs_path *p,
840 void *ctx);
843 * Helper function to iterate the entries in ONE btrfs_inode_ref or
844 * btrfs_inode_extref.
845 * The iterate callback may return a non zero value to stop iteration. This can
846 * be a negative value for error codes or 1 to simply stop it.
848 * path must point to the INODE_REF or INODE_EXTREF when called.
850 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
851 struct btrfs_key *found_key, int resolve,
852 iterate_inode_ref_t iterate, void *ctx)
854 struct extent_buffer *eb = path->nodes[0];
855 struct btrfs_item *item;
856 struct btrfs_inode_ref *iref;
857 struct btrfs_inode_extref *extref;
858 struct btrfs_path *tmp_path;
859 struct fs_path *p;
860 u32 cur = 0;
861 u32 total;
862 int slot = path->slots[0];
863 u32 name_len;
864 char *start;
865 int ret = 0;
866 int num = 0;
867 int index;
868 u64 dir;
869 unsigned long name_off;
870 unsigned long elem_size;
871 unsigned long ptr;
873 p = fs_path_alloc_reversed();
874 if (!p)
875 return -ENOMEM;
877 tmp_path = alloc_path_for_send();
878 if (!tmp_path) {
879 fs_path_free(p);
880 return -ENOMEM;
884 if (found_key->type == BTRFS_INODE_REF_KEY) {
885 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
886 struct btrfs_inode_ref);
887 item = btrfs_item_nr(slot);
888 total = btrfs_item_size(eb, item);
889 elem_size = sizeof(*iref);
890 } else {
891 ptr = btrfs_item_ptr_offset(eb, slot);
892 total = btrfs_item_size_nr(eb, slot);
893 elem_size = sizeof(*extref);
896 while (cur < total) {
897 fs_path_reset(p);
899 if (found_key->type == BTRFS_INODE_REF_KEY) {
900 iref = (struct btrfs_inode_ref *)(ptr + cur);
901 name_len = btrfs_inode_ref_name_len(eb, iref);
902 name_off = (unsigned long)(iref + 1);
903 index = btrfs_inode_ref_index(eb, iref);
904 dir = found_key->offset;
905 } else {
906 extref = (struct btrfs_inode_extref *)(ptr + cur);
907 name_len = btrfs_inode_extref_name_len(eb, extref);
908 name_off = (unsigned long)&extref->name;
909 index = btrfs_inode_extref_index(eb, extref);
910 dir = btrfs_inode_extref_parent(eb, extref);
913 if (resolve) {
914 start = btrfs_ref_to_path(root, tmp_path, name_len,
915 name_off, eb, dir,
916 p->buf, p->buf_len);
917 if (IS_ERR(start)) {
918 ret = PTR_ERR(start);
919 goto out;
921 if (start < p->buf) {
922 /* overflow , try again with larger buffer */
923 ret = fs_path_ensure_buf(p,
924 p->buf_len + p->buf - start);
925 if (ret < 0)
926 goto out;
927 start = btrfs_ref_to_path(root, tmp_path,
928 name_len, name_off,
929 eb, dir,
930 p->buf, p->buf_len);
931 if (IS_ERR(start)) {
932 ret = PTR_ERR(start);
933 goto out;
935 BUG_ON(start < p->buf);
937 p->start = start;
938 } else {
939 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
940 name_len);
941 if (ret < 0)
942 goto out;
945 cur += elem_size + name_len;
946 ret = iterate(num, dir, index, p, ctx);
947 if (ret)
948 goto out;
949 num++;
952 out:
953 btrfs_free_path(tmp_path);
954 fs_path_free(p);
955 return ret;
958 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
959 const char *name, int name_len,
960 const char *data, int data_len,
961 u8 type, void *ctx);
964 * Helper function to iterate the entries in ONE btrfs_dir_item.
965 * The iterate callback may return a non zero value to stop iteration. This can
966 * be a negative value for error codes or 1 to simply stop it.
968 * path must point to the dir item when called.
970 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
971 struct btrfs_key *found_key,
972 iterate_dir_item_t iterate, void *ctx)
974 int ret = 0;
975 struct extent_buffer *eb;
976 struct btrfs_item *item;
977 struct btrfs_dir_item *di;
978 struct btrfs_key di_key;
979 char *buf = NULL;
980 int buf_len;
981 u32 name_len;
982 u32 data_len;
983 u32 cur;
984 u32 len;
985 u32 total;
986 int slot;
987 int num;
988 u8 type;
991 * Start with a small buffer (1 page). If later we end up needing more
992 * space, which can happen for xattrs on a fs with a leaf size greater
993 * then the page size, attempt to increase the buffer. Typically xattr
994 * values are small.
996 buf_len = PATH_MAX;
997 buf = kmalloc(buf_len, GFP_NOFS);
998 if (!buf) {
999 ret = -ENOMEM;
1000 goto out;
1003 eb = path->nodes[0];
1004 slot = path->slots[0];
1005 item = btrfs_item_nr(slot);
1006 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1007 cur = 0;
1008 len = 0;
1009 total = btrfs_item_size(eb, item);
1011 num = 0;
1012 while (cur < total) {
1013 name_len = btrfs_dir_name_len(eb, di);
1014 data_len = btrfs_dir_data_len(eb, di);
1015 type = btrfs_dir_type(eb, di);
1016 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018 if (type == BTRFS_FT_XATTR) {
1019 if (name_len > XATTR_NAME_MAX) {
1020 ret = -ENAMETOOLONG;
1021 goto out;
1023 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1024 ret = -E2BIG;
1025 goto out;
1027 } else {
1029 * Path too long
1031 if (name_len + data_len > PATH_MAX) {
1032 ret = -ENAMETOOLONG;
1033 goto out;
1037 if (name_len + data_len > buf_len) {
1038 buf_len = name_len + data_len;
1039 if (is_vmalloc_addr(buf)) {
1040 vfree(buf);
1041 buf = NULL;
1042 } else {
1043 char *tmp = krealloc(buf, buf_len,
1044 GFP_NOFS | __GFP_NOWARN);
1046 if (!tmp)
1047 kfree(buf);
1048 buf = tmp;
1050 if (!buf) {
1051 buf = vmalloc(buf_len);
1052 if (!buf) {
1053 ret = -ENOMEM;
1054 goto out;
1059 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1060 name_len + data_len);
1062 len = sizeof(*di) + name_len + data_len;
1063 di = (struct btrfs_dir_item *)((char *)di + len);
1064 cur += len;
1066 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1067 data_len, type, ctx);
1068 if (ret < 0)
1069 goto out;
1070 if (ret) {
1071 ret = 0;
1072 goto out;
1075 num++;
1078 out:
1079 kvfree(buf);
1080 return ret;
1083 static int __copy_first_ref(int num, u64 dir, int index,
1084 struct fs_path *p, void *ctx)
1086 int ret;
1087 struct fs_path *pt = ctx;
1089 ret = fs_path_copy(pt, p);
1090 if (ret < 0)
1091 return ret;
1093 /* we want the first only */
1094 return 1;
1098 * Retrieve the first path of an inode. If an inode has more then one
1099 * ref/hardlink, this is ignored.
1101 static int get_inode_path(struct btrfs_root *root,
1102 u64 ino, struct fs_path *path)
1104 int ret;
1105 struct btrfs_key key, found_key;
1106 struct btrfs_path *p;
1108 p = alloc_path_for_send();
1109 if (!p)
1110 return -ENOMEM;
1112 fs_path_reset(path);
1114 key.objectid = ino;
1115 key.type = BTRFS_INODE_REF_KEY;
1116 key.offset = 0;
1118 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1119 if (ret < 0)
1120 goto out;
1121 if (ret) {
1122 ret = 1;
1123 goto out;
1125 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1126 if (found_key.objectid != ino ||
1127 (found_key.type != BTRFS_INODE_REF_KEY &&
1128 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1129 ret = -ENOENT;
1130 goto out;
1133 ret = iterate_inode_ref(root, p, &found_key, 1,
1134 __copy_first_ref, path);
1135 if (ret < 0)
1136 goto out;
1137 ret = 0;
1139 out:
1140 btrfs_free_path(p);
1141 return ret;
1144 struct backref_ctx {
1145 struct send_ctx *sctx;
1147 struct btrfs_path *path;
1148 /* number of total found references */
1149 u64 found;
1152 * used for clones found in send_root. clones found behind cur_objectid
1153 * and cur_offset are not considered as allowed clones.
1155 u64 cur_objectid;
1156 u64 cur_offset;
1158 /* may be truncated in case it's the last extent in a file */
1159 u64 extent_len;
1161 /* Just to check for bugs in backref resolving */
1162 int found_itself;
1165 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1167 u64 root = (u64)(uintptr_t)key;
1168 struct clone_root *cr = (struct clone_root *)elt;
1170 if (root < cr->root->objectid)
1171 return -1;
1172 if (root > cr->root->objectid)
1173 return 1;
1174 return 0;
1177 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1179 struct clone_root *cr1 = (struct clone_root *)e1;
1180 struct clone_root *cr2 = (struct clone_root *)e2;
1182 if (cr1->root->objectid < cr2->root->objectid)
1183 return -1;
1184 if (cr1->root->objectid > cr2->root->objectid)
1185 return 1;
1186 return 0;
1190 * Called for every backref that is found for the current extent.
1191 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1193 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1195 struct backref_ctx *bctx = ctx_;
1196 struct clone_root *found;
1197 int ret;
1198 u64 i_size;
1200 /* First check if the root is in the list of accepted clone sources */
1201 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1202 bctx->sctx->clone_roots_cnt,
1203 sizeof(struct clone_root),
1204 __clone_root_cmp_bsearch);
1205 if (!found)
1206 return 0;
1208 if (found->root == bctx->sctx->send_root &&
1209 ino == bctx->cur_objectid &&
1210 offset == bctx->cur_offset) {
1211 bctx->found_itself = 1;
1215 * There are inodes that have extents that lie behind its i_size. Don't
1216 * accept clones from these extents.
1218 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1219 NULL, NULL, NULL);
1220 btrfs_release_path(bctx->path);
1221 if (ret < 0)
1222 return ret;
1224 if (offset + bctx->extent_len > i_size)
1225 return 0;
1228 * Make sure we don't consider clones from send_root that are
1229 * behind the current inode/offset.
1231 if (found->root == bctx->sctx->send_root) {
1233 * TODO for the moment we don't accept clones from the inode
1234 * that is currently send. We may change this when
1235 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1236 * file.
1238 if (ino >= bctx->cur_objectid)
1239 return 0;
1240 #if 0
1241 if (ino > bctx->cur_objectid)
1242 return 0;
1243 if (offset + bctx->extent_len > bctx->cur_offset)
1244 return 0;
1245 #endif
1248 bctx->found++;
1249 found->found_refs++;
1250 if (ino < found->ino) {
1251 found->ino = ino;
1252 found->offset = offset;
1253 } else if (found->ino == ino) {
1255 * same extent found more then once in the same file.
1257 if (found->offset > offset + bctx->extent_len)
1258 found->offset = offset;
1261 return 0;
1265 * Given an inode, offset and extent item, it finds a good clone for a clone
1266 * instruction. Returns -ENOENT when none could be found. The function makes
1267 * sure that the returned clone is usable at the point where sending is at the
1268 * moment. This means, that no clones are accepted which lie behind the current
1269 * inode+offset.
1271 * path must point to the extent item when called.
1273 static int find_extent_clone(struct send_ctx *sctx,
1274 struct btrfs_path *path,
1275 u64 ino, u64 data_offset,
1276 u64 ino_size,
1277 struct clone_root **found)
1279 int ret;
1280 int extent_type;
1281 u64 logical;
1282 u64 disk_byte;
1283 u64 num_bytes;
1284 u64 extent_item_pos;
1285 u64 flags = 0;
1286 struct btrfs_file_extent_item *fi;
1287 struct extent_buffer *eb = path->nodes[0];
1288 struct backref_ctx *backref_ctx = NULL;
1289 struct clone_root *cur_clone_root;
1290 struct btrfs_key found_key;
1291 struct btrfs_path *tmp_path;
1292 int compressed;
1293 u32 i;
1295 tmp_path = alloc_path_for_send();
1296 if (!tmp_path)
1297 return -ENOMEM;
1299 /* We only use this path under the commit sem */
1300 tmp_path->need_commit_sem = 0;
1302 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1303 if (!backref_ctx) {
1304 ret = -ENOMEM;
1305 goto out;
1308 backref_ctx->path = tmp_path;
1310 if (data_offset >= ino_size) {
1312 * There may be extents that lie behind the file's size.
1313 * I at least had this in combination with snapshotting while
1314 * writing large files.
1316 ret = 0;
1317 goto out;
1320 fi = btrfs_item_ptr(eb, path->slots[0],
1321 struct btrfs_file_extent_item);
1322 extent_type = btrfs_file_extent_type(eb, fi);
1323 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1324 ret = -ENOENT;
1325 goto out;
1327 compressed = btrfs_file_extent_compression(eb, fi);
1329 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1330 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1331 if (disk_byte == 0) {
1332 ret = -ENOENT;
1333 goto out;
1335 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1337 down_read(&sctx->send_root->fs_info->commit_root_sem);
1338 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1339 &found_key, &flags);
1340 up_read(&sctx->send_root->fs_info->commit_root_sem);
1341 btrfs_release_path(tmp_path);
1343 if (ret < 0)
1344 goto out;
1345 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1346 ret = -EIO;
1347 goto out;
1351 * Setup the clone roots.
1353 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1354 cur_clone_root = sctx->clone_roots + i;
1355 cur_clone_root->ino = (u64)-1;
1356 cur_clone_root->offset = 0;
1357 cur_clone_root->found_refs = 0;
1360 backref_ctx->sctx = sctx;
1361 backref_ctx->found = 0;
1362 backref_ctx->cur_objectid = ino;
1363 backref_ctx->cur_offset = data_offset;
1364 backref_ctx->found_itself = 0;
1365 backref_ctx->extent_len = num_bytes;
1368 * The last extent of a file may be too large due to page alignment.
1369 * We need to adjust extent_len in this case so that the checks in
1370 * __iterate_backrefs work.
1372 if (data_offset + num_bytes >= ino_size)
1373 backref_ctx->extent_len = ino_size - data_offset;
1376 * Now collect all backrefs.
1378 if (compressed == BTRFS_COMPRESS_NONE)
1379 extent_item_pos = logical - found_key.objectid;
1380 else
1381 extent_item_pos = 0;
1382 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1383 found_key.objectid, extent_item_pos, 1,
1384 __iterate_backrefs, backref_ctx);
1386 if (ret < 0)
1387 goto out;
1389 if (!backref_ctx->found_itself) {
1390 /* found a bug in backref code? */
1391 ret = -EIO;
1392 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1393 "send_root. inode=%llu, offset=%llu, "
1394 "disk_byte=%llu found extent=%llu",
1395 ino, data_offset, disk_byte, found_key.objectid);
1396 goto out;
1399 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1400 "ino=%llu, "
1401 "num_bytes=%llu, logical=%llu\n",
1402 data_offset, ino, num_bytes, logical);
1404 if (!backref_ctx->found)
1405 verbose_printk("btrfs: no clones found\n");
1407 cur_clone_root = NULL;
1408 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1409 if (sctx->clone_roots[i].found_refs) {
1410 if (!cur_clone_root)
1411 cur_clone_root = sctx->clone_roots + i;
1412 else if (sctx->clone_roots[i].root == sctx->send_root)
1413 /* prefer clones from send_root over others */
1414 cur_clone_root = sctx->clone_roots + i;
1419 if (cur_clone_root) {
1420 if (compressed != BTRFS_COMPRESS_NONE) {
1422 * Offsets given by iterate_extent_inodes() are relative
1423 * to the start of the extent, we need to add logical
1424 * offset from the file extent item.
1425 * (See why at backref.c:check_extent_in_eb())
1427 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1428 fi);
1430 *found = cur_clone_root;
1431 ret = 0;
1432 } else {
1433 ret = -ENOENT;
1436 out:
1437 btrfs_free_path(tmp_path);
1438 kfree(backref_ctx);
1439 return ret;
1442 static int read_symlink(struct btrfs_root *root,
1443 u64 ino,
1444 struct fs_path *dest)
1446 int ret;
1447 struct btrfs_path *path;
1448 struct btrfs_key key;
1449 struct btrfs_file_extent_item *ei;
1450 u8 type;
1451 u8 compression;
1452 unsigned long off;
1453 int len;
1455 path = alloc_path_for_send();
1456 if (!path)
1457 return -ENOMEM;
1459 key.objectid = ino;
1460 key.type = BTRFS_EXTENT_DATA_KEY;
1461 key.offset = 0;
1462 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1463 if (ret < 0)
1464 goto out;
1465 if (ret) {
1467 * An empty symlink inode. Can happen in rare error paths when
1468 * creating a symlink (transaction committed before the inode
1469 * eviction handler removed the symlink inode items and a crash
1470 * happened in between or the subvol was snapshoted in between).
1471 * Print an informative message to dmesg/syslog so that the user
1472 * can delete the symlink.
1474 btrfs_err(root->fs_info,
1475 "Found empty symlink inode %llu at root %llu",
1476 ino, root->root_key.objectid);
1477 ret = -EIO;
1478 goto out;
1481 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1482 struct btrfs_file_extent_item);
1483 type = btrfs_file_extent_type(path->nodes[0], ei);
1484 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1485 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1486 BUG_ON(compression);
1488 off = btrfs_file_extent_inline_start(ei);
1489 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1491 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1493 out:
1494 btrfs_free_path(path);
1495 return ret;
1499 * Helper function to generate a file name that is unique in the root of
1500 * send_root and parent_root. This is used to generate names for orphan inodes.
1502 static int gen_unique_name(struct send_ctx *sctx,
1503 u64 ino, u64 gen,
1504 struct fs_path *dest)
1506 int ret = 0;
1507 struct btrfs_path *path;
1508 struct btrfs_dir_item *di;
1509 char tmp[64];
1510 int len;
1511 u64 idx = 0;
1513 path = alloc_path_for_send();
1514 if (!path)
1515 return -ENOMEM;
1517 while (1) {
1518 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1519 ino, gen, idx);
1520 ASSERT(len < sizeof(tmp));
1522 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1523 path, BTRFS_FIRST_FREE_OBJECTID,
1524 tmp, strlen(tmp), 0);
1525 btrfs_release_path(path);
1526 if (IS_ERR(di)) {
1527 ret = PTR_ERR(di);
1528 goto out;
1530 if (di) {
1531 /* not unique, try again */
1532 idx++;
1533 continue;
1536 if (!sctx->parent_root) {
1537 /* unique */
1538 ret = 0;
1539 break;
1542 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1543 path, BTRFS_FIRST_FREE_OBJECTID,
1544 tmp, strlen(tmp), 0);
1545 btrfs_release_path(path);
1546 if (IS_ERR(di)) {
1547 ret = PTR_ERR(di);
1548 goto out;
1550 if (di) {
1551 /* not unique, try again */
1552 idx++;
1553 continue;
1555 /* unique */
1556 break;
1559 ret = fs_path_add(dest, tmp, strlen(tmp));
1561 out:
1562 btrfs_free_path(path);
1563 return ret;
1566 enum inode_state {
1567 inode_state_no_change,
1568 inode_state_will_create,
1569 inode_state_did_create,
1570 inode_state_will_delete,
1571 inode_state_did_delete,
1574 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1576 int ret;
1577 int left_ret;
1578 int right_ret;
1579 u64 left_gen;
1580 u64 right_gen;
1582 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1583 NULL, NULL);
1584 if (ret < 0 && ret != -ENOENT)
1585 goto out;
1586 left_ret = ret;
1588 if (!sctx->parent_root) {
1589 right_ret = -ENOENT;
1590 } else {
1591 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1592 NULL, NULL, NULL, NULL);
1593 if (ret < 0 && ret != -ENOENT)
1594 goto out;
1595 right_ret = ret;
1598 if (!left_ret && !right_ret) {
1599 if (left_gen == gen && right_gen == gen) {
1600 ret = inode_state_no_change;
1601 } else if (left_gen == gen) {
1602 if (ino < sctx->send_progress)
1603 ret = inode_state_did_create;
1604 else
1605 ret = inode_state_will_create;
1606 } else if (right_gen == gen) {
1607 if (ino < sctx->send_progress)
1608 ret = inode_state_did_delete;
1609 else
1610 ret = inode_state_will_delete;
1611 } else {
1612 ret = -ENOENT;
1614 } else if (!left_ret) {
1615 if (left_gen == gen) {
1616 if (ino < sctx->send_progress)
1617 ret = inode_state_did_create;
1618 else
1619 ret = inode_state_will_create;
1620 } else {
1621 ret = -ENOENT;
1623 } else if (!right_ret) {
1624 if (right_gen == gen) {
1625 if (ino < sctx->send_progress)
1626 ret = inode_state_did_delete;
1627 else
1628 ret = inode_state_will_delete;
1629 } else {
1630 ret = -ENOENT;
1632 } else {
1633 ret = -ENOENT;
1636 out:
1637 return ret;
1640 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1642 int ret;
1644 ret = get_cur_inode_state(sctx, ino, gen);
1645 if (ret < 0)
1646 goto out;
1648 if (ret == inode_state_no_change ||
1649 ret == inode_state_did_create ||
1650 ret == inode_state_will_delete)
1651 ret = 1;
1652 else
1653 ret = 0;
1655 out:
1656 return ret;
1660 * Helper function to lookup a dir item in a dir.
1662 static int lookup_dir_item_inode(struct btrfs_root *root,
1663 u64 dir, const char *name, int name_len,
1664 u64 *found_inode,
1665 u8 *found_type)
1667 int ret = 0;
1668 struct btrfs_dir_item *di;
1669 struct btrfs_key key;
1670 struct btrfs_path *path;
1672 path = alloc_path_for_send();
1673 if (!path)
1674 return -ENOMEM;
1676 di = btrfs_lookup_dir_item(NULL, root, path,
1677 dir, name, name_len, 0);
1678 if (!di) {
1679 ret = -ENOENT;
1680 goto out;
1682 if (IS_ERR(di)) {
1683 ret = PTR_ERR(di);
1684 goto out;
1686 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1687 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1688 ret = -ENOENT;
1689 goto out;
1691 *found_inode = key.objectid;
1692 *found_type = btrfs_dir_type(path->nodes[0], di);
1694 out:
1695 btrfs_free_path(path);
1696 return ret;
1700 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1701 * generation of the parent dir and the name of the dir entry.
1703 static int get_first_ref(struct btrfs_root *root, u64 ino,
1704 u64 *dir, u64 *dir_gen, struct fs_path *name)
1706 int ret;
1707 struct btrfs_key key;
1708 struct btrfs_key found_key;
1709 struct btrfs_path *path;
1710 int len;
1711 u64 parent_dir;
1713 path = alloc_path_for_send();
1714 if (!path)
1715 return -ENOMEM;
1717 key.objectid = ino;
1718 key.type = BTRFS_INODE_REF_KEY;
1719 key.offset = 0;
1721 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1722 if (ret < 0)
1723 goto out;
1724 if (!ret)
1725 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1726 path->slots[0]);
1727 if (ret || found_key.objectid != ino ||
1728 (found_key.type != BTRFS_INODE_REF_KEY &&
1729 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1730 ret = -ENOENT;
1731 goto out;
1734 if (found_key.type == BTRFS_INODE_REF_KEY) {
1735 struct btrfs_inode_ref *iref;
1736 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1737 struct btrfs_inode_ref);
1738 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1739 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1740 (unsigned long)(iref + 1),
1741 len);
1742 parent_dir = found_key.offset;
1743 } else {
1744 struct btrfs_inode_extref *extref;
1745 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1746 struct btrfs_inode_extref);
1747 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1748 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1749 (unsigned long)&extref->name, len);
1750 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1752 if (ret < 0)
1753 goto out;
1754 btrfs_release_path(path);
1756 if (dir_gen) {
1757 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1758 NULL, NULL, NULL);
1759 if (ret < 0)
1760 goto out;
1763 *dir = parent_dir;
1765 out:
1766 btrfs_free_path(path);
1767 return ret;
1770 static int is_first_ref(struct btrfs_root *root,
1771 u64 ino, u64 dir,
1772 const char *name, int name_len)
1774 int ret;
1775 struct fs_path *tmp_name;
1776 u64 tmp_dir;
1778 tmp_name = fs_path_alloc();
1779 if (!tmp_name)
1780 return -ENOMEM;
1782 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1783 if (ret < 0)
1784 goto out;
1786 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1787 ret = 0;
1788 goto out;
1791 ret = !memcmp(tmp_name->start, name, name_len);
1793 out:
1794 fs_path_free(tmp_name);
1795 return ret;
1799 * Used by process_recorded_refs to determine if a new ref would overwrite an
1800 * already existing ref. In case it detects an overwrite, it returns the
1801 * inode/gen in who_ino/who_gen.
1802 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1803 * to make sure later references to the overwritten inode are possible.
1804 * Orphanizing is however only required for the first ref of an inode.
1805 * process_recorded_refs does an additional is_first_ref check to see if
1806 * orphanizing is really required.
1808 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1809 const char *name, int name_len,
1810 u64 *who_ino, u64 *who_gen)
1812 int ret = 0;
1813 u64 gen;
1814 u64 other_inode = 0;
1815 u8 other_type = 0;
1817 if (!sctx->parent_root)
1818 goto out;
1820 ret = is_inode_existent(sctx, dir, dir_gen);
1821 if (ret <= 0)
1822 goto out;
1825 * If we have a parent root we need to verify that the parent dir was
1826 * not delted and then re-created, if it was then we have no overwrite
1827 * and we can just unlink this entry.
1829 if (sctx->parent_root) {
1830 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1831 NULL, NULL, NULL);
1832 if (ret < 0 && ret != -ENOENT)
1833 goto out;
1834 if (ret) {
1835 ret = 0;
1836 goto out;
1838 if (gen != dir_gen)
1839 goto out;
1842 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1843 &other_inode, &other_type);
1844 if (ret < 0 && ret != -ENOENT)
1845 goto out;
1846 if (ret) {
1847 ret = 0;
1848 goto out;
1852 * Check if the overwritten ref was already processed. If yes, the ref
1853 * was already unlinked/moved, so we can safely assume that we will not
1854 * overwrite anything at this point in time.
1856 if (other_inode > sctx->send_progress) {
1857 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1858 who_gen, NULL, NULL, NULL, NULL);
1859 if (ret < 0)
1860 goto out;
1862 ret = 1;
1863 *who_ino = other_inode;
1864 } else {
1865 ret = 0;
1868 out:
1869 return ret;
1873 * Checks if the ref was overwritten by an already processed inode. This is
1874 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1875 * thus the orphan name needs be used.
1876 * process_recorded_refs also uses it to avoid unlinking of refs that were
1877 * overwritten.
1879 static int did_overwrite_ref(struct send_ctx *sctx,
1880 u64 dir, u64 dir_gen,
1881 u64 ino, u64 ino_gen,
1882 const char *name, int name_len)
1884 int ret = 0;
1885 u64 gen;
1886 u64 ow_inode;
1887 u8 other_type;
1889 if (!sctx->parent_root)
1890 goto out;
1892 ret = is_inode_existent(sctx, dir, dir_gen);
1893 if (ret <= 0)
1894 goto out;
1896 /* check if the ref was overwritten by another ref */
1897 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1898 &ow_inode, &other_type);
1899 if (ret < 0 && ret != -ENOENT)
1900 goto out;
1901 if (ret) {
1902 /* was never and will never be overwritten */
1903 ret = 0;
1904 goto out;
1907 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1908 NULL, NULL);
1909 if (ret < 0)
1910 goto out;
1912 if (ow_inode == ino && gen == ino_gen) {
1913 ret = 0;
1914 goto out;
1917 /* we know that it is or will be overwritten. check this now */
1918 if (ow_inode < sctx->send_progress)
1919 ret = 1;
1920 else
1921 ret = 0;
1923 out:
1924 return ret;
1928 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1929 * that got overwritten. This is used by process_recorded_refs to determine
1930 * if it has to use the path as returned by get_cur_path or the orphan name.
1932 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1934 int ret = 0;
1935 struct fs_path *name = NULL;
1936 u64 dir;
1937 u64 dir_gen;
1939 if (!sctx->parent_root)
1940 goto out;
1942 name = fs_path_alloc();
1943 if (!name)
1944 return -ENOMEM;
1946 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1947 if (ret < 0)
1948 goto out;
1950 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1951 name->start, fs_path_len(name));
1953 out:
1954 fs_path_free(name);
1955 return ret;
1959 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1960 * so we need to do some special handling in case we have clashes. This function
1961 * takes care of this with the help of name_cache_entry::radix_list.
1962 * In case of error, nce is kfreed.
1964 static int name_cache_insert(struct send_ctx *sctx,
1965 struct name_cache_entry *nce)
1967 int ret = 0;
1968 struct list_head *nce_head;
1970 nce_head = radix_tree_lookup(&sctx->name_cache,
1971 (unsigned long)nce->ino);
1972 if (!nce_head) {
1973 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1974 if (!nce_head) {
1975 kfree(nce);
1976 return -ENOMEM;
1978 INIT_LIST_HEAD(nce_head);
1980 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1981 if (ret < 0) {
1982 kfree(nce_head);
1983 kfree(nce);
1984 return ret;
1987 list_add_tail(&nce->radix_list, nce_head);
1988 list_add_tail(&nce->list, &sctx->name_cache_list);
1989 sctx->name_cache_size++;
1991 return ret;
1994 static void name_cache_delete(struct send_ctx *sctx,
1995 struct name_cache_entry *nce)
1997 struct list_head *nce_head;
1999 nce_head = radix_tree_lookup(&sctx->name_cache,
2000 (unsigned long)nce->ino);
2001 if (!nce_head) {
2002 btrfs_err(sctx->send_root->fs_info,
2003 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2004 nce->ino, sctx->name_cache_size);
2007 list_del(&nce->radix_list);
2008 list_del(&nce->list);
2009 sctx->name_cache_size--;
2012 * We may not get to the final release of nce_head if the lookup fails
2014 if (nce_head && list_empty(nce_head)) {
2015 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2016 kfree(nce_head);
2020 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2021 u64 ino, u64 gen)
2023 struct list_head *nce_head;
2024 struct name_cache_entry *cur;
2026 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2027 if (!nce_head)
2028 return NULL;
2030 list_for_each_entry(cur, nce_head, radix_list) {
2031 if (cur->ino == ino && cur->gen == gen)
2032 return cur;
2034 return NULL;
2038 * Removes the entry from the list and adds it back to the end. This marks the
2039 * entry as recently used so that name_cache_clean_unused does not remove it.
2041 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2043 list_del(&nce->list);
2044 list_add_tail(&nce->list, &sctx->name_cache_list);
2048 * Remove some entries from the beginning of name_cache_list.
2050 static void name_cache_clean_unused(struct send_ctx *sctx)
2052 struct name_cache_entry *nce;
2054 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2055 return;
2057 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2058 nce = list_entry(sctx->name_cache_list.next,
2059 struct name_cache_entry, list);
2060 name_cache_delete(sctx, nce);
2061 kfree(nce);
2065 static void name_cache_free(struct send_ctx *sctx)
2067 struct name_cache_entry *nce;
2069 while (!list_empty(&sctx->name_cache_list)) {
2070 nce = list_entry(sctx->name_cache_list.next,
2071 struct name_cache_entry, list);
2072 name_cache_delete(sctx, nce);
2073 kfree(nce);
2078 * Used by get_cur_path for each ref up to the root.
2079 * Returns 0 if it succeeded.
2080 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2081 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2082 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2083 * Returns <0 in case of error.
2085 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2086 u64 ino, u64 gen,
2087 u64 *parent_ino,
2088 u64 *parent_gen,
2089 struct fs_path *dest)
2091 int ret;
2092 int nce_ret;
2093 struct name_cache_entry *nce = NULL;
2096 * First check if we already did a call to this function with the same
2097 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2098 * return the cached result.
2100 nce = name_cache_search(sctx, ino, gen);
2101 if (nce) {
2102 if (ino < sctx->send_progress && nce->need_later_update) {
2103 name_cache_delete(sctx, nce);
2104 kfree(nce);
2105 nce = NULL;
2106 } else {
2107 name_cache_used(sctx, nce);
2108 *parent_ino = nce->parent_ino;
2109 *parent_gen = nce->parent_gen;
2110 ret = fs_path_add(dest, nce->name, nce->name_len);
2111 if (ret < 0)
2112 goto out;
2113 ret = nce->ret;
2114 goto out;
2119 * If the inode is not existent yet, add the orphan name and return 1.
2120 * This should only happen for the parent dir that we determine in
2121 * __record_new_ref
2123 ret = is_inode_existent(sctx, ino, gen);
2124 if (ret < 0)
2125 goto out;
2127 if (!ret) {
2128 ret = gen_unique_name(sctx, ino, gen, dest);
2129 if (ret < 0)
2130 goto out;
2131 ret = 1;
2132 goto out_cache;
2136 * Depending on whether the inode was already processed or not, use
2137 * send_root or parent_root for ref lookup.
2139 if (ino < sctx->send_progress)
2140 ret = get_first_ref(sctx->send_root, ino,
2141 parent_ino, parent_gen, dest);
2142 else
2143 ret = get_first_ref(sctx->parent_root, ino,
2144 parent_ino, parent_gen, dest);
2145 if (ret < 0)
2146 goto out;
2149 * Check if the ref was overwritten by an inode's ref that was processed
2150 * earlier. If yes, treat as orphan and return 1.
2152 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2153 dest->start, dest->end - dest->start);
2154 if (ret < 0)
2155 goto out;
2156 if (ret) {
2157 fs_path_reset(dest);
2158 ret = gen_unique_name(sctx, ino, gen, dest);
2159 if (ret < 0)
2160 goto out;
2161 ret = 1;
2164 out_cache:
2166 * Store the result of the lookup in the name cache.
2168 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2169 if (!nce) {
2170 ret = -ENOMEM;
2171 goto out;
2174 nce->ino = ino;
2175 nce->gen = gen;
2176 nce->parent_ino = *parent_ino;
2177 nce->parent_gen = *parent_gen;
2178 nce->name_len = fs_path_len(dest);
2179 nce->ret = ret;
2180 strcpy(nce->name, dest->start);
2182 if (ino < sctx->send_progress)
2183 nce->need_later_update = 0;
2184 else
2185 nce->need_later_update = 1;
2187 nce_ret = name_cache_insert(sctx, nce);
2188 if (nce_ret < 0)
2189 ret = nce_ret;
2190 name_cache_clean_unused(sctx);
2192 out:
2193 return ret;
2197 * Magic happens here. This function returns the first ref to an inode as it
2198 * would look like while receiving the stream at this point in time.
2199 * We walk the path up to the root. For every inode in between, we check if it
2200 * was already processed/sent. If yes, we continue with the parent as found
2201 * in send_root. If not, we continue with the parent as found in parent_root.
2202 * If we encounter an inode that was deleted at this point in time, we use the
2203 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2204 * that were not created yet and overwritten inodes/refs.
2206 * When do we have have orphan inodes:
2207 * 1. When an inode is freshly created and thus no valid refs are available yet
2208 * 2. When a directory lost all it's refs (deleted) but still has dir items
2209 * inside which were not processed yet (pending for move/delete). If anyone
2210 * tried to get the path to the dir items, it would get a path inside that
2211 * orphan directory.
2212 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2213 * of an unprocessed inode. If in that case the first ref would be
2214 * overwritten, the overwritten inode gets "orphanized". Later when we
2215 * process this overwritten inode, it is restored at a new place by moving
2216 * the orphan inode.
2218 * sctx->send_progress tells this function at which point in time receiving
2219 * would be.
2221 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2222 struct fs_path *dest)
2224 int ret = 0;
2225 struct fs_path *name = NULL;
2226 u64 parent_inode = 0;
2227 u64 parent_gen = 0;
2228 int stop = 0;
2230 name = fs_path_alloc();
2231 if (!name) {
2232 ret = -ENOMEM;
2233 goto out;
2236 dest->reversed = 1;
2237 fs_path_reset(dest);
2239 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2240 fs_path_reset(name);
2242 if (is_waiting_for_rm(sctx, ino)) {
2243 ret = gen_unique_name(sctx, ino, gen, name);
2244 if (ret < 0)
2245 goto out;
2246 ret = fs_path_add_path(dest, name);
2247 break;
2250 if (is_waiting_for_move(sctx, ino)) {
2251 ret = get_first_ref(sctx->parent_root, ino,
2252 &parent_inode, &parent_gen, name);
2253 } else {
2254 ret = __get_cur_name_and_parent(sctx, ino, gen,
2255 &parent_inode,
2256 &parent_gen, name);
2257 if (ret)
2258 stop = 1;
2261 if (ret < 0)
2262 goto out;
2264 ret = fs_path_add_path(dest, name);
2265 if (ret < 0)
2266 goto out;
2268 ino = parent_inode;
2269 gen = parent_gen;
2272 out:
2273 fs_path_free(name);
2274 if (!ret)
2275 fs_path_unreverse(dest);
2276 return ret;
2280 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2282 static int send_subvol_begin(struct send_ctx *sctx)
2284 int ret;
2285 struct btrfs_root *send_root = sctx->send_root;
2286 struct btrfs_root *parent_root = sctx->parent_root;
2287 struct btrfs_path *path;
2288 struct btrfs_key key;
2289 struct btrfs_root_ref *ref;
2290 struct extent_buffer *leaf;
2291 char *name = NULL;
2292 int namelen;
2294 path = btrfs_alloc_path();
2295 if (!path)
2296 return -ENOMEM;
2298 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2299 if (!name) {
2300 btrfs_free_path(path);
2301 return -ENOMEM;
2304 key.objectid = send_root->objectid;
2305 key.type = BTRFS_ROOT_BACKREF_KEY;
2306 key.offset = 0;
2308 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2309 &key, path, 1, 0);
2310 if (ret < 0)
2311 goto out;
2312 if (ret) {
2313 ret = -ENOENT;
2314 goto out;
2317 leaf = path->nodes[0];
2318 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2319 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2320 key.objectid != send_root->objectid) {
2321 ret = -ENOENT;
2322 goto out;
2324 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2325 namelen = btrfs_root_ref_name_len(leaf, ref);
2326 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2327 btrfs_release_path(path);
2329 if (parent_root) {
2330 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2331 if (ret < 0)
2332 goto out;
2333 } else {
2334 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2335 if (ret < 0)
2336 goto out;
2339 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2340 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2341 sctx->send_root->root_item.uuid);
2342 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2343 le64_to_cpu(sctx->send_root->root_item.ctransid));
2344 if (parent_root) {
2345 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2346 sctx->parent_root->root_item.uuid);
2347 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2348 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2351 ret = send_cmd(sctx);
2353 tlv_put_failure:
2354 out:
2355 btrfs_free_path(path);
2356 kfree(name);
2357 return ret;
2360 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2362 int ret = 0;
2363 struct fs_path *p;
2365 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2367 p = fs_path_alloc();
2368 if (!p)
2369 return -ENOMEM;
2371 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2372 if (ret < 0)
2373 goto out;
2375 ret = get_cur_path(sctx, ino, gen, p);
2376 if (ret < 0)
2377 goto out;
2378 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2379 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2381 ret = send_cmd(sctx);
2383 tlv_put_failure:
2384 out:
2385 fs_path_free(p);
2386 return ret;
2389 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2391 int ret = 0;
2392 struct fs_path *p;
2394 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2396 p = fs_path_alloc();
2397 if (!p)
2398 return -ENOMEM;
2400 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2401 if (ret < 0)
2402 goto out;
2404 ret = get_cur_path(sctx, ino, gen, p);
2405 if (ret < 0)
2406 goto out;
2407 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2410 ret = send_cmd(sctx);
2412 tlv_put_failure:
2413 out:
2414 fs_path_free(p);
2415 return ret;
2418 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2420 int ret = 0;
2421 struct fs_path *p;
2423 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2425 p = fs_path_alloc();
2426 if (!p)
2427 return -ENOMEM;
2429 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2430 if (ret < 0)
2431 goto out;
2433 ret = get_cur_path(sctx, ino, gen, p);
2434 if (ret < 0)
2435 goto out;
2436 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2437 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2438 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2440 ret = send_cmd(sctx);
2442 tlv_put_failure:
2443 out:
2444 fs_path_free(p);
2445 return ret;
2448 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2450 int ret = 0;
2451 struct fs_path *p = NULL;
2452 struct btrfs_inode_item *ii;
2453 struct btrfs_path *path = NULL;
2454 struct extent_buffer *eb;
2455 struct btrfs_key key;
2456 int slot;
2458 verbose_printk("btrfs: send_utimes %llu\n", ino);
2460 p = fs_path_alloc();
2461 if (!p)
2462 return -ENOMEM;
2464 path = alloc_path_for_send();
2465 if (!path) {
2466 ret = -ENOMEM;
2467 goto out;
2470 key.objectid = ino;
2471 key.type = BTRFS_INODE_ITEM_KEY;
2472 key.offset = 0;
2473 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2474 if (ret < 0)
2475 goto out;
2477 eb = path->nodes[0];
2478 slot = path->slots[0];
2479 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2481 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2482 if (ret < 0)
2483 goto out;
2485 ret = get_cur_path(sctx, ino, gen, p);
2486 if (ret < 0)
2487 goto out;
2488 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2490 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2491 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2492 /* TODO Add otime support when the otime patches get into upstream */
2494 ret = send_cmd(sctx);
2496 tlv_put_failure:
2497 out:
2498 fs_path_free(p);
2499 btrfs_free_path(path);
2500 return ret;
2504 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2505 * a valid path yet because we did not process the refs yet. So, the inode
2506 * is created as orphan.
2508 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2510 int ret = 0;
2511 struct fs_path *p;
2512 int cmd;
2513 u64 gen;
2514 u64 mode;
2515 u64 rdev;
2517 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2519 p = fs_path_alloc();
2520 if (!p)
2521 return -ENOMEM;
2523 if (ino != sctx->cur_ino) {
2524 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2525 NULL, NULL, &rdev);
2526 if (ret < 0)
2527 goto out;
2528 } else {
2529 gen = sctx->cur_inode_gen;
2530 mode = sctx->cur_inode_mode;
2531 rdev = sctx->cur_inode_rdev;
2534 if (S_ISREG(mode)) {
2535 cmd = BTRFS_SEND_C_MKFILE;
2536 } else if (S_ISDIR(mode)) {
2537 cmd = BTRFS_SEND_C_MKDIR;
2538 } else if (S_ISLNK(mode)) {
2539 cmd = BTRFS_SEND_C_SYMLINK;
2540 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2541 cmd = BTRFS_SEND_C_MKNOD;
2542 } else if (S_ISFIFO(mode)) {
2543 cmd = BTRFS_SEND_C_MKFIFO;
2544 } else if (S_ISSOCK(mode)) {
2545 cmd = BTRFS_SEND_C_MKSOCK;
2546 } else {
2547 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2548 (int)(mode & S_IFMT));
2549 ret = -ENOTSUPP;
2550 goto out;
2553 ret = begin_cmd(sctx, cmd);
2554 if (ret < 0)
2555 goto out;
2557 ret = gen_unique_name(sctx, ino, gen, p);
2558 if (ret < 0)
2559 goto out;
2561 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2562 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2564 if (S_ISLNK(mode)) {
2565 fs_path_reset(p);
2566 ret = read_symlink(sctx->send_root, ino, p);
2567 if (ret < 0)
2568 goto out;
2569 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2570 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2571 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2572 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2573 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2576 ret = send_cmd(sctx);
2577 if (ret < 0)
2578 goto out;
2581 tlv_put_failure:
2582 out:
2583 fs_path_free(p);
2584 return ret;
2588 * We need some special handling for inodes that get processed before the parent
2589 * directory got created. See process_recorded_refs for details.
2590 * This function does the check if we already created the dir out of order.
2592 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2594 int ret = 0;
2595 struct btrfs_path *path = NULL;
2596 struct btrfs_key key;
2597 struct btrfs_key found_key;
2598 struct btrfs_key di_key;
2599 struct extent_buffer *eb;
2600 struct btrfs_dir_item *di;
2601 int slot;
2603 path = alloc_path_for_send();
2604 if (!path) {
2605 ret = -ENOMEM;
2606 goto out;
2609 key.objectid = dir;
2610 key.type = BTRFS_DIR_INDEX_KEY;
2611 key.offset = 0;
2612 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2613 if (ret < 0)
2614 goto out;
2616 while (1) {
2617 eb = path->nodes[0];
2618 slot = path->slots[0];
2619 if (slot >= btrfs_header_nritems(eb)) {
2620 ret = btrfs_next_leaf(sctx->send_root, path);
2621 if (ret < 0) {
2622 goto out;
2623 } else if (ret > 0) {
2624 ret = 0;
2625 break;
2627 continue;
2630 btrfs_item_key_to_cpu(eb, &found_key, slot);
2631 if (found_key.objectid != key.objectid ||
2632 found_key.type != key.type) {
2633 ret = 0;
2634 goto out;
2637 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2638 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2640 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2641 di_key.objectid < sctx->send_progress) {
2642 ret = 1;
2643 goto out;
2646 path->slots[0]++;
2649 out:
2650 btrfs_free_path(path);
2651 return ret;
2655 * Only creates the inode if it is:
2656 * 1. Not a directory
2657 * 2. Or a directory which was not created already due to out of order
2658 * directories. See did_create_dir and process_recorded_refs for details.
2660 static int send_create_inode_if_needed(struct send_ctx *sctx)
2662 int ret;
2664 if (S_ISDIR(sctx->cur_inode_mode)) {
2665 ret = did_create_dir(sctx, sctx->cur_ino);
2666 if (ret < 0)
2667 goto out;
2668 if (ret) {
2669 ret = 0;
2670 goto out;
2674 ret = send_create_inode(sctx, sctx->cur_ino);
2675 if (ret < 0)
2676 goto out;
2678 out:
2679 return ret;
2682 struct recorded_ref {
2683 struct list_head list;
2684 char *dir_path;
2685 char *name;
2686 struct fs_path *full_path;
2687 u64 dir;
2688 u64 dir_gen;
2689 int dir_path_len;
2690 int name_len;
2694 * We need to process new refs before deleted refs, but compare_tree gives us
2695 * everything mixed. So we first record all refs and later process them.
2696 * This function is a helper to record one ref.
2698 static int __record_ref(struct list_head *head, u64 dir,
2699 u64 dir_gen, struct fs_path *path)
2701 struct recorded_ref *ref;
2703 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2704 if (!ref)
2705 return -ENOMEM;
2707 ref->dir = dir;
2708 ref->dir_gen = dir_gen;
2709 ref->full_path = path;
2711 ref->name = (char *)kbasename(ref->full_path->start);
2712 ref->name_len = ref->full_path->end - ref->name;
2713 ref->dir_path = ref->full_path->start;
2714 if (ref->name == ref->full_path->start)
2715 ref->dir_path_len = 0;
2716 else
2717 ref->dir_path_len = ref->full_path->end -
2718 ref->full_path->start - 1 - ref->name_len;
2720 list_add_tail(&ref->list, head);
2721 return 0;
2724 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2726 struct recorded_ref *new;
2728 new = kmalloc(sizeof(*ref), GFP_NOFS);
2729 if (!new)
2730 return -ENOMEM;
2732 new->dir = ref->dir;
2733 new->dir_gen = ref->dir_gen;
2734 new->full_path = NULL;
2735 INIT_LIST_HEAD(&new->list);
2736 list_add_tail(&new->list, list);
2737 return 0;
2740 static void __free_recorded_refs(struct list_head *head)
2742 struct recorded_ref *cur;
2744 while (!list_empty(head)) {
2745 cur = list_entry(head->next, struct recorded_ref, list);
2746 fs_path_free(cur->full_path);
2747 list_del(&cur->list);
2748 kfree(cur);
2752 static void free_recorded_refs(struct send_ctx *sctx)
2754 __free_recorded_refs(&sctx->new_refs);
2755 __free_recorded_refs(&sctx->deleted_refs);
2759 * Renames/moves a file/dir to its orphan name. Used when the first
2760 * ref of an unprocessed inode gets overwritten and for all non empty
2761 * directories.
2763 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2764 struct fs_path *path)
2766 int ret;
2767 struct fs_path *orphan;
2769 orphan = fs_path_alloc();
2770 if (!orphan)
2771 return -ENOMEM;
2773 ret = gen_unique_name(sctx, ino, gen, orphan);
2774 if (ret < 0)
2775 goto out;
2777 ret = send_rename(sctx, path, orphan);
2779 out:
2780 fs_path_free(orphan);
2781 return ret;
2784 static struct orphan_dir_info *
2785 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2787 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2788 struct rb_node *parent = NULL;
2789 struct orphan_dir_info *entry, *odi;
2791 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2792 if (!odi)
2793 return ERR_PTR(-ENOMEM);
2794 odi->ino = dir_ino;
2795 odi->gen = 0;
2797 while (*p) {
2798 parent = *p;
2799 entry = rb_entry(parent, struct orphan_dir_info, node);
2800 if (dir_ino < entry->ino) {
2801 p = &(*p)->rb_left;
2802 } else if (dir_ino > entry->ino) {
2803 p = &(*p)->rb_right;
2804 } else {
2805 kfree(odi);
2806 return entry;
2810 rb_link_node(&odi->node, parent, p);
2811 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2812 return odi;
2815 static struct orphan_dir_info *
2816 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2818 struct rb_node *n = sctx->orphan_dirs.rb_node;
2819 struct orphan_dir_info *entry;
2821 while (n) {
2822 entry = rb_entry(n, struct orphan_dir_info, node);
2823 if (dir_ino < entry->ino)
2824 n = n->rb_left;
2825 else if (dir_ino > entry->ino)
2826 n = n->rb_right;
2827 else
2828 return entry;
2830 return NULL;
2833 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2835 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2837 return odi != NULL;
2840 static void free_orphan_dir_info(struct send_ctx *sctx,
2841 struct orphan_dir_info *odi)
2843 if (!odi)
2844 return;
2845 rb_erase(&odi->node, &sctx->orphan_dirs);
2846 kfree(odi);
2850 * Returns 1 if a directory can be removed at this point in time.
2851 * We check this by iterating all dir items and checking if the inode behind
2852 * the dir item was already processed.
2854 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2855 u64 send_progress)
2857 int ret = 0;
2858 struct btrfs_root *root = sctx->parent_root;
2859 struct btrfs_path *path;
2860 struct btrfs_key key;
2861 struct btrfs_key found_key;
2862 struct btrfs_key loc;
2863 struct btrfs_dir_item *di;
2866 * Don't try to rmdir the top/root subvolume dir.
2868 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2869 return 0;
2871 path = alloc_path_for_send();
2872 if (!path)
2873 return -ENOMEM;
2875 key.objectid = dir;
2876 key.type = BTRFS_DIR_INDEX_KEY;
2877 key.offset = 0;
2878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2879 if (ret < 0)
2880 goto out;
2882 while (1) {
2883 struct waiting_dir_move *dm;
2885 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2886 ret = btrfs_next_leaf(root, path);
2887 if (ret < 0)
2888 goto out;
2889 else if (ret > 0)
2890 break;
2891 continue;
2893 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2894 path->slots[0]);
2895 if (found_key.objectid != key.objectid ||
2896 found_key.type != key.type)
2897 break;
2899 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2900 struct btrfs_dir_item);
2901 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2903 dm = get_waiting_dir_move(sctx, loc.objectid);
2904 if (dm) {
2905 struct orphan_dir_info *odi;
2907 odi = add_orphan_dir_info(sctx, dir);
2908 if (IS_ERR(odi)) {
2909 ret = PTR_ERR(odi);
2910 goto out;
2912 odi->gen = dir_gen;
2913 dm->rmdir_ino = dir;
2914 ret = 0;
2915 goto out;
2918 if (loc.objectid > send_progress) {
2919 ret = 0;
2920 goto out;
2923 path->slots[0]++;
2926 ret = 1;
2928 out:
2929 btrfs_free_path(path);
2930 return ret;
2933 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2935 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2937 return entry != NULL;
2940 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2942 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2943 struct rb_node *parent = NULL;
2944 struct waiting_dir_move *entry, *dm;
2946 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2947 if (!dm)
2948 return -ENOMEM;
2949 dm->ino = ino;
2950 dm->rmdir_ino = 0;
2952 while (*p) {
2953 parent = *p;
2954 entry = rb_entry(parent, struct waiting_dir_move, node);
2955 if (ino < entry->ino) {
2956 p = &(*p)->rb_left;
2957 } else if (ino > entry->ino) {
2958 p = &(*p)->rb_right;
2959 } else {
2960 kfree(dm);
2961 return -EEXIST;
2965 rb_link_node(&dm->node, parent, p);
2966 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2967 return 0;
2970 static struct waiting_dir_move *
2971 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2973 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2974 struct waiting_dir_move *entry;
2976 while (n) {
2977 entry = rb_entry(n, struct waiting_dir_move, node);
2978 if (ino < entry->ino)
2979 n = n->rb_left;
2980 else if (ino > entry->ino)
2981 n = n->rb_right;
2982 else
2983 return entry;
2985 return NULL;
2988 static void free_waiting_dir_move(struct send_ctx *sctx,
2989 struct waiting_dir_move *dm)
2991 if (!dm)
2992 return;
2993 rb_erase(&dm->node, &sctx->waiting_dir_moves);
2994 kfree(dm);
2997 static int add_pending_dir_move(struct send_ctx *sctx,
2998 u64 ino,
2999 u64 ino_gen,
3000 u64 parent_ino,
3001 struct list_head *new_refs,
3002 struct list_head *deleted_refs,
3003 const bool is_orphan)
3005 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3006 struct rb_node *parent = NULL;
3007 struct pending_dir_move *entry = NULL, *pm;
3008 struct recorded_ref *cur;
3009 int exists = 0;
3010 int ret;
3012 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3013 if (!pm)
3014 return -ENOMEM;
3015 pm->parent_ino = parent_ino;
3016 pm->ino = ino;
3017 pm->gen = ino_gen;
3018 pm->is_orphan = is_orphan;
3019 INIT_LIST_HEAD(&pm->list);
3020 INIT_LIST_HEAD(&pm->update_refs);
3021 RB_CLEAR_NODE(&pm->node);
3023 while (*p) {
3024 parent = *p;
3025 entry = rb_entry(parent, struct pending_dir_move, node);
3026 if (parent_ino < entry->parent_ino) {
3027 p = &(*p)->rb_left;
3028 } else if (parent_ino > entry->parent_ino) {
3029 p = &(*p)->rb_right;
3030 } else {
3031 exists = 1;
3032 break;
3036 list_for_each_entry(cur, deleted_refs, list) {
3037 ret = dup_ref(cur, &pm->update_refs);
3038 if (ret < 0)
3039 goto out;
3041 list_for_each_entry(cur, new_refs, list) {
3042 ret = dup_ref(cur, &pm->update_refs);
3043 if (ret < 0)
3044 goto out;
3047 ret = add_waiting_dir_move(sctx, pm->ino);
3048 if (ret)
3049 goto out;
3051 if (exists) {
3052 list_add_tail(&pm->list, &entry->list);
3053 } else {
3054 rb_link_node(&pm->node, parent, p);
3055 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3057 ret = 0;
3058 out:
3059 if (ret) {
3060 __free_recorded_refs(&pm->update_refs);
3061 kfree(pm);
3063 return ret;
3066 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3067 u64 parent_ino)
3069 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3070 struct pending_dir_move *entry;
3072 while (n) {
3073 entry = rb_entry(n, struct pending_dir_move, node);
3074 if (parent_ino < entry->parent_ino)
3075 n = n->rb_left;
3076 else if (parent_ino > entry->parent_ino)
3077 n = n->rb_right;
3078 else
3079 return entry;
3081 return NULL;
3084 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3086 struct fs_path *from_path = NULL;
3087 struct fs_path *to_path = NULL;
3088 struct fs_path *name = NULL;
3089 u64 orig_progress = sctx->send_progress;
3090 struct recorded_ref *cur;
3091 u64 parent_ino, parent_gen;
3092 struct waiting_dir_move *dm = NULL;
3093 u64 rmdir_ino = 0;
3094 int ret;
3096 name = fs_path_alloc();
3097 from_path = fs_path_alloc();
3098 if (!name || !from_path) {
3099 ret = -ENOMEM;
3100 goto out;
3103 dm = get_waiting_dir_move(sctx, pm->ino);
3104 ASSERT(dm);
3105 rmdir_ino = dm->rmdir_ino;
3106 free_waiting_dir_move(sctx, dm);
3108 if (pm->is_orphan) {
3109 ret = gen_unique_name(sctx, pm->ino,
3110 pm->gen, from_path);
3111 } else {
3112 ret = get_first_ref(sctx->parent_root, pm->ino,
3113 &parent_ino, &parent_gen, name);
3114 if (ret < 0)
3115 goto out;
3116 ret = get_cur_path(sctx, parent_ino, parent_gen,
3117 from_path);
3118 if (ret < 0)
3119 goto out;
3120 ret = fs_path_add_path(from_path, name);
3122 if (ret < 0)
3123 goto out;
3125 sctx->send_progress = sctx->cur_ino + 1;
3126 fs_path_reset(name);
3127 to_path = name;
3128 name = NULL;
3129 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3130 if (ret < 0)
3131 goto out;
3133 ret = send_rename(sctx, from_path, to_path);
3134 if (ret < 0)
3135 goto out;
3137 if (rmdir_ino) {
3138 struct orphan_dir_info *odi;
3140 odi = get_orphan_dir_info(sctx, rmdir_ino);
3141 if (!odi) {
3142 /* already deleted */
3143 goto finish;
3145 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3146 if (ret < 0)
3147 goto out;
3148 if (!ret)
3149 goto finish;
3151 name = fs_path_alloc();
3152 if (!name) {
3153 ret = -ENOMEM;
3154 goto out;
3156 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3157 if (ret < 0)
3158 goto out;
3159 ret = send_rmdir(sctx, name);
3160 if (ret < 0)
3161 goto out;
3162 free_orphan_dir_info(sctx, odi);
3165 finish:
3166 ret = send_utimes(sctx, pm->ino, pm->gen);
3167 if (ret < 0)
3168 goto out;
3171 * After rename/move, need to update the utimes of both new parent(s)
3172 * and old parent(s).
3174 list_for_each_entry(cur, &pm->update_refs, list) {
3175 if (cur->dir == rmdir_ino)
3176 continue;
3177 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3178 if (ret < 0)
3179 goto out;
3182 out:
3183 fs_path_free(name);
3184 fs_path_free(from_path);
3185 fs_path_free(to_path);
3186 sctx->send_progress = orig_progress;
3188 return ret;
3191 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3193 if (!list_empty(&m->list))
3194 list_del(&m->list);
3195 if (!RB_EMPTY_NODE(&m->node))
3196 rb_erase(&m->node, &sctx->pending_dir_moves);
3197 __free_recorded_refs(&m->update_refs);
3198 kfree(m);
3201 static void tail_append_pending_moves(struct pending_dir_move *moves,
3202 struct list_head *stack)
3204 if (list_empty(&moves->list)) {
3205 list_add_tail(&moves->list, stack);
3206 } else {
3207 LIST_HEAD(list);
3208 list_splice_init(&moves->list, &list);
3209 list_add_tail(&moves->list, stack);
3210 list_splice_tail(&list, stack);
3214 static int apply_children_dir_moves(struct send_ctx *sctx)
3216 struct pending_dir_move *pm;
3217 struct list_head stack;
3218 u64 parent_ino = sctx->cur_ino;
3219 int ret = 0;
3221 pm = get_pending_dir_moves(sctx, parent_ino);
3222 if (!pm)
3223 return 0;
3225 INIT_LIST_HEAD(&stack);
3226 tail_append_pending_moves(pm, &stack);
3228 while (!list_empty(&stack)) {
3229 pm = list_first_entry(&stack, struct pending_dir_move, list);
3230 parent_ino = pm->ino;
3231 ret = apply_dir_move(sctx, pm);
3232 free_pending_move(sctx, pm);
3233 if (ret)
3234 goto out;
3235 pm = get_pending_dir_moves(sctx, parent_ino);
3236 if (pm)
3237 tail_append_pending_moves(pm, &stack);
3239 return 0;
3241 out:
3242 while (!list_empty(&stack)) {
3243 pm = list_first_entry(&stack, struct pending_dir_move, list);
3244 free_pending_move(sctx, pm);
3246 return ret;
3250 * We might need to delay a directory rename even when no ancestor directory
3251 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3252 * renamed. This happens when we rename a directory to the old name (the name
3253 * in the parent root) of some other unrelated directory that got its rename
3254 * delayed due to some ancestor with higher number that got renamed.
3256 * Example:
3258 * Parent snapshot:
3259 * . (ino 256)
3260 * |---- a/ (ino 257)
3261 * | |---- file (ino 260)
3263 * |---- b/ (ino 258)
3264 * |---- c/ (ino 259)
3266 * Send snapshot:
3267 * . (ino 256)
3268 * |---- a/ (ino 258)
3269 * |---- x/ (ino 259)
3270 * |---- y/ (ino 257)
3271 * |----- file (ino 260)
3273 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3274 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3275 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3276 * must issue is:
3278 * 1 - rename 259 from 'c' to 'x'
3279 * 2 - rename 257 from 'a' to 'x/y'
3280 * 3 - rename 258 from 'b' to 'a'
3282 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3283 * be done right away and < 0 on error.
3285 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3286 struct recorded_ref *parent_ref,
3287 const bool is_orphan)
3289 struct btrfs_path *path;
3290 struct btrfs_key key;
3291 struct btrfs_key di_key;
3292 struct btrfs_dir_item *di;
3293 u64 left_gen;
3294 u64 right_gen;
3295 int ret = 0;
3297 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3298 return 0;
3300 path = alloc_path_for_send();
3301 if (!path)
3302 return -ENOMEM;
3304 key.objectid = parent_ref->dir;
3305 key.type = BTRFS_DIR_ITEM_KEY;
3306 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3308 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3309 if (ret < 0) {
3310 goto out;
3311 } else if (ret > 0) {
3312 ret = 0;
3313 goto out;
3316 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3317 parent_ref->name, parent_ref->name_len);
3318 if (!di) {
3319 ret = 0;
3320 goto out;
3323 * di_key.objectid has the number of the inode that has a dentry in the
3324 * parent directory with the same name that sctx->cur_ino is being
3325 * renamed to. We need to check if that inode is in the send root as
3326 * well and if it is currently marked as an inode with a pending rename,
3327 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3328 * that it happens after that other inode is renamed.
3330 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3331 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3332 ret = 0;
3333 goto out;
3336 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3337 &left_gen, NULL, NULL, NULL, NULL);
3338 if (ret < 0)
3339 goto out;
3340 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3341 &right_gen, NULL, NULL, NULL, NULL);
3342 if (ret < 0) {
3343 if (ret == -ENOENT)
3344 ret = 0;
3345 goto out;
3348 /* Different inode, no need to delay the rename of sctx->cur_ino */
3349 if (right_gen != left_gen) {
3350 ret = 0;
3351 goto out;
3354 if (is_waiting_for_move(sctx, di_key.objectid)) {
3355 ret = add_pending_dir_move(sctx,
3356 sctx->cur_ino,
3357 sctx->cur_inode_gen,
3358 di_key.objectid,
3359 &sctx->new_refs,
3360 &sctx->deleted_refs,
3361 is_orphan);
3362 if (!ret)
3363 ret = 1;
3365 out:
3366 btrfs_free_path(path);
3367 return ret;
3370 static int wait_for_parent_move(struct send_ctx *sctx,
3371 struct recorded_ref *parent_ref)
3373 int ret = 0;
3374 u64 ino = parent_ref->dir;
3375 u64 parent_ino_before, parent_ino_after;
3376 struct fs_path *path_before = NULL;
3377 struct fs_path *path_after = NULL;
3378 int len1, len2;
3380 path_after = fs_path_alloc();
3381 path_before = fs_path_alloc();
3382 if (!path_after || !path_before) {
3383 ret = -ENOMEM;
3384 goto out;
3388 * Our current directory inode may not yet be renamed/moved because some
3389 * ancestor (immediate or not) has to be renamed/moved first. So find if
3390 * such ancestor exists and make sure our own rename/move happens after
3391 * that ancestor is processed.
3393 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3394 if (is_waiting_for_move(sctx, ino)) {
3395 ret = 1;
3396 break;
3399 fs_path_reset(path_before);
3400 fs_path_reset(path_after);
3402 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3403 NULL, path_after);
3404 if (ret < 0)
3405 goto out;
3406 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3407 NULL, path_before);
3408 if (ret < 0 && ret != -ENOENT) {
3409 goto out;
3410 } else if (ret == -ENOENT) {
3411 ret = 0;
3412 break;
3415 len1 = fs_path_len(path_before);
3416 len2 = fs_path_len(path_after);
3417 if (ino > sctx->cur_ino &&
3418 (parent_ino_before != parent_ino_after || len1 != len2 ||
3419 memcmp(path_before->start, path_after->start, len1))) {
3420 ret = 1;
3421 break;
3423 ino = parent_ino_after;
3426 out:
3427 fs_path_free(path_before);
3428 fs_path_free(path_after);
3430 if (ret == 1) {
3431 ret = add_pending_dir_move(sctx,
3432 sctx->cur_ino,
3433 sctx->cur_inode_gen,
3434 ino,
3435 &sctx->new_refs,
3436 &sctx->deleted_refs,
3437 false);
3438 if (!ret)
3439 ret = 1;
3442 return ret;
3446 * This does all the move/link/unlink/rmdir magic.
3448 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3450 int ret = 0;
3451 struct recorded_ref *cur;
3452 struct recorded_ref *cur2;
3453 struct list_head check_dirs;
3454 struct fs_path *valid_path = NULL;
3455 u64 ow_inode = 0;
3456 u64 ow_gen;
3457 int did_overwrite = 0;
3458 int is_orphan = 0;
3459 u64 last_dir_ino_rm = 0;
3460 bool can_rename = true;
3462 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3465 * This should never happen as the root dir always has the same ref
3466 * which is always '..'
3468 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3469 INIT_LIST_HEAD(&check_dirs);
3471 valid_path = fs_path_alloc();
3472 if (!valid_path) {
3473 ret = -ENOMEM;
3474 goto out;
3478 * First, check if the first ref of the current inode was overwritten
3479 * before. If yes, we know that the current inode was already orphanized
3480 * and thus use the orphan name. If not, we can use get_cur_path to
3481 * get the path of the first ref as it would like while receiving at
3482 * this point in time.
3483 * New inodes are always orphan at the beginning, so force to use the
3484 * orphan name in this case.
3485 * The first ref is stored in valid_path and will be updated if it
3486 * gets moved around.
3488 if (!sctx->cur_inode_new) {
3489 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3490 sctx->cur_inode_gen);
3491 if (ret < 0)
3492 goto out;
3493 if (ret)
3494 did_overwrite = 1;
3496 if (sctx->cur_inode_new || did_overwrite) {
3497 ret = gen_unique_name(sctx, sctx->cur_ino,
3498 sctx->cur_inode_gen, valid_path);
3499 if (ret < 0)
3500 goto out;
3501 is_orphan = 1;
3502 } else {
3503 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3504 valid_path);
3505 if (ret < 0)
3506 goto out;
3509 list_for_each_entry(cur, &sctx->new_refs, list) {
3511 * We may have refs where the parent directory does not exist
3512 * yet. This happens if the parent directories inum is higher
3513 * the the current inum. To handle this case, we create the
3514 * parent directory out of order. But we need to check if this
3515 * did already happen before due to other refs in the same dir.
3517 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3518 if (ret < 0)
3519 goto out;
3520 if (ret == inode_state_will_create) {
3521 ret = 0;
3523 * First check if any of the current inodes refs did
3524 * already create the dir.
3526 list_for_each_entry(cur2, &sctx->new_refs, list) {
3527 if (cur == cur2)
3528 break;
3529 if (cur2->dir == cur->dir) {
3530 ret = 1;
3531 break;
3536 * If that did not happen, check if a previous inode
3537 * did already create the dir.
3539 if (!ret)
3540 ret = did_create_dir(sctx, cur->dir);
3541 if (ret < 0)
3542 goto out;
3543 if (!ret) {
3544 ret = send_create_inode(sctx, cur->dir);
3545 if (ret < 0)
3546 goto out;
3551 * Check if this new ref would overwrite the first ref of
3552 * another unprocessed inode. If yes, orphanize the
3553 * overwritten inode. If we find an overwritten ref that is
3554 * not the first ref, simply unlink it.
3556 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3557 cur->name, cur->name_len,
3558 &ow_inode, &ow_gen);
3559 if (ret < 0)
3560 goto out;
3561 if (ret) {
3562 ret = is_first_ref(sctx->parent_root,
3563 ow_inode, cur->dir, cur->name,
3564 cur->name_len);
3565 if (ret < 0)
3566 goto out;
3567 if (ret) {
3568 struct name_cache_entry *nce;
3570 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3571 cur->full_path);
3572 if (ret < 0)
3573 goto out;
3575 * Make sure we clear our orphanized inode's
3576 * name from the name cache. This is because the
3577 * inode ow_inode might be an ancestor of some
3578 * other inode that will be orphanized as well
3579 * later and has an inode number greater than
3580 * sctx->send_progress. We need to prevent
3581 * future name lookups from using the old name
3582 * and get instead the orphan name.
3584 nce = name_cache_search(sctx, ow_inode, ow_gen);
3585 if (nce) {
3586 name_cache_delete(sctx, nce);
3587 kfree(nce);
3589 } else {
3590 ret = send_unlink(sctx, cur->full_path);
3591 if (ret < 0)
3592 goto out;
3596 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3597 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3598 if (ret < 0)
3599 goto out;
3600 if (ret == 1) {
3601 can_rename = false;
3602 *pending_move = 1;
3607 * link/move the ref to the new place. If we have an orphan
3608 * inode, move it and update valid_path. If not, link or move
3609 * it depending on the inode mode.
3611 if (is_orphan && can_rename) {
3612 ret = send_rename(sctx, valid_path, cur->full_path);
3613 if (ret < 0)
3614 goto out;
3615 is_orphan = 0;
3616 ret = fs_path_copy(valid_path, cur->full_path);
3617 if (ret < 0)
3618 goto out;
3619 } else if (can_rename) {
3620 if (S_ISDIR(sctx->cur_inode_mode)) {
3622 * Dirs can't be linked, so move it. For moved
3623 * dirs, we always have one new and one deleted
3624 * ref. The deleted ref is ignored later.
3626 ret = wait_for_parent_move(sctx, cur);
3627 if (ret < 0)
3628 goto out;
3629 if (ret) {
3630 *pending_move = 1;
3631 } else {
3632 ret = send_rename(sctx, valid_path,
3633 cur->full_path);
3634 if (!ret)
3635 ret = fs_path_copy(valid_path,
3636 cur->full_path);
3638 if (ret < 0)
3639 goto out;
3640 } else {
3641 ret = send_link(sctx, cur->full_path,
3642 valid_path);
3643 if (ret < 0)
3644 goto out;
3647 ret = dup_ref(cur, &check_dirs);
3648 if (ret < 0)
3649 goto out;
3652 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3654 * Check if we can already rmdir the directory. If not,
3655 * orphanize it. For every dir item inside that gets deleted
3656 * later, we do this check again and rmdir it then if possible.
3657 * See the use of check_dirs for more details.
3659 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3660 sctx->cur_ino);
3661 if (ret < 0)
3662 goto out;
3663 if (ret) {
3664 ret = send_rmdir(sctx, valid_path);
3665 if (ret < 0)
3666 goto out;
3667 } else if (!is_orphan) {
3668 ret = orphanize_inode(sctx, sctx->cur_ino,
3669 sctx->cur_inode_gen, valid_path);
3670 if (ret < 0)
3671 goto out;
3672 is_orphan = 1;
3675 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3676 ret = dup_ref(cur, &check_dirs);
3677 if (ret < 0)
3678 goto out;
3680 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3681 !list_empty(&sctx->deleted_refs)) {
3683 * We have a moved dir. Add the old parent to check_dirs
3685 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3686 list);
3687 ret = dup_ref(cur, &check_dirs);
3688 if (ret < 0)
3689 goto out;
3690 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3692 * We have a non dir inode. Go through all deleted refs and
3693 * unlink them if they were not already overwritten by other
3694 * inodes.
3696 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3697 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3698 sctx->cur_ino, sctx->cur_inode_gen,
3699 cur->name, cur->name_len);
3700 if (ret < 0)
3701 goto out;
3702 if (!ret) {
3703 ret = send_unlink(sctx, cur->full_path);
3704 if (ret < 0)
3705 goto out;
3707 ret = dup_ref(cur, &check_dirs);
3708 if (ret < 0)
3709 goto out;
3712 * If the inode is still orphan, unlink the orphan. This may
3713 * happen when a previous inode did overwrite the first ref
3714 * of this inode and no new refs were added for the current
3715 * inode. Unlinking does not mean that the inode is deleted in
3716 * all cases. There may still be links to this inode in other
3717 * places.
3719 if (is_orphan) {
3720 ret = send_unlink(sctx, valid_path);
3721 if (ret < 0)
3722 goto out;
3727 * We did collect all parent dirs where cur_inode was once located. We
3728 * now go through all these dirs and check if they are pending for
3729 * deletion and if it's finally possible to perform the rmdir now.
3730 * We also update the inode stats of the parent dirs here.
3732 list_for_each_entry(cur, &check_dirs, list) {
3734 * In case we had refs into dirs that were not processed yet,
3735 * we don't need to do the utime and rmdir logic for these dirs.
3736 * The dir will be processed later.
3738 if (cur->dir > sctx->cur_ino)
3739 continue;
3741 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3742 if (ret < 0)
3743 goto out;
3745 if (ret == inode_state_did_create ||
3746 ret == inode_state_no_change) {
3747 /* TODO delayed utimes */
3748 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3749 if (ret < 0)
3750 goto out;
3751 } else if (ret == inode_state_did_delete &&
3752 cur->dir != last_dir_ino_rm) {
3753 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3754 sctx->cur_ino);
3755 if (ret < 0)
3756 goto out;
3757 if (ret) {
3758 ret = get_cur_path(sctx, cur->dir,
3759 cur->dir_gen, valid_path);
3760 if (ret < 0)
3761 goto out;
3762 ret = send_rmdir(sctx, valid_path);
3763 if (ret < 0)
3764 goto out;
3765 last_dir_ino_rm = cur->dir;
3770 ret = 0;
3772 out:
3773 __free_recorded_refs(&check_dirs);
3774 free_recorded_refs(sctx);
3775 fs_path_free(valid_path);
3776 return ret;
3779 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3780 struct fs_path *name, void *ctx, struct list_head *refs)
3782 int ret = 0;
3783 struct send_ctx *sctx = ctx;
3784 struct fs_path *p;
3785 u64 gen;
3787 p = fs_path_alloc();
3788 if (!p)
3789 return -ENOMEM;
3791 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3792 NULL, NULL);
3793 if (ret < 0)
3794 goto out;
3796 ret = get_cur_path(sctx, dir, gen, p);
3797 if (ret < 0)
3798 goto out;
3799 ret = fs_path_add_path(p, name);
3800 if (ret < 0)
3801 goto out;
3803 ret = __record_ref(refs, dir, gen, p);
3805 out:
3806 if (ret)
3807 fs_path_free(p);
3808 return ret;
3811 static int __record_new_ref(int num, u64 dir, int index,
3812 struct fs_path *name,
3813 void *ctx)
3815 struct send_ctx *sctx = ctx;
3816 return record_ref(sctx->send_root, num, dir, index, name,
3817 ctx, &sctx->new_refs);
3821 static int __record_deleted_ref(int num, u64 dir, int index,
3822 struct fs_path *name,
3823 void *ctx)
3825 struct send_ctx *sctx = ctx;
3826 return record_ref(sctx->parent_root, num, dir, index, name,
3827 ctx, &sctx->deleted_refs);
3830 static int record_new_ref(struct send_ctx *sctx)
3832 int ret;
3834 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3835 sctx->cmp_key, 0, __record_new_ref, sctx);
3836 if (ret < 0)
3837 goto out;
3838 ret = 0;
3840 out:
3841 return ret;
3844 static int record_deleted_ref(struct send_ctx *sctx)
3846 int ret;
3848 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3849 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3850 if (ret < 0)
3851 goto out;
3852 ret = 0;
3854 out:
3855 return ret;
3858 struct find_ref_ctx {
3859 u64 dir;
3860 u64 dir_gen;
3861 struct btrfs_root *root;
3862 struct fs_path *name;
3863 int found_idx;
3866 static int __find_iref(int num, u64 dir, int index,
3867 struct fs_path *name,
3868 void *ctx_)
3870 struct find_ref_ctx *ctx = ctx_;
3871 u64 dir_gen;
3872 int ret;
3874 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3875 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3877 * To avoid doing extra lookups we'll only do this if everything
3878 * else matches.
3880 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3881 NULL, NULL, NULL);
3882 if (ret)
3883 return ret;
3884 if (dir_gen != ctx->dir_gen)
3885 return 0;
3886 ctx->found_idx = num;
3887 return 1;
3889 return 0;
3892 static int find_iref(struct btrfs_root *root,
3893 struct btrfs_path *path,
3894 struct btrfs_key *key,
3895 u64 dir, u64 dir_gen, struct fs_path *name)
3897 int ret;
3898 struct find_ref_ctx ctx;
3900 ctx.dir = dir;
3901 ctx.name = name;
3902 ctx.dir_gen = dir_gen;
3903 ctx.found_idx = -1;
3904 ctx.root = root;
3906 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3907 if (ret < 0)
3908 return ret;
3910 if (ctx.found_idx == -1)
3911 return -ENOENT;
3913 return ctx.found_idx;
3916 static int __record_changed_new_ref(int num, u64 dir, int index,
3917 struct fs_path *name,
3918 void *ctx)
3920 u64 dir_gen;
3921 int ret;
3922 struct send_ctx *sctx = ctx;
3924 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3925 NULL, NULL, NULL);
3926 if (ret)
3927 return ret;
3929 ret = find_iref(sctx->parent_root, sctx->right_path,
3930 sctx->cmp_key, dir, dir_gen, name);
3931 if (ret == -ENOENT)
3932 ret = __record_new_ref(num, dir, index, name, sctx);
3933 else if (ret > 0)
3934 ret = 0;
3936 return ret;
3939 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3940 struct fs_path *name,
3941 void *ctx)
3943 u64 dir_gen;
3944 int ret;
3945 struct send_ctx *sctx = ctx;
3947 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3948 NULL, NULL, NULL);
3949 if (ret)
3950 return ret;
3952 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3953 dir, dir_gen, name);
3954 if (ret == -ENOENT)
3955 ret = __record_deleted_ref(num, dir, index, name, sctx);
3956 else if (ret > 0)
3957 ret = 0;
3959 return ret;
3962 static int record_changed_ref(struct send_ctx *sctx)
3964 int ret = 0;
3966 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3967 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3968 if (ret < 0)
3969 goto out;
3970 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3971 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3972 if (ret < 0)
3973 goto out;
3974 ret = 0;
3976 out:
3977 return ret;
3981 * Record and process all refs at once. Needed when an inode changes the
3982 * generation number, which means that it was deleted and recreated.
3984 static int process_all_refs(struct send_ctx *sctx,
3985 enum btrfs_compare_tree_result cmd)
3987 int ret;
3988 struct btrfs_root *root;
3989 struct btrfs_path *path;
3990 struct btrfs_key key;
3991 struct btrfs_key found_key;
3992 struct extent_buffer *eb;
3993 int slot;
3994 iterate_inode_ref_t cb;
3995 int pending_move = 0;
3997 path = alloc_path_for_send();
3998 if (!path)
3999 return -ENOMEM;
4001 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4002 root = sctx->send_root;
4003 cb = __record_new_ref;
4004 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4005 root = sctx->parent_root;
4006 cb = __record_deleted_ref;
4007 } else {
4008 btrfs_err(sctx->send_root->fs_info,
4009 "Wrong command %d in process_all_refs", cmd);
4010 ret = -EINVAL;
4011 goto out;
4014 key.objectid = sctx->cmp_key->objectid;
4015 key.type = BTRFS_INODE_REF_KEY;
4016 key.offset = 0;
4017 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4018 if (ret < 0)
4019 goto out;
4021 while (1) {
4022 eb = path->nodes[0];
4023 slot = path->slots[0];
4024 if (slot >= btrfs_header_nritems(eb)) {
4025 ret = btrfs_next_leaf(root, path);
4026 if (ret < 0)
4027 goto out;
4028 else if (ret > 0)
4029 break;
4030 continue;
4033 btrfs_item_key_to_cpu(eb, &found_key, slot);
4035 if (found_key.objectid != key.objectid ||
4036 (found_key.type != BTRFS_INODE_REF_KEY &&
4037 found_key.type != BTRFS_INODE_EXTREF_KEY))
4038 break;
4040 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4041 if (ret < 0)
4042 goto out;
4044 path->slots[0]++;
4046 btrfs_release_path(path);
4048 ret = process_recorded_refs(sctx, &pending_move);
4049 /* Only applicable to an incremental send. */
4050 ASSERT(pending_move == 0);
4052 out:
4053 btrfs_free_path(path);
4054 return ret;
4057 static int send_set_xattr(struct send_ctx *sctx,
4058 struct fs_path *path,
4059 const char *name, int name_len,
4060 const char *data, int data_len)
4062 int ret = 0;
4064 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4065 if (ret < 0)
4066 goto out;
4068 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4069 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4070 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4072 ret = send_cmd(sctx);
4074 tlv_put_failure:
4075 out:
4076 return ret;
4079 static int send_remove_xattr(struct send_ctx *sctx,
4080 struct fs_path *path,
4081 const char *name, int name_len)
4083 int ret = 0;
4085 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4086 if (ret < 0)
4087 goto out;
4089 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4090 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4092 ret = send_cmd(sctx);
4094 tlv_put_failure:
4095 out:
4096 return ret;
4099 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4100 const char *name, int name_len,
4101 const char *data, int data_len,
4102 u8 type, void *ctx)
4104 int ret;
4105 struct send_ctx *sctx = ctx;
4106 struct fs_path *p;
4107 posix_acl_xattr_header dummy_acl;
4109 p = fs_path_alloc();
4110 if (!p)
4111 return -ENOMEM;
4114 * This hack is needed because empty acl's are stored as zero byte
4115 * data in xattrs. Problem with that is, that receiving these zero byte
4116 * acl's will fail later. To fix this, we send a dummy acl list that
4117 * only contains the version number and no entries.
4119 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4120 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4121 if (data_len == 0) {
4122 dummy_acl.a_version =
4123 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4124 data = (char *)&dummy_acl;
4125 data_len = sizeof(dummy_acl);
4129 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4130 if (ret < 0)
4131 goto out;
4133 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4135 out:
4136 fs_path_free(p);
4137 return ret;
4140 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4141 const char *name, int name_len,
4142 const char *data, int data_len,
4143 u8 type, void *ctx)
4145 int ret;
4146 struct send_ctx *sctx = ctx;
4147 struct fs_path *p;
4149 p = fs_path_alloc();
4150 if (!p)
4151 return -ENOMEM;
4153 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4154 if (ret < 0)
4155 goto out;
4157 ret = send_remove_xattr(sctx, p, name, name_len);
4159 out:
4160 fs_path_free(p);
4161 return ret;
4164 static int process_new_xattr(struct send_ctx *sctx)
4166 int ret = 0;
4168 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4169 sctx->cmp_key, __process_new_xattr, sctx);
4171 return ret;
4174 static int process_deleted_xattr(struct send_ctx *sctx)
4176 int ret;
4178 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4179 sctx->cmp_key, __process_deleted_xattr, sctx);
4181 return ret;
4184 struct find_xattr_ctx {
4185 const char *name;
4186 int name_len;
4187 int found_idx;
4188 char *found_data;
4189 int found_data_len;
4192 static int __find_xattr(int num, struct btrfs_key *di_key,
4193 const char *name, int name_len,
4194 const char *data, int data_len,
4195 u8 type, void *vctx)
4197 struct find_xattr_ctx *ctx = vctx;
4199 if (name_len == ctx->name_len &&
4200 strncmp(name, ctx->name, name_len) == 0) {
4201 ctx->found_idx = num;
4202 ctx->found_data_len = data_len;
4203 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4204 if (!ctx->found_data)
4205 return -ENOMEM;
4206 return 1;
4208 return 0;
4211 static int find_xattr(struct btrfs_root *root,
4212 struct btrfs_path *path,
4213 struct btrfs_key *key,
4214 const char *name, int name_len,
4215 char **data, int *data_len)
4217 int ret;
4218 struct find_xattr_ctx ctx;
4220 ctx.name = name;
4221 ctx.name_len = name_len;
4222 ctx.found_idx = -1;
4223 ctx.found_data = NULL;
4224 ctx.found_data_len = 0;
4226 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4227 if (ret < 0)
4228 return ret;
4230 if (ctx.found_idx == -1)
4231 return -ENOENT;
4232 if (data) {
4233 *data = ctx.found_data;
4234 *data_len = ctx.found_data_len;
4235 } else {
4236 kfree(ctx.found_data);
4238 return ctx.found_idx;
4242 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4243 const char *name, int name_len,
4244 const char *data, int data_len,
4245 u8 type, void *ctx)
4247 int ret;
4248 struct send_ctx *sctx = ctx;
4249 char *found_data = NULL;
4250 int found_data_len = 0;
4252 ret = find_xattr(sctx->parent_root, sctx->right_path,
4253 sctx->cmp_key, name, name_len, &found_data,
4254 &found_data_len);
4255 if (ret == -ENOENT) {
4256 ret = __process_new_xattr(num, di_key, name, name_len, data,
4257 data_len, type, ctx);
4258 } else if (ret >= 0) {
4259 if (data_len != found_data_len ||
4260 memcmp(data, found_data, data_len)) {
4261 ret = __process_new_xattr(num, di_key, name, name_len,
4262 data, data_len, type, ctx);
4263 } else {
4264 ret = 0;
4268 kfree(found_data);
4269 return ret;
4272 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4273 const char *name, int name_len,
4274 const char *data, int data_len,
4275 u8 type, void *ctx)
4277 int ret;
4278 struct send_ctx *sctx = ctx;
4280 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4281 name, name_len, NULL, NULL);
4282 if (ret == -ENOENT)
4283 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4284 data_len, type, ctx);
4285 else if (ret >= 0)
4286 ret = 0;
4288 return ret;
4291 static int process_changed_xattr(struct send_ctx *sctx)
4293 int ret = 0;
4295 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4296 sctx->cmp_key, __process_changed_new_xattr, sctx);
4297 if (ret < 0)
4298 goto out;
4299 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4300 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4302 out:
4303 return ret;
4306 static int process_all_new_xattrs(struct send_ctx *sctx)
4308 int ret;
4309 struct btrfs_root *root;
4310 struct btrfs_path *path;
4311 struct btrfs_key key;
4312 struct btrfs_key found_key;
4313 struct extent_buffer *eb;
4314 int slot;
4316 path = alloc_path_for_send();
4317 if (!path)
4318 return -ENOMEM;
4320 root = sctx->send_root;
4322 key.objectid = sctx->cmp_key->objectid;
4323 key.type = BTRFS_XATTR_ITEM_KEY;
4324 key.offset = 0;
4325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4326 if (ret < 0)
4327 goto out;
4329 while (1) {
4330 eb = path->nodes[0];
4331 slot = path->slots[0];
4332 if (slot >= btrfs_header_nritems(eb)) {
4333 ret = btrfs_next_leaf(root, path);
4334 if (ret < 0) {
4335 goto out;
4336 } else if (ret > 0) {
4337 ret = 0;
4338 break;
4340 continue;
4343 btrfs_item_key_to_cpu(eb, &found_key, slot);
4344 if (found_key.objectid != key.objectid ||
4345 found_key.type != key.type) {
4346 ret = 0;
4347 goto out;
4350 ret = iterate_dir_item(root, path, &found_key,
4351 __process_new_xattr, sctx);
4352 if (ret < 0)
4353 goto out;
4355 path->slots[0]++;
4358 out:
4359 btrfs_free_path(path);
4360 return ret;
4363 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4365 struct btrfs_root *root = sctx->send_root;
4366 struct btrfs_fs_info *fs_info = root->fs_info;
4367 struct inode *inode;
4368 struct page *page;
4369 char *addr;
4370 struct btrfs_key key;
4371 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4372 pgoff_t last_index;
4373 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4374 ssize_t ret = 0;
4376 key.objectid = sctx->cur_ino;
4377 key.type = BTRFS_INODE_ITEM_KEY;
4378 key.offset = 0;
4380 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4381 if (IS_ERR(inode))
4382 return PTR_ERR(inode);
4384 if (offset + len > i_size_read(inode)) {
4385 if (offset > i_size_read(inode))
4386 len = 0;
4387 else
4388 len = offset - i_size_read(inode);
4390 if (len == 0)
4391 goto out;
4393 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4395 /* initial readahead */
4396 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4397 file_ra_state_init(&sctx->ra, inode->i_mapping);
4398 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4399 last_index - index + 1);
4401 while (index <= last_index) {
4402 unsigned cur_len = min_t(unsigned, len,
4403 PAGE_CACHE_SIZE - pg_offset);
4404 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4405 if (!page) {
4406 ret = -ENOMEM;
4407 break;
4410 if (!PageUptodate(page)) {
4411 btrfs_readpage(NULL, page);
4412 lock_page(page);
4413 if (!PageUptodate(page)) {
4414 unlock_page(page);
4415 page_cache_release(page);
4416 ret = -EIO;
4417 break;
4421 addr = kmap(page);
4422 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4423 kunmap(page);
4424 unlock_page(page);
4425 page_cache_release(page);
4426 index++;
4427 pg_offset = 0;
4428 len -= cur_len;
4429 ret += cur_len;
4431 out:
4432 iput(inode);
4433 return ret;
4437 * Read some bytes from the current inode/file and send a write command to
4438 * user space.
4440 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4442 int ret = 0;
4443 struct fs_path *p;
4444 ssize_t num_read = 0;
4446 p = fs_path_alloc();
4447 if (!p)
4448 return -ENOMEM;
4450 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4452 num_read = fill_read_buf(sctx, offset, len);
4453 if (num_read <= 0) {
4454 if (num_read < 0)
4455 ret = num_read;
4456 goto out;
4459 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4460 if (ret < 0)
4461 goto out;
4463 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4464 if (ret < 0)
4465 goto out;
4467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4468 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4469 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4471 ret = send_cmd(sctx);
4473 tlv_put_failure:
4474 out:
4475 fs_path_free(p);
4476 if (ret < 0)
4477 return ret;
4478 return num_read;
4482 * Send a clone command to user space.
4484 static int send_clone(struct send_ctx *sctx,
4485 u64 offset, u32 len,
4486 struct clone_root *clone_root)
4488 int ret = 0;
4489 struct fs_path *p;
4490 u64 gen;
4492 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4493 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4494 clone_root->root->objectid, clone_root->ino,
4495 clone_root->offset);
4497 p = fs_path_alloc();
4498 if (!p)
4499 return -ENOMEM;
4501 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4502 if (ret < 0)
4503 goto out;
4505 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4506 if (ret < 0)
4507 goto out;
4509 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4510 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4511 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4513 if (clone_root->root == sctx->send_root) {
4514 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4515 &gen, NULL, NULL, NULL, NULL);
4516 if (ret < 0)
4517 goto out;
4518 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4519 } else {
4520 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4522 if (ret < 0)
4523 goto out;
4525 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4526 clone_root->root->root_item.uuid);
4527 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4528 le64_to_cpu(clone_root->root->root_item.ctransid));
4529 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4530 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4531 clone_root->offset);
4533 ret = send_cmd(sctx);
4535 tlv_put_failure:
4536 out:
4537 fs_path_free(p);
4538 return ret;
4542 * Send an update extent command to user space.
4544 static int send_update_extent(struct send_ctx *sctx,
4545 u64 offset, u32 len)
4547 int ret = 0;
4548 struct fs_path *p;
4550 p = fs_path_alloc();
4551 if (!p)
4552 return -ENOMEM;
4554 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4555 if (ret < 0)
4556 goto out;
4558 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4559 if (ret < 0)
4560 goto out;
4562 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4563 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4564 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4566 ret = send_cmd(sctx);
4568 tlv_put_failure:
4569 out:
4570 fs_path_free(p);
4571 return ret;
4574 static int send_hole(struct send_ctx *sctx, u64 end)
4576 struct fs_path *p = NULL;
4577 u64 offset = sctx->cur_inode_last_extent;
4578 u64 len;
4579 int ret = 0;
4581 p = fs_path_alloc();
4582 if (!p)
4583 return -ENOMEM;
4584 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4585 if (ret < 0)
4586 goto tlv_put_failure;
4587 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4588 while (offset < end) {
4589 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4591 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4592 if (ret < 0)
4593 break;
4594 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4595 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4596 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4597 ret = send_cmd(sctx);
4598 if (ret < 0)
4599 break;
4600 offset += len;
4602 tlv_put_failure:
4603 fs_path_free(p);
4604 return ret;
4607 static int send_write_or_clone(struct send_ctx *sctx,
4608 struct btrfs_path *path,
4609 struct btrfs_key *key,
4610 struct clone_root *clone_root)
4612 int ret = 0;
4613 struct btrfs_file_extent_item *ei;
4614 u64 offset = key->offset;
4615 u64 pos = 0;
4616 u64 len;
4617 u32 l;
4618 u8 type;
4619 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4621 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4622 struct btrfs_file_extent_item);
4623 type = btrfs_file_extent_type(path->nodes[0], ei);
4624 if (type == BTRFS_FILE_EXTENT_INLINE) {
4625 len = btrfs_file_extent_inline_len(path->nodes[0],
4626 path->slots[0], ei);
4628 * it is possible the inline item won't cover the whole page,
4629 * but there may be items after this page. Make
4630 * sure to send the whole thing
4632 len = PAGE_CACHE_ALIGN(len);
4633 } else {
4634 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4637 if (offset + len > sctx->cur_inode_size)
4638 len = sctx->cur_inode_size - offset;
4639 if (len == 0) {
4640 ret = 0;
4641 goto out;
4644 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4645 ret = send_clone(sctx, offset, len, clone_root);
4646 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4647 ret = send_update_extent(sctx, offset, len);
4648 } else {
4649 while (pos < len) {
4650 l = len - pos;
4651 if (l > BTRFS_SEND_READ_SIZE)
4652 l = BTRFS_SEND_READ_SIZE;
4653 ret = send_write(sctx, pos + offset, l);
4654 if (ret < 0)
4655 goto out;
4656 if (!ret)
4657 break;
4658 pos += ret;
4660 ret = 0;
4662 out:
4663 return ret;
4666 static int is_extent_unchanged(struct send_ctx *sctx,
4667 struct btrfs_path *left_path,
4668 struct btrfs_key *ekey)
4670 int ret = 0;
4671 struct btrfs_key key;
4672 struct btrfs_path *path = NULL;
4673 struct extent_buffer *eb;
4674 int slot;
4675 struct btrfs_key found_key;
4676 struct btrfs_file_extent_item *ei;
4677 u64 left_disknr;
4678 u64 right_disknr;
4679 u64 left_offset;
4680 u64 right_offset;
4681 u64 left_offset_fixed;
4682 u64 left_len;
4683 u64 right_len;
4684 u64 left_gen;
4685 u64 right_gen;
4686 u8 left_type;
4687 u8 right_type;
4689 path = alloc_path_for_send();
4690 if (!path)
4691 return -ENOMEM;
4693 eb = left_path->nodes[0];
4694 slot = left_path->slots[0];
4695 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4696 left_type = btrfs_file_extent_type(eb, ei);
4698 if (left_type != BTRFS_FILE_EXTENT_REG) {
4699 ret = 0;
4700 goto out;
4702 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4703 left_len = btrfs_file_extent_num_bytes(eb, ei);
4704 left_offset = btrfs_file_extent_offset(eb, ei);
4705 left_gen = btrfs_file_extent_generation(eb, ei);
4708 * Following comments will refer to these graphics. L is the left
4709 * extents which we are checking at the moment. 1-8 are the right
4710 * extents that we iterate.
4712 * |-----L-----|
4713 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4715 * |-----L-----|
4716 * |--1--|-2b-|...(same as above)
4718 * Alternative situation. Happens on files where extents got split.
4719 * |-----L-----|
4720 * |-----------7-----------|-6-|
4722 * Alternative situation. Happens on files which got larger.
4723 * |-----L-----|
4724 * |-8-|
4725 * Nothing follows after 8.
4728 key.objectid = ekey->objectid;
4729 key.type = BTRFS_EXTENT_DATA_KEY;
4730 key.offset = ekey->offset;
4731 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4732 if (ret < 0)
4733 goto out;
4734 if (ret) {
4735 ret = 0;
4736 goto out;
4740 * Handle special case where the right side has no extents at all.
4742 eb = path->nodes[0];
4743 slot = path->slots[0];
4744 btrfs_item_key_to_cpu(eb, &found_key, slot);
4745 if (found_key.objectid != key.objectid ||
4746 found_key.type != key.type) {
4747 /* If we're a hole then just pretend nothing changed */
4748 ret = (left_disknr) ? 0 : 1;
4749 goto out;
4753 * We're now on 2a, 2b or 7.
4755 key = found_key;
4756 while (key.offset < ekey->offset + left_len) {
4757 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4758 right_type = btrfs_file_extent_type(eb, ei);
4759 if (right_type != BTRFS_FILE_EXTENT_REG) {
4760 ret = 0;
4761 goto out;
4764 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4765 right_len = btrfs_file_extent_num_bytes(eb, ei);
4766 right_offset = btrfs_file_extent_offset(eb, ei);
4767 right_gen = btrfs_file_extent_generation(eb, ei);
4770 * Are we at extent 8? If yes, we know the extent is changed.
4771 * This may only happen on the first iteration.
4773 if (found_key.offset + right_len <= ekey->offset) {
4774 /* If we're a hole just pretend nothing changed */
4775 ret = (left_disknr) ? 0 : 1;
4776 goto out;
4779 left_offset_fixed = left_offset;
4780 if (key.offset < ekey->offset) {
4781 /* Fix the right offset for 2a and 7. */
4782 right_offset += ekey->offset - key.offset;
4783 } else {
4784 /* Fix the left offset for all behind 2a and 2b */
4785 left_offset_fixed += key.offset - ekey->offset;
4789 * Check if we have the same extent.
4791 if (left_disknr != right_disknr ||
4792 left_offset_fixed != right_offset ||
4793 left_gen != right_gen) {
4794 ret = 0;
4795 goto out;
4799 * Go to the next extent.
4801 ret = btrfs_next_item(sctx->parent_root, path);
4802 if (ret < 0)
4803 goto out;
4804 if (!ret) {
4805 eb = path->nodes[0];
4806 slot = path->slots[0];
4807 btrfs_item_key_to_cpu(eb, &found_key, slot);
4809 if (ret || found_key.objectid != key.objectid ||
4810 found_key.type != key.type) {
4811 key.offset += right_len;
4812 break;
4814 if (found_key.offset != key.offset + right_len) {
4815 ret = 0;
4816 goto out;
4818 key = found_key;
4822 * We're now behind the left extent (treat as unchanged) or at the end
4823 * of the right side (treat as changed).
4825 if (key.offset >= ekey->offset + left_len)
4826 ret = 1;
4827 else
4828 ret = 0;
4831 out:
4832 btrfs_free_path(path);
4833 return ret;
4836 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4838 struct btrfs_path *path;
4839 struct btrfs_root *root = sctx->send_root;
4840 struct btrfs_file_extent_item *fi;
4841 struct btrfs_key key;
4842 u64 extent_end;
4843 u8 type;
4844 int ret;
4846 path = alloc_path_for_send();
4847 if (!path)
4848 return -ENOMEM;
4850 sctx->cur_inode_last_extent = 0;
4852 key.objectid = sctx->cur_ino;
4853 key.type = BTRFS_EXTENT_DATA_KEY;
4854 key.offset = offset;
4855 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4856 if (ret < 0)
4857 goto out;
4858 ret = 0;
4859 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4860 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4861 goto out;
4863 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4864 struct btrfs_file_extent_item);
4865 type = btrfs_file_extent_type(path->nodes[0], fi);
4866 if (type == BTRFS_FILE_EXTENT_INLINE) {
4867 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4868 path->slots[0], fi);
4869 extent_end = ALIGN(key.offset + size,
4870 sctx->send_root->sectorsize);
4871 } else {
4872 extent_end = key.offset +
4873 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4875 sctx->cur_inode_last_extent = extent_end;
4876 out:
4877 btrfs_free_path(path);
4878 return ret;
4881 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4882 struct btrfs_key *key)
4884 struct btrfs_file_extent_item *fi;
4885 u64 extent_end;
4886 u8 type;
4887 int ret = 0;
4889 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4890 return 0;
4892 if (sctx->cur_inode_last_extent == (u64)-1) {
4893 ret = get_last_extent(sctx, key->offset - 1);
4894 if (ret)
4895 return ret;
4898 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4899 struct btrfs_file_extent_item);
4900 type = btrfs_file_extent_type(path->nodes[0], fi);
4901 if (type == BTRFS_FILE_EXTENT_INLINE) {
4902 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4903 path->slots[0], fi);
4904 extent_end = ALIGN(key->offset + size,
4905 sctx->send_root->sectorsize);
4906 } else {
4907 extent_end = key->offset +
4908 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4911 if (path->slots[0] == 0 &&
4912 sctx->cur_inode_last_extent < key->offset) {
4914 * We might have skipped entire leafs that contained only
4915 * file extent items for our current inode. These leafs have
4916 * a generation number smaller (older) than the one in the
4917 * current leaf and the leaf our last extent came from, and
4918 * are located between these 2 leafs.
4920 ret = get_last_extent(sctx, key->offset - 1);
4921 if (ret)
4922 return ret;
4925 if (sctx->cur_inode_last_extent < key->offset)
4926 ret = send_hole(sctx, key->offset);
4927 sctx->cur_inode_last_extent = extent_end;
4928 return ret;
4931 static int process_extent(struct send_ctx *sctx,
4932 struct btrfs_path *path,
4933 struct btrfs_key *key)
4935 struct clone_root *found_clone = NULL;
4936 int ret = 0;
4938 if (S_ISLNK(sctx->cur_inode_mode))
4939 return 0;
4941 if (sctx->parent_root && !sctx->cur_inode_new) {
4942 ret = is_extent_unchanged(sctx, path, key);
4943 if (ret < 0)
4944 goto out;
4945 if (ret) {
4946 ret = 0;
4947 goto out_hole;
4949 } else {
4950 struct btrfs_file_extent_item *ei;
4951 u8 type;
4953 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4954 struct btrfs_file_extent_item);
4955 type = btrfs_file_extent_type(path->nodes[0], ei);
4956 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4957 type == BTRFS_FILE_EXTENT_REG) {
4959 * The send spec does not have a prealloc command yet,
4960 * so just leave a hole for prealloc'ed extents until
4961 * we have enough commands queued up to justify rev'ing
4962 * the send spec.
4964 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4965 ret = 0;
4966 goto out;
4969 /* Have a hole, just skip it. */
4970 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4971 ret = 0;
4972 goto out;
4977 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4978 sctx->cur_inode_size, &found_clone);
4979 if (ret != -ENOENT && ret < 0)
4980 goto out;
4982 ret = send_write_or_clone(sctx, path, key, found_clone);
4983 if (ret)
4984 goto out;
4985 out_hole:
4986 ret = maybe_send_hole(sctx, path, key);
4987 out:
4988 return ret;
4991 static int process_all_extents(struct send_ctx *sctx)
4993 int ret;
4994 struct btrfs_root *root;
4995 struct btrfs_path *path;
4996 struct btrfs_key key;
4997 struct btrfs_key found_key;
4998 struct extent_buffer *eb;
4999 int slot;
5001 root = sctx->send_root;
5002 path = alloc_path_for_send();
5003 if (!path)
5004 return -ENOMEM;
5006 key.objectid = sctx->cmp_key->objectid;
5007 key.type = BTRFS_EXTENT_DATA_KEY;
5008 key.offset = 0;
5009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5010 if (ret < 0)
5011 goto out;
5013 while (1) {
5014 eb = path->nodes[0];
5015 slot = path->slots[0];
5017 if (slot >= btrfs_header_nritems(eb)) {
5018 ret = btrfs_next_leaf(root, path);
5019 if (ret < 0) {
5020 goto out;
5021 } else if (ret > 0) {
5022 ret = 0;
5023 break;
5025 continue;
5028 btrfs_item_key_to_cpu(eb, &found_key, slot);
5030 if (found_key.objectid != key.objectid ||
5031 found_key.type != key.type) {
5032 ret = 0;
5033 goto out;
5036 ret = process_extent(sctx, path, &found_key);
5037 if (ret < 0)
5038 goto out;
5040 path->slots[0]++;
5043 out:
5044 btrfs_free_path(path);
5045 return ret;
5048 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5049 int *pending_move,
5050 int *refs_processed)
5052 int ret = 0;
5054 if (sctx->cur_ino == 0)
5055 goto out;
5056 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5057 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5058 goto out;
5059 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5060 goto out;
5062 ret = process_recorded_refs(sctx, pending_move);
5063 if (ret < 0)
5064 goto out;
5066 *refs_processed = 1;
5067 out:
5068 return ret;
5071 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5073 int ret = 0;
5074 u64 left_mode;
5075 u64 left_uid;
5076 u64 left_gid;
5077 u64 right_mode;
5078 u64 right_uid;
5079 u64 right_gid;
5080 int need_chmod = 0;
5081 int need_chown = 0;
5082 int pending_move = 0;
5083 int refs_processed = 0;
5085 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5086 &refs_processed);
5087 if (ret < 0)
5088 goto out;
5091 * We have processed the refs and thus need to advance send_progress.
5092 * Now, calls to get_cur_xxx will take the updated refs of the current
5093 * inode into account.
5095 * On the other hand, if our current inode is a directory and couldn't
5096 * be moved/renamed because its parent was renamed/moved too and it has
5097 * a higher inode number, we can only move/rename our current inode
5098 * after we moved/renamed its parent. Therefore in this case operate on
5099 * the old path (pre move/rename) of our current inode, and the
5100 * move/rename will be performed later.
5102 if (refs_processed && !pending_move)
5103 sctx->send_progress = sctx->cur_ino + 1;
5105 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5106 goto out;
5107 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5108 goto out;
5110 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5111 &left_mode, &left_uid, &left_gid, NULL);
5112 if (ret < 0)
5113 goto out;
5115 if (!sctx->parent_root || sctx->cur_inode_new) {
5116 need_chown = 1;
5117 if (!S_ISLNK(sctx->cur_inode_mode))
5118 need_chmod = 1;
5119 } else {
5120 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5121 NULL, NULL, &right_mode, &right_uid,
5122 &right_gid, NULL);
5123 if (ret < 0)
5124 goto out;
5126 if (left_uid != right_uid || left_gid != right_gid)
5127 need_chown = 1;
5128 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5129 need_chmod = 1;
5132 if (S_ISREG(sctx->cur_inode_mode)) {
5133 if (need_send_hole(sctx)) {
5134 if (sctx->cur_inode_last_extent == (u64)-1 ||
5135 sctx->cur_inode_last_extent <
5136 sctx->cur_inode_size) {
5137 ret = get_last_extent(sctx, (u64)-1);
5138 if (ret)
5139 goto out;
5141 if (sctx->cur_inode_last_extent <
5142 sctx->cur_inode_size) {
5143 ret = send_hole(sctx, sctx->cur_inode_size);
5144 if (ret)
5145 goto out;
5148 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5149 sctx->cur_inode_size);
5150 if (ret < 0)
5151 goto out;
5154 if (need_chown) {
5155 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5156 left_uid, left_gid);
5157 if (ret < 0)
5158 goto out;
5160 if (need_chmod) {
5161 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5162 left_mode);
5163 if (ret < 0)
5164 goto out;
5168 * If other directory inodes depended on our current directory
5169 * inode's move/rename, now do their move/rename operations.
5171 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5172 ret = apply_children_dir_moves(sctx);
5173 if (ret)
5174 goto out;
5176 * Need to send that every time, no matter if it actually
5177 * changed between the two trees as we have done changes to
5178 * the inode before. If our inode is a directory and it's
5179 * waiting to be moved/renamed, we will send its utimes when
5180 * it's moved/renamed, therefore we don't need to do it here.
5182 sctx->send_progress = sctx->cur_ino + 1;
5183 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5184 if (ret < 0)
5185 goto out;
5188 out:
5189 return ret;
5192 static int changed_inode(struct send_ctx *sctx,
5193 enum btrfs_compare_tree_result result)
5195 int ret = 0;
5196 struct btrfs_key *key = sctx->cmp_key;
5197 struct btrfs_inode_item *left_ii = NULL;
5198 struct btrfs_inode_item *right_ii = NULL;
5199 u64 left_gen = 0;
5200 u64 right_gen = 0;
5202 sctx->cur_ino = key->objectid;
5203 sctx->cur_inode_new_gen = 0;
5204 sctx->cur_inode_last_extent = (u64)-1;
5207 * Set send_progress to current inode. This will tell all get_cur_xxx
5208 * functions that the current inode's refs are not updated yet. Later,
5209 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5211 sctx->send_progress = sctx->cur_ino;
5213 if (result == BTRFS_COMPARE_TREE_NEW ||
5214 result == BTRFS_COMPARE_TREE_CHANGED) {
5215 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5216 sctx->left_path->slots[0],
5217 struct btrfs_inode_item);
5218 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5219 left_ii);
5220 } else {
5221 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5222 sctx->right_path->slots[0],
5223 struct btrfs_inode_item);
5224 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5225 right_ii);
5227 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5228 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5229 sctx->right_path->slots[0],
5230 struct btrfs_inode_item);
5232 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5233 right_ii);
5236 * The cur_ino = root dir case is special here. We can't treat
5237 * the inode as deleted+reused because it would generate a
5238 * stream that tries to delete/mkdir the root dir.
5240 if (left_gen != right_gen &&
5241 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5242 sctx->cur_inode_new_gen = 1;
5245 if (result == BTRFS_COMPARE_TREE_NEW) {
5246 sctx->cur_inode_gen = left_gen;
5247 sctx->cur_inode_new = 1;
5248 sctx->cur_inode_deleted = 0;
5249 sctx->cur_inode_size = btrfs_inode_size(
5250 sctx->left_path->nodes[0], left_ii);
5251 sctx->cur_inode_mode = btrfs_inode_mode(
5252 sctx->left_path->nodes[0], left_ii);
5253 sctx->cur_inode_rdev = btrfs_inode_rdev(
5254 sctx->left_path->nodes[0], left_ii);
5255 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5256 ret = send_create_inode_if_needed(sctx);
5257 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5258 sctx->cur_inode_gen = right_gen;
5259 sctx->cur_inode_new = 0;
5260 sctx->cur_inode_deleted = 1;
5261 sctx->cur_inode_size = btrfs_inode_size(
5262 sctx->right_path->nodes[0], right_ii);
5263 sctx->cur_inode_mode = btrfs_inode_mode(
5264 sctx->right_path->nodes[0], right_ii);
5265 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5267 * We need to do some special handling in case the inode was
5268 * reported as changed with a changed generation number. This
5269 * means that the original inode was deleted and new inode
5270 * reused the same inum. So we have to treat the old inode as
5271 * deleted and the new one as new.
5273 if (sctx->cur_inode_new_gen) {
5275 * First, process the inode as if it was deleted.
5277 sctx->cur_inode_gen = right_gen;
5278 sctx->cur_inode_new = 0;
5279 sctx->cur_inode_deleted = 1;
5280 sctx->cur_inode_size = btrfs_inode_size(
5281 sctx->right_path->nodes[0], right_ii);
5282 sctx->cur_inode_mode = btrfs_inode_mode(
5283 sctx->right_path->nodes[0], right_ii);
5284 ret = process_all_refs(sctx,
5285 BTRFS_COMPARE_TREE_DELETED);
5286 if (ret < 0)
5287 goto out;
5290 * Now process the inode as if it was new.
5292 sctx->cur_inode_gen = left_gen;
5293 sctx->cur_inode_new = 1;
5294 sctx->cur_inode_deleted = 0;
5295 sctx->cur_inode_size = btrfs_inode_size(
5296 sctx->left_path->nodes[0], left_ii);
5297 sctx->cur_inode_mode = btrfs_inode_mode(
5298 sctx->left_path->nodes[0], left_ii);
5299 sctx->cur_inode_rdev = btrfs_inode_rdev(
5300 sctx->left_path->nodes[0], left_ii);
5301 ret = send_create_inode_if_needed(sctx);
5302 if (ret < 0)
5303 goto out;
5305 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5306 if (ret < 0)
5307 goto out;
5309 * Advance send_progress now as we did not get into
5310 * process_recorded_refs_if_needed in the new_gen case.
5312 sctx->send_progress = sctx->cur_ino + 1;
5315 * Now process all extents and xattrs of the inode as if
5316 * they were all new.
5318 ret = process_all_extents(sctx);
5319 if (ret < 0)
5320 goto out;
5321 ret = process_all_new_xattrs(sctx);
5322 if (ret < 0)
5323 goto out;
5324 } else {
5325 sctx->cur_inode_gen = left_gen;
5326 sctx->cur_inode_new = 0;
5327 sctx->cur_inode_new_gen = 0;
5328 sctx->cur_inode_deleted = 0;
5329 sctx->cur_inode_size = btrfs_inode_size(
5330 sctx->left_path->nodes[0], left_ii);
5331 sctx->cur_inode_mode = btrfs_inode_mode(
5332 sctx->left_path->nodes[0], left_ii);
5336 out:
5337 return ret;
5341 * We have to process new refs before deleted refs, but compare_trees gives us
5342 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5343 * first and later process them in process_recorded_refs.
5344 * For the cur_inode_new_gen case, we skip recording completely because
5345 * changed_inode did already initiate processing of refs. The reason for this is
5346 * that in this case, compare_tree actually compares the refs of 2 different
5347 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5348 * refs of the right tree as deleted and all refs of the left tree as new.
5350 static int changed_ref(struct send_ctx *sctx,
5351 enum btrfs_compare_tree_result result)
5353 int ret = 0;
5355 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5357 if (!sctx->cur_inode_new_gen &&
5358 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5359 if (result == BTRFS_COMPARE_TREE_NEW)
5360 ret = record_new_ref(sctx);
5361 else if (result == BTRFS_COMPARE_TREE_DELETED)
5362 ret = record_deleted_ref(sctx);
5363 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5364 ret = record_changed_ref(sctx);
5367 return ret;
5371 * Process new/deleted/changed xattrs. We skip processing in the
5372 * cur_inode_new_gen case because changed_inode did already initiate processing
5373 * of xattrs. The reason is the same as in changed_ref
5375 static int changed_xattr(struct send_ctx *sctx,
5376 enum btrfs_compare_tree_result result)
5378 int ret = 0;
5380 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5382 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5383 if (result == BTRFS_COMPARE_TREE_NEW)
5384 ret = process_new_xattr(sctx);
5385 else if (result == BTRFS_COMPARE_TREE_DELETED)
5386 ret = process_deleted_xattr(sctx);
5387 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5388 ret = process_changed_xattr(sctx);
5391 return ret;
5395 * Process new/deleted/changed extents. We skip processing in the
5396 * cur_inode_new_gen case because changed_inode did already initiate processing
5397 * of extents. The reason is the same as in changed_ref
5399 static int changed_extent(struct send_ctx *sctx,
5400 enum btrfs_compare_tree_result result)
5402 int ret = 0;
5404 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5406 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5407 if (result != BTRFS_COMPARE_TREE_DELETED)
5408 ret = process_extent(sctx, sctx->left_path,
5409 sctx->cmp_key);
5412 return ret;
5415 static int dir_changed(struct send_ctx *sctx, u64 dir)
5417 u64 orig_gen, new_gen;
5418 int ret;
5420 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5421 NULL, NULL);
5422 if (ret)
5423 return ret;
5425 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5426 NULL, NULL, NULL);
5427 if (ret)
5428 return ret;
5430 return (orig_gen != new_gen) ? 1 : 0;
5433 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5434 struct btrfs_key *key)
5436 struct btrfs_inode_extref *extref;
5437 struct extent_buffer *leaf;
5438 u64 dirid = 0, last_dirid = 0;
5439 unsigned long ptr;
5440 u32 item_size;
5441 u32 cur_offset = 0;
5442 int ref_name_len;
5443 int ret = 0;
5445 /* Easy case, just check this one dirid */
5446 if (key->type == BTRFS_INODE_REF_KEY) {
5447 dirid = key->offset;
5449 ret = dir_changed(sctx, dirid);
5450 goto out;
5453 leaf = path->nodes[0];
5454 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5455 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5456 while (cur_offset < item_size) {
5457 extref = (struct btrfs_inode_extref *)(ptr +
5458 cur_offset);
5459 dirid = btrfs_inode_extref_parent(leaf, extref);
5460 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5461 cur_offset += ref_name_len + sizeof(*extref);
5462 if (dirid == last_dirid)
5463 continue;
5464 ret = dir_changed(sctx, dirid);
5465 if (ret)
5466 break;
5467 last_dirid = dirid;
5469 out:
5470 return ret;
5474 * Updates compare related fields in sctx and simply forwards to the actual
5475 * changed_xxx functions.
5477 static int changed_cb(struct btrfs_root *left_root,
5478 struct btrfs_root *right_root,
5479 struct btrfs_path *left_path,
5480 struct btrfs_path *right_path,
5481 struct btrfs_key *key,
5482 enum btrfs_compare_tree_result result,
5483 void *ctx)
5485 int ret = 0;
5486 struct send_ctx *sctx = ctx;
5488 if (result == BTRFS_COMPARE_TREE_SAME) {
5489 if (key->type == BTRFS_INODE_REF_KEY ||
5490 key->type == BTRFS_INODE_EXTREF_KEY) {
5491 ret = compare_refs(sctx, left_path, key);
5492 if (!ret)
5493 return 0;
5494 if (ret < 0)
5495 return ret;
5496 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5497 return maybe_send_hole(sctx, left_path, key);
5498 } else {
5499 return 0;
5501 result = BTRFS_COMPARE_TREE_CHANGED;
5502 ret = 0;
5505 sctx->left_path = left_path;
5506 sctx->right_path = right_path;
5507 sctx->cmp_key = key;
5509 ret = finish_inode_if_needed(sctx, 0);
5510 if (ret < 0)
5511 goto out;
5513 /* Ignore non-FS objects */
5514 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5515 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5516 goto out;
5518 if (key->type == BTRFS_INODE_ITEM_KEY)
5519 ret = changed_inode(sctx, result);
5520 else if (key->type == BTRFS_INODE_REF_KEY ||
5521 key->type == BTRFS_INODE_EXTREF_KEY)
5522 ret = changed_ref(sctx, result);
5523 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5524 ret = changed_xattr(sctx, result);
5525 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5526 ret = changed_extent(sctx, result);
5528 out:
5529 return ret;
5532 static int full_send_tree(struct send_ctx *sctx)
5534 int ret;
5535 struct btrfs_root *send_root = sctx->send_root;
5536 struct btrfs_key key;
5537 struct btrfs_key found_key;
5538 struct btrfs_path *path;
5539 struct extent_buffer *eb;
5540 int slot;
5542 path = alloc_path_for_send();
5543 if (!path)
5544 return -ENOMEM;
5546 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5547 key.type = BTRFS_INODE_ITEM_KEY;
5548 key.offset = 0;
5550 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5551 if (ret < 0)
5552 goto out;
5553 if (ret)
5554 goto out_finish;
5556 while (1) {
5557 eb = path->nodes[0];
5558 slot = path->slots[0];
5559 btrfs_item_key_to_cpu(eb, &found_key, slot);
5561 ret = changed_cb(send_root, NULL, path, NULL,
5562 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5563 if (ret < 0)
5564 goto out;
5566 key.objectid = found_key.objectid;
5567 key.type = found_key.type;
5568 key.offset = found_key.offset + 1;
5570 ret = btrfs_next_item(send_root, path);
5571 if (ret < 0)
5572 goto out;
5573 if (ret) {
5574 ret = 0;
5575 break;
5579 out_finish:
5580 ret = finish_inode_if_needed(sctx, 1);
5582 out:
5583 btrfs_free_path(path);
5584 return ret;
5587 static int send_subvol(struct send_ctx *sctx)
5589 int ret;
5591 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5592 ret = send_header(sctx);
5593 if (ret < 0)
5594 goto out;
5597 ret = send_subvol_begin(sctx);
5598 if (ret < 0)
5599 goto out;
5601 if (sctx->parent_root) {
5602 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5603 changed_cb, sctx);
5604 if (ret < 0)
5605 goto out;
5606 ret = finish_inode_if_needed(sctx, 1);
5607 if (ret < 0)
5608 goto out;
5609 } else {
5610 ret = full_send_tree(sctx);
5611 if (ret < 0)
5612 goto out;
5615 out:
5616 free_recorded_refs(sctx);
5617 return ret;
5621 * If orphan cleanup did remove any orphans from a root, it means the tree
5622 * was modified and therefore the commit root is not the same as the current
5623 * root anymore. This is a problem, because send uses the commit root and
5624 * therefore can see inode items that don't exist in the current root anymore,
5625 * and for example make calls to btrfs_iget, which will do tree lookups based
5626 * on the current root and not on the commit root. Those lookups will fail,
5627 * returning a -ESTALE error, and making send fail with that error. So make
5628 * sure a send does not see any orphans we have just removed, and that it will
5629 * see the same inodes regardless of whether a transaction commit happened
5630 * before it started (meaning that the commit root will be the same as the
5631 * current root) or not.
5633 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5635 int i;
5636 struct btrfs_trans_handle *trans = NULL;
5638 again:
5639 if (sctx->parent_root &&
5640 sctx->parent_root->node != sctx->parent_root->commit_root)
5641 goto commit_trans;
5643 for (i = 0; i < sctx->clone_roots_cnt; i++)
5644 if (sctx->clone_roots[i].root->node !=
5645 sctx->clone_roots[i].root->commit_root)
5646 goto commit_trans;
5648 if (trans)
5649 return btrfs_end_transaction(trans, sctx->send_root);
5651 return 0;
5653 commit_trans:
5654 /* Use any root, all fs roots will get their commit roots updated. */
5655 if (!trans) {
5656 trans = btrfs_join_transaction(sctx->send_root);
5657 if (IS_ERR(trans))
5658 return PTR_ERR(trans);
5659 goto again;
5662 return btrfs_commit_transaction(trans, sctx->send_root);
5665 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5667 spin_lock(&root->root_item_lock);
5668 root->send_in_progress--;
5670 * Not much left to do, we don't know why it's unbalanced and
5671 * can't blindly reset it to 0.
5673 if (root->send_in_progress < 0)
5674 btrfs_err(root->fs_info,
5675 "send_in_progres unbalanced %d root %llu",
5676 root->send_in_progress, root->root_key.objectid);
5677 spin_unlock(&root->root_item_lock);
5680 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5682 int ret = 0;
5683 struct btrfs_root *send_root;
5684 struct btrfs_root *clone_root;
5685 struct btrfs_fs_info *fs_info;
5686 struct btrfs_ioctl_send_args *arg = NULL;
5687 struct btrfs_key key;
5688 struct send_ctx *sctx = NULL;
5689 u32 i;
5690 u64 *clone_sources_tmp = NULL;
5691 int clone_sources_to_rollback = 0;
5692 int sort_clone_roots = 0;
5693 int index;
5695 if (!capable(CAP_SYS_ADMIN))
5696 return -EPERM;
5698 send_root = BTRFS_I(file_inode(mnt_file))->root;
5699 fs_info = send_root->fs_info;
5702 * The subvolume must remain read-only during send, protect against
5703 * making it RW. This also protects against deletion.
5705 spin_lock(&send_root->root_item_lock);
5706 send_root->send_in_progress++;
5707 spin_unlock(&send_root->root_item_lock);
5710 * This is done when we lookup the root, it should already be complete
5711 * by the time we get here.
5713 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5716 * Userspace tools do the checks and warn the user if it's
5717 * not RO.
5719 if (!btrfs_root_readonly(send_root)) {
5720 ret = -EPERM;
5721 goto out;
5724 arg = memdup_user(arg_, sizeof(*arg));
5725 if (IS_ERR(arg)) {
5726 ret = PTR_ERR(arg);
5727 arg = NULL;
5728 goto out;
5731 if (!access_ok(VERIFY_READ, arg->clone_sources,
5732 sizeof(*arg->clone_sources) *
5733 arg->clone_sources_count)) {
5734 ret = -EFAULT;
5735 goto out;
5738 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5739 ret = -EINVAL;
5740 goto out;
5743 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5744 if (!sctx) {
5745 ret = -ENOMEM;
5746 goto out;
5749 INIT_LIST_HEAD(&sctx->new_refs);
5750 INIT_LIST_HEAD(&sctx->deleted_refs);
5751 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5752 INIT_LIST_HEAD(&sctx->name_cache_list);
5754 sctx->flags = arg->flags;
5756 sctx->send_filp = fget(arg->send_fd);
5757 if (!sctx->send_filp) {
5758 ret = -EBADF;
5759 goto out;
5762 sctx->send_root = send_root;
5764 * Unlikely but possible, if the subvolume is marked for deletion but
5765 * is slow to remove the directory entry, send can still be started
5767 if (btrfs_root_dead(sctx->send_root)) {
5768 ret = -EPERM;
5769 goto out;
5772 sctx->clone_roots_cnt = arg->clone_sources_count;
5774 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5775 sctx->send_buf = vmalloc(sctx->send_max_size);
5776 if (!sctx->send_buf) {
5777 ret = -ENOMEM;
5778 goto out;
5781 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5782 if (!sctx->read_buf) {
5783 ret = -ENOMEM;
5784 goto out;
5787 sctx->pending_dir_moves = RB_ROOT;
5788 sctx->waiting_dir_moves = RB_ROOT;
5789 sctx->orphan_dirs = RB_ROOT;
5791 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5792 (arg->clone_sources_count + 1));
5793 if (!sctx->clone_roots) {
5794 ret = -ENOMEM;
5795 goto out;
5798 if (arg->clone_sources_count) {
5799 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5800 sizeof(*arg->clone_sources));
5801 if (!clone_sources_tmp) {
5802 ret = -ENOMEM;
5803 goto out;
5806 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5807 arg->clone_sources_count *
5808 sizeof(*arg->clone_sources));
5809 if (ret) {
5810 ret = -EFAULT;
5811 goto out;
5814 for (i = 0; i < arg->clone_sources_count; i++) {
5815 key.objectid = clone_sources_tmp[i];
5816 key.type = BTRFS_ROOT_ITEM_KEY;
5817 key.offset = (u64)-1;
5819 index = srcu_read_lock(&fs_info->subvol_srcu);
5821 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5822 if (IS_ERR(clone_root)) {
5823 srcu_read_unlock(&fs_info->subvol_srcu, index);
5824 ret = PTR_ERR(clone_root);
5825 goto out;
5827 spin_lock(&clone_root->root_item_lock);
5828 if (!btrfs_root_readonly(clone_root) ||
5829 btrfs_root_dead(clone_root)) {
5830 spin_unlock(&clone_root->root_item_lock);
5831 srcu_read_unlock(&fs_info->subvol_srcu, index);
5832 ret = -EPERM;
5833 goto out;
5835 clone_root->send_in_progress++;
5836 spin_unlock(&clone_root->root_item_lock);
5837 srcu_read_unlock(&fs_info->subvol_srcu, index);
5839 sctx->clone_roots[i].root = clone_root;
5840 clone_sources_to_rollback = i + 1;
5842 vfree(clone_sources_tmp);
5843 clone_sources_tmp = NULL;
5846 if (arg->parent_root) {
5847 key.objectid = arg->parent_root;
5848 key.type = BTRFS_ROOT_ITEM_KEY;
5849 key.offset = (u64)-1;
5851 index = srcu_read_lock(&fs_info->subvol_srcu);
5853 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5854 if (IS_ERR(sctx->parent_root)) {
5855 srcu_read_unlock(&fs_info->subvol_srcu, index);
5856 ret = PTR_ERR(sctx->parent_root);
5857 goto out;
5860 spin_lock(&sctx->parent_root->root_item_lock);
5861 sctx->parent_root->send_in_progress++;
5862 if (!btrfs_root_readonly(sctx->parent_root) ||
5863 btrfs_root_dead(sctx->parent_root)) {
5864 spin_unlock(&sctx->parent_root->root_item_lock);
5865 srcu_read_unlock(&fs_info->subvol_srcu, index);
5866 ret = -EPERM;
5867 goto out;
5869 spin_unlock(&sctx->parent_root->root_item_lock);
5871 srcu_read_unlock(&fs_info->subvol_srcu, index);
5875 * Clones from send_root are allowed, but only if the clone source
5876 * is behind the current send position. This is checked while searching
5877 * for possible clone sources.
5879 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5881 /* We do a bsearch later */
5882 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5883 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5884 NULL);
5885 sort_clone_roots = 1;
5887 ret = ensure_commit_roots_uptodate(sctx);
5888 if (ret)
5889 goto out;
5891 current->journal_info = BTRFS_SEND_TRANS_STUB;
5892 ret = send_subvol(sctx);
5893 current->journal_info = NULL;
5894 if (ret < 0)
5895 goto out;
5897 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5898 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5899 if (ret < 0)
5900 goto out;
5901 ret = send_cmd(sctx);
5902 if (ret < 0)
5903 goto out;
5906 out:
5907 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5908 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5909 struct rb_node *n;
5910 struct pending_dir_move *pm;
5912 n = rb_first(&sctx->pending_dir_moves);
5913 pm = rb_entry(n, struct pending_dir_move, node);
5914 while (!list_empty(&pm->list)) {
5915 struct pending_dir_move *pm2;
5917 pm2 = list_first_entry(&pm->list,
5918 struct pending_dir_move, list);
5919 free_pending_move(sctx, pm2);
5921 free_pending_move(sctx, pm);
5924 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5925 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5926 struct rb_node *n;
5927 struct waiting_dir_move *dm;
5929 n = rb_first(&sctx->waiting_dir_moves);
5930 dm = rb_entry(n, struct waiting_dir_move, node);
5931 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5932 kfree(dm);
5935 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5936 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5937 struct rb_node *n;
5938 struct orphan_dir_info *odi;
5940 n = rb_first(&sctx->orphan_dirs);
5941 odi = rb_entry(n, struct orphan_dir_info, node);
5942 free_orphan_dir_info(sctx, odi);
5945 if (sort_clone_roots) {
5946 for (i = 0; i < sctx->clone_roots_cnt; i++)
5947 btrfs_root_dec_send_in_progress(
5948 sctx->clone_roots[i].root);
5949 } else {
5950 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5951 btrfs_root_dec_send_in_progress(
5952 sctx->clone_roots[i].root);
5954 btrfs_root_dec_send_in_progress(send_root);
5956 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5957 btrfs_root_dec_send_in_progress(sctx->parent_root);
5959 kfree(arg);
5960 vfree(clone_sources_tmp);
5962 if (sctx) {
5963 if (sctx->send_filp)
5964 fput(sctx->send_filp);
5966 vfree(sctx->clone_roots);
5967 vfree(sctx->send_buf);
5968 vfree(sctx->read_buf);
5970 name_cache_free(sctx);
5972 kfree(sctx);
5975 return ret;