2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 printk(KERN_ERR
"pending csums is %llu\n",
69 transaction
->delayed_refs
.pending_csums
);
70 while (!list_empty(&transaction
->pending_chunks
)) {
71 struct extent_map
*em
;
73 em
= list_first_entry(&transaction
->pending_chunks
,
74 struct extent_map
, list
);
75 list_del_init(&em
->list
);
78 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
82 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
84 spin_lock(&tree
->lock
);
85 while (!RB_EMPTY_ROOT(&tree
->state
)) {
87 struct extent_state
*state
;
89 node
= rb_first(&tree
->state
);
90 state
= rb_entry(node
, struct extent_state
, rb_node
);
91 rb_erase(&state
->rb_node
, &tree
->state
);
92 RB_CLEAR_NODE(&state
->rb_node
);
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
97 ASSERT(!waitqueue_active(&state
->wq
));
98 free_extent_state(state
);
100 cond_resched_lock(&tree
->lock
);
102 spin_unlock(&tree
->lock
);
105 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
106 struct btrfs_fs_info
*fs_info
)
108 struct btrfs_root
*root
, *tmp
;
110 down_write(&fs_info
->commit_root_sem
);
111 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
113 list_del_init(&root
->dirty_list
);
114 free_extent_buffer(root
->commit_root
);
115 root
->commit_root
= btrfs_root_node(root
);
116 if (is_fstree(root
->objectid
))
117 btrfs_unpin_free_ino(root
);
118 clear_btree_io_tree(&root
->dirty_log_pages
);
120 up_write(&fs_info
->commit_root_sem
);
123 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
126 if (type
& TRANS_EXTWRITERS
)
127 atomic_inc(&trans
->num_extwriters
);
130 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
133 if (type
& TRANS_EXTWRITERS
)
134 atomic_dec(&trans
->num_extwriters
);
137 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
140 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
143 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
145 return atomic_read(&trans
->num_extwriters
);
149 * either allocate a new transaction or hop into the existing one
151 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
153 struct btrfs_transaction
*cur_trans
;
154 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
156 spin_lock(&fs_info
->trans_lock
);
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
160 spin_unlock(&fs_info
->trans_lock
);
164 cur_trans
= fs_info
->running_transaction
;
166 if (cur_trans
->aborted
) {
167 spin_unlock(&fs_info
->trans_lock
);
168 return cur_trans
->aborted
;
170 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
171 spin_unlock(&fs_info
->trans_lock
);
174 atomic_inc(&cur_trans
->use_count
);
175 atomic_inc(&cur_trans
->num_writers
);
176 extwriter_counter_inc(cur_trans
, type
);
177 spin_unlock(&fs_info
->trans_lock
);
180 spin_unlock(&fs_info
->trans_lock
);
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
186 if (type
== TRANS_ATTACH
)
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
193 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
195 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
199 spin_lock(&fs_info
->trans_lock
);
200 if (fs_info
->running_transaction
) {
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
205 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
207 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
208 spin_unlock(&fs_info
->trans_lock
);
209 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
213 atomic_set(&cur_trans
->num_writers
, 1);
214 extwriter_counter_init(cur_trans
, type
);
215 init_waitqueue_head(&cur_trans
->writer_wait
);
216 init_waitqueue_head(&cur_trans
->commit_wait
);
217 cur_trans
->state
= TRANS_STATE_RUNNING
;
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
222 atomic_set(&cur_trans
->use_count
, 2);
223 cur_trans
->have_free_bgs
= 0;
224 cur_trans
->start_time
= get_seconds();
225 cur_trans
->dirty_bg_run
= 0;
227 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
228 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
229 cur_trans
->delayed_refs
.num_heads_ready
= 0;
230 cur_trans
->delayed_refs
.pending_csums
= 0;
231 cur_trans
->delayed_refs
.num_heads
= 0;
232 cur_trans
->delayed_refs
.flushing
= 0;
233 cur_trans
->delayed_refs
.run_delayed_start
= 0;
236 * although the tree mod log is per file system and not per transaction,
237 * the log must never go across transaction boundaries.
240 if (!list_empty(&fs_info
->tree_mod_seq_list
))
241 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
242 "creating a fresh transaction\n");
243 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
244 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
245 "creating a fresh transaction\n");
246 atomic64_set(&fs_info
->tree_mod_seq
, 0);
248 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
250 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
251 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
252 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
253 INIT_LIST_HEAD(&cur_trans
->pending_ordered
);
254 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
255 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
256 mutex_init(&cur_trans
->cache_write_mutex
);
257 cur_trans
->num_dirty_bgs
= 0;
258 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
259 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
260 extent_io_tree_init(&cur_trans
->dirty_pages
,
261 fs_info
->btree_inode
->i_mapping
);
262 fs_info
->generation
++;
263 cur_trans
->transid
= fs_info
->generation
;
264 fs_info
->running_transaction
= cur_trans
;
265 cur_trans
->aborted
= 0;
266 spin_unlock(&fs_info
->trans_lock
);
272 * this does all the record keeping required to make sure that a reference
273 * counted root is properly recorded in a given transaction. This is required
274 * to make sure the old root from before we joined the transaction is deleted
275 * when the transaction commits
277 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
278 struct btrfs_root
*root
)
280 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
281 root
->last_trans
< trans
->transid
) {
282 WARN_ON(root
== root
->fs_info
->extent_root
);
283 WARN_ON(root
->commit_root
!= root
->node
);
286 * see below for IN_TRANS_SETUP usage rules
287 * we have the reloc mutex held now, so there
288 * is only one writer in this function
290 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
292 /* make sure readers find IN_TRANS_SETUP before
293 * they find our root->last_trans update
297 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
298 if (root
->last_trans
== trans
->transid
) {
299 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
302 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
303 (unsigned long)root
->root_key
.objectid
,
304 BTRFS_ROOT_TRANS_TAG
);
305 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
306 root
->last_trans
= trans
->transid
;
308 /* this is pretty tricky. We don't want to
309 * take the relocation lock in btrfs_record_root_in_trans
310 * unless we're really doing the first setup for this root in
313 * Normally we'd use root->last_trans as a flag to decide
314 * if we want to take the expensive mutex.
316 * But, we have to set root->last_trans before we
317 * init the relocation root, otherwise, we trip over warnings
318 * in ctree.c. The solution used here is to flag ourselves
319 * with root IN_TRANS_SETUP. When this is 1, we're still
320 * fixing up the reloc trees and everyone must wait.
322 * When this is zero, they can trust root->last_trans and fly
323 * through btrfs_record_root_in_trans without having to take the
324 * lock. smp_wmb() makes sure that all the writes above are
325 * done before we pop in the zero below
327 btrfs_init_reloc_root(trans
, root
);
328 smp_mb__before_atomic();
329 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
335 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
336 struct btrfs_root
*root
)
338 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
342 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
346 if (root
->last_trans
== trans
->transid
&&
347 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
350 mutex_lock(&root
->fs_info
->reloc_mutex
);
351 record_root_in_trans(trans
, root
);
352 mutex_unlock(&root
->fs_info
->reloc_mutex
);
357 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
359 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
360 trans
->state
< TRANS_STATE_UNBLOCKED
&&
364 /* wait for commit against the current transaction to become unblocked
365 * when this is done, it is safe to start a new transaction, but the current
366 * transaction might not be fully on disk.
368 static void wait_current_trans(struct btrfs_root
*root
)
370 struct btrfs_transaction
*cur_trans
;
372 spin_lock(&root
->fs_info
->trans_lock
);
373 cur_trans
= root
->fs_info
->running_transaction
;
374 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
375 atomic_inc(&cur_trans
->use_count
);
376 spin_unlock(&root
->fs_info
->trans_lock
);
378 wait_event(root
->fs_info
->transaction_wait
,
379 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
381 btrfs_put_transaction(cur_trans
);
383 spin_unlock(&root
->fs_info
->trans_lock
);
387 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
389 if (root
->fs_info
->log_root_recovering
)
392 if (type
== TRANS_USERSPACE
)
395 if (type
== TRANS_START
&&
396 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
402 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
404 if (!root
->fs_info
->reloc_ctl
||
405 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
406 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
413 static struct btrfs_trans_handle
*
414 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
415 enum btrfs_reserve_flush_enum flush
)
417 struct btrfs_trans_handle
*h
;
418 struct btrfs_transaction
*cur_trans
;
420 u64 qgroup_reserved
= 0;
421 bool reloc_reserved
= false;
424 /* Send isn't supposed to start transactions. */
425 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
427 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
428 return ERR_PTR(-EROFS
);
430 if (current
->journal_info
) {
431 WARN_ON(type
& TRANS_EXTWRITERS
);
432 h
= current
->journal_info
;
434 WARN_ON(h
->use_count
> 2);
435 h
->orig_rsv
= h
->block_rsv
;
441 * Do the reservation before we join the transaction so we can do all
442 * the appropriate flushing if need be.
444 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
445 if (root
->fs_info
->quota_enabled
&&
446 is_fstree(root
->root_key
.objectid
)) {
447 qgroup_reserved
= num_items
* root
->nodesize
;
448 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
453 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
455 * Do the reservation for the relocation root creation
457 if (need_reserve_reloc_root(root
)) {
458 num_bytes
+= root
->nodesize
;
459 reloc_reserved
= true;
462 ret
= btrfs_block_rsv_add(root
,
463 &root
->fs_info
->trans_block_rsv
,
469 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
476 * If we are JOIN_NOLOCK we're already committing a transaction and
477 * waiting on this guy, so we don't need to do the sb_start_intwrite
478 * because we're already holding a ref. We need this because we could
479 * have raced in and did an fsync() on a file which can kick a commit
480 * and then we deadlock with somebody doing a freeze.
482 * If we are ATTACH, it means we just want to catch the current
483 * transaction and commit it, so we needn't do sb_start_intwrite().
485 if (type
& __TRANS_FREEZABLE
)
486 sb_start_intwrite(root
->fs_info
->sb
);
488 if (may_wait_transaction(root
, type
))
489 wait_current_trans(root
);
492 ret
= join_transaction(root
, type
);
494 wait_current_trans(root
);
495 if (unlikely(type
== TRANS_ATTACH
))
498 } while (ret
== -EBUSY
);
501 /* We must get the transaction if we are JOIN_NOLOCK. */
502 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
506 cur_trans
= root
->fs_info
->running_transaction
;
508 h
->transid
= cur_trans
->transid
;
509 h
->transaction
= cur_trans
;
510 h
->bytes_reserved
= 0;
512 h
->delayed_ref_updates
= 0;
518 h
->qgroup_reserved
= 0;
519 h
->delayed_ref_elem
.seq
= 0;
521 h
->allocating_chunk
= false;
522 h
->reloc_reserved
= false;
524 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
525 INIT_LIST_HEAD(&h
->new_bgs
);
526 INIT_LIST_HEAD(&h
->ordered
);
529 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
530 may_wait_transaction(root
, type
)) {
531 current
->journal_info
= h
;
532 btrfs_commit_transaction(h
, root
);
537 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
538 h
->transid
, num_bytes
, 1);
539 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
540 h
->bytes_reserved
= num_bytes
;
541 h
->reloc_reserved
= reloc_reserved
;
543 h
->qgroup_reserved
= qgroup_reserved
;
546 btrfs_record_root_in_trans(h
, root
);
548 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
549 current
->journal_info
= h
;
553 if (type
& __TRANS_FREEZABLE
)
554 sb_end_intwrite(root
->fs_info
->sb
);
555 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
558 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
562 btrfs_qgroup_free(root
, qgroup_reserved
);
566 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
569 return start_transaction(root
, num_items
, TRANS_START
,
570 BTRFS_RESERVE_FLUSH_ALL
);
573 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
574 struct btrfs_root
*root
, int num_items
)
576 return start_transaction(root
, num_items
, TRANS_START
,
577 BTRFS_RESERVE_FLUSH_LIMIT
);
580 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
582 return start_transaction(root
, 0, TRANS_JOIN
, 0);
585 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
587 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
590 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
592 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
596 * btrfs_attach_transaction() - catch the running transaction
598 * It is used when we want to commit the current the transaction, but
599 * don't want to start a new one.
601 * Note: If this function return -ENOENT, it just means there is no
602 * running transaction. But it is possible that the inactive transaction
603 * is still in the memory, not fully on disk. If you hope there is no
604 * inactive transaction in the fs when -ENOENT is returned, you should
606 * btrfs_attach_transaction_barrier()
608 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
610 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
614 * btrfs_attach_transaction_barrier() - catch the running transaction
616 * It is similar to the above function, the differentia is this one
617 * will wait for all the inactive transactions until they fully
620 struct btrfs_trans_handle
*
621 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
623 struct btrfs_trans_handle
*trans
;
625 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
626 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
627 btrfs_wait_for_commit(root
, 0);
632 /* wait for a transaction commit to be fully complete */
633 static noinline
void wait_for_commit(struct btrfs_root
*root
,
634 struct btrfs_transaction
*commit
)
636 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
639 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
641 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
645 if (transid
<= root
->fs_info
->last_trans_committed
)
648 /* find specified transaction */
649 spin_lock(&root
->fs_info
->trans_lock
);
650 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
651 if (t
->transid
== transid
) {
653 atomic_inc(&cur_trans
->use_count
);
657 if (t
->transid
> transid
) {
662 spin_unlock(&root
->fs_info
->trans_lock
);
665 * The specified transaction doesn't exist, or we
666 * raced with btrfs_commit_transaction
669 if (transid
> root
->fs_info
->last_trans_committed
)
674 /* find newest transaction that is committing | committed */
675 spin_lock(&root
->fs_info
->trans_lock
);
676 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
678 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
679 if (t
->state
== TRANS_STATE_COMPLETED
)
682 atomic_inc(&cur_trans
->use_count
);
686 spin_unlock(&root
->fs_info
->trans_lock
);
688 goto out
; /* nothing committing|committed */
691 wait_for_commit(root
, cur_trans
);
692 btrfs_put_transaction(cur_trans
);
697 void btrfs_throttle(struct btrfs_root
*root
)
699 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
700 wait_current_trans(root
);
703 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
704 struct btrfs_root
*root
)
706 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
707 btrfs_check_space_for_delayed_refs(trans
, root
))
710 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
713 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
714 struct btrfs_root
*root
)
716 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
721 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
722 cur_trans
->delayed_refs
.flushing
)
725 updates
= trans
->delayed_ref_updates
;
726 trans
->delayed_ref_updates
= 0;
728 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
729 if (err
) /* Error code will also eval true */
733 return should_end_transaction(trans
, root
);
736 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
737 struct btrfs_root
*root
, int throttle
)
739 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
740 struct btrfs_fs_info
*info
= root
->fs_info
;
741 unsigned long cur
= trans
->delayed_ref_updates
;
742 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
744 int must_run_delayed_refs
= 0;
746 if (trans
->use_count
> 1) {
748 trans
->block_rsv
= trans
->orig_rsv
;
752 btrfs_trans_release_metadata(trans
, root
);
753 trans
->block_rsv
= NULL
;
755 if (!list_empty(&trans
->new_bgs
))
756 btrfs_create_pending_block_groups(trans
, root
);
758 if (!list_empty(&trans
->ordered
)) {
759 spin_lock(&info
->trans_lock
);
760 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
761 spin_unlock(&info
->trans_lock
);
764 trans
->delayed_ref_updates
= 0;
766 must_run_delayed_refs
=
767 btrfs_should_throttle_delayed_refs(trans
, root
);
768 cur
= max_t(unsigned long, cur
, 32);
771 * don't make the caller wait if they are from a NOLOCK
772 * or ATTACH transaction, it will deadlock with commit
774 if (must_run_delayed_refs
== 1 &&
775 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
776 must_run_delayed_refs
= 2;
779 if (trans
->qgroup_reserved
) {
781 * the same root has to be passed here between start_transaction
782 * and end_transaction. Subvolume quota depends on this.
784 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
785 trans
->qgroup_reserved
= 0;
788 btrfs_trans_release_metadata(trans
, root
);
789 trans
->block_rsv
= NULL
;
791 if (!list_empty(&trans
->new_bgs
))
792 btrfs_create_pending_block_groups(trans
, root
);
794 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
795 should_end_transaction(trans
, root
) &&
796 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
797 spin_lock(&info
->trans_lock
);
798 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
799 cur_trans
->state
= TRANS_STATE_BLOCKED
;
800 spin_unlock(&info
->trans_lock
);
803 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
805 return btrfs_commit_transaction(trans
, root
);
807 wake_up_process(info
->transaction_kthread
);
810 if (trans
->type
& __TRANS_FREEZABLE
)
811 sb_end_intwrite(root
->fs_info
->sb
);
813 WARN_ON(cur_trans
!= info
->running_transaction
);
814 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
815 atomic_dec(&cur_trans
->num_writers
);
816 extwriter_counter_dec(cur_trans
, trans
->type
);
819 if (waitqueue_active(&cur_trans
->writer_wait
))
820 wake_up(&cur_trans
->writer_wait
);
821 btrfs_put_transaction(cur_trans
);
823 if (current
->journal_info
== trans
)
824 current
->journal_info
= NULL
;
827 btrfs_run_delayed_iputs(root
);
829 if (trans
->aborted
||
830 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
831 wake_up_process(info
->transaction_kthread
);
834 assert_qgroups_uptodate(trans
);
836 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
837 if (must_run_delayed_refs
) {
838 btrfs_async_run_delayed_refs(root
, cur
,
839 must_run_delayed_refs
== 1);
844 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
845 struct btrfs_root
*root
)
847 return __btrfs_end_transaction(trans
, root
, 0);
850 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
851 struct btrfs_root
*root
)
853 return __btrfs_end_transaction(trans
, root
, 1);
857 * when btree blocks are allocated, they have some corresponding bits set for
858 * them in one of two extent_io trees. This is used to make sure all of
859 * those extents are sent to disk but does not wait on them
861 int btrfs_write_marked_extents(struct btrfs_root
*root
,
862 struct extent_io_tree
*dirty_pages
, int mark
)
866 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
867 struct extent_state
*cached_state
= NULL
;
871 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
872 mark
, &cached_state
)) {
873 bool wait_writeback
= false;
875 err
= convert_extent_bit(dirty_pages
, start
, end
,
877 mark
, &cached_state
, GFP_NOFS
);
879 * convert_extent_bit can return -ENOMEM, which is most of the
880 * time a temporary error. So when it happens, ignore the error
881 * and wait for writeback of this range to finish - because we
882 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
883 * to btrfs_wait_marked_extents() would not know that writeback
884 * for this range started and therefore wouldn't wait for it to
885 * finish - we don't want to commit a superblock that points to
886 * btree nodes/leafs for which writeback hasn't finished yet
887 * (and without errors).
888 * We cleanup any entries left in the io tree when committing
889 * the transaction (through clear_btree_io_tree()).
891 if (err
== -ENOMEM
) {
893 wait_writeback
= true;
896 err
= filemap_fdatawrite_range(mapping
, start
, end
);
899 else if (wait_writeback
)
900 werr
= filemap_fdatawait_range(mapping
, start
, end
);
901 free_extent_state(cached_state
);
910 * when btree blocks are allocated, they have some corresponding bits set for
911 * them in one of two extent_io trees. This is used to make sure all of
912 * those extents are on disk for transaction or log commit. We wait
913 * on all the pages and clear them from the dirty pages state tree
915 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
916 struct extent_io_tree
*dirty_pages
, int mark
)
920 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
921 struct extent_state
*cached_state
= NULL
;
924 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
927 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
928 EXTENT_NEED_WAIT
, &cached_state
)) {
930 * Ignore -ENOMEM errors returned by clear_extent_bit().
931 * When committing the transaction, we'll remove any entries
932 * left in the io tree. For a log commit, we don't remove them
933 * after committing the log because the tree can be accessed
934 * concurrently - we do it only at transaction commit time when
935 * it's safe to do it (through clear_btree_io_tree()).
937 err
= clear_extent_bit(dirty_pages
, start
, end
,
939 0, 0, &cached_state
, GFP_NOFS
);
943 err
= filemap_fdatawait_range(mapping
, start
, end
);
946 free_extent_state(cached_state
);
954 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
955 if ((mark
& EXTENT_DIRTY
) &&
956 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
957 &btree_ino
->runtime_flags
))
960 if ((mark
& EXTENT_NEW
) &&
961 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
962 &btree_ino
->runtime_flags
))
965 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
966 &btree_ino
->runtime_flags
))
977 * when btree blocks are allocated, they have some corresponding bits set for
978 * them in one of two extent_io trees. This is used to make sure all of
979 * those extents are on disk for transaction or log commit
981 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
982 struct extent_io_tree
*dirty_pages
, int mark
)
986 struct blk_plug plug
;
988 blk_start_plug(&plug
);
989 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
990 blk_finish_plug(&plug
);
991 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1000 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1001 struct btrfs_root
*root
)
1005 ret
= btrfs_write_and_wait_marked_extents(root
,
1006 &trans
->transaction
->dirty_pages
,
1008 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1014 * this is used to update the root pointer in the tree of tree roots.
1016 * But, in the case of the extent allocation tree, updating the root
1017 * pointer may allocate blocks which may change the root of the extent
1020 * So, this loops and repeats and makes sure the cowonly root didn't
1021 * change while the root pointer was being updated in the metadata.
1023 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1024 struct btrfs_root
*root
)
1027 u64 old_root_bytenr
;
1029 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1031 old_root_used
= btrfs_root_used(&root
->root_item
);
1034 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1035 if (old_root_bytenr
== root
->node
->start
&&
1036 old_root_used
== btrfs_root_used(&root
->root_item
))
1039 btrfs_set_root_node(&root
->root_item
, root
->node
);
1040 ret
= btrfs_update_root(trans
, tree_root
,
1046 old_root_used
= btrfs_root_used(&root
->root_item
);
1053 * update all the cowonly tree roots on disk
1055 * The error handling in this function may not be obvious. Any of the
1056 * failures will cause the file system to go offline. We still need
1057 * to clean up the delayed refs.
1059 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1060 struct btrfs_root
*root
)
1062 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1063 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1064 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1065 struct list_head
*next
;
1066 struct extent_buffer
*eb
;
1069 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1070 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1072 btrfs_tree_unlock(eb
);
1073 free_extent_buffer(eb
);
1078 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1082 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1085 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1088 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1092 ret
= btrfs_setup_space_cache(trans
, root
);
1096 /* run_qgroups might have added some more refs */
1097 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1101 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1102 next
= fs_info
->dirty_cowonly_roots
.next
;
1103 list_del_init(next
);
1104 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1105 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1107 if (root
!= fs_info
->extent_root
)
1108 list_add_tail(&root
->dirty_list
,
1109 &trans
->transaction
->switch_commits
);
1110 ret
= update_cowonly_root(trans
, root
);
1113 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1118 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1119 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1122 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1127 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1130 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1131 &trans
->transaction
->switch_commits
);
1132 btrfs_after_dev_replace_commit(fs_info
);
1138 * dead roots are old snapshots that need to be deleted. This allocates
1139 * a dirty root struct and adds it into the list of dead roots that need to
1142 void btrfs_add_dead_root(struct btrfs_root
*root
)
1144 spin_lock(&root
->fs_info
->trans_lock
);
1145 if (list_empty(&root
->root_list
))
1146 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1147 spin_unlock(&root
->fs_info
->trans_lock
);
1151 * update all the cowonly tree roots on disk
1153 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1154 struct btrfs_root
*root
)
1156 struct btrfs_root
*gang
[8];
1157 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1162 spin_lock(&fs_info
->fs_roots_radix_lock
);
1164 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1167 BTRFS_ROOT_TRANS_TAG
);
1170 for (i
= 0; i
< ret
; i
++) {
1172 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1173 (unsigned long)root
->root_key
.objectid
,
1174 BTRFS_ROOT_TRANS_TAG
);
1175 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1177 btrfs_free_log(trans
, root
);
1178 btrfs_update_reloc_root(trans
, root
);
1179 btrfs_orphan_commit_root(trans
, root
);
1181 btrfs_save_ino_cache(root
, trans
);
1183 /* see comments in should_cow_block() */
1184 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1185 smp_mb__after_atomic();
1187 if (root
->commit_root
!= root
->node
) {
1188 list_add_tail(&root
->dirty_list
,
1189 &trans
->transaction
->switch_commits
);
1190 btrfs_set_root_node(&root
->root_item
,
1194 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1197 spin_lock(&fs_info
->fs_roots_radix_lock
);
1202 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1207 * defrag a given btree.
1208 * Every leaf in the btree is read and defragged.
1210 int btrfs_defrag_root(struct btrfs_root
*root
)
1212 struct btrfs_fs_info
*info
= root
->fs_info
;
1213 struct btrfs_trans_handle
*trans
;
1216 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1220 trans
= btrfs_start_transaction(root
, 0);
1222 return PTR_ERR(trans
);
1224 ret
= btrfs_defrag_leaves(trans
, root
);
1226 btrfs_end_transaction(trans
, root
);
1227 btrfs_btree_balance_dirty(info
->tree_root
);
1230 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1233 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1234 pr_debug("BTRFS: defrag_root cancelled\n");
1239 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1244 * new snapshots need to be created at a very specific time in the
1245 * transaction commit. This does the actual creation.
1248 * If the error which may affect the commitment of the current transaction
1249 * happens, we should return the error number. If the error which just affect
1250 * the creation of the pending snapshots, just return 0.
1252 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1253 struct btrfs_fs_info
*fs_info
,
1254 struct btrfs_pending_snapshot
*pending
)
1256 struct btrfs_key key
;
1257 struct btrfs_root_item
*new_root_item
;
1258 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1259 struct btrfs_root
*root
= pending
->root
;
1260 struct btrfs_root
*parent_root
;
1261 struct btrfs_block_rsv
*rsv
;
1262 struct inode
*parent_inode
;
1263 struct btrfs_path
*path
;
1264 struct btrfs_dir_item
*dir_item
;
1265 struct dentry
*dentry
;
1266 struct extent_buffer
*tmp
;
1267 struct extent_buffer
*old
;
1268 struct timespec cur_time
= CURRENT_TIME
;
1276 path
= btrfs_alloc_path();
1278 pending
->error
= -ENOMEM
;
1282 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1283 if (!new_root_item
) {
1284 pending
->error
= -ENOMEM
;
1285 goto root_item_alloc_fail
;
1288 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1290 goto no_free_objectid
;
1292 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1294 if (to_reserve
> 0) {
1295 pending
->error
= btrfs_block_rsv_add(root
,
1296 &pending
->block_rsv
,
1298 BTRFS_RESERVE_NO_FLUSH
);
1300 goto no_free_objectid
;
1303 key
.objectid
= objectid
;
1304 key
.offset
= (u64
)-1;
1305 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1307 rsv
= trans
->block_rsv
;
1308 trans
->block_rsv
= &pending
->block_rsv
;
1309 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1311 dentry
= pending
->dentry
;
1312 parent_inode
= pending
->dir
;
1313 parent_root
= BTRFS_I(parent_inode
)->root
;
1314 record_root_in_trans(trans
, parent_root
);
1317 * insert the directory item
1319 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1320 BUG_ON(ret
); /* -ENOMEM */
1322 /* check if there is a file/dir which has the same name. */
1323 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1324 btrfs_ino(parent_inode
),
1325 dentry
->d_name
.name
,
1326 dentry
->d_name
.len
, 0);
1327 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1328 pending
->error
= -EEXIST
;
1329 goto dir_item_existed
;
1330 } else if (IS_ERR(dir_item
)) {
1331 ret
= PTR_ERR(dir_item
);
1332 btrfs_abort_transaction(trans
, root
, ret
);
1335 btrfs_release_path(path
);
1338 * pull in the delayed directory update
1339 * and the delayed inode item
1340 * otherwise we corrupt the FS during
1343 ret
= btrfs_run_delayed_items(trans
, root
);
1344 if (ret
) { /* Transaction aborted */
1345 btrfs_abort_transaction(trans
, root
, ret
);
1349 record_root_in_trans(trans
, root
);
1350 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1351 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1352 btrfs_check_and_init_root_item(new_root_item
);
1354 root_flags
= btrfs_root_flags(new_root_item
);
1355 if (pending
->readonly
)
1356 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1358 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1359 btrfs_set_root_flags(new_root_item
, root_flags
);
1361 btrfs_set_root_generation_v2(new_root_item
,
1363 uuid_le_gen(&new_uuid
);
1364 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1365 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1367 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1368 memset(new_root_item
->received_uuid
, 0,
1369 sizeof(new_root_item
->received_uuid
));
1370 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1371 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1372 btrfs_set_root_stransid(new_root_item
, 0);
1373 btrfs_set_root_rtransid(new_root_item
, 0);
1375 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1376 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1377 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1379 old
= btrfs_lock_root_node(root
);
1380 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1382 btrfs_tree_unlock(old
);
1383 free_extent_buffer(old
);
1384 btrfs_abort_transaction(trans
, root
, ret
);
1388 btrfs_set_lock_blocking(old
);
1390 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1391 /* clean up in any case */
1392 btrfs_tree_unlock(old
);
1393 free_extent_buffer(old
);
1395 btrfs_abort_transaction(trans
, root
, ret
);
1400 * We need to flush delayed refs in order to make sure all of our quota
1401 * operations have been done before we call btrfs_qgroup_inherit.
1403 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1405 btrfs_abort_transaction(trans
, root
, ret
);
1409 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1410 root
->root_key
.objectid
,
1411 objectid
, pending
->inherit
);
1413 btrfs_abort_transaction(trans
, root
, ret
);
1417 /* see comments in should_cow_block() */
1418 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1421 btrfs_set_root_node(new_root_item
, tmp
);
1422 /* record when the snapshot was created in key.offset */
1423 key
.offset
= trans
->transid
;
1424 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1425 btrfs_tree_unlock(tmp
);
1426 free_extent_buffer(tmp
);
1428 btrfs_abort_transaction(trans
, root
, ret
);
1433 * insert root back/forward references
1435 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1436 parent_root
->root_key
.objectid
,
1437 btrfs_ino(parent_inode
), index
,
1438 dentry
->d_name
.name
, dentry
->d_name
.len
);
1440 btrfs_abort_transaction(trans
, root
, ret
);
1444 key
.offset
= (u64
)-1;
1445 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1446 if (IS_ERR(pending
->snap
)) {
1447 ret
= PTR_ERR(pending
->snap
);
1448 btrfs_abort_transaction(trans
, root
, ret
);
1452 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1454 btrfs_abort_transaction(trans
, root
, ret
);
1458 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1460 btrfs_abort_transaction(trans
, root
, ret
);
1464 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1465 dentry
->d_name
.name
, dentry
->d_name
.len
,
1467 BTRFS_FT_DIR
, index
);
1468 /* We have check then name at the beginning, so it is impossible. */
1469 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1471 btrfs_abort_transaction(trans
, root
, ret
);
1475 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1476 dentry
->d_name
.len
* 2);
1477 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1478 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1480 btrfs_abort_transaction(trans
, root
, ret
);
1483 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1484 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1486 btrfs_abort_transaction(trans
, root
, ret
);
1489 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1490 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1491 new_root_item
->received_uuid
,
1492 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1494 if (ret
&& ret
!= -EEXIST
) {
1495 btrfs_abort_transaction(trans
, root
, ret
);
1500 pending
->error
= ret
;
1502 trans
->block_rsv
= rsv
;
1503 trans
->bytes_reserved
= 0;
1505 kfree(new_root_item
);
1506 root_item_alloc_fail
:
1507 btrfs_free_path(path
);
1512 * create all the snapshots we've scheduled for creation
1514 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1515 struct btrfs_fs_info
*fs_info
)
1517 struct btrfs_pending_snapshot
*pending
, *next
;
1518 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1521 list_for_each_entry_safe(pending
, next
, head
, list
) {
1522 list_del(&pending
->list
);
1523 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1530 static void update_super_roots(struct btrfs_root
*root
)
1532 struct btrfs_root_item
*root_item
;
1533 struct btrfs_super_block
*super
;
1535 super
= root
->fs_info
->super_copy
;
1537 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1538 super
->chunk_root
= root_item
->bytenr
;
1539 super
->chunk_root_generation
= root_item
->generation
;
1540 super
->chunk_root_level
= root_item
->level
;
1542 root_item
= &root
->fs_info
->tree_root
->root_item
;
1543 super
->root
= root_item
->bytenr
;
1544 super
->generation
= root_item
->generation
;
1545 super
->root_level
= root_item
->level
;
1546 if (btrfs_test_opt(root
, SPACE_CACHE
))
1547 super
->cache_generation
= root_item
->generation
;
1548 if (root
->fs_info
->update_uuid_tree_gen
)
1549 super
->uuid_tree_generation
= root_item
->generation
;
1552 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1554 struct btrfs_transaction
*trans
;
1557 spin_lock(&info
->trans_lock
);
1558 trans
= info
->running_transaction
;
1560 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1561 spin_unlock(&info
->trans_lock
);
1565 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1567 struct btrfs_transaction
*trans
;
1570 spin_lock(&info
->trans_lock
);
1571 trans
= info
->running_transaction
;
1573 ret
= is_transaction_blocked(trans
);
1574 spin_unlock(&info
->trans_lock
);
1579 * wait for the current transaction commit to start and block subsequent
1582 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1583 struct btrfs_transaction
*trans
)
1585 wait_event(root
->fs_info
->transaction_blocked_wait
,
1586 trans
->state
>= TRANS_STATE_COMMIT_START
||
1591 * wait for the current transaction to start and then become unblocked.
1594 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1595 struct btrfs_transaction
*trans
)
1597 wait_event(root
->fs_info
->transaction_wait
,
1598 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1603 * commit transactions asynchronously. once btrfs_commit_transaction_async
1604 * returns, any subsequent transaction will not be allowed to join.
1606 struct btrfs_async_commit
{
1607 struct btrfs_trans_handle
*newtrans
;
1608 struct btrfs_root
*root
;
1609 struct work_struct work
;
1612 static void do_async_commit(struct work_struct
*work
)
1614 struct btrfs_async_commit
*ac
=
1615 container_of(work
, struct btrfs_async_commit
, work
);
1618 * We've got freeze protection passed with the transaction.
1619 * Tell lockdep about it.
1621 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1623 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1626 current
->journal_info
= ac
->newtrans
;
1628 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1632 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1633 struct btrfs_root
*root
,
1634 int wait_for_unblock
)
1636 struct btrfs_async_commit
*ac
;
1637 struct btrfs_transaction
*cur_trans
;
1639 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1643 INIT_WORK(&ac
->work
, do_async_commit
);
1645 ac
->newtrans
= btrfs_join_transaction(root
);
1646 if (IS_ERR(ac
->newtrans
)) {
1647 int err
= PTR_ERR(ac
->newtrans
);
1652 /* take transaction reference */
1653 cur_trans
= trans
->transaction
;
1654 atomic_inc(&cur_trans
->use_count
);
1656 btrfs_end_transaction(trans
, root
);
1659 * Tell lockdep we've released the freeze rwsem, since the
1660 * async commit thread will be the one to unlock it.
1662 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1664 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1667 schedule_work(&ac
->work
);
1669 /* wait for transaction to start and unblock */
1670 if (wait_for_unblock
)
1671 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1673 wait_current_trans_commit_start(root
, cur_trans
);
1675 if (current
->journal_info
== trans
)
1676 current
->journal_info
= NULL
;
1678 btrfs_put_transaction(cur_trans
);
1683 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1684 struct btrfs_root
*root
, int err
)
1686 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1689 WARN_ON(trans
->use_count
> 1);
1691 btrfs_abort_transaction(trans
, root
, err
);
1693 spin_lock(&root
->fs_info
->trans_lock
);
1696 * If the transaction is removed from the list, it means this
1697 * transaction has been committed successfully, so it is impossible
1698 * to call the cleanup function.
1700 BUG_ON(list_empty(&cur_trans
->list
));
1702 list_del_init(&cur_trans
->list
);
1703 if (cur_trans
== root
->fs_info
->running_transaction
) {
1704 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1705 spin_unlock(&root
->fs_info
->trans_lock
);
1706 wait_event(cur_trans
->writer_wait
,
1707 atomic_read(&cur_trans
->num_writers
) == 1);
1709 spin_lock(&root
->fs_info
->trans_lock
);
1711 spin_unlock(&root
->fs_info
->trans_lock
);
1713 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1715 spin_lock(&root
->fs_info
->trans_lock
);
1716 if (cur_trans
== root
->fs_info
->running_transaction
)
1717 root
->fs_info
->running_transaction
= NULL
;
1718 spin_unlock(&root
->fs_info
->trans_lock
);
1720 if (trans
->type
& __TRANS_FREEZABLE
)
1721 sb_end_intwrite(root
->fs_info
->sb
);
1722 btrfs_put_transaction(cur_trans
);
1723 btrfs_put_transaction(cur_trans
);
1725 trace_btrfs_transaction_commit(root
);
1727 if (current
->journal_info
== trans
)
1728 current
->journal_info
= NULL
;
1729 btrfs_scrub_cancel(root
->fs_info
);
1731 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1734 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1736 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1737 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1741 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1743 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1744 btrfs_wait_ordered_roots(fs_info
, -1);
1748 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
,
1749 struct btrfs_fs_info
*fs_info
)
1751 struct btrfs_ordered_extent
*ordered
;
1753 spin_lock(&fs_info
->trans_lock
);
1754 while (!list_empty(&cur_trans
->pending_ordered
)) {
1755 ordered
= list_first_entry(&cur_trans
->pending_ordered
,
1756 struct btrfs_ordered_extent
,
1758 list_del_init(&ordered
->trans_list
);
1759 spin_unlock(&fs_info
->trans_lock
);
1761 wait_event(ordered
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
1763 btrfs_put_ordered_extent(ordered
);
1764 spin_lock(&fs_info
->trans_lock
);
1766 spin_unlock(&fs_info
->trans_lock
);
1769 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1770 struct btrfs_root
*root
)
1772 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1773 struct btrfs_transaction
*prev_trans
= NULL
;
1774 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1777 /* Stop the commit early if ->aborted is set */
1778 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1779 ret
= cur_trans
->aborted
;
1780 btrfs_end_transaction(trans
, root
);
1784 /* make a pass through all the delayed refs we have so far
1785 * any runnings procs may add more while we are here
1787 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1789 btrfs_end_transaction(trans
, root
);
1793 btrfs_trans_release_metadata(trans
, root
);
1794 trans
->block_rsv
= NULL
;
1795 if (trans
->qgroup_reserved
) {
1796 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1797 trans
->qgroup_reserved
= 0;
1800 cur_trans
= trans
->transaction
;
1803 * set the flushing flag so procs in this transaction have to
1804 * start sending their work down.
1806 cur_trans
->delayed_refs
.flushing
= 1;
1809 if (!list_empty(&trans
->new_bgs
))
1810 btrfs_create_pending_block_groups(trans
, root
);
1812 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1814 btrfs_end_transaction(trans
, root
);
1818 if (!cur_trans
->dirty_bg_run
) {
1821 /* this mutex is also taken before trying to set
1822 * block groups readonly. We need to make sure
1823 * that nobody has set a block group readonly
1824 * after a extents from that block group have been
1825 * allocated for cache files. btrfs_set_block_group_ro
1826 * will wait for the transaction to commit if it
1827 * finds dirty_bg_run = 1
1829 * The dirty_bg_run flag is also used to make sure only
1830 * one process starts all the block group IO. It wouldn't
1831 * hurt to have more than one go through, but there's no
1832 * real advantage to it either.
1834 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1835 if (!cur_trans
->dirty_bg_run
) {
1837 cur_trans
->dirty_bg_run
= 1;
1839 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1842 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1845 btrfs_end_transaction(trans
, root
);
1849 spin_lock(&root
->fs_info
->trans_lock
);
1850 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
1851 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1852 spin_unlock(&root
->fs_info
->trans_lock
);
1853 atomic_inc(&cur_trans
->use_count
);
1854 ret
= btrfs_end_transaction(trans
, root
);
1856 wait_for_commit(root
, cur_trans
);
1858 if (unlikely(cur_trans
->aborted
))
1859 ret
= cur_trans
->aborted
;
1861 btrfs_put_transaction(cur_trans
);
1866 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1867 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1869 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1870 prev_trans
= list_entry(cur_trans
->list
.prev
,
1871 struct btrfs_transaction
, list
);
1872 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1873 atomic_inc(&prev_trans
->use_count
);
1874 spin_unlock(&root
->fs_info
->trans_lock
);
1876 wait_for_commit(root
, prev_trans
);
1877 ret
= prev_trans
->aborted
;
1879 btrfs_put_transaction(prev_trans
);
1881 goto cleanup_transaction
;
1883 spin_unlock(&root
->fs_info
->trans_lock
);
1886 spin_unlock(&root
->fs_info
->trans_lock
);
1889 extwriter_counter_dec(cur_trans
, trans
->type
);
1891 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1893 goto cleanup_transaction
;
1895 ret
= btrfs_run_delayed_items(trans
, root
);
1897 goto cleanup_transaction
;
1899 wait_event(cur_trans
->writer_wait
,
1900 extwriter_counter_read(cur_trans
) == 0);
1902 /* some pending stuffs might be added after the previous flush. */
1903 ret
= btrfs_run_delayed_items(trans
, root
);
1905 goto cleanup_transaction
;
1907 btrfs_wait_delalloc_flush(root
->fs_info
);
1909 btrfs_wait_pending_ordered(cur_trans
, root
->fs_info
);
1911 btrfs_scrub_pause(root
);
1913 * Ok now we need to make sure to block out any other joins while we
1914 * commit the transaction. We could have started a join before setting
1915 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1917 spin_lock(&root
->fs_info
->trans_lock
);
1918 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1919 spin_unlock(&root
->fs_info
->trans_lock
);
1920 wait_event(cur_trans
->writer_wait
,
1921 atomic_read(&cur_trans
->num_writers
) == 1);
1923 /* ->aborted might be set after the previous check, so check it */
1924 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1925 ret
= cur_trans
->aborted
;
1926 goto scrub_continue
;
1929 * the reloc mutex makes sure that we stop
1930 * the balancing code from coming in and moving
1931 * extents around in the middle of the commit
1933 mutex_lock(&root
->fs_info
->reloc_mutex
);
1936 * We needn't worry about the delayed items because we will
1937 * deal with them in create_pending_snapshot(), which is the
1938 * core function of the snapshot creation.
1940 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1942 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1943 goto scrub_continue
;
1947 * We insert the dir indexes of the snapshots and update the inode
1948 * of the snapshots' parents after the snapshot creation, so there
1949 * are some delayed items which are not dealt with. Now deal with
1952 * We needn't worry that this operation will corrupt the snapshots,
1953 * because all the tree which are snapshoted will be forced to COW
1954 * the nodes and leaves.
1956 ret
= btrfs_run_delayed_items(trans
, root
);
1958 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1959 goto scrub_continue
;
1962 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1964 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1965 goto scrub_continue
;
1969 * make sure none of the code above managed to slip in a
1972 btrfs_assert_delayed_root_empty(root
);
1974 WARN_ON(cur_trans
!= trans
->transaction
);
1976 /* btrfs_commit_tree_roots is responsible for getting the
1977 * various roots consistent with each other. Every pointer
1978 * in the tree of tree roots has to point to the most up to date
1979 * root for every subvolume and other tree. So, we have to keep
1980 * the tree logging code from jumping in and changing any
1983 * At this point in the commit, there can't be any tree-log
1984 * writers, but a little lower down we drop the trans mutex
1985 * and let new people in. By holding the tree_log_mutex
1986 * from now until after the super is written, we avoid races
1987 * with the tree-log code.
1989 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1991 ret
= commit_fs_roots(trans
, root
);
1993 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1994 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1995 goto scrub_continue
;
1999 * Since the transaction is done, we can apply the pending changes
2000 * before the next transaction.
2002 btrfs_apply_pending_changes(root
->fs_info
);
2004 /* commit_fs_roots gets rid of all the tree log roots, it is now
2005 * safe to free the root of tree log roots
2007 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2009 ret
= commit_cowonly_roots(trans
, root
);
2011 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2012 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2013 goto scrub_continue
;
2017 * The tasks which save the space cache and inode cache may also
2018 * update ->aborted, check it.
2020 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2021 ret
= cur_trans
->aborted
;
2022 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2023 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2024 goto scrub_continue
;
2027 btrfs_prepare_extent_commit(trans
, root
);
2029 cur_trans
= root
->fs_info
->running_transaction
;
2031 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2032 root
->fs_info
->tree_root
->node
);
2033 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2034 &cur_trans
->switch_commits
);
2036 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2037 root
->fs_info
->chunk_root
->node
);
2038 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2039 &cur_trans
->switch_commits
);
2041 switch_commit_roots(cur_trans
, root
->fs_info
);
2043 assert_qgroups_uptodate(trans
);
2044 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2045 ASSERT(list_empty(&cur_trans
->io_bgs
));
2046 update_super_roots(root
);
2048 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2049 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2050 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2051 sizeof(*root
->fs_info
->super_copy
));
2053 btrfs_update_commit_device_size(root
->fs_info
);
2054 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2056 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
2057 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
2059 spin_lock(&root
->fs_info
->trans_lock
);
2060 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2061 root
->fs_info
->running_transaction
= NULL
;
2062 spin_unlock(&root
->fs_info
->trans_lock
);
2063 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2065 wake_up(&root
->fs_info
->transaction_wait
);
2067 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2069 btrfs_error(root
->fs_info
, ret
,
2070 "Error while writing out transaction");
2071 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2072 goto scrub_continue
;
2075 ret
= write_ctree_super(trans
, root
, 0);
2077 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2078 goto scrub_continue
;
2082 * the super is written, we can safely allow the tree-loggers
2083 * to go about their business
2085 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2087 btrfs_finish_extent_commit(trans
, root
);
2089 if (cur_trans
->have_free_bgs
)
2090 btrfs_clear_space_info_full(root
->fs_info
);
2092 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2094 * We needn't acquire the lock here because there is no other task
2095 * which can change it.
2097 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2098 wake_up(&cur_trans
->commit_wait
);
2100 spin_lock(&root
->fs_info
->trans_lock
);
2101 list_del_init(&cur_trans
->list
);
2102 spin_unlock(&root
->fs_info
->trans_lock
);
2104 btrfs_put_transaction(cur_trans
);
2105 btrfs_put_transaction(cur_trans
);
2107 if (trans
->type
& __TRANS_FREEZABLE
)
2108 sb_end_intwrite(root
->fs_info
->sb
);
2110 trace_btrfs_transaction_commit(root
);
2112 btrfs_scrub_continue(root
);
2114 if (current
->journal_info
== trans
)
2115 current
->journal_info
= NULL
;
2117 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2119 if (current
!= root
->fs_info
->transaction_kthread
)
2120 btrfs_run_delayed_iputs(root
);
2125 btrfs_scrub_continue(root
);
2126 cleanup_transaction
:
2127 btrfs_trans_release_metadata(trans
, root
);
2128 trans
->block_rsv
= NULL
;
2129 if (trans
->qgroup_reserved
) {
2130 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
2131 trans
->qgroup_reserved
= 0;
2133 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2134 if (current
->journal_info
== trans
)
2135 current
->journal_info
= NULL
;
2136 cleanup_transaction(trans
, root
, ret
);
2142 * return < 0 if error
2143 * 0 if there are no more dead_roots at the time of call
2144 * 1 there are more to be processed, call me again
2146 * The return value indicates there are certainly more snapshots to delete, but
2147 * if there comes a new one during processing, it may return 0. We don't mind,
2148 * because btrfs_commit_super will poke cleaner thread and it will process it a
2149 * few seconds later.
2151 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2154 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2156 spin_lock(&fs_info
->trans_lock
);
2157 if (list_empty(&fs_info
->dead_roots
)) {
2158 spin_unlock(&fs_info
->trans_lock
);
2161 root
= list_first_entry(&fs_info
->dead_roots
,
2162 struct btrfs_root
, root_list
);
2163 list_del_init(&root
->root_list
);
2164 spin_unlock(&fs_info
->trans_lock
);
2166 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2168 btrfs_kill_all_delayed_nodes(root
);
2170 if (btrfs_header_backref_rev(root
->node
) <
2171 BTRFS_MIXED_BACKREF_REV
)
2172 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2174 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2176 return (ret
< 0) ? 0 : 1;
2179 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2184 prev
= xchg(&fs_info
->pending_changes
, 0);
2188 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2190 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2193 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2195 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2198 bit
= 1 << BTRFS_PENDING_COMMIT
;
2200 btrfs_debug(fs_info
, "pending commit done");
2205 "unknown pending changes left 0x%lx, ignoring", prev
);