1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/sort.h>
4 #include <linux/slab.h>
7 #include "mds_client.h"
9 #include <linux/ceph/decode.h>
12 * Snapshots in ceph are driven in large part by cooperation from the
13 * client. In contrast to local file systems or file servers that
14 * implement snapshots at a single point in the system, ceph's
15 * distributed access to storage requires clients to help decide
16 * whether a write logically occurs before or after a recently created
19 * This provides a perfect instantanous client-wide snapshot. Between
20 * clients, however, snapshots may appear to be applied at slightly
21 * different points in time, depending on delays in delivering the
22 * snapshot notification.
24 * Snapshots are _not_ file system-wide. Instead, each snapshot
25 * applies to the subdirectory nested beneath some directory. This
26 * effectively divides the hierarchy into multiple "realms," where all
27 * of the files contained by each realm share the same set of
28 * snapshots. An individual realm's snap set contains snapshots
29 * explicitly created on that realm, as well as any snaps in its
30 * parent's snap set _after_ the point at which the parent became it's
31 * parent (due to, say, a rename). Similarly, snaps from prior parents
32 * during the time intervals during which they were the parent are included.
34 * The client is spared most of this detail, fortunately... it must only
35 * maintains a hierarchy of realms reflecting the current parent/child
36 * realm relationship, and for each realm has an explicit list of snaps
37 * inherited from prior parents.
39 * A snap_realm struct is maintained for realms containing every inode
40 * with an open cap in the system. (The needed snap realm information is
41 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
42 * version number is used to ensure that as realm parameters change (new
43 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
45 * The realm hierarchy drives the generation of a 'snap context' for each
46 * realm, which simply lists the resulting set of snaps for the realm. This
47 * is attached to any writes sent to OSDs.
50 * Unfortunately error handling is a bit mixed here. If we get a snap
51 * update, but don't have enough memory to update our realm hierarchy,
52 * it's not clear what we can do about it (besides complaining to the
58 * increase ref count for the realm
60 * caller must hold snap_rwsem for write.
62 void ceph_get_snap_realm(struct ceph_mds_client
*mdsc
,
63 struct ceph_snap_realm
*realm
)
65 dout("get_realm %p %d -> %d\n", realm
,
66 atomic_read(&realm
->nref
), atomic_read(&realm
->nref
)+1);
68 * since we _only_ increment realm refs or empty the empty
69 * list with snap_rwsem held, adjusting the empty list here is
70 * safe. we do need to protect against concurrent empty list
73 if (atomic_inc_return(&realm
->nref
) == 1) {
74 spin_lock(&mdsc
->snap_empty_lock
);
75 list_del_init(&realm
->empty_item
);
76 spin_unlock(&mdsc
->snap_empty_lock
);
80 static void __insert_snap_realm(struct rb_root
*root
,
81 struct ceph_snap_realm
*new)
83 struct rb_node
**p
= &root
->rb_node
;
84 struct rb_node
*parent
= NULL
;
85 struct ceph_snap_realm
*r
= NULL
;
89 r
= rb_entry(parent
, struct ceph_snap_realm
, node
);
90 if (new->ino
< r
->ino
)
92 else if (new->ino
> r
->ino
)
98 rb_link_node(&new->node
, parent
, p
);
99 rb_insert_color(&new->node
, root
);
103 * create and get the realm rooted at @ino and bump its ref count.
105 * caller must hold snap_rwsem for write.
107 static struct ceph_snap_realm
*ceph_create_snap_realm(
108 struct ceph_mds_client
*mdsc
,
111 struct ceph_snap_realm
*realm
;
113 realm
= kzalloc(sizeof(*realm
), GFP_NOFS
);
115 return ERR_PTR(-ENOMEM
);
117 atomic_set(&realm
->nref
, 1); /* for caller */
119 INIT_LIST_HEAD(&realm
->children
);
120 INIT_LIST_HEAD(&realm
->child_item
);
121 INIT_LIST_HEAD(&realm
->empty_item
);
122 INIT_LIST_HEAD(&realm
->dirty_item
);
123 INIT_LIST_HEAD(&realm
->inodes_with_caps
);
124 spin_lock_init(&realm
->inodes_with_caps_lock
);
125 __insert_snap_realm(&mdsc
->snap_realms
, realm
);
126 dout("create_snap_realm %llx %p\n", realm
->ino
, realm
);
131 * lookup the realm rooted at @ino.
133 * caller must hold snap_rwsem for write.
135 static struct ceph_snap_realm
*__lookup_snap_realm(struct ceph_mds_client
*mdsc
,
138 struct rb_node
*n
= mdsc
->snap_realms
.rb_node
;
139 struct ceph_snap_realm
*r
;
142 r
= rb_entry(n
, struct ceph_snap_realm
, node
);
145 else if (ino
> r
->ino
)
148 dout("lookup_snap_realm %llx %p\n", r
->ino
, r
);
155 struct ceph_snap_realm
*ceph_lookup_snap_realm(struct ceph_mds_client
*mdsc
,
158 struct ceph_snap_realm
*r
;
159 r
= __lookup_snap_realm(mdsc
, ino
);
161 ceph_get_snap_realm(mdsc
, r
);
165 static void __put_snap_realm(struct ceph_mds_client
*mdsc
,
166 struct ceph_snap_realm
*realm
);
169 * called with snap_rwsem (write)
171 static void __destroy_snap_realm(struct ceph_mds_client
*mdsc
,
172 struct ceph_snap_realm
*realm
)
174 dout("__destroy_snap_realm %p %llx\n", realm
, realm
->ino
);
176 rb_erase(&realm
->node
, &mdsc
->snap_realms
);
179 list_del_init(&realm
->child_item
);
180 __put_snap_realm(mdsc
, realm
->parent
);
183 kfree(realm
->prior_parent_snaps
);
185 ceph_put_snap_context(realm
->cached_context
);
190 * caller holds snap_rwsem (write)
192 static void __put_snap_realm(struct ceph_mds_client
*mdsc
,
193 struct ceph_snap_realm
*realm
)
195 dout("__put_snap_realm %llx %p %d -> %d\n", realm
->ino
, realm
,
196 atomic_read(&realm
->nref
), atomic_read(&realm
->nref
)-1);
197 if (atomic_dec_and_test(&realm
->nref
))
198 __destroy_snap_realm(mdsc
, realm
);
202 * caller needn't hold any locks
204 void ceph_put_snap_realm(struct ceph_mds_client
*mdsc
,
205 struct ceph_snap_realm
*realm
)
207 dout("put_snap_realm %llx %p %d -> %d\n", realm
->ino
, realm
,
208 atomic_read(&realm
->nref
), atomic_read(&realm
->nref
)-1);
209 if (!atomic_dec_and_test(&realm
->nref
))
212 if (down_write_trylock(&mdsc
->snap_rwsem
)) {
213 __destroy_snap_realm(mdsc
, realm
);
214 up_write(&mdsc
->snap_rwsem
);
216 spin_lock(&mdsc
->snap_empty_lock
);
217 list_add(&realm
->empty_item
, &mdsc
->snap_empty
);
218 spin_unlock(&mdsc
->snap_empty_lock
);
223 * Clean up any realms whose ref counts have dropped to zero. Note
224 * that this does not include realms who were created but not yet
227 * Called under snap_rwsem (write)
229 static void __cleanup_empty_realms(struct ceph_mds_client
*mdsc
)
231 struct ceph_snap_realm
*realm
;
233 spin_lock(&mdsc
->snap_empty_lock
);
234 while (!list_empty(&mdsc
->snap_empty
)) {
235 realm
= list_first_entry(&mdsc
->snap_empty
,
236 struct ceph_snap_realm
, empty_item
);
237 list_del(&realm
->empty_item
);
238 spin_unlock(&mdsc
->snap_empty_lock
);
239 __destroy_snap_realm(mdsc
, realm
);
240 spin_lock(&mdsc
->snap_empty_lock
);
242 spin_unlock(&mdsc
->snap_empty_lock
);
245 void ceph_cleanup_empty_realms(struct ceph_mds_client
*mdsc
)
247 down_write(&mdsc
->snap_rwsem
);
248 __cleanup_empty_realms(mdsc
);
249 up_write(&mdsc
->snap_rwsem
);
253 * adjust the parent realm of a given @realm. adjust child list, and parent
254 * pointers, and ref counts appropriately.
256 * return true if parent was changed, 0 if unchanged, <0 on error.
258 * caller must hold snap_rwsem for write.
260 static int adjust_snap_realm_parent(struct ceph_mds_client
*mdsc
,
261 struct ceph_snap_realm
*realm
,
264 struct ceph_snap_realm
*parent
;
266 if (realm
->parent_ino
== parentino
)
269 parent
= ceph_lookup_snap_realm(mdsc
, parentino
);
271 parent
= ceph_create_snap_realm(mdsc
, parentino
);
273 return PTR_ERR(parent
);
275 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
276 realm
->ino
, realm
, realm
->parent_ino
, realm
->parent
,
279 list_del_init(&realm
->child_item
);
280 ceph_put_snap_realm(mdsc
, realm
->parent
);
282 realm
->parent_ino
= parentino
;
283 realm
->parent
= parent
;
284 list_add(&realm
->child_item
, &parent
->children
);
289 static int cmpu64_rev(const void *a
, const void *b
)
291 if (*(u64
*)a
< *(u64
*)b
)
293 if (*(u64
*)a
> *(u64
*)b
)
299 static struct ceph_snap_context
*empty_snapc
;
302 * build the snap context for a given realm.
304 static int build_snap_context(struct ceph_snap_realm
*realm
)
306 struct ceph_snap_realm
*parent
= realm
->parent
;
307 struct ceph_snap_context
*snapc
;
309 u32 num
= realm
->num_prior_parent_snaps
+ realm
->num_snaps
;
312 * build parent context, if it hasn't been built.
313 * conservatively estimate that all parent snaps might be
317 if (!parent
->cached_context
) {
318 err
= build_snap_context(parent
);
322 num
+= parent
->cached_context
->num_snaps
;
325 /* do i actually need to update? not if my context seq
326 matches realm seq, and my parents' does to. (this works
327 because we rebuild_snap_realms() works _downward_ in
328 hierarchy after each update.) */
329 if (realm
->cached_context
&&
330 realm
->cached_context
->seq
== realm
->seq
&&
332 realm
->cached_context
->seq
>= parent
->cached_context
->seq
)) {
333 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
335 realm
->ino
, realm
, realm
->cached_context
,
336 realm
->cached_context
->seq
,
337 (unsigned int) realm
->cached_context
->num_snaps
);
341 if (num
== 0 && realm
->seq
== empty_snapc
->seq
) {
342 ceph_get_snap_context(empty_snapc
);
347 /* alloc new snap context */
349 if (num
> (SIZE_MAX
- sizeof(*snapc
)) / sizeof(u64
))
351 snapc
= ceph_create_snap_context(num
, GFP_NOFS
);
355 /* build (reverse sorted) snap vector */
357 snapc
->seq
= realm
->seq
;
361 /* include any of parent's snaps occurring _after_ my
362 parent became my parent */
363 for (i
= 0; i
< parent
->cached_context
->num_snaps
; i
++)
364 if (parent
->cached_context
->snaps
[i
] >=
366 snapc
->snaps
[num
++] =
367 parent
->cached_context
->snaps
[i
];
368 if (parent
->cached_context
->seq
> snapc
->seq
)
369 snapc
->seq
= parent
->cached_context
->seq
;
371 memcpy(snapc
->snaps
+ num
, realm
->snaps
,
372 sizeof(u64
)*realm
->num_snaps
);
373 num
+= realm
->num_snaps
;
374 memcpy(snapc
->snaps
+ num
, realm
->prior_parent_snaps
,
375 sizeof(u64
)*realm
->num_prior_parent_snaps
);
376 num
+= realm
->num_prior_parent_snaps
;
378 sort(snapc
->snaps
, num
, sizeof(u64
), cmpu64_rev
, NULL
);
379 snapc
->num_snaps
= num
;
380 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
381 realm
->ino
, realm
, snapc
, snapc
->seq
,
382 (unsigned int) snapc
->num_snaps
);
385 ceph_put_snap_context(realm
->cached_context
);
386 realm
->cached_context
= snapc
;
391 * if we fail, clear old (incorrect) cached_context... hopefully
392 * we'll have better luck building it later
394 if (realm
->cached_context
) {
395 ceph_put_snap_context(realm
->cached_context
);
396 realm
->cached_context
= NULL
;
398 pr_err("build_snap_context %llx %p fail %d\n", realm
->ino
,
404 * rebuild snap context for the given realm and all of its children.
406 static void rebuild_snap_realms(struct ceph_snap_realm
*realm
)
408 struct ceph_snap_realm
*child
;
410 dout("rebuild_snap_realms %llx %p\n", realm
->ino
, realm
);
411 build_snap_context(realm
);
413 list_for_each_entry(child
, &realm
->children
, child_item
)
414 rebuild_snap_realms(child
);
419 * helper to allocate and decode an array of snapids. free prior
422 static int dup_array(u64
**dst
, __le64
*src
, u32 num
)
428 *dst
= kcalloc(num
, sizeof(u64
), GFP_NOFS
);
431 for (i
= 0; i
< num
; i
++)
432 (*dst
)[i
] = get_unaligned_le64(src
+ i
);
441 * When a snapshot is applied, the size/mtime inode metadata is queued
442 * in a ceph_cap_snap (one for each snapshot) until writeback
443 * completes and the metadata can be flushed back to the MDS.
445 * However, if a (sync) write is currently in-progress when we apply
446 * the snapshot, we have to wait until the write succeeds or fails
447 * (and a final size/mtime is known). In this case the
448 * cap_snap->writing = 1, and is said to be "pending." When the write
449 * finishes, we __ceph_finish_cap_snap().
451 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
454 void ceph_queue_cap_snap(struct ceph_inode_info
*ci
)
456 struct inode
*inode
= &ci
->vfs_inode
;
457 struct ceph_cap_snap
*capsnap
;
460 capsnap
= kzalloc(sizeof(*capsnap
), GFP_NOFS
);
462 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode
);
466 spin_lock(&ci
->i_ceph_lock
);
467 used
= __ceph_caps_used(ci
);
468 dirty
= __ceph_caps_dirty(ci
);
471 * If there is a write in progress, treat that as a dirty Fw,
472 * even though it hasn't completed yet; by the time we finish
473 * up this capsnap it will be.
475 if (used
& CEPH_CAP_FILE_WR
)
476 dirty
|= CEPH_CAP_FILE_WR
;
478 if (__ceph_have_pending_cap_snap(ci
)) {
479 /* there is no point in queuing multiple "pending" cap_snaps,
480 as no new writes are allowed to start when pending, so any
481 writes in progress now were started before the previous
482 cap_snap. lucky us. */
483 dout("queue_cap_snap %p already pending\n", inode
);
485 } else if (ci
->i_snap_realm
->cached_context
== empty_snapc
) {
486 dout("queue_cap_snap %p empty snapc\n", inode
);
488 } else if (dirty
& (CEPH_CAP_AUTH_EXCL
|CEPH_CAP_XATTR_EXCL
|
489 CEPH_CAP_FILE_EXCL
|CEPH_CAP_FILE_WR
)) {
490 struct ceph_snap_context
*snapc
= ci
->i_head_snapc
;
493 * if we are a sync write, we may need to go to the snaprealm
494 * to get the current snapc.
497 snapc
= ci
->i_snap_realm
->cached_context
;
499 dout("queue_cap_snap %p cap_snap %p queuing under %p %s\n",
500 inode
, capsnap
, snapc
, ceph_cap_string(dirty
));
503 atomic_set(&capsnap
->nref
, 1);
505 INIT_LIST_HEAD(&capsnap
->ci_item
);
506 INIT_LIST_HEAD(&capsnap
->flushing_item
);
508 capsnap
->follows
= snapc
->seq
;
509 capsnap
->issued
= __ceph_caps_issued(ci
, NULL
);
510 capsnap
->dirty
= dirty
;
512 capsnap
->mode
= inode
->i_mode
;
513 capsnap
->uid
= inode
->i_uid
;
514 capsnap
->gid
= inode
->i_gid
;
516 if (dirty
& CEPH_CAP_XATTR_EXCL
) {
517 __ceph_build_xattrs_blob(ci
);
518 capsnap
->xattr_blob
=
519 ceph_buffer_get(ci
->i_xattrs
.blob
);
520 capsnap
->xattr_version
= ci
->i_xattrs
.version
;
522 capsnap
->xattr_blob
= NULL
;
523 capsnap
->xattr_version
= 0;
526 capsnap
->inline_data
= ci
->i_inline_version
!= CEPH_INLINE_NONE
;
528 /* dirty page count moved from _head to this cap_snap;
529 all subsequent writes page dirties occur _after_ this
531 capsnap
->dirty_pages
= ci
->i_wrbuffer_ref_head
;
532 ci
->i_wrbuffer_ref_head
= 0;
533 capsnap
->context
= snapc
;
535 ceph_get_snap_context(ci
->i_snap_realm
->cached_context
);
536 dout(" new snapc is %p\n", ci
->i_head_snapc
);
537 list_add_tail(&capsnap
->ci_item
, &ci
->i_cap_snaps
);
539 if (used
& CEPH_CAP_FILE_WR
) {
540 dout("queue_cap_snap %p cap_snap %p snapc %p"
541 " seq %llu used WR, now pending\n", inode
,
542 capsnap
, snapc
, snapc
->seq
);
543 capsnap
->writing
= 1;
545 /* note mtime, size NOW. */
546 __ceph_finish_cap_snap(ci
, capsnap
);
549 dout("queue_cap_snap %p nothing dirty|writing\n", inode
);
553 spin_unlock(&ci
->i_ceph_lock
);
557 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
558 * to be used for the snapshot, to be flushed back to the mds.
560 * If capsnap can now be flushed, add to snap_flush list, and return 1.
562 * Caller must hold i_ceph_lock.
564 int __ceph_finish_cap_snap(struct ceph_inode_info
*ci
,
565 struct ceph_cap_snap
*capsnap
)
567 struct inode
*inode
= &ci
->vfs_inode
;
568 struct ceph_mds_client
*mdsc
= ceph_sb_to_client(inode
->i_sb
)->mdsc
;
570 BUG_ON(capsnap
->writing
);
571 capsnap
->size
= inode
->i_size
;
572 capsnap
->mtime
= inode
->i_mtime
;
573 capsnap
->atime
= inode
->i_atime
;
574 capsnap
->ctime
= inode
->i_ctime
;
575 capsnap
->time_warp_seq
= ci
->i_time_warp_seq
;
576 if (capsnap
->dirty_pages
) {
577 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
578 "still has %d dirty pages\n", inode
, capsnap
,
579 capsnap
->context
, capsnap
->context
->seq
,
580 ceph_cap_string(capsnap
->dirty
), capsnap
->size
,
581 capsnap
->dirty_pages
);
584 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
585 inode
, capsnap
, capsnap
->context
,
586 capsnap
->context
->seq
, ceph_cap_string(capsnap
->dirty
),
589 spin_lock(&mdsc
->snap_flush_lock
);
590 list_add_tail(&ci
->i_snap_flush_item
, &mdsc
->snap_flush_list
);
591 spin_unlock(&mdsc
->snap_flush_lock
);
592 return 1; /* caller may want to ceph_flush_snaps */
596 * Queue cap_snaps for snap writeback for this realm and its children.
597 * Called under snap_rwsem, so realm topology won't change.
599 static void queue_realm_cap_snaps(struct ceph_snap_realm
*realm
)
601 struct ceph_inode_info
*ci
;
602 struct inode
*lastinode
= NULL
;
603 struct ceph_snap_realm
*child
;
605 dout("queue_realm_cap_snaps %p %llx inodes\n", realm
, realm
->ino
);
607 spin_lock(&realm
->inodes_with_caps_lock
);
608 list_for_each_entry(ci
, &realm
->inodes_with_caps
,
610 struct inode
*inode
= igrab(&ci
->vfs_inode
);
613 spin_unlock(&realm
->inodes_with_caps_lock
);
616 ceph_queue_cap_snap(ci
);
617 spin_lock(&realm
->inodes_with_caps_lock
);
619 spin_unlock(&realm
->inodes_with_caps_lock
);
622 list_for_each_entry(child
, &realm
->children
, child_item
) {
623 dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
624 realm
, realm
->ino
, child
, child
->ino
);
625 list_del_init(&child
->dirty_item
);
626 list_add(&child
->dirty_item
, &realm
->dirty_item
);
629 list_del_init(&realm
->dirty_item
);
630 dout("queue_realm_cap_snaps %p %llx done\n", realm
, realm
->ino
);
634 * Parse and apply a snapblob "snap trace" from the MDS. This specifies
635 * the snap realm parameters from a given realm and all of its ancestors,
638 * Caller must hold snap_rwsem for write.
640 int ceph_update_snap_trace(struct ceph_mds_client
*mdsc
,
641 void *p
, void *e
, bool deletion
,
642 struct ceph_snap_realm
**realm_ret
)
644 struct ceph_mds_snap_realm
*ri
; /* encoded */
645 __le64
*snaps
; /* encoded */
646 __le64
*prior_parent_snaps
; /* encoded */
647 struct ceph_snap_realm
*realm
= NULL
;
648 struct ceph_snap_realm
*first_realm
= NULL
;
651 LIST_HEAD(dirty_realms
);
653 dout("update_snap_trace deletion=%d\n", deletion
);
655 ceph_decode_need(&p
, e
, sizeof(*ri
), bad
);
658 ceph_decode_need(&p
, e
, sizeof(u64
)*(le32_to_cpu(ri
->num_snaps
) +
659 le32_to_cpu(ri
->num_prior_parent_snaps
)), bad
);
661 p
+= sizeof(u64
) * le32_to_cpu(ri
->num_snaps
);
662 prior_parent_snaps
= p
;
663 p
+= sizeof(u64
) * le32_to_cpu(ri
->num_prior_parent_snaps
);
665 realm
= ceph_lookup_snap_realm(mdsc
, le64_to_cpu(ri
->ino
));
667 realm
= ceph_create_snap_realm(mdsc
, le64_to_cpu(ri
->ino
));
669 err
= PTR_ERR(realm
);
674 /* ensure the parent is correct */
675 err
= adjust_snap_realm_parent(mdsc
, realm
, le64_to_cpu(ri
->parent
));
680 if (le64_to_cpu(ri
->seq
) > realm
->seq
) {
681 dout("update_snap_trace updating %llx %p %lld -> %lld\n",
682 realm
->ino
, realm
, realm
->seq
, le64_to_cpu(ri
->seq
));
683 /* update realm parameters, snap lists */
684 realm
->seq
= le64_to_cpu(ri
->seq
);
685 realm
->created
= le64_to_cpu(ri
->created
);
686 realm
->parent_since
= le64_to_cpu(ri
->parent_since
);
688 realm
->num_snaps
= le32_to_cpu(ri
->num_snaps
);
689 err
= dup_array(&realm
->snaps
, snaps
, realm
->num_snaps
);
693 realm
->num_prior_parent_snaps
=
694 le32_to_cpu(ri
->num_prior_parent_snaps
);
695 err
= dup_array(&realm
->prior_parent_snaps
, prior_parent_snaps
,
696 realm
->num_prior_parent_snaps
);
700 /* queue realm for cap_snap creation */
701 list_add(&realm
->dirty_item
, &dirty_realms
);
704 } else if (!realm
->cached_context
) {
705 dout("update_snap_trace %llx %p seq %lld new\n",
706 realm
->ino
, realm
, realm
->seq
);
709 dout("update_snap_trace %llx %p seq %lld unchanged\n",
710 realm
->ino
, realm
, realm
->seq
);
713 dout("done with %llx %p, invalidated=%d, %p %p\n", realm
->ino
,
714 realm
, invalidate
, p
, e
);
716 /* invalidate when we reach the _end_ (root) of the trace */
717 if (invalidate
&& p
>= e
)
718 rebuild_snap_realms(realm
);
723 ceph_put_snap_realm(mdsc
, realm
);
729 * queue cap snaps _after_ we've built the new snap contexts,
730 * so that i_head_snapc can be set appropriately.
732 while (!list_empty(&dirty_realms
)) {
733 realm
= list_first_entry(&dirty_realms
, struct ceph_snap_realm
,
735 queue_realm_cap_snaps(realm
);
739 *realm_ret
= first_realm
;
741 ceph_put_snap_realm(mdsc
, first_realm
);
743 __cleanup_empty_realms(mdsc
);
749 if (realm
&& !IS_ERR(realm
))
750 ceph_put_snap_realm(mdsc
, realm
);
752 ceph_put_snap_realm(mdsc
, first_realm
);
753 pr_err("update_snap_trace error %d\n", err
);
759 * Send any cap_snaps that are queued for flush. Try to carry
760 * s_mutex across multiple snap flushes to avoid locking overhead.
762 * Caller holds no locks.
764 static void flush_snaps(struct ceph_mds_client
*mdsc
)
766 struct ceph_inode_info
*ci
;
768 struct ceph_mds_session
*session
= NULL
;
770 dout("flush_snaps\n");
771 spin_lock(&mdsc
->snap_flush_lock
);
772 while (!list_empty(&mdsc
->snap_flush_list
)) {
773 ci
= list_first_entry(&mdsc
->snap_flush_list
,
774 struct ceph_inode_info
, i_snap_flush_item
);
775 inode
= &ci
->vfs_inode
;
777 spin_unlock(&mdsc
->snap_flush_lock
);
778 spin_lock(&ci
->i_ceph_lock
);
779 __ceph_flush_snaps(ci
, &session
, 0);
780 spin_unlock(&ci
->i_ceph_lock
);
782 spin_lock(&mdsc
->snap_flush_lock
);
784 spin_unlock(&mdsc
->snap_flush_lock
);
787 mutex_unlock(&session
->s_mutex
);
788 ceph_put_mds_session(session
);
790 dout("flush_snaps done\n");
795 * Handle a snap notification from the MDS.
797 * This can take two basic forms: the simplest is just a snap creation
798 * or deletion notification on an existing realm. This should update the
799 * realm and its children.
801 * The more difficult case is realm creation, due to snap creation at a
802 * new point in the file hierarchy, or due to a rename that moves a file or
803 * directory into another realm.
805 void ceph_handle_snap(struct ceph_mds_client
*mdsc
,
806 struct ceph_mds_session
*session
,
807 struct ceph_msg
*msg
)
809 struct super_block
*sb
= mdsc
->fsc
->sb
;
810 int mds
= session
->s_mds
;
814 struct ceph_snap_realm
*realm
= NULL
;
815 void *p
= msg
->front
.iov_base
;
816 void *e
= p
+ msg
->front
.iov_len
;
817 struct ceph_mds_snap_head
*h
;
818 int num_split_inos
, num_split_realms
;
819 __le64
*split_inos
= NULL
, *split_realms
= NULL
;
821 int locked_rwsem
= 0;
824 if (msg
->front
.iov_len
< sizeof(*h
))
827 op
= le32_to_cpu(h
->op
);
828 split
= le64_to_cpu(h
->split
); /* non-zero if we are splitting an
830 num_split_inos
= le32_to_cpu(h
->num_split_inos
);
831 num_split_realms
= le32_to_cpu(h
->num_split_realms
);
832 trace_len
= le32_to_cpu(h
->trace_len
);
835 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds
,
836 ceph_snap_op_name(op
), split
, trace_len
);
838 mutex_lock(&session
->s_mutex
);
840 mutex_unlock(&session
->s_mutex
);
842 down_write(&mdsc
->snap_rwsem
);
845 if (op
== CEPH_SNAP_OP_SPLIT
) {
846 struct ceph_mds_snap_realm
*ri
;
849 * A "split" breaks part of an existing realm off into
850 * a new realm. The MDS provides a list of inodes
851 * (with caps) and child realms that belong to the new
855 p
+= sizeof(u64
) * num_split_inos
;
857 p
+= sizeof(u64
) * num_split_realms
;
858 ceph_decode_need(&p
, e
, sizeof(*ri
), bad
);
859 /* we will peek at realm info here, but will _not_
860 * advance p, as the realm update will occur below in
861 * ceph_update_snap_trace. */
864 realm
= ceph_lookup_snap_realm(mdsc
, split
);
866 realm
= ceph_create_snap_realm(mdsc
, split
);
871 dout("splitting snap_realm %llx %p\n", realm
->ino
, realm
);
872 for (i
= 0; i
< num_split_inos
; i
++) {
873 struct ceph_vino vino
= {
874 .ino
= le64_to_cpu(split_inos
[i
]),
877 struct inode
*inode
= ceph_find_inode(sb
, vino
);
878 struct ceph_inode_info
*ci
;
879 struct ceph_snap_realm
*oldrealm
;
883 ci
= ceph_inode(inode
);
885 spin_lock(&ci
->i_ceph_lock
);
886 if (!ci
->i_snap_realm
)
889 * If this inode belongs to a realm that was
890 * created after our new realm, we experienced
891 * a race (due to another split notifications
892 * arriving from a different MDS). So skip
895 if (ci
->i_snap_realm
->created
>
896 le64_to_cpu(ri
->created
)) {
897 dout(" leaving %p in newer realm %llx %p\n",
898 inode
, ci
->i_snap_realm
->ino
,
902 dout(" will move %p to split realm %llx %p\n",
903 inode
, realm
->ino
, realm
);
905 * Move the inode to the new realm
907 spin_lock(&realm
->inodes_with_caps_lock
);
908 list_del_init(&ci
->i_snap_realm_item
);
909 list_add(&ci
->i_snap_realm_item
,
910 &realm
->inodes_with_caps
);
911 oldrealm
= ci
->i_snap_realm
;
912 ci
->i_snap_realm
= realm
;
913 spin_unlock(&realm
->inodes_with_caps_lock
);
914 spin_unlock(&ci
->i_ceph_lock
);
916 ceph_get_snap_realm(mdsc
, realm
);
917 ceph_put_snap_realm(mdsc
, oldrealm
);
923 spin_unlock(&ci
->i_ceph_lock
);
927 /* we may have taken some of the old realm's children. */
928 for (i
= 0; i
< num_split_realms
; i
++) {
929 struct ceph_snap_realm
*child
=
930 __lookup_snap_realm(mdsc
,
931 le64_to_cpu(split_realms
[i
]));
934 adjust_snap_realm_parent(mdsc
, child
, realm
->ino
);
939 * update using the provided snap trace. if we are deleting a
940 * snap, we can avoid queueing cap_snaps.
942 ceph_update_snap_trace(mdsc
, p
, e
,
943 op
== CEPH_SNAP_OP_DESTROY
, NULL
);
945 if (op
== CEPH_SNAP_OP_SPLIT
)
946 /* we took a reference when we created the realm, above */
947 ceph_put_snap_realm(mdsc
, realm
);
949 __cleanup_empty_realms(mdsc
);
951 up_write(&mdsc
->snap_rwsem
);
957 pr_err("corrupt snap message from mds%d\n", mds
);
961 up_write(&mdsc
->snap_rwsem
);
965 int __init
ceph_snap_init(void)
967 empty_snapc
= ceph_create_snap_context(0, GFP_NOFS
);
970 empty_snapc
->seq
= 1;
974 void ceph_snap_exit(void)
976 ceph_put_snap_context(empty_snapc
);