gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / exec.c
blobd392c8ad0de082f330af740bf9195c64a5bd85a4
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
64 #include <trace/events/task.h>
65 #include "internal.h"
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
101 #ifdef CONFIG_USELIB
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct linux_binfmt *fmt;
111 struct file *file;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
121 if (IS_ERR(tmp))
122 goto out;
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
130 error = -EINVAL;
131 if (!S_ISREG(file_inode(file)->i_mode))
132 goto exit;
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
138 fsnotify_open(file);
140 error = -ENOEXEC;
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
155 read_unlock(&binfmt_lock);
156 exit:
157 fput(file);
158 out:
159 return error;
161 #endif /* #ifdef CONFIG_USELIB */
163 #ifdef CONFIG_MMU
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
175 if (!mm || !diff)
176 return;
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
185 struct page *page;
186 int ret;
188 #ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
194 #endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 struct rlimit *rlim;
204 acct_arg_size(bprm, size / PAGE_SIZE);
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
210 if (size <= ARG_MAX)
211 return page;
214 * Limit to 1/4-th the stack size for the argv+env strings.
215 * This ensures that:
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
218 * to work from.
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 put_page(page);
223 return NULL;
227 return page;
230 static void put_arg_page(struct page *page)
232 put_page(page);
235 static void free_arg_page(struct linux_binprm *bprm, int i)
239 static void free_arg_pages(struct linux_binprm *bprm)
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 static int __bprm_mm_init(struct linux_binprm *bprm)
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 if (!vma)
257 return -ENOMEM;
259 down_write(&mm->mmap_sem);
260 vma->vm_mm = mm;
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
275 err = insert_vm_struct(mm, vma);
276 if (err)
277 goto err;
279 mm->stack_vm = mm->total_vm = 1;
280 arch_bprm_mm_init(mm, vma);
281 up_write(&mm->mmap_sem);
282 bprm->p = vma->vm_end - sizeof(void *);
283 return 0;
284 err:
285 up_write(&mm->mmap_sem);
286 bprm->vma = NULL;
287 kmem_cache_free(vm_area_cachep, vma);
288 return err;
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 return len <= MAX_ARG_STRLEN;
296 #else
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 int write)
305 struct page *page;
307 page = bprm->page[pos / PAGE_SIZE];
308 if (!page && write) {
309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 if (!page)
311 return NULL;
312 bprm->page[pos / PAGE_SIZE] = page;
315 return page;
318 static void put_arg_page(struct page *page)
322 static void free_arg_page(struct linux_binprm *bprm, int i)
324 if (bprm->page[i]) {
325 __free_page(bprm->page[i]);
326 bprm->page[i] = NULL;
330 static void free_arg_pages(struct linux_binprm *bprm)
332 int i;
334 for (i = 0; i < MAX_ARG_PAGES; i++)
335 free_arg_page(bprm, i);
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 struct page *page)
343 static int __bprm_mm_init(struct linux_binprm *bprm)
345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 return 0;
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 return len <= bprm->p;
354 #endif /* CONFIG_MMU */
357 * Create a new mm_struct and populate it with a temporary stack
358 * vm_area_struct. We don't have enough context at this point to set the stack
359 * flags, permissions, and offset, so we use temporary values. We'll update
360 * them later in setup_arg_pages().
362 static int bprm_mm_init(struct linux_binprm *bprm)
364 int err;
365 struct mm_struct *mm = NULL;
367 bprm->mm = mm = mm_alloc();
368 err = -ENOMEM;
369 if (!mm)
370 goto err;
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
376 return 0;
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
384 return err;
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 const char __user *native;
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
410 return compat_ptr(compat);
412 #endif
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
417 return native;
421 * count() counts the number of strings in array ARGV.
423 static int count(struct user_arg_ptr argv, int max)
425 int i = 0;
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
431 if (!p)
432 break;
434 if (IS_ERR(p))
435 return -EFAULT;
437 if (i >= max)
438 return -E2BIG;
439 ++i;
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
446 return i;
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
457 struct page *kmapped_page = NULL;
458 char *kaddr = NULL;
459 unsigned long kpos = 0;
460 int ret;
462 while (argc-- > 0) {
463 const char __user *str;
464 int len;
465 unsigned long pos;
467 ret = -EFAULT;
468 str = get_user_arg_ptr(argv, argc);
469 if (IS_ERR(str))
470 goto out;
472 len = strnlen_user(str, MAX_ARG_STRLEN);
473 if (!len)
474 goto out;
476 ret = -E2BIG;
477 if (!valid_arg_len(bprm, len))
478 goto out;
480 /* We're going to work our way backwords. */
481 pos = bprm->p;
482 str += len;
483 bprm->p -= len;
485 while (len > 0) {
486 int offset, bytes_to_copy;
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
490 goto out;
492 cond_resched();
494 offset = pos % PAGE_SIZE;
495 if (offset == 0)
496 offset = PAGE_SIZE;
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
500 bytes_to_copy = len;
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 struct page *page;
510 page = get_arg_page(bprm, pos, 1);
511 if (!page) {
512 ret = -E2BIG;
513 goto out;
516 if (kmapped_page) {
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
521 kmapped_page = page;
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 ret = -EFAULT;
528 goto out;
532 ret = 0;
533 out:
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
539 return ret;
543 * Like copy_strings, but get argv and its values from kernel memory.
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
548 int r;
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
554 set_fs(KERNEL_DS);
555 r = copy_strings(argc, argv, bprm);
556 set_fs(oldfs);
558 return r;
560 EXPORT_SYMBOL(copy_strings_kernel);
562 #ifdef CONFIG_MMU
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
586 BUG_ON(new_start > new_end);
589 * ensure there are no vmas between where we want to go
590 * and where we are
592 if (vma != find_vma(mm, new_start))
593 return -EFAULT;
596 * cover the whole range: [new_start, old_end)
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 return -ENOMEM;
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
607 return -ENOMEM;
609 lru_add_drain();
610 tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 if (new_end > old_start) {
613 * when the old and new regions overlap clear from new_end.
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 } else {
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
627 tlb_finish_mmu(&tlb, old_start, old_end);
630 * Shrink the vma to just the new range. Always succeeds.
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
634 return 0;
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
645 unsigned long ret;
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > STACK_SIZE_MAX)
660 stack_base = STACK_SIZE_MAX;
662 /* Add space for stack randomization. */
663 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
665 /* Make sure we didn't let the argument array grow too large. */
666 if (vma->vm_end - vma->vm_start > stack_base)
667 return -ENOMEM;
669 stack_base = PAGE_ALIGN(stack_top - stack_base);
671 stack_shift = vma->vm_start - stack_base;
672 mm->arg_start = bprm->p - stack_shift;
673 bprm->p = vma->vm_end - stack_shift;
674 #else
675 stack_top = arch_align_stack(stack_top);
676 stack_top = PAGE_ALIGN(stack_top);
678 if (unlikely(stack_top < mmap_min_addr) ||
679 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680 return -ENOMEM;
682 stack_shift = vma->vm_end - stack_top;
684 bprm->p -= stack_shift;
685 mm->arg_start = bprm->p;
686 #endif
688 if (bprm->loader)
689 bprm->loader -= stack_shift;
690 bprm->exec -= stack_shift;
692 down_write(&mm->mmap_sem);
693 vm_flags = VM_STACK_FLAGS;
696 * Adjust stack execute permissions; explicitly enable for
697 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 * (arch default) otherwise.
700 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701 vm_flags |= VM_EXEC;
702 else if (executable_stack == EXSTACK_DISABLE_X)
703 vm_flags &= ~VM_EXEC;
704 vm_flags |= mm->def_flags;
705 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
707 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708 vm_flags);
709 if (ret)
710 goto out_unlock;
711 BUG_ON(prev != vma);
713 /* Move stack pages down in memory. */
714 if (stack_shift) {
715 ret = shift_arg_pages(vma, stack_shift);
716 if (ret)
717 goto out_unlock;
720 /* mprotect_fixup is overkill to remove the temporary stack flags */
721 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
723 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 stack_size = vma->vm_end - vma->vm_start;
726 * Align this down to a page boundary as expand_stack
727 * will align it up.
729 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731 if (stack_size + stack_expand > rlim_stack)
732 stack_base = vma->vm_start + rlim_stack;
733 else
734 stack_base = vma->vm_end + stack_expand;
735 #else
736 if (stack_size + stack_expand > rlim_stack)
737 stack_base = vma->vm_end - rlim_stack;
738 else
739 stack_base = vma->vm_start - stack_expand;
740 #endif
741 current->mm->start_stack = bprm->p;
742 ret = expand_stack(vma, stack_base);
743 if (ret)
744 ret = -EFAULT;
746 out_unlock:
747 up_write(&mm->mmap_sem);
748 return ret;
750 EXPORT_SYMBOL(setup_arg_pages);
752 #endif /* CONFIG_MMU */
754 static struct file *do_open_execat(int fd, struct filename *name, int flags)
756 struct file *file;
757 int err;
758 struct open_flags open_exec_flags = {
759 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760 .acc_mode = MAY_EXEC | MAY_OPEN,
761 .intent = LOOKUP_OPEN,
762 .lookup_flags = LOOKUP_FOLLOW,
765 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
766 return ERR_PTR(-EINVAL);
767 if (flags & AT_SYMLINK_NOFOLLOW)
768 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
769 if (flags & AT_EMPTY_PATH)
770 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
772 file = do_filp_open(fd, name, &open_exec_flags);
773 if (IS_ERR(file))
774 goto out;
776 err = -EACCES;
777 if (!S_ISREG(file_inode(file)->i_mode))
778 goto exit;
780 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781 goto exit;
783 err = deny_write_access(file);
784 if (err)
785 goto exit;
787 if (name->name[0] != '\0')
788 fsnotify_open(file);
790 out:
791 return file;
793 exit:
794 fput(file);
795 return ERR_PTR(err);
798 struct file *open_exec(const char *name)
800 struct filename *filename = getname_kernel(name);
801 struct file *f = ERR_CAST(filename);
803 if (!IS_ERR(filename)) {
804 f = do_open_execat(AT_FDCWD, filename, 0);
805 putname(filename);
807 return f;
809 EXPORT_SYMBOL(open_exec);
811 int kernel_read(struct file *file, loff_t offset,
812 char *addr, unsigned long count)
814 mm_segment_t old_fs;
815 loff_t pos = offset;
816 int result;
818 old_fs = get_fs();
819 set_fs(get_ds());
820 /* The cast to a user pointer is valid due to the set_fs() */
821 result = vfs_read(file, (void __user *)addr, count, &pos);
822 set_fs(old_fs);
823 return result;
826 EXPORT_SYMBOL(kernel_read);
828 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
830 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
831 if (res > 0)
832 flush_icache_range(addr, addr + len);
833 return res;
835 EXPORT_SYMBOL(read_code);
837 static int exec_mmap(struct mm_struct *mm)
839 struct task_struct *tsk;
840 struct mm_struct *old_mm, *active_mm;
842 /* Notify parent that we're no longer interested in the old VM */
843 tsk = current;
844 old_mm = current->mm;
845 mm_release(tsk, old_mm);
847 if (old_mm) {
848 sync_mm_rss(old_mm);
850 * Make sure that if there is a core dump in progress
851 * for the old mm, we get out and die instead of going
852 * through with the exec. We must hold mmap_sem around
853 * checking core_state and changing tsk->mm.
855 down_read(&old_mm->mmap_sem);
856 if (unlikely(old_mm->core_state)) {
857 up_read(&old_mm->mmap_sem);
858 return -EINTR;
861 task_lock(tsk);
862 active_mm = tsk->active_mm;
863 tsk->mm = mm;
864 tsk->active_mm = mm;
865 activate_mm(active_mm, mm);
866 tsk->mm->vmacache_seqnum = 0;
867 vmacache_flush(tsk);
868 task_unlock(tsk);
869 if (old_mm) {
870 up_read(&old_mm->mmap_sem);
871 BUG_ON(active_mm != old_mm);
872 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
873 mm_update_next_owner(old_mm);
874 mmput(old_mm);
875 return 0;
877 mmdrop(active_mm);
878 return 0;
882 * This function makes sure the current process has its own signal table,
883 * so that flush_signal_handlers can later reset the handlers without
884 * disturbing other processes. (Other processes might share the signal
885 * table via the CLONE_SIGHAND option to clone().)
887 static int de_thread(struct task_struct *tsk)
889 struct signal_struct *sig = tsk->signal;
890 struct sighand_struct *oldsighand = tsk->sighand;
891 spinlock_t *lock = &oldsighand->siglock;
893 if (thread_group_empty(tsk))
894 goto no_thread_group;
897 * Kill all other threads in the thread group.
899 spin_lock_irq(lock);
900 if (signal_group_exit(sig)) {
902 * Another group action in progress, just
903 * return so that the signal is processed.
905 spin_unlock_irq(lock);
906 return -EAGAIN;
909 sig->group_exit_task = tsk;
910 sig->notify_count = zap_other_threads(tsk);
911 if (!thread_group_leader(tsk))
912 sig->notify_count--;
914 while (sig->notify_count) {
915 __set_current_state(TASK_KILLABLE);
916 spin_unlock_irq(lock);
917 schedule();
918 if (unlikely(__fatal_signal_pending(tsk)))
919 goto killed;
920 spin_lock_irq(lock);
922 spin_unlock_irq(lock);
925 * At this point all other threads have exited, all we have to
926 * do is to wait for the thread group leader to become inactive,
927 * and to assume its PID:
929 if (!thread_group_leader(tsk)) {
930 struct task_struct *leader = tsk->group_leader;
932 for (;;) {
933 threadgroup_change_begin(tsk);
934 write_lock_irq(&tasklist_lock);
936 * Do this under tasklist_lock to ensure that
937 * exit_notify() can't miss ->group_exit_task
939 sig->notify_count = -1;
940 if (likely(leader->exit_state))
941 break;
942 __set_current_state(TASK_KILLABLE);
943 write_unlock_irq(&tasklist_lock);
944 threadgroup_change_end(tsk);
945 schedule();
946 if (unlikely(__fatal_signal_pending(tsk)))
947 goto killed;
951 * The only record we have of the real-time age of a
952 * process, regardless of execs it's done, is start_time.
953 * All the past CPU time is accumulated in signal_struct
954 * from sister threads now dead. But in this non-leader
955 * exec, nothing survives from the original leader thread,
956 * whose birth marks the true age of this process now.
957 * When we take on its identity by switching to its PID, we
958 * also take its birthdate (always earlier than our own).
960 tsk->start_time = leader->start_time;
961 tsk->real_start_time = leader->real_start_time;
963 BUG_ON(!same_thread_group(leader, tsk));
964 BUG_ON(has_group_leader_pid(tsk));
966 * An exec() starts a new thread group with the
967 * TGID of the previous thread group. Rehash the
968 * two threads with a switched PID, and release
969 * the former thread group leader:
972 /* Become a process group leader with the old leader's pid.
973 * The old leader becomes a thread of the this thread group.
974 * Note: The old leader also uses this pid until release_task
975 * is called. Odd but simple and correct.
977 tsk->pid = leader->pid;
978 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
979 transfer_pid(leader, tsk, PIDTYPE_PGID);
980 transfer_pid(leader, tsk, PIDTYPE_SID);
982 list_replace_rcu(&leader->tasks, &tsk->tasks);
983 list_replace_init(&leader->sibling, &tsk->sibling);
985 tsk->group_leader = tsk;
986 leader->group_leader = tsk;
988 tsk->exit_signal = SIGCHLD;
989 leader->exit_signal = -1;
991 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
992 leader->exit_state = EXIT_DEAD;
995 * We are going to release_task()->ptrace_unlink() silently,
996 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
997 * the tracer wont't block again waiting for this thread.
999 if (unlikely(leader->ptrace))
1000 __wake_up_parent(leader, leader->parent);
1001 write_unlock_irq(&tasklist_lock);
1002 threadgroup_change_end(tsk);
1004 release_task(leader);
1007 sig->group_exit_task = NULL;
1008 sig->notify_count = 0;
1010 no_thread_group:
1011 /* we have changed execution domain */
1012 tsk->exit_signal = SIGCHLD;
1014 exit_itimers(sig);
1015 flush_itimer_signals();
1017 if (atomic_read(&oldsighand->count) != 1) {
1018 struct sighand_struct *newsighand;
1020 * This ->sighand is shared with the CLONE_SIGHAND
1021 * but not CLONE_THREAD task, switch to the new one.
1023 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1024 if (!newsighand)
1025 return -ENOMEM;
1027 atomic_set(&newsighand->count, 1);
1028 memcpy(newsighand->action, oldsighand->action,
1029 sizeof(newsighand->action));
1031 write_lock_irq(&tasklist_lock);
1032 spin_lock(&oldsighand->siglock);
1033 rcu_assign_pointer(tsk->sighand, newsighand);
1034 spin_unlock(&oldsighand->siglock);
1035 write_unlock_irq(&tasklist_lock);
1037 __cleanup_sighand(oldsighand);
1040 BUG_ON(!thread_group_leader(tsk));
1041 return 0;
1043 killed:
1044 /* protects against exit_notify() and __exit_signal() */
1045 read_lock(&tasklist_lock);
1046 sig->group_exit_task = NULL;
1047 sig->notify_count = 0;
1048 read_unlock(&tasklist_lock);
1049 return -EAGAIN;
1052 char *get_task_comm(char *buf, struct task_struct *tsk)
1054 /* buf must be at least sizeof(tsk->comm) in size */
1055 task_lock(tsk);
1056 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1057 task_unlock(tsk);
1058 return buf;
1060 EXPORT_SYMBOL_GPL(get_task_comm);
1063 * These functions flushes out all traces of the currently running executable
1064 * so that a new one can be started
1067 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1069 task_lock(tsk);
1070 trace_task_rename(tsk, buf);
1071 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1072 task_unlock(tsk);
1073 perf_event_comm(tsk, exec);
1076 int flush_old_exec(struct linux_binprm * bprm)
1078 int retval;
1081 * Make sure we have a private signal table and that
1082 * we are unassociated from the previous thread group.
1084 retval = de_thread(current);
1085 if (retval)
1086 goto out;
1089 * Must be called _before_ exec_mmap() as bprm->mm is
1090 * not visibile until then. This also enables the update
1091 * to be lockless.
1093 set_mm_exe_file(bprm->mm, bprm->file);
1096 * Release all of the old mmap stuff
1098 acct_arg_size(bprm, 0);
1099 retval = exec_mmap(bprm->mm);
1100 if (retval)
1101 goto out;
1103 bprm->mm = NULL; /* We're using it now */
1105 set_fs(USER_DS);
1106 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1107 PF_NOFREEZE | PF_NO_SETAFFINITY);
1108 flush_thread();
1109 current->personality &= ~bprm->per_clear;
1112 * We have to apply CLOEXEC before we change whether the process is
1113 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1114 * trying to access the should-be-closed file descriptors of a process
1115 * undergoing exec(2).
1117 do_close_on_exec(current->files);
1118 return 0;
1120 out:
1121 return retval;
1123 EXPORT_SYMBOL(flush_old_exec);
1125 void would_dump(struct linux_binprm *bprm, struct file *file)
1127 if (inode_permission(file_inode(file), MAY_READ) < 0)
1128 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1130 EXPORT_SYMBOL(would_dump);
1132 void setup_new_exec(struct linux_binprm * bprm)
1134 arch_pick_mmap_layout(current->mm);
1136 /* This is the point of no return */
1137 current->sas_ss_sp = current->sas_ss_size = 0;
1139 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1140 set_dumpable(current->mm, SUID_DUMP_USER);
1141 else
1142 set_dumpable(current->mm, suid_dumpable);
1144 perf_event_exec();
1145 __set_task_comm(current, kbasename(bprm->filename), true);
1147 /* Set the new mm task size. We have to do that late because it may
1148 * depend on TIF_32BIT which is only updated in flush_thread() on
1149 * some architectures like powerpc
1151 current->mm->task_size = TASK_SIZE;
1153 /* install the new credentials */
1154 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1155 !gid_eq(bprm->cred->gid, current_egid())) {
1156 current->pdeath_signal = 0;
1157 } else {
1158 would_dump(bprm, bprm->file);
1159 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1160 set_dumpable(current->mm, suid_dumpable);
1163 /* An exec changes our domain. We are no longer part of the thread
1164 group */
1165 current->self_exec_id++;
1166 flush_signal_handlers(current, 0);
1168 EXPORT_SYMBOL(setup_new_exec);
1171 * Prepare credentials and lock ->cred_guard_mutex.
1172 * install_exec_creds() commits the new creds and drops the lock.
1173 * Or, if exec fails before, free_bprm() should release ->cred and
1174 * and unlock.
1176 int prepare_bprm_creds(struct linux_binprm *bprm)
1178 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1179 return -ERESTARTNOINTR;
1181 bprm->cred = prepare_exec_creds();
1182 if (likely(bprm->cred))
1183 return 0;
1185 mutex_unlock(&current->signal->cred_guard_mutex);
1186 return -ENOMEM;
1189 static void free_bprm(struct linux_binprm *bprm)
1191 free_arg_pages(bprm);
1192 if (bprm->cred) {
1193 mutex_unlock(&current->signal->cred_guard_mutex);
1194 abort_creds(bprm->cred);
1196 if (bprm->file) {
1197 allow_write_access(bprm->file);
1198 fput(bprm->file);
1200 /* If a binfmt changed the interp, free it. */
1201 if (bprm->interp != bprm->filename)
1202 kfree(bprm->interp);
1203 kfree(bprm);
1206 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1208 /* If a binfmt changed the interp, free it first. */
1209 if (bprm->interp != bprm->filename)
1210 kfree(bprm->interp);
1211 bprm->interp = kstrdup(interp, GFP_KERNEL);
1212 if (!bprm->interp)
1213 return -ENOMEM;
1214 return 0;
1216 EXPORT_SYMBOL(bprm_change_interp);
1219 * install the new credentials for this executable
1221 void install_exec_creds(struct linux_binprm *bprm)
1223 security_bprm_committing_creds(bprm);
1225 commit_creds(bprm->cred);
1226 bprm->cred = NULL;
1229 * Disable monitoring for regular users
1230 * when executing setuid binaries. Must
1231 * wait until new credentials are committed
1232 * by commit_creds() above
1234 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1235 perf_event_exit_task(current);
1237 * cred_guard_mutex must be held at least to this point to prevent
1238 * ptrace_attach() from altering our determination of the task's
1239 * credentials; any time after this it may be unlocked.
1241 security_bprm_committed_creds(bprm);
1242 mutex_unlock(&current->signal->cred_guard_mutex);
1244 EXPORT_SYMBOL(install_exec_creds);
1247 * determine how safe it is to execute the proposed program
1248 * - the caller must hold ->cred_guard_mutex to protect against
1249 * PTRACE_ATTACH or seccomp thread-sync
1251 static void check_unsafe_exec(struct linux_binprm *bprm)
1253 struct task_struct *p = current, *t;
1254 unsigned n_fs;
1256 if (p->ptrace) {
1257 if (p->ptrace & PT_PTRACE_CAP)
1258 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1259 else
1260 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1264 * This isn't strictly necessary, but it makes it harder for LSMs to
1265 * mess up.
1267 if (task_no_new_privs(current))
1268 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1270 t = p;
1271 n_fs = 1;
1272 spin_lock(&p->fs->lock);
1273 rcu_read_lock();
1274 while_each_thread(p, t) {
1275 if (t->fs == p->fs)
1276 n_fs++;
1278 rcu_read_unlock();
1280 if (p->fs->users > n_fs)
1281 bprm->unsafe |= LSM_UNSAFE_SHARE;
1282 else
1283 p->fs->in_exec = 1;
1284 spin_unlock(&p->fs->lock);
1287 static void bprm_fill_uid(struct linux_binprm *bprm)
1289 struct inode *inode;
1290 unsigned int mode;
1291 kuid_t uid;
1292 kgid_t gid;
1294 /* clear any previous set[ug]id data from a previous binary */
1295 bprm->cred->euid = current_euid();
1296 bprm->cred->egid = current_egid();
1298 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1299 return;
1301 if (task_no_new_privs(current))
1302 return;
1304 inode = file_inode(bprm->file);
1305 mode = READ_ONCE(inode->i_mode);
1306 if (!(mode & (S_ISUID|S_ISGID)))
1307 return;
1309 /* Be careful if suid/sgid is set */
1310 mutex_lock(&inode->i_mutex);
1312 /* reload atomically mode/uid/gid now that lock held */
1313 mode = inode->i_mode;
1314 uid = inode->i_uid;
1315 gid = inode->i_gid;
1316 mutex_unlock(&inode->i_mutex);
1318 /* We ignore suid/sgid if there are no mappings for them in the ns */
1319 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1320 !kgid_has_mapping(bprm->cred->user_ns, gid))
1321 return;
1323 if (mode & S_ISUID) {
1324 bprm->per_clear |= PER_CLEAR_ON_SETID;
1325 bprm->cred->euid = uid;
1328 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1329 bprm->per_clear |= PER_CLEAR_ON_SETID;
1330 bprm->cred->egid = gid;
1335 * Fill the binprm structure from the inode.
1336 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1338 * This may be called multiple times for binary chains (scripts for example).
1340 int prepare_binprm(struct linux_binprm *bprm)
1342 int retval;
1344 bprm_fill_uid(bprm);
1346 /* fill in binprm security blob */
1347 retval = security_bprm_set_creds(bprm);
1348 if (retval)
1349 return retval;
1350 bprm->cred_prepared = 1;
1352 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1353 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1356 EXPORT_SYMBOL(prepare_binprm);
1359 * Arguments are '\0' separated strings found at the location bprm->p
1360 * points to; chop off the first by relocating brpm->p to right after
1361 * the first '\0' encountered.
1363 int remove_arg_zero(struct linux_binprm *bprm)
1365 int ret = 0;
1366 unsigned long offset;
1367 char *kaddr;
1368 struct page *page;
1370 if (!bprm->argc)
1371 return 0;
1373 do {
1374 offset = bprm->p & ~PAGE_MASK;
1375 page = get_arg_page(bprm, bprm->p, 0);
1376 if (!page) {
1377 ret = -EFAULT;
1378 goto out;
1380 kaddr = kmap_atomic(page);
1382 for (; offset < PAGE_SIZE && kaddr[offset];
1383 offset++, bprm->p++)
1386 kunmap_atomic(kaddr);
1387 put_arg_page(page);
1389 if (offset == PAGE_SIZE)
1390 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1391 } while (offset == PAGE_SIZE);
1393 bprm->p++;
1394 bprm->argc--;
1395 ret = 0;
1397 out:
1398 return ret;
1400 EXPORT_SYMBOL(remove_arg_zero);
1402 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1404 * cycle the list of binary formats handler, until one recognizes the image
1406 int search_binary_handler(struct linux_binprm *bprm)
1408 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1409 struct linux_binfmt *fmt;
1410 int retval;
1412 /* This allows 4 levels of binfmt rewrites before failing hard. */
1413 if (bprm->recursion_depth > 5)
1414 return -ELOOP;
1416 retval = security_bprm_check(bprm);
1417 if (retval)
1418 return retval;
1420 retval = -ENOENT;
1421 retry:
1422 read_lock(&binfmt_lock);
1423 list_for_each_entry(fmt, &formats, lh) {
1424 if (!try_module_get(fmt->module))
1425 continue;
1426 read_unlock(&binfmt_lock);
1427 bprm->recursion_depth++;
1428 retval = fmt->load_binary(bprm);
1429 read_lock(&binfmt_lock);
1430 put_binfmt(fmt);
1431 bprm->recursion_depth--;
1432 if (retval < 0 && !bprm->mm) {
1433 /* we got to flush_old_exec() and failed after it */
1434 read_unlock(&binfmt_lock);
1435 force_sigsegv(SIGSEGV, current);
1436 return retval;
1438 if (retval != -ENOEXEC || !bprm->file) {
1439 read_unlock(&binfmt_lock);
1440 return retval;
1443 read_unlock(&binfmt_lock);
1445 if (need_retry) {
1446 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1447 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1448 return retval;
1449 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1450 return retval;
1451 need_retry = false;
1452 goto retry;
1455 return retval;
1457 EXPORT_SYMBOL(search_binary_handler);
1459 static int exec_binprm(struct linux_binprm *bprm)
1461 pid_t old_pid, old_vpid;
1462 int ret;
1464 /* Need to fetch pid before load_binary changes it */
1465 old_pid = current->pid;
1466 rcu_read_lock();
1467 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1468 rcu_read_unlock();
1470 ret = search_binary_handler(bprm);
1471 if (ret >= 0) {
1472 audit_bprm(bprm);
1473 trace_sched_process_exec(current, old_pid, bprm);
1474 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1475 proc_exec_connector(current);
1478 return ret;
1482 * sys_execve() executes a new program.
1484 static int do_execveat_common(int fd, struct filename *filename,
1485 struct user_arg_ptr argv,
1486 struct user_arg_ptr envp,
1487 int flags)
1489 char *pathbuf = NULL;
1490 struct linux_binprm *bprm;
1491 struct file *file;
1492 struct files_struct *displaced;
1493 int retval;
1495 if (IS_ERR(filename))
1496 return PTR_ERR(filename);
1499 * We move the actual failure in case of RLIMIT_NPROC excess from
1500 * set*uid() to execve() because too many poorly written programs
1501 * don't check setuid() return code. Here we additionally recheck
1502 * whether NPROC limit is still exceeded.
1504 if ((current->flags & PF_NPROC_EXCEEDED) &&
1505 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1506 retval = -EAGAIN;
1507 goto out_ret;
1510 /* We're below the limit (still or again), so we don't want to make
1511 * further execve() calls fail. */
1512 current->flags &= ~PF_NPROC_EXCEEDED;
1514 retval = unshare_files(&displaced);
1515 if (retval)
1516 goto out_ret;
1518 retval = -ENOMEM;
1519 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1520 if (!bprm)
1521 goto out_files;
1523 retval = prepare_bprm_creds(bprm);
1524 if (retval)
1525 goto out_free;
1527 check_unsafe_exec(bprm);
1528 current->in_execve = 1;
1530 file = do_open_execat(fd, filename, flags);
1531 retval = PTR_ERR(file);
1532 if (IS_ERR(file))
1533 goto out_unmark;
1535 sched_exec();
1537 bprm->file = file;
1538 if (fd == AT_FDCWD || filename->name[0] == '/') {
1539 bprm->filename = filename->name;
1540 } else {
1541 if (filename->name[0] == '\0')
1542 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1543 else
1544 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1545 fd, filename->name);
1546 if (!pathbuf) {
1547 retval = -ENOMEM;
1548 goto out_unmark;
1551 * Record that a name derived from an O_CLOEXEC fd will be
1552 * inaccessible after exec. Relies on having exclusive access to
1553 * current->files (due to unshare_files above).
1555 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1556 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1557 bprm->filename = pathbuf;
1559 bprm->interp = bprm->filename;
1561 retval = bprm_mm_init(bprm);
1562 if (retval)
1563 goto out_unmark;
1565 bprm->argc = count(argv, MAX_ARG_STRINGS);
1566 if ((retval = bprm->argc) < 0)
1567 goto out;
1569 bprm->envc = count(envp, MAX_ARG_STRINGS);
1570 if ((retval = bprm->envc) < 0)
1571 goto out;
1573 retval = prepare_binprm(bprm);
1574 if (retval < 0)
1575 goto out;
1577 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1578 if (retval < 0)
1579 goto out;
1581 bprm->exec = bprm->p;
1582 retval = copy_strings(bprm->envc, envp, bprm);
1583 if (retval < 0)
1584 goto out;
1586 retval = copy_strings(bprm->argc, argv, bprm);
1587 if (retval < 0)
1588 goto out;
1590 retval = exec_binprm(bprm);
1591 if (retval < 0)
1592 goto out;
1594 /* execve succeeded */
1595 current->fs->in_exec = 0;
1596 current->in_execve = 0;
1597 acct_update_integrals(current);
1598 task_numa_free(current);
1599 free_bprm(bprm);
1600 kfree(pathbuf);
1601 putname(filename);
1602 if (displaced)
1603 put_files_struct(displaced);
1604 return retval;
1606 out:
1607 if (bprm->mm) {
1608 acct_arg_size(bprm, 0);
1609 mmput(bprm->mm);
1612 out_unmark:
1613 current->fs->in_exec = 0;
1614 current->in_execve = 0;
1616 out_free:
1617 free_bprm(bprm);
1618 kfree(pathbuf);
1620 out_files:
1621 if (displaced)
1622 reset_files_struct(displaced);
1623 out_ret:
1624 putname(filename);
1625 return retval;
1628 int do_execve(struct filename *filename,
1629 const char __user *const __user *__argv,
1630 const char __user *const __user *__envp)
1632 struct user_arg_ptr argv = { .ptr.native = __argv };
1633 struct user_arg_ptr envp = { .ptr.native = __envp };
1634 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1637 int do_execveat(int fd, struct filename *filename,
1638 const char __user *const __user *__argv,
1639 const char __user *const __user *__envp,
1640 int flags)
1642 struct user_arg_ptr argv = { .ptr.native = __argv };
1643 struct user_arg_ptr envp = { .ptr.native = __envp };
1645 return do_execveat_common(fd, filename, argv, envp, flags);
1648 #ifdef CONFIG_COMPAT
1649 static int compat_do_execve(struct filename *filename,
1650 const compat_uptr_t __user *__argv,
1651 const compat_uptr_t __user *__envp)
1653 struct user_arg_ptr argv = {
1654 .is_compat = true,
1655 .ptr.compat = __argv,
1657 struct user_arg_ptr envp = {
1658 .is_compat = true,
1659 .ptr.compat = __envp,
1661 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1664 static int compat_do_execveat(int fd, struct filename *filename,
1665 const compat_uptr_t __user *__argv,
1666 const compat_uptr_t __user *__envp,
1667 int flags)
1669 struct user_arg_ptr argv = {
1670 .is_compat = true,
1671 .ptr.compat = __argv,
1673 struct user_arg_ptr envp = {
1674 .is_compat = true,
1675 .ptr.compat = __envp,
1677 return do_execveat_common(fd, filename, argv, envp, flags);
1679 #endif
1681 void set_binfmt(struct linux_binfmt *new)
1683 struct mm_struct *mm = current->mm;
1685 if (mm->binfmt)
1686 module_put(mm->binfmt->module);
1688 mm->binfmt = new;
1689 if (new)
1690 __module_get(new->module);
1692 EXPORT_SYMBOL(set_binfmt);
1695 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1697 void set_dumpable(struct mm_struct *mm, int value)
1699 unsigned long old, new;
1701 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1702 return;
1704 do {
1705 old = ACCESS_ONCE(mm->flags);
1706 new = (old & ~MMF_DUMPABLE_MASK) | value;
1707 } while (cmpxchg(&mm->flags, old, new) != old);
1710 SYSCALL_DEFINE3(execve,
1711 const char __user *, filename,
1712 const char __user *const __user *, argv,
1713 const char __user *const __user *, envp)
1715 return do_execve(getname(filename), argv, envp);
1718 SYSCALL_DEFINE5(execveat,
1719 int, fd, const char __user *, filename,
1720 const char __user *const __user *, argv,
1721 const char __user *const __user *, envp,
1722 int, flags)
1724 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1726 return do_execveat(fd,
1727 getname_flags(filename, lookup_flags, NULL),
1728 argv, envp, flags);
1731 #ifdef CONFIG_COMPAT
1732 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1733 const compat_uptr_t __user *, argv,
1734 const compat_uptr_t __user *, envp)
1736 return compat_do_execve(getname(filename), argv, envp);
1739 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1740 const char __user *, filename,
1741 const compat_uptr_t __user *, argv,
1742 const compat_uptr_t __user *, envp,
1743 int, flags)
1745 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1747 return compat_do_execveat(fd,
1748 getname_flags(filename, lookup_flags, NULL),
1749 argv, envp, flags);
1751 #endif