gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / ext4 / crypto_fname.c
blobfded02f7229921a8693909ade14c2e7b16095f5e
1 /*
2 * linux/fs/ext4/crypto_fname.c
4 * Copyright (C) 2015, Google, Inc.
6 * This contains functions for filename crypto management in ext4
8 * Written by Uday Savagaonkar, 2014.
10 * This has not yet undergone a rigorous security audit.
14 #include <crypto/hash.h>
15 #include <crypto/sha.h>
16 #include <keys/encrypted-type.h>
17 #include <keys/user-type.h>
18 #include <linux/crypto.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel.h>
21 #include <linux/key.h>
22 #include <linux/key.h>
23 #include <linux/list.h>
24 #include <linux/mempool.h>
25 #include <linux/random.h>
26 #include <linux/scatterlist.h>
27 #include <linux/spinlock_types.h>
29 #include "ext4.h"
30 #include "ext4_crypto.h"
31 #include "xattr.h"
33 /**
34 * ext4_dir_crypt_complete() -
36 static void ext4_dir_crypt_complete(struct crypto_async_request *req, int res)
38 struct ext4_completion_result *ecr = req->data;
40 if (res == -EINPROGRESS)
41 return;
42 ecr->res = res;
43 complete(&ecr->completion);
46 bool ext4_valid_filenames_enc_mode(uint32_t mode)
48 return (mode == EXT4_ENCRYPTION_MODE_AES_256_CTS);
51 /**
52 * ext4_fname_encrypt() -
54 * This function encrypts the input filename, and returns the length of the
55 * ciphertext. Errors are returned as negative numbers. We trust the caller to
56 * allocate sufficient memory to oname string.
58 static int ext4_fname_encrypt(struct ext4_fname_crypto_ctx *ctx,
59 const struct qstr *iname,
60 struct ext4_str *oname)
62 u32 ciphertext_len;
63 struct ablkcipher_request *req = NULL;
64 DECLARE_EXT4_COMPLETION_RESULT(ecr);
65 struct crypto_ablkcipher *tfm = ctx->ctfm;
66 int res = 0;
67 char iv[EXT4_CRYPTO_BLOCK_SIZE];
68 struct scatterlist sg[1];
69 int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK);
70 char *workbuf;
72 if (iname->len <= 0 || iname->len > ctx->lim)
73 return -EIO;
75 ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ?
76 EXT4_CRYPTO_BLOCK_SIZE : iname->len;
77 ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding);
78 ciphertext_len = (ciphertext_len > ctx->lim)
79 ? ctx->lim : ciphertext_len;
81 /* Allocate request */
82 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
83 if (!req) {
84 printk_ratelimited(
85 KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
86 return -ENOMEM;
88 ablkcipher_request_set_callback(req,
89 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
90 ext4_dir_crypt_complete, &ecr);
92 /* Map the workpage */
93 workbuf = kmap(ctx->workpage);
95 /* Copy the input */
96 memcpy(workbuf, iname->name, iname->len);
97 if (iname->len < ciphertext_len)
98 memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
100 /* Initialize IV */
101 memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
103 /* Create encryption request */
104 sg_init_table(sg, 1);
105 sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
106 ablkcipher_request_set_crypt(req, sg, sg, ciphertext_len, iv);
107 res = crypto_ablkcipher_encrypt(req);
108 if (res == -EINPROGRESS || res == -EBUSY) {
109 BUG_ON(req->base.data != &ecr);
110 wait_for_completion(&ecr.completion);
111 res = ecr.res;
113 if (res >= 0) {
114 /* Copy the result to output */
115 memcpy(oname->name, workbuf, ciphertext_len);
116 res = ciphertext_len;
118 kunmap(ctx->workpage);
119 ablkcipher_request_free(req);
120 if (res < 0) {
121 printk_ratelimited(
122 KERN_ERR "%s: Error (error code %d)\n", __func__, res);
124 oname->len = ciphertext_len;
125 return res;
129 * ext4_fname_decrypt()
130 * This function decrypts the input filename, and returns
131 * the length of the plaintext.
132 * Errors are returned as negative numbers.
133 * We trust the caller to allocate sufficient memory to oname string.
135 static int ext4_fname_decrypt(struct ext4_fname_crypto_ctx *ctx,
136 const struct ext4_str *iname,
137 struct ext4_str *oname)
139 struct ext4_str tmp_in[2], tmp_out[1];
140 struct ablkcipher_request *req = NULL;
141 DECLARE_EXT4_COMPLETION_RESULT(ecr);
142 struct scatterlist sg[1];
143 struct crypto_ablkcipher *tfm = ctx->ctfm;
144 int res = 0;
145 char iv[EXT4_CRYPTO_BLOCK_SIZE];
146 char *workbuf;
148 if (iname->len <= 0 || iname->len > ctx->lim)
149 return -EIO;
151 tmp_in[0].name = iname->name;
152 tmp_in[0].len = iname->len;
153 tmp_out[0].name = oname->name;
155 /* Allocate request */
156 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
157 if (!req) {
158 printk_ratelimited(
159 KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
160 return -ENOMEM;
162 ablkcipher_request_set_callback(req,
163 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
164 ext4_dir_crypt_complete, &ecr);
166 /* Map the workpage */
167 workbuf = kmap(ctx->workpage);
169 /* Copy the input */
170 memcpy(workbuf, iname->name, iname->len);
172 /* Initialize IV */
173 memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
175 /* Create encryption request */
176 sg_init_table(sg, 1);
177 sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
178 ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv);
179 res = crypto_ablkcipher_decrypt(req);
180 if (res == -EINPROGRESS || res == -EBUSY) {
181 BUG_ON(req->base.data != &ecr);
182 wait_for_completion(&ecr.completion);
183 res = ecr.res;
185 if (res >= 0) {
186 /* Copy the result to output */
187 memcpy(oname->name, workbuf, iname->len);
188 res = iname->len;
190 kunmap(ctx->workpage);
191 ablkcipher_request_free(req);
192 if (res < 0) {
193 printk_ratelimited(
194 KERN_ERR "%s: Error in ext4_fname_encrypt (error code %d)\n",
195 __func__, res);
196 return res;
199 oname->len = strnlen(oname->name, iname->len);
200 return oname->len;
203 static const char *lookup_table =
204 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
207 * ext4_fname_encode_digest() -
209 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
210 * The encoded string is roughly 4/3 times the size of the input string.
212 static int digest_encode(const char *src, int len, char *dst)
214 int i = 0, bits = 0, ac = 0;
215 char *cp = dst;
217 while (i < len) {
218 ac += (((unsigned char) src[i]) << bits);
219 bits += 8;
220 do {
221 *cp++ = lookup_table[ac & 0x3f];
222 ac >>= 6;
223 bits -= 6;
224 } while (bits >= 6);
225 i++;
227 if (bits)
228 *cp++ = lookup_table[ac & 0x3f];
229 return cp - dst;
232 static int digest_decode(const char *src, int len, char *dst)
234 int i = 0, bits = 0, ac = 0;
235 const char *p;
236 char *cp = dst;
238 while (i < len) {
239 p = strchr(lookup_table, src[i]);
240 if (p == NULL || src[i] == 0)
241 return -2;
242 ac += (p - lookup_table) << bits;
243 bits += 6;
244 if (bits >= 8) {
245 *cp++ = ac & 0xff;
246 ac >>= 8;
247 bits -= 8;
249 i++;
251 if (ac)
252 return -1;
253 return cp - dst;
257 * ext4_free_fname_crypto_ctx() -
259 * Frees up a crypto context.
261 void ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx *ctx)
263 if (ctx == NULL || IS_ERR(ctx))
264 return;
266 if (ctx->ctfm && !IS_ERR(ctx->ctfm))
267 crypto_free_ablkcipher(ctx->ctfm);
268 if (ctx->htfm && !IS_ERR(ctx->htfm))
269 crypto_free_hash(ctx->htfm);
270 if (ctx->workpage && !IS_ERR(ctx->workpage))
271 __free_page(ctx->workpage);
272 kfree(ctx);
276 * ext4_put_fname_crypto_ctx() -
278 * Return: The crypto context onto free list. If the free list is above a
279 * threshold, completely frees up the context, and returns the memory.
281 * TODO: Currently we directly free the crypto context. Eventually we should
282 * add code it to return to free list. Such an approach will increase
283 * efficiency of directory lookup.
285 void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx)
287 if (*ctx == NULL || IS_ERR(*ctx))
288 return;
289 ext4_free_fname_crypto_ctx(*ctx);
290 *ctx = NULL;
294 * ext4_search_fname_crypto_ctx() -
296 static struct ext4_fname_crypto_ctx *ext4_search_fname_crypto_ctx(
297 const struct ext4_encryption_key *key)
299 return NULL;
303 * ext4_alloc_fname_crypto_ctx() -
305 struct ext4_fname_crypto_ctx *ext4_alloc_fname_crypto_ctx(
306 const struct ext4_encryption_key *key)
308 struct ext4_fname_crypto_ctx *ctx;
310 ctx = kmalloc(sizeof(struct ext4_fname_crypto_ctx), GFP_NOFS);
311 if (ctx == NULL)
312 return ERR_PTR(-ENOMEM);
313 if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) {
314 /* This will automatically set key mode to invalid
315 * As enum for ENCRYPTION_MODE_INVALID is zero */
316 memset(&ctx->key, 0, sizeof(ctx->key));
317 } else {
318 memcpy(&ctx->key, key, sizeof(struct ext4_encryption_key));
320 ctx->has_valid_key = (EXT4_ENCRYPTION_MODE_INVALID == key->mode)
321 ? 0 : 1;
322 ctx->ctfm_key_is_ready = 0;
323 ctx->ctfm = NULL;
324 ctx->htfm = NULL;
325 ctx->workpage = NULL;
326 return ctx;
330 * ext4_get_fname_crypto_ctx() -
332 * Allocates a free crypto context and initializes it to hold
333 * the crypto material for the inode.
335 * Return: NULL if not encrypted. Error value on error. Valid pointer otherwise.
337 struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx(
338 struct inode *inode, u32 max_ciphertext_len)
340 struct ext4_fname_crypto_ctx *ctx;
341 struct ext4_inode_info *ei = EXT4_I(inode);
342 int res;
344 /* Check if the crypto policy is set on the inode */
345 res = ext4_encrypted_inode(inode);
346 if (res == 0)
347 return NULL;
349 if (!ext4_has_encryption_key(inode))
350 ext4_generate_encryption_key(inode);
352 /* Get a crypto context based on the key.
353 * A new context is allocated if no context matches the requested key.
355 ctx = ext4_search_fname_crypto_ctx(&(ei->i_encryption_key));
356 if (ctx == NULL)
357 ctx = ext4_alloc_fname_crypto_ctx(&(ei->i_encryption_key));
358 if (IS_ERR(ctx))
359 return ctx;
361 ctx->flags = ei->i_crypt_policy_flags;
362 if (ctx->has_valid_key) {
363 if (ctx->key.mode != EXT4_ENCRYPTION_MODE_AES_256_CTS) {
364 printk_once(KERN_WARNING
365 "ext4: unsupported key mode %d\n",
366 ctx->key.mode);
367 return ERR_PTR(-ENOKEY);
370 /* As a first cut, we will allocate new tfm in every call.
371 * later, we will keep the tfm around, in case the key gets
372 * re-used */
373 if (ctx->ctfm == NULL) {
374 ctx->ctfm = crypto_alloc_ablkcipher("cts(cbc(aes))",
375 0, 0);
377 if (IS_ERR(ctx->ctfm)) {
378 res = PTR_ERR(ctx->ctfm);
379 printk(
380 KERN_DEBUG "%s: error (%d) allocating crypto tfm\n",
381 __func__, res);
382 ctx->ctfm = NULL;
383 ext4_put_fname_crypto_ctx(&ctx);
384 return ERR_PTR(res);
386 if (ctx->ctfm == NULL) {
387 printk(
388 KERN_DEBUG "%s: could not allocate crypto tfm\n",
389 __func__);
390 ext4_put_fname_crypto_ctx(&ctx);
391 return ERR_PTR(-ENOMEM);
393 if (ctx->workpage == NULL)
394 ctx->workpage = alloc_page(GFP_NOFS);
395 if (IS_ERR(ctx->workpage)) {
396 res = PTR_ERR(ctx->workpage);
397 printk(
398 KERN_DEBUG "%s: error (%d) allocating work page\n",
399 __func__, res);
400 ctx->workpage = NULL;
401 ext4_put_fname_crypto_ctx(&ctx);
402 return ERR_PTR(res);
404 if (ctx->workpage == NULL) {
405 printk(
406 KERN_DEBUG "%s: could not allocate work page\n",
407 __func__);
408 ext4_put_fname_crypto_ctx(&ctx);
409 return ERR_PTR(-ENOMEM);
411 ctx->lim = max_ciphertext_len;
412 crypto_ablkcipher_clear_flags(ctx->ctfm, ~0);
413 crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctx->ctfm),
414 CRYPTO_TFM_REQ_WEAK_KEY);
416 /* If we are lucky, we will get a context that is already
417 * set up with the right key. Else, we will have to
418 * set the key */
419 if (!ctx->ctfm_key_is_ready) {
420 /* Since our crypto objectives for filename encryption
421 * are pretty weak,
422 * we directly use the inode master key */
423 res = crypto_ablkcipher_setkey(ctx->ctfm,
424 ctx->key.raw, ctx->key.size);
425 if (res) {
426 ext4_put_fname_crypto_ctx(&ctx);
427 return ERR_PTR(-EIO);
429 ctx->ctfm_key_is_ready = 1;
430 } else {
431 /* In the current implementation, key should never be
432 * marked "ready" for a context that has just been
433 * allocated. So we should never reach here */
434 BUG();
437 if (ctx->htfm == NULL)
438 ctx->htfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
439 if (IS_ERR(ctx->htfm)) {
440 res = PTR_ERR(ctx->htfm);
441 printk(KERN_DEBUG "%s: error (%d) allocating hash tfm\n",
442 __func__, res);
443 ctx->htfm = NULL;
444 ext4_put_fname_crypto_ctx(&ctx);
445 return ERR_PTR(res);
447 if (ctx->htfm == NULL) {
448 printk(KERN_DEBUG "%s: could not allocate hash tfm\n",
449 __func__);
450 ext4_put_fname_crypto_ctx(&ctx);
451 return ERR_PTR(-ENOMEM);
454 return ctx;
458 * ext4_fname_crypto_round_up() -
460 * Return: The next multiple of block size
462 u32 ext4_fname_crypto_round_up(u32 size, u32 blksize)
464 return ((size+blksize-1)/blksize)*blksize;
468 * ext4_fname_crypto_namelen_on_disk() -
470 int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx,
471 u32 namelen)
473 u32 ciphertext_len;
474 int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK);
476 if (ctx == NULL)
477 return -EIO;
478 if (!(ctx->has_valid_key))
479 return -EACCES;
480 ciphertext_len = (namelen < EXT4_CRYPTO_BLOCK_SIZE) ?
481 EXT4_CRYPTO_BLOCK_SIZE : namelen;
482 ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding);
483 ciphertext_len = (ciphertext_len > ctx->lim)
484 ? ctx->lim : ciphertext_len;
485 return (int) ciphertext_len;
489 * ext4_fname_crypto_alloc_obuff() -
491 * Allocates an output buffer that is sufficient for the crypto operation
492 * specified by the context and the direction.
494 int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx,
495 u32 ilen, struct ext4_str *crypto_str)
497 unsigned int olen;
498 int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK);
500 if (!ctx)
501 return -EIO;
502 if (padding < EXT4_CRYPTO_BLOCK_SIZE)
503 padding = EXT4_CRYPTO_BLOCK_SIZE;
504 olen = ext4_fname_crypto_round_up(ilen, padding);
505 crypto_str->len = olen;
506 if (olen < EXT4_FNAME_CRYPTO_DIGEST_SIZE*2)
507 olen = EXT4_FNAME_CRYPTO_DIGEST_SIZE*2;
508 /* Allocated buffer can hold one more character to null-terminate the
509 * string */
510 crypto_str->name = kmalloc(olen+1, GFP_NOFS);
511 if (!(crypto_str->name))
512 return -ENOMEM;
513 return 0;
517 * ext4_fname_crypto_free_buffer() -
519 * Frees the buffer allocated for crypto operation.
521 void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str)
523 if (!crypto_str)
524 return;
525 kfree(crypto_str->name);
526 crypto_str->name = NULL;
530 * ext4_fname_disk_to_usr() - converts a filename from disk space to user space
532 int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
533 struct dx_hash_info *hinfo,
534 const struct ext4_str *iname,
535 struct ext4_str *oname)
537 char buf[24];
538 int ret;
540 if (ctx == NULL)
541 return -EIO;
542 if (iname->len < 3) {
543 /*Check for . and .. */
544 if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') {
545 oname->name[0] = '.';
546 oname->name[iname->len-1] = '.';
547 oname->len = iname->len;
548 return oname->len;
551 if (ctx->has_valid_key)
552 return ext4_fname_decrypt(ctx, iname, oname);
554 if (iname->len <= EXT4_FNAME_CRYPTO_DIGEST_SIZE) {
555 ret = digest_encode(iname->name, iname->len, oname->name);
556 oname->len = ret;
557 return ret;
559 if (hinfo) {
560 memcpy(buf, &hinfo->hash, 4);
561 memcpy(buf+4, &hinfo->minor_hash, 4);
562 } else
563 memset(buf, 0, 8);
564 memcpy(buf + 8, iname->name + iname->len - 16, 16);
565 oname->name[0] = '_';
566 ret = digest_encode(buf, 24, oname->name+1);
567 oname->len = ret + 1;
568 return ret + 1;
571 int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
572 struct dx_hash_info *hinfo,
573 const struct ext4_dir_entry_2 *de,
574 struct ext4_str *oname)
576 struct ext4_str iname = {.name = (unsigned char *) de->name,
577 .len = de->name_len };
579 return _ext4_fname_disk_to_usr(ctx, hinfo, &iname, oname);
584 * ext4_fname_usr_to_disk() - converts a filename from user space to disk space
586 int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx,
587 const struct qstr *iname,
588 struct ext4_str *oname)
590 int res;
592 if (ctx == NULL)
593 return -EIO;
594 if (iname->len < 3) {
595 /*Check for . and .. */
596 if (iname->name[0] == '.' &&
597 iname->name[iname->len-1] == '.') {
598 oname->name[0] = '.';
599 oname->name[iname->len-1] = '.';
600 oname->len = iname->len;
601 return oname->len;
604 if (ctx->has_valid_key) {
605 res = ext4_fname_encrypt(ctx, iname, oname);
606 return res;
608 /* Without a proper key, a user is not allowed to modify the filenames
609 * in a directory. Consequently, a user space name cannot be mapped to
610 * a disk-space name */
611 return -EACCES;
615 * Calculate the htree hash from a filename from user space
617 int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx,
618 const struct qstr *iname,
619 struct dx_hash_info *hinfo)
621 struct ext4_str tmp;
622 int ret = 0;
623 char buf[EXT4_FNAME_CRYPTO_DIGEST_SIZE+1];
625 if (!ctx ||
626 ((iname->name[0] == '.') &&
627 ((iname->len == 1) ||
628 ((iname->name[1] == '.') && (iname->len == 2))))) {
629 ext4fs_dirhash(iname->name, iname->len, hinfo);
630 return 0;
633 if (!ctx->has_valid_key && iname->name[0] == '_') {
634 if (iname->len != 33)
635 return -ENOENT;
636 ret = digest_decode(iname->name+1, iname->len, buf);
637 if (ret != 24)
638 return -ENOENT;
639 memcpy(&hinfo->hash, buf, 4);
640 memcpy(&hinfo->minor_hash, buf + 4, 4);
641 return 0;
644 if (!ctx->has_valid_key && iname->name[0] != '_') {
645 if (iname->len > 43)
646 return -ENOENT;
647 ret = digest_decode(iname->name, iname->len, buf);
648 ext4fs_dirhash(buf, ret, hinfo);
649 return 0;
652 /* First encrypt the plaintext name */
653 ret = ext4_fname_crypto_alloc_buffer(ctx, iname->len, &tmp);
654 if (ret < 0)
655 return ret;
657 ret = ext4_fname_encrypt(ctx, iname, &tmp);
658 if (ret >= 0) {
659 ext4fs_dirhash(tmp.name, tmp.len, hinfo);
660 ret = 0;
663 ext4_fname_crypto_free_buffer(&tmp);
664 return ret;
667 int ext4_fname_match(struct ext4_fname_crypto_ctx *ctx, struct ext4_str *cstr,
668 int len, const char * const name,
669 struct ext4_dir_entry_2 *de)
671 int ret = -ENOENT;
672 int bigname = (*name == '_');
674 if (ctx->has_valid_key) {
675 if (cstr->name == NULL) {
676 struct qstr istr;
678 ret = ext4_fname_crypto_alloc_buffer(ctx, len, cstr);
679 if (ret < 0)
680 goto errout;
681 istr.name = name;
682 istr.len = len;
683 ret = ext4_fname_encrypt(ctx, &istr, cstr);
684 if (ret < 0)
685 goto errout;
687 } else {
688 if (cstr->name == NULL) {
689 cstr->name = kmalloc(32, GFP_KERNEL);
690 if (cstr->name == NULL)
691 return -ENOMEM;
692 if ((bigname && (len != 33)) ||
693 (!bigname && (len > 43)))
694 goto errout;
695 ret = digest_decode(name+bigname, len-bigname,
696 cstr->name);
697 if (ret < 0) {
698 ret = -ENOENT;
699 goto errout;
701 cstr->len = ret;
703 if (bigname) {
704 if (de->name_len < 16)
705 return 0;
706 ret = memcmp(de->name + de->name_len - 16,
707 cstr->name + 8, 16);
708 return (ret == 0) ? 1 : 0;
711 if (de->name_len != cstr->len)
712 return 0;
713 ret = memcmp(de->name, cstr->name, cstr->len);
714 return (ret == 0) ? 1 : 0;
715 errout:
716 kfree(cstr->name);
717 cstr->name = NULL;
718 return ret;