gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / ext4 / ialloc.c
blob3fcdb2e9d2284a4e9ae233cb3e9271e201e5ac7f
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
31 #include <trace/events/ext4.h>
34 * ialloc.c contains the inodes allocation and deallocation routines
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 int i;
56 if (start_bit >= end_bit)
57 return;
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
62 if (i < end_bit)
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 /* Initializes an uninitialized inode bitmap */
67 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
68 struct buffer_head *bh,
69 ext4_group_t block_group,
70 struct ext4_group_desc *gdp)
72 struct ext4_group_info *grp;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
74 J_ASSERT_BH(bh, buffer_locked(bh));
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 ext4_error(sb, "Checksum bad for group %u", block_group);
80 grp = ext4_get_group_info(sb, block_group);
81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
82 percpu_counter_sub(&sbi->s_freeclusters_counter,
83 grp->bb_free);
84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
86 int count;
87 count = ext4_free_inodes_count(sb, gdp);
88 percpu_counter_sub(&sbi->s_freeinodes_counter,
89 count);
91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
92 return 0;
95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
97 bh->b_data);
98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
99 EXT4_INODES_PER_GROUP(sb) / 8);
100 ext4_group_desc_csum_set(sb, block_group, gdp);
102 return EXT4_INODES_PER_GROUP(sb);
105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 if (uptodate) {
108 set_buffer_uptodate(bh);
109 set_bitmap_uptodate(bh);
111 unlock_buffer(bh);
112 put_bh(bh);
116 * Read the inode allocation bitmap for a given block_group, reading
117 * into the specified slot in the superblock's bitmap cache.
119 * Return buffer_head of bitmap on success or NULL.
121 static struct buffer_head *
122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
124 struct ext4_group_desc *desc;
125 struct buffer_head *bh = NULL;
126 ext4_fsblk_t bitmap_blk;
127 struct ext4_group_info *grp;
128 struct ext4_sb_info *sbi = EXT4_SB(sb);
130 desc = ext4_get_group_desc(sb, block_group, NULL);
131 if (!desc)
132 return NULL;
134 bitmap_blk = ext4_inode_bitmap(sb, desc);
135 bh = sb_getblk(sb, bitmap_blk);
136 if (unlikely(!bh)) {
137 ext4_error(sb, "Cannot read inode bitmap - "
138 "block_group = %u, inode_bitmap = %llu",
139 block_group, bitmap_blk);
140 return NULL;
142 if (bitmap_uptodate(bh))
143 goto verify;
145 lock_buffer(bh);
146 if (bitmap_uptodate(bh)) {
147 unlock_buffer(bh);
148 goto verify;
151 ext4_lock_group(sb, block_group);
152 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
153 ext4_init_inode_bitmap(sb, bh, block_group, desc);
154 set_bitmap_uptodate(bh);
155 set_buffer_uptodate(bh);
156 set_buffer_verified(bh);
157 ext4_unlock_group(sb, block_group);
158 unlock_buffer(bh);
159 return bh;
161 ext4_unlock_group(sb, block_group);
163 if (buffer_uptodate(bh)) {
165 * if not uninit if bh is uptodate,
166 * bitmap is also uptodate
168 set_bitmap_uptodate(bh);
169 unlock_buffer(bh);
170 goto verify;
173 * submit the buffer_head for reading
175 trace_ext4_load_inode_bitmap(sb, block_group);
176 bh->b_end_io = ext4_end_bitmap_read;
177 get_bh(bh);
178 submit_bh(READ | REQ_META | REQ_PRIO, bh);
179 wait_on_buffer(bh);
180 if (!buffer_uptodate(bh)) {
181 put_bh(bh);
182 ext4_error(sb, "Cannot read inode bitmap - "
183 "block_group = %u, inode_bitmap = %llu",
184 block_group, bitmap_blk);
185 return NULL;
188 verify:
189 ext4_lock_group(sb, block_group);
190 if (!buffer_verified(bh) &&
191 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
192 EXT4_INODES_PER_GROUP(sb) / 8)) {
193 ext4_unlock_group(sb, block_group);
194 put_bh(bh);
195 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
196 "inode_bitmap = %llu", block_group, bitmap_blk);
197 grp = ext4_get_group_info(sb, block_group);
198 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
199 int count;
200 count = ext4_free_inodes_count(sb, desc);
201 percpu_counter_sub(&sbi->s_freeinodes_counter,
202 count);
204 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
205 return NULL;
207 ext4_unlock_group(sb, block_group);
208 set_buffer_verified(bh);
209 return bh;
213 * NOTE! When we get the inode, we're the only people
214 * that have access to it, and as such there are no
215 * race conditions we have to worry about. The inode
216 * is not on the hash-lists, and it cannot be reached
217 * through the filesystem because the directory entry
218 * has been deleted earlier.
220 * HOWEVER: we must make sure that we get no aliases,
221 * which means that we have to call "clear_inode()"
222 * _before_ we mark the inode not in use in the inode
223 * bitmaps. Otherwise a newly created file might use
224 * the same inode number (not actually the same pointer
225 * though), and then we'd have two inodes sharing the
226 * same inode number and space on the harddisk.
228 void ext4_free_inode(handle_t *handle, struct inode *inode)
230 struct super_block *sb = inode->i_sb;
231 int is_directory;
232 unsigned long ino;
233 struct buffer_head *bitmap_bh = NULL;
234 struct buffer_head *bh2;
235 ext4_group_t block_group;
236 unsigned long bit;
237 struct ext4_group_desc *gdp;
238 struct ext4_super_block *es;
239 struct ext4_sb_info *sbi;
240 int fatal = 0, err, count, cleared;
241 struct ext4_group_info *grp;
243 if (!sb) {
244 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
245 "nonexistent device\n", __func__, __LINE__);
246 return;
248 if (atomic_read(&inode->i_count) > 1) {
249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
250 __func__, __LINE__, inode->i_ino,
251 atomic_read(&inode->i_count));
252 return;
254 if (inode->i_nlink) {
255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
256 __func__, __LINE__, inode->i_ino, inode->i_nlink);
257 return;
259 sbi = EXT4_SB(sb);
261 ino = inode->i_ino;
262 ext4_debug("freeing inode %lu\n", ino);
263 trace_ext4_free_inode(inode);
266 * Note: we must free any quota before locking the superblock,
267 * as writing the quota to disk may need the lock as well.
269 dquot_initialize(inode);
270 ext4_xattr_delete_inode(handle, inode);
271 dquot_free_inode(inode);
272 dquot_drop(inode);
274 is_directory = S_ISDIR(inode->i_mode);
276 /* Do this BEFORE marking the inode not in use or returning an error */
277 ext4_clear_inode(inode);
279 es = EXT4_SB(sb)->s_es;
280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
282 goto error_return;
284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 /* Don't bother if the inode bitmap is corrupt. */
288 grp = ext4_get_group_info(sb, block_group);
289 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
290 goto error_return;
292 BUFFER_TRACE(bitmap_bh, "get_write_access");
293 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
294 if (fatal)
295 goto error_return;
297 fatal = -ESRCH;
298 gdp = ext4_get_group_desc(sb, block_group, &bh2);
299 if (gdp) {
300 BUFFER_TRACE(bh2, "get_write_access");
301 fatal = ext4_journal_get_write_access(handle, bh2);
303 ext4_lock_group(sb, block_group);
304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
305 if (fatal || !cleared) {
306 ext4_unlock_group(sb, block_group);
307 goto out;
310 count = ext4_free_inodes_count(sb, gdp) + 1;
311 ext4_free_inodes_set(sb, gdp, count);
312 if (is_directory) {
313 count = ext4_used_dirs_count(sb, gdp) - 1;
314 ext4_used_dirs_set(sb, gdp, count);
315 percpu_counter_dec(&sbi->s_dirs_counter);
317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
318 EXT4_INODES_PER_GROUP(sb) / 8);
319 ext4_group_desc_csum_set(sb, block_group, gdp);
320 ext4_unlock_group(sb, block_group);
322 percpu_counter_inc(&sbi->s_freeinodes_counter);
323 if (sbi->s_log_groups_per_flex) {
324 ext4_group_t f = ext4_flex_group(sbi, block_group);
326 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
327 if (is_directory)
328 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
332 out:
333 if (cleared) {
334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
336 if (!fatal)
337 fatal = err;
338 } else {
339 ext4_error(sb, "bit already cleared for inode %lu", ino);
340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
341 int count;
342 count = ext4_free_inodes_count(sb, gdp);
343 percpu_counter_sub(&sbi->s_freeinodes_counter,
344 count);
346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
349 error_return:
350 brelse(bitmap_bh);
351 ext4_std_error(sb, fatal);
354 struct orlov_stats {
355 __u64 free_clusters;
356 __u32 free_inodes;
357 __u32 used_dirs;
361 * Helper function for Orlov's allocator; returns critical information
362 * for a particular block group or flex_bg. If flex_size is 1, then g
363 * is a block group number; otherwise it is flex_bg number.
365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
366 int flex_size, struct orlov_stats *stats)
368 struct ext4_group_desc *desc;
369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
371 if (flex_size > 1) {
372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
375 return;
378 desc = ext4_get_group_desc(sb, g, NULL);
379 if (desc) {
380 stats->free_inodes = ext4_free_inodes_count(sb, desc);
381 stats->free_clusters = ext4_free_group_clusters(sb, desc);
382 stats->used_dirs = ext4_used_dirs_count(sb, desc);
383 } else {
384 stats->free_inodes = 0;
385 stats->free_clusters = 0;
386 stats->used_dirs = 0;
391 * Orlov's allocator for directories.
393 * We always try to spread first-level directories.
395 * If there are blockgroups with both free inodes and free blocks counts
396 * not worse than average we return one with smallest directory count.
397 * Otherwise we simply return a random group.
399 * For the rest rules look so:
401 * It's OK to put directory into a group unless
402 * it has too many directories already (max_dirs) or
403 * it has too few free inodes left (min_inodes) or
404 * it has too few free blocks left (min_blocks) or
405 * Parent's group is preferred, if it doesn't satisfy these
406 * conditions we search cyclically through the rest. If none
407 * of the groups look good we just look for a group with more
408 * free inodes than average (starting at parent's group).
411 static int find_group_orlov(struct super_block *sb, struct inode *parent,
412 ext4_group_t *group, umode_t mode,
413 const struct qstr *qstr)
415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
416 struct ext4_sb_info *sbi = EXT4_SB(sb);
417 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
419 unsigned int freei, avefreei, grp_free;
420 ext4_fsblk_t freeb, avefreec;
421 unsigned int ndirs;
422 int max_dirs, min_inodes;
423 ext4_grpblk_t min_clusters;
424 ext4_group_t i, grp, g, ngroups;
425 struct ext4_group_desc *desc;
426 struct orlov_stats stats;
427 int flex_size = ext4_flex_bg_size(sbi);
428 struct dx_hash_info hinfo;
430 ngroups = real_ngroups;
431 if (flex_size > 1) {
432 ngroups = (real_ngroups + flex_size - 1) >>
433 sbi->s_log_groups_per_flex;
434 parent_group >>= sbi->s_log_groups_per_flex;
437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
438 avefreei = freei / ngroups;
439 freeb = EXT4_C2B(sbi,
440 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
441 avefreec = freeb;
442 do_div(avefreec, ngroups);
443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
445 if (S_ISDIR(mode) &&
446 ((parent == d_inode(sb->s_root)) ||
447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
448 int best_ndir = inodes_per_group;
449 int ret = -1;
451 if (qstr) {
452 hinfo.hash_version = DX_HASH_HALF_MD4;
453 hinfo.seed = sbi->s_hash_seed;
454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
455 grp = hinfo.hash;
456 } else
457 grp = prandom_u32();
458 parent_group = (unsigned)grp % ngroups;
459 for (i = 0; i < ngroups; i++) {
460 g = (parent_group + i) % ngroups;
461 get_orlov_stats(sb, g, flex_size, &stats);
462 if (!stats.free_inodes)
463 continue;
464 if (stats.used_dirs >= best_ndir)
465 continue;
466 if (stats.free_inodes < avefreei)
467 continue;
468 if (stats.free_clusters < avefreec)
469 continue;
470 grp = g;
471 ret = 0;
472 best_ndir = stats.used_dirs;
474 if (ret)
475 goto fallback;
476 found_flex_bg:
477 if (flex_size == 1) {
478 *group = grp;
479 return 0;
483 * We pack inodes at the beginning of the flexgroup's
484 * inode tables. Block allocation decisions will do
485 * something similar, although regular files will
486 * start at 2nd block group of the flexgroup. See
487 * ext4_ext_find_goal() and ext4_find_near().
489 grp *= flex_size;
490 for (i = 0; i < flex_size; i++) {
491 if (grp+i >= real_ngroups)
492 break;
493 desc = ext4_get_group_desc(sb, grp+i, NULL);
494 if (desc && ext4_free_inodes_count(sb, desc)) {
495 *group = grp+i;
496 return 0;
499 goto fallback;
502 max_dirs = ndirs / ngroups + inodes_per_group / 16;
503 min_inodes = avefreei - inodes_per_group*flex_size / 4;
504 if (min_inodes < 1)
505 min_inodes = 1;
506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
509 * Start looking in the flex group where we last allocated an
510 * inode for this parent directory
512 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
513 parent_group = EXT4_I(parent)->i_last_alloc_group;
514 if (flex_size > 1)
515 parent_group >>= sbi->s_log_groups_per_flex;
518 for (i = 0; i < ngroups; i++) {
519 grp = (parent_group + i) % ngroups;
520 get_orlov_stats(sb, grp, flex_size, &stats);
521 if (stats.used_dirs >= max_dirs)
522 continue;
523 if (stats.free_inodes < min_inodes)
524 continue;
525 if (stats.free_clusters < min_clusters)
526 continue;
527 goto found_flex_bg;
530 fallback:
531 ngroups = real_ngroups;
532 avefreei = freei / ngroups;
533 fallback_retry:
534 parent_group = EXT4_I(parent)->i_block_group;
535 for (i = 0; i < ngroups; i++) {
536 grp = (parent_group + i) % ngroups;
537 desc = ext4_get_group_desc(sb, grp, NULL);
538 if (desc) {
539 grp_free = ext4_free_inodes_count(sb, desc);
540 if (grp_free && grp_free >= avefreei) {
541 *group = grp;
542 return 0;
547 if (avefreei) {
549 * The free-inodes counter is approximate, and for really small
550 * filesystems the above test can fail to find any blockgroups
552 avefreei = 0;
553 goto fallback_retry;
556 return -1;
559 static int find_group_other(struct super_block *sb, struct inode *parent,
560 ext4_group_t *group, umode_t mode)
562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
564 struct ext4_group_desc *desc;
565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
568 * Try to place the inode is the same flex group as its
569 * parent. If we can't find space, use the Orlov algorithm to
570 * find another flex group, and store that information in the
571 * parent directory's inode information so that use that flex
572 * group for future allocations.
574 if (flex_size > 1) {
575 int retry = 0;
577 try_again:
578 parent_group &= ~(flex_size-1);
579 last = parent_group + flex_size;
580 if (last > ngroups)
581 last = ngroups;
582 for (i = parent_group; i < last; i++) {
583 desc = ext4_get_group_desc(sb, i, NULL);
584 if (desc && ext4_free_inodes_count(sb, desc)) {
585 *group = i;
586 return 0;
589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
590 retry = 1;
591 parent_group = EXT4_I(parent)->i_last_alloc_group;
592 goto try_again;
595 * If this didn't work, use the Orlov search algorithm
596 * to find a new flex group; we pass in the mode to
597 * avoid the topdir algorithms.
599 *group = parent_group + flex_size;
600 if (*group > ngroups)
601 *group = 0;
602 return find_group_orlov(sb, parent, group, mode, NULL);
606 * Try to place the inode in its parent directory
608 *group = parent_group;
609 desc = ext4_get_group_desc(sb, *group, NULL);
610 if (desc && ext4_free_inodes_count(sb, desc) &&
611 ext4_free_group_clusters(sb, desc))
612 return 0;
615 * We're going to place this inode in a different blockgroup from its
616 * parent. We want to cause files in a common directory to all land in
617 * the same blockgroup. But we want files which are in a different
618 * directory which shares a blockgroup with our parent to land in a
619 * different blockgroup.
621 * So add our directory's i_ino into the starting point for the hash.
623 *group = (*group + parent->i_ino) % ngroups;
626 * Use a quadratic hash to find a group with a free inode and some free
627 * blocks.
629 for (i = 1; i < ngroups; i <<= 1) {
630 *group += i;
631 if (*group >= ngroups)
632 *group -= ngroups;
633 desc = ext4_get_group_desc(sb, *group, NULL);
634 if (desc && ext4_free_inodes_count(sb, desc) &&
635 ext4_free_group_clusters(sb, desc))
636 return 0;
640 * That failed: try linear search for a free inode, even if that group
641 * has no free blocks.
643 *group = parent_group;
644 for (i = 0; i < ngroups; i++) {
645 if (++*group >= ngroups)
646 *group = 0;
647 desc = ext4_get_group_desc(sb, *group, NULL);
648 if (desc && ext4_free_inodes_count(sb, desc))
649 return 0;
652 return -1;
656 * In no journal mode, if an inode has recently been deleted, we want
657 * to avoid reusing it until we're reasonably sure the inode table
658 * block has been written back to disk. (Yes, these values are
659 * somewhat arbitrary...)
661 #define RECENTCY_MIN 5
662 #define RECENTCY_DIRTY 30
664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
666 struct ext4_group_desc *gdp;
667 struct ext4_inode *raw_inode;
668 struct buffer_head *bh;
669 unsigned long dtime, now;
670 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
671 int offset, ret = 0, recentcy = RECENTCY_MIN;
673 gdp = ext4_get_group_desc(sb, group, NULL);
674 if (unlikely(!gdp))
675 return 0;
677 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
678 (ino / inodes_per_block));
679 if (unlikely(!bh) || !buffer_uptodate(bh))
681 * If the block is not in the buffer cache, then it
682 * must have been written out.
684 goto out;
686 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
687 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
688 dtime = le32_to_cpu(raw_inode->i_dtime);
689 now = get_seconds();
690 if (buffer_dirty(bh))
691 recentcy += RECENTCY_DIRTY;
693 if (dtime && (dtime < now) && (now < dtime + recentcy))
694 ret = 1;
695 out:
696 brelse(bh);
697 return ret;
701 * There are two policies for allocating an inode. If the new inode is
702 * a directory, then a forward search is made for a block group with both
703 * free space and a low directory-to-inode ratio; if that fails, then of
704 * the groups with above-average free space, that group with the fewest
705 * directories already is chosen.
707 * For other inodes, search forward from the parent directory's block
708 * group to find a free inode.
710 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
711 umode_t mode, const struct qstr *qstr,
712 __u32 goal, uid_t *owner, int handle_type,
713 unsigned int line_no, int nblocks)
715 struct super_block *sb;
716 struct buffer_head *inode_bitmap_bh = NULL;
717 struct buffer_head *group_desc_bh;
718 ext4_group_t ngroups, group = 0;
719 unsigned long ino = 0;
720 struct inode *inode;
721 struct ext4_group_desc *gdp = NULL;
722 struct ext4_inode_info *ei;
723 struct ext4_sb_info *sbi;
724 int ret2, err = 0;
725 struct inode *ret;
726 ext4_group_t i;
727 ext4_group_t flex_group;
728 struct ext4_group_info *grp;
730 /* Cannot create files in a deleted directory */
731 if (!dir || !dir->i_nlink)
732 return ERR_PTR(-EPERM);
734 sb = dir->i_sb;
735 ngroups = ext4_get_groups_count(sb);
736 trace_ext4_request_inode(dir, mode);
737 inode = new_inode(sb);
738 if (!inode)
739 return ERR_PTR(-ENOMEM);
740 ei = EXT4_I(inode);
741 sbi = EXT4_SB(sb);
744 * Initalize owners and quota early so that we don't have to account
745 * for quota initialization worst case in standard inode creating
746 * transaction
748 if (owner) {
749 inode->i_mode = mode;
750 i_uid_write(inode, owner[0]);
751 i_gid_write(inode, owner[1]);
752 } else if (test_opt(sb, GRPID)) {
753 inode->i_mode = mode;
754 inode->i_uid = current_fsuid();
755 inode->i_gid = dir->i_gid;
756 } else
757 inode_init_owner(inode, dir, mode);
758 dquot_initialize(inode);
760 if (!goal)
761 goal = sbi->s_inode_goal;
763 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
764 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
765 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
766 ret2 = 0;
767 goto got_group;
770 if (S_ISDIR(mode))
771 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
772 else
773 ret2 = find_group_other(sb, dir, &group, mode);
775 got_group:
776 EXT4_I(dir)->i_last_alloc_group = group;
777 err = -ENOSPC;
778 if (ret2 == -1)
779 goto out;
782 * Normally we will only go through one pass of this loop,
783 * unless we get unlucky and it turns out the group we selected
784 * had its last inode grabbed by someone else.
786 for (i = 0; i < ngroups; i++, ino = 0) {
787 err = -EIO;
789 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
790 if (!gdp)
791 goto out;
794 * Check free inodes count before loading bitmap.
796 if (ext4_free_inodes_count(sb, gdp) == 0) {
797 if (++group == ngroups)
798 group = 0;
799 continue;
802 grp = ext4_get_group_info(sb, group);
803 /* Skip groups with already-known suspicious inode tables */
804 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
805 if (++group == ngroups)
806 group = 0;
807 continue;
810 brelse(inode_bitmap_bh);
811 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
812 /* Skip groups with suspicious inode tables */
813 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
814 if (++group == ngroups)
815 group = 0;
816 continue;
819 repeat_in_this_group:
820 ino = ext4_find_next_zero_bit((unsigned long *)
821 inode_bitmap_bh->b_data,
822 EXT4_INODES_PER_GROUP(sb), ino);
823 if (ino >= EXT4_INODES_PER_GROUP(sb))
824 goto next_group;
825 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
826 ext4_error(sb, "reserved inode found cleared - "
827 "inode=%lu", ino + 1);
828 continue;
830 if ((EXT4_SB(sb)->s_journal == NULL) &&
831 recently_deleted(sb, group, ino)) {
832 ino++;
833 goto next_inode;
835 if (!handle) {
836 BUG_ON(nblocks <= 0);
837 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
838 handle_type, nblocks,
840 if (IS_ERR(handle)) {
841 err = PTR_ERR(handle);
842 ext4_std_error(sb, err);
843 goto out;
846 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
847 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
848 if (err) {
849 ext4_std_error(sb, err);
850 goto out;
852 ext4_lock_group(sb, group);
853 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
854 ext4_unlock_group(sb, group);
855 ino++; /* the inode bitmap is zero-based */
856 if (!ret2)
857 goto got; /* we grabbed the inode! */
858 next_inode:
859 if (ino < EXT4_INODES_PER_GROUP(sb))
860 goto repeat_in_this_group;
861 next_group:
862 if (++group == ngroups)
863 group = 0;
865 err = -ENOSPC;
866 goto out;
868 got:
869 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
871 if (err) {
872 ext4_std_error(sb, err);
873 goto out;
876 BUFFER_TRACE(group_desc_bh, "get_write_access");
877 err = ext4_journal_get_write_access(handle, group_desc_bh);
878 if (err) {
879 ext4_std_error(sb, err);
880 goto out;
883 /* We may have to initialize the block bitmap if it isn't already */
884 if (ext4_has_group_desc_csum(sb) &&
885 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
886 struct buffer_head *block_bitmap_bh;
888 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
889 if (!block_bitmap_bh) {
890 err = -EIO;
891 goto out;
893 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
894 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
895 if (err) {
896 brelse(block_bitmap_bh);
897 ext4_std_error(sb, err);
898 goto out;
901 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
902 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
904 /* recheck and clear flag under lock if we still need to */
905 ext4_lock_group(sb, group);
906 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
907 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
908 ext4_free_group_clusters_set(sb, gdp,
909 ext4_free_clusters_after_init(sb, group, gdp));
910 ext4_block_bitmap_csum_set(sb, group, gdp,
911 block_bitmap_bh);
912 ext4_group_desc_csum_set(sb, group, gdp);
914 ext4_unlock_group(sb, group);
915 brelse(block_bitmap_bh);
917 if (err) {
918 ext4_std_error(sb, err);
919 goto out;
923 /* Update the relevant bg descriptor fields */
924 if (ext4_has_group_desc_csum(sb)) {
925 int free;
926 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
928 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
929 ext4_lock_group(sb, group); /* while we modify the bg desc */
930 free = EXT4_INODES_PER_GROUP(sb) -
931 ext4_itable_unused_count(sb, gdp);
932 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
933 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
934 free = 0;
937 * Check the relative inode number against the last used
938 * relative inode number in this group. if it is greater
939 * we need to update the bg_itable_unused count
941 if (ino > free)
942 ext4_itable_unused_set(sb, gdp,
943 (EXT4_INODES_PER_GROUP(sb) - ino));
944 up_read(&grp->alloc_sem);
945 } else {
946 ext4_lock_group(sb, group);
949 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
950 if (S_ISDIR(mode)) {
951 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
952 if (sbi->s_log_groups_per_flex) {
953 ext4_group_t f = ext4_flex_group(sbi, group);
955 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
958 if (ext4_has_group_desc_csum(sb)) {
959 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
960 EXT4_INODES_PER_GROUP(sb) / 8);
961 ext4_group_desc_csum_set(sb, group, gdp);
963 ext4_unlock_group(sb, group);
965 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
966 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
967 if (err) {
968 ext4_std_error(sb, err);
969 goto out;
972 percpu_counter_dec(&sbi->s_freeinodes_counter);
973 if (S_ISDIR(mode))
974 percpu_counter_inc(&sbi->s_dirs_counter);
976 if (sbi->s_log_groups_per_flex) {
977 flex_group = ext4_flex_group(sbi, group);
978 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
981 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
982 /* This is the optimal IO size (for stat), not the fs block size */
983 inode->i_blocks = 0;
984 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
985 ext4_current_time(inode);
987 memset(ei->i_data, 0, sizeof(ei->i_data));
988 ei->i_dir_start_lookup = 0;
989 ei->i_disksize = 0;
991 /* Don't inherit extent flag from directory, amongst others. */
992 ei->i_flags =
993 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
994 ei->i_file_acl = 0;
995 ei->i_dtime = 0;
996 ei->i_block_group = group;
997 ei->i_last_alloc_group = ~0;
999 /* If the directory encrypted, then we should encrypt the inode. */
1000 if ((S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) &&
1001 (ext4_encrypted_inode(dir) ||
1002 DUMMY_ENCRYPTION_ENABLED(sbi)))
1003 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1005 ext4_set_inode_flags(inode);
1006 if (IS_DIRSYNC(inode))
1007 ext4_handle_sync(handle);
1008 if (insert_inode_locked(inode) < 0) {
1010 * Likely a bitmap corruption causing inode to be allocated
1011 * twice.
1013 err = -EIO;
1014 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1015 inode->i_ino);
1016 goto out;
1018 spin_lock(&sbi->s_next_gen_lock);
1019 inode->i_generation = sbi->s_next_generation++;
1020 spin_unlock(&sbi->s_next_gen_lock);
1022 /* Precompute checksum seed for inode metadata */
1023 if (ext4_has_metadata_csum(sb)) {
1024 __u32 csum;
1025 __le32 inum = cpu_to_le32(inode->i_ino);
1026 __le32 gen = cpu_to_le32(inode->i_generation);
1027 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1028 sizeof(inum));
1029 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1030 sizeof(gen));
1033 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1034 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1036 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1037 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1038 if ((sbi->s_file_encryption_mode == EXT4_ENCRYPTION_MODE_INVALID) &&
1039 (sbi->s_dir_encryption_mode == EXT4_ENCRYPTION_MODE_INVALID)) {
1040 ei->i_inline_off = 0;
1041 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
1042 EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1043 ext4_set_inode_state(inode,
1044 EXT4_STATE_MAY_INLINE_DATA);
1045 } else {
1046 /* Inline data and encryption are incompatible
1047 * We turn off inline data since encryption is enabled */
1048 ei->i_inline_off = 1;
1049 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
1050 EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1051 ext4_clear_inode_state(inode,
1052 EXT4_STATE_MAY_INLINE_DATA);
1054 #else
1055 ei->i_inline_off = 0;
1056 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1057 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1058 #endif
1059 ret = inode;
1060 err = dquot_alloc_inode(inode);
1061 if (err)
1062 goto fail_drop;
1064 err = ext4_init_acl(handle, inode, dir);
1065 if (err)
1066 goto fail_free_drop;
1068 err = ext4_init_security(handle, inode, dir, qstr);
1069 if (err)
1070 goto fail_free_drop;
1072 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1073 /* set extent flag only for directory, file and normal symlink*/
1074 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1075 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1076 ext4_ext_tree_init(handle, inode);
1080 if (ext4_handle_valid(handle)) {
1081 ei->i_sync_tid = handle->h_transaction->t_tid;
1082 ei->i_datasync_tid = handle->h_transaction->t_tid;
1085 err = ext4_mark_inode_dirty(handle, inode);
1086 if (err) {
1087 ext4_std_error(sb, err);
1088 goto fail_free_drop;
1091 ext4_debug("allocating inode %lu\n", inode->i_ino);
1092 trace_ext4_allocate_inode(inode, dir, mode);
1093 brelse(inode_bitmap_bh);
1094 return ret;
1096 fail_free_drop:
1097 dquot_free_inode(inode);
1098 fail_drop:
1099 clear_nlink(inode);
1100 unlock_new_inode(inode);
1101 out:
1102 dquot_drop(inode);
1103 inode->i_flags |= S_NOQUOTA;
1104 iput(inode);
1105 brelse(inode_bitmap_bh);
1106 return ERR_PTR(err);
1109 /* Verify that we are loading a valid orphan from disk */
1110 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1112 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1113 ext4_group_t block_group;
1114 int bit;
1115 struct buffer_head *bitmap_bh = NULL;
1116 struct inode *inode = NULL;
1117 int err = -EIO;
1119 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1120 goto bad_orphan;
1122 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1123 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1124 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1125 if (!bitmap_bh) {
1126 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1127 ino, PTR_ERR(bitmap_bh));
1128 return (struct inode *) bitmap_bh;
1131 /* Having the inode bit set should be a 100% indicator that this
1132 * is a valid orphan (no e2fsck run on fs). Orphans also include
1133 * inodes that were being truncated, so we can't check i_nlink==0.
1135 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1136 goto bad_orphan;
1138 inode = ext4_iget(sb, ino);
1139 if (IS_ERR(inode)) {
1140 err = PTR_ERR(inode);
1141 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1142 ino, err);
1143 return inode;
1147 * If the orphans has i_nlinks > 0 then it should be able to
1148 * be truncated, otherwise it won't be removed from the orphan
1149 * list during processing and an infinite loop will result.
1150 * Similarly, it must not be a bad inode.
1152 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1153 is_bad_inode(inode))
1154 goto bad_orphan;
1156 if (NEXT_ORPHAN(inode) > max_ino)
1157 goto bad_orphan;
1158 brelse(bitmap_bh);
1159 return inode;
1161 bad_orphan:
1162 ext4_error(sb, "bad orphan inode %lu", ino);
1163 if (bitmap_bh)
1164 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1165 bit, (unsigned long long)bitmap_bh->b_blocknr,
1166 ext4_test_bit(bit, bitmap_bh->b_data));
1167 if (inode) {
1168 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1169 is_bad_inode(inode));
1170 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1171 NEXT_ORPHAN(inode));
1172 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1173 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1174 /* Avoid freeing blocks if we got a bad deleted inode */
1175 if (inode->i_nlink == 0)
1176 inode->i_blocks = 0;
1177 iput(inode);
1179 brelse(bitmap_bh);
1180 return ERR_PTR(err);
1183 unsigned long ext4_count_free_inodes(struct super_block *sb)
1185 unsigned long desc_count;
1186 struct ext4_group_desc *gdp;
1187 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1188 #ifdef EXT4FS_DEBUG
1189 struct ext4_super_block *es;
1190 unsigned long bitmap_count, x;
1191 struct buffer_head *bitmap_bh = NULL;
1193 es = EXT4_SB(sb)->s_es;
1194 desc_count = 0;
1195 bitmap_count = 0;
1196 gdp = NULL;
1197 for (i = 0; i < ngroups; i++) {
1198 gdp = ext4_get_group_desc(sb, i, NULL);
1199 if (!gdp)
1200 continue;
1201 desc_count += ext4_free_inodes_count(sb, gdp);
1202 brelse(bitmap_bh);
1203 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1204 if (!bitmap_bh)
1205 continue;
1207 x = ext4_count_free(bitmap_bh->b_data,
1208 EXT4_INODES_PER_GROUP(sb) / 8);
1209 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1210 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1211 bitmap_count += x;
1213 brelse(bitmap_bh);
1214 printk(KERN_DEBUG "ext4_count_free_inodes: "
1215 "stored = %u, computed = %lu, %lu\n",
1216 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1217 return desc_count;
1218 #else
1219 desc_count = 0;
1220 for (i = 0; i < ngroups; i++) {
1221 gdp = ext4_get_group_desc(sb, i, NULL);
1222 if (!gdp)
1223 continue;
1224 desc_count += ext4_free_inodes_count(sb, gdp);
1225 cond_resched();
1227 return desc_count;
1228 #endif
1231 /* Called at mount-time, super-block is locked */
1232 unsigned long ext4_count_dirs(struct super_block * sb)
1234 unsigned long count = 0;
1235 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1237 for (i = 0; i < ngroups; i++) {
1238 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1239 if (!gdp)
1240 continue;
1241 count += ext4_used_dirs_count(sb, gdp);
1243 return count;
1247 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1248 * inode table. Must be called without any spinlock held. The only place
1249 * where it is called from on active part of filesystem is ext4lazyinit
1250 * thread, so we do not need any special locks, however we have to prevent
1251 * inode allocation from the current group, so we take alloc_sem lock, to
1252 * block ext4_new_inode() until we are finished.
1254 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1255 int barrier)
1257 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1258 struct ext4_sb_info *sbi = EXT4_SB(sb);
1259 struct ext4_group_desc *gdp = NULL;
1260 struct buffer_head *group_desc_bh;
1261 handle_t *handle;
1262 ext4_fsblk_t blk;
1263 int num, ret = 0, used_blks = 0;
1265 /* This should not happen, but just to be sure check this */
1266 if (sb->s_flags & MS_RDONLY) {
1267 ret = 1;
1268 goto out;
1271 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1272 if (!gdp)
1273 goto out;
1276 * We do not need to lock this, because we are the only one
1277 * handling this flag.
1279 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1280 goto out;
1282 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1283 if (IS_ERR(handle)) {
1284 ret = PTR_ERR(handle);
1285 goto out;
1288 down_write(&grp->alloc_sem);
1290 * If inode bitmap was already initialized there may be some
1291 * used inodes so we need to skip blocks with used inodes in
1292 * inode table.
1294 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1295 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1296 ext4_itable_unused_count(sb, gdp)),
1297 sbi->s_inodes_per_block);
1299 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1300 ext4_error(sb, "Something is wrong with group %u: "
1301 "used itable blocks: %d; "
1302 "itable unused count: %u",
1303 group, used_blks,
1304 ext4_itable_unused_count(sb, gdp));
1305 ret = 1;
1306 goto err_out;
1309 blk = ext4_inode_table(sb, gdp) + used_blks;
1310 num = sbi->s_itb_per_group - used_blks;
1312 BUFFER_TRACE(group_desc_bh, "get_write_access");
1313 ret = ext4_journal_get_write_access(handle,
1314 group_desc_bh);
1315 if (ret)
1316 goto err_out;
1319 * Skip zeroout if the inode table is full. But we set the ZEROED
1320 * flag anyway, because obviously, when it is full it does not need
1321 * further zeroing.
1323 if (unlikely(num == 0))
1324 goto skip_zeroout;
1326 ext4_debug("going to zero out inode table in group %d\n",
1327 group);
1328 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1329 if (ret < 0)
1330 goto err_out;
1331 if (barrier)
1332 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1334 skip_zeroout:
1335 ext4_lock_group(sb, group);
1336 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1337 ext4_group_desc_csum_set(sb, group, gdp);
1338 ext4_unlock_group(sb, group);
1340 BUFFER_TRACE(group_desc_bh,
1341 "call ext4_handle_dirty_metadata");
1342 ret = ext4_handle_dirty_metadata(handle, NULL,
1343 group_desc_bh);
1345 err_out:
1346 up_write(&grp->alloc_sem);
1347 ext4_journal_stop(handle);
1348 out:
1349 return ret;