2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
40 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
47 #define MPAGE_DA_EXTENT_TAIL 0x01
49 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
50 struct ext4_inode_info
*ei
)
52 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
57 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
58 raw
->i_checksum_lo
= 0;
59 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
60 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
61 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
62 raw
->i_checksum_hi
= 0;
65 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
66 EXT4_INODE_SIZE(inode
->i_sb
));
68 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
69 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
70 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
71 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
76 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
77 struct ext4_inode_info
*ei
)
79 __u32 provided
, calculated
;
81 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
82 cpu_to_le32(EXT4_OS_LINUX
) ||
83 !ext4_has_metadata_csum(inode
->i_sb
))
86 provided
= le16_to_cpu(raw
->i_checksum_lo
);
87 calculated
= ext4_inode_csum(inode
, raw
, ei
);
88 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
89 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
90 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
94 return provided
== calculated
;
97 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
98 struct ext4_inode_info
*ei
)
102 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
103 cpu_to_le32(EXT4_OS_LINUX
) ||
104 !ext4_has_metadata_csum(inode
->i_sb
))
107 csum
= ext4_inode_csum(inode
, raw
, ei
);
108 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
109 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
110 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
111 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
114 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
117 trace_ext4_begin_ordered_truncate(inode
, new_size
);
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
124 if (!EXT4_I(inode
)->jinode
)
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
127 EXT4_I(inode
)->jinode
,
131 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
132 unsigned int length
);
133 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
134 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
135 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
139 * Test whether an inode is a fast symlink.
141 int ext4_inode_is_fast_symlink(struct inode
*inode
)
143 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
144 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
146 if (ext4_has_inline_data(inode
))
149 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
157 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
168 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
169 jbd_debug(2, "restarting handle %p\n", handle
);
170 up_write(&EXT4_I(inode
)->i_data_sem
);
171 ret
= ext4_journal_restart(handle
, nblocks
);
172 down_write(&EXT4_I(inode
)->i_data_sem
);
173 ext4_discard_preallocations(inode
);
179 * Called at the last iput() if i_nlink is zero.
181 void ext4_evict_inode(struct inode
*inode
)
186 trace_ext4_evict_inode(inode
);
188 if (inode
->i_nlink
) {
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
204 * Note that directories do not have this problem because they
205 * don't use page cache.
207 if (inode
->i_ino
!= EXT4_JOURNAL_INO
&&
208 ext4_should_journal_data(inode
) &&
209 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
210 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
211 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
213 jbd2_complete_transaction(journal
, commit_tid
);
214 filemap_write_and_wait(&inode
->i_data
);
216 truncate_inode_pages_final(&inode
->i_data
);
218 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
222 if (is_bad_inode(inode
))
224 dquot_initialize(inode
);
226 if (ext4_should_order_data(inode
))
227 ext4_begin_ordered_truncate(inode
, 0);
228 truncate_inode_pages_final(&inode
->i_data
);
230 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
236 sb_start_intwrite(inode
->i_sb
);
237 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
238 ext4_blocks_for_truncate(inode
)+3);
239 if (IS_ERR(handle
)) {
240 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
246 ext4_orphan_del(NULL
, inode
);
247 sb_end_intwrite(inode
->i_sb
);
252 ext4_handle_sync(handle
);
254 err
= ext4_mark_inode_dirty(handle
, inode
);
256 ext4_warning(inode
->i_sb
,
257 "couldn't mark inode dirty (err %d)", err
);
261 ext4_truncate(inode
);
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
269 if (!ext4_handle_has_enough_credits(handle
, 3)) {
270 err
= ext4_journal_extend(handle
, 3);
272 err
= ext4_journal_restart(handle
, 3);
274 ext4_warning(inode
->i_sb
,
275 "couldn't extend journal (err %d)", err
);
277 ext4_journal_stop(handle
);
278 ext4_orphan_del(NULL
, inode
);
279 sb_end_intwrite(inode
->i_sb
);
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
292 ext4_orphan_del(handle
, inode
);
293 EXT4_I(inode
)->i_dtime
= get_seconds();
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
302 if (ext4_mark_inode_dirty(handle
, inode
))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode
);
306 ext4_free_inode(handle
, inode
);
307 ext4_journal_stop(handle
);
308 sb_end_intwrite(inode
->i_sb
);
311 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
315 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
317 return &EXT4_I(inode
)->i_reserved_quota
;
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
325 void ext4_da_update_reserve_space(struct inode
*inode
,
326 int used
, int quota_claim
)
328 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
329 struct ext4_inode_info
*ei
= EXT4_I(inode
);
331 spin_lock(&ei
->i_block_reservation_lock
);
332 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
333 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
334 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
335 "with only %d reserved data blocks",
336 __func__
, inode
->i_ino
, used
,
337 ei
->i_reserved_data_blocks
);
339 used
= ei
->i_reserved_data_blocks
;
342 /* Update per-inode reservations */
343 ei
->i_reserved_data_blocks
-= used
;
344 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
346 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
348 /* Update quota subsystem for data blocks */
350 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
355 * not re-claim the quota for fallocated blocks.
357 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
365 if ((ei
->i_reserved_data_blocks
== 0) &&
366 (atomic_read(&inode
->i_writecount
) == 0))
367 ext4_discard_preallocations(inode
);
370 static int __check_block_validity(struct inode
*inode
, const char *func
,
372 struct ext4_map_blocks
*map
)
374 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
376 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map
->m_lblk
,
385 #define check_block_validity(inode, map) \
386 __check_block_validity((inode), __func__, __LINE__, (map))
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
391 struct ext4_map_blocks
*es_map
,
392 struct ext4_map_blocks
*map
,
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
405 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
406 down_read(&EXT4_I(inode
)->i_data_sem
);
407 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
408 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
409 EXT4_GET_BLOCKS_KEEP_SIZE
);
411 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
412 EXT4_GET_BLOCKS_KEEP_SIZE
);
414 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
415 up_read((&EXT4_I(inode
)->i_data_sem
));
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
421 if (es_map
->m_lblk
!= map
->m_lblk
||
422 es_map
->m_flags
!= map
->m_flags
||
423 es_map
->m_pblk
!= map
->m_pblk
) {
424 printk("ES cache assertion failed for inode: %lu "
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
428 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
429 map
->m_len
, map
->m_pblk
, map
->m_flags
,
433 #endif /* ES_AGGRESSIVE_TEST */
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
455 * It returns the error in case of allocation failure.
457 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
458 struct ext4_map_blocks
*map
, int flags
)
460 struct extent_status es
;
463 #ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map
;
466 memcpy(&orig_map
, map
, sizeof(*map
));
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
472 (unsigned long) map
->m_lblk
);
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 if (unlikely(map
->m_len
> INT_MAX
))
478 map
->m_len
= INT_MAX
;
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
486 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
487 map
->m_pblk
= ext4_es_pblock(&es
) +
488 map
->m_lblk
- es
.es_lblk
;
489 map
->m_flags
|= ext4_es_is_written(&es
) ?
490 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
491 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
492 if (retval
> map
->m_len
)
495 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
500 #ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle
, inode
, map
,
508 * Try to see if we can get the block without requesting a new
511 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
512 down_read(&EXT4_I(inode
)->i_data_sem
);
513 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
514 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
515 EXT4_GET_BLOCKS_KEEP_SIZE
);
517 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
518 EXT4_GET_BLOCKS_KEEP_SIZE
);
523 if (unlikely(retval
!= map
->m_len
)) {
524 ext4_warning(inode
->i_sb
,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode
->i_ino
, retval
, map
->m_len
);
531 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
532 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
533 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
534 !(status
& EXTENT_STATUS_WRITTEN
) &&
535 ext4_find_delalloc_range(inode
, map
->m_lblk
,
536 map
->m_lblk
+ map
->m_len
- 1))
537 status
|= EXTENT_STATUS_DELAYED
;
538 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
539 map
->m_len
, map
->m_pblk
, status
);
543 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
544 up_read((&EXT4_I(inode
)->i_data_sem
));
547 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
548 ret
= check_block_validity(inode
, map
);
553 /* If it is only a block(s) look up */
554 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
558 * Returns if the blocks have already allocated
560 * Note that if blocks have been preallocated
561 * ext4_ext_get_block() returns the create = 0
562 * with buffer head unmapped.
564 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
570 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
577 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
580 * New blocks allocate and/or writing to unwritten extent
581 * will possibly result in updating i_data, so we take
582 * the write lock of i_data_sem, and call get_block()
583 * with create == 1 flag.
585 down_write(&EXT4_I(inode
)->i_data_sem
);
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
591 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
592 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
594 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
596 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
602 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
612 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
613 ext4_da_update_reserve_space(inode
, retval
, 1);
619 if (unlikely(retval
!= map
->m_len
)) {
620 ext4_warning(inode
->i_sb
,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode
->i_ino
, retval
, map
->m_len
);
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
631 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
632 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
633 if (ext4_es_is_written(&es
))
636 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
637 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
638 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
639 !(status
& EXTENT_STATUS_WRITTEN
) &&
640 ext4_find_delalloc_range(inode
, map
->m_lblk
,
641 map
->m_lblk
+ map
->m_len
- 1))
642 status
|= EXTENT_STATUS_DELAYED
;
643 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
644 map
->m_pblk
, status
);
650 up_write((&EXT4_I(inode
)->i_data_sem
));
651 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
652 ret
= check_block_validity(inode
, map
);
660 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
661 * we have to be careful as someone else may be manipulating b_state as well.
663 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
665 unsigned long old_state
;
666 unsigned long new_state
;
668 flags
&= EXT4_MAP_FLAGS
;
670 /* Dummy buffer_head? Set non-atomically. */
672 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
676 * Someone else may be modifying b_state. Be careful! This is ugly but
677 * once we get rid of using bh as a container for mapping information
678 * to pass to / from get_block functions, this can go away.
681 old_state
= READ_ONCE(bh
->b_state
);
682 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
684 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
687 /* Maximum number of blocks we map for direct IO at once. */
688 #define DIO_MAX_BLOCKS 4096
690 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
691 struct buffer_head
*bh
, int flags
)
693 handle_t
*handle
= ext4_journal_current_handle();
694 struct ext4_map_blocks map
;
695 int ret
= 0, started
= 0;
698 if (ext4_has_inline_data(inode
))
702 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
704 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
705 /* Direct IO write... */
706 if (map
.m_len
> DIO_MAX_BLOCKS
)
707 map
.m_len
= DIO_MAX_BLOCKS
;
708 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
709 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
711 if (IS_ERR(handle
)) {
712 ret
= PTR_ERR(handle
);
718 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
720 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
722 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
723 ext4_update_bh_state(bh
, map
.m_flags
);
724 if (IS_DAX(inode
) && buffer_unwritten(bh
)) {
726 * dgc: I suspect unwritten conversion on ext4+DAX is
727 * fundamentally broken here when there are concurrent
728 * read/write in progress on this inode.
730 WARN_ON_ONCE(io_end
);
731 bh
->b_assoc_map
= inode
->i_mapping
;
732 bh
->b_private
= (void *)(unsigned long)iblock
;
734 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
735 set_buffer_defer_completion(bh
);
736 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
740 ext4_journal_stop(handle
);
744 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
745 struct buffer_head
*bh
, int create
)
747 return _ext4_get_block(inode
, iblock
, bh
,
748 create
? EXT4_GET_BLOCKS_CREATE
: 0);
752 * `handle' can be NULL if create is zero
754 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
755 ext4_lblk_t block
, int create
)
757 struct ext4_map_blocks map
;
758 struct buffer_head
*bh
;
761 J_ASSERT(handle
!= NULL
|| create
== 0);
765 err
= ext4_map_blocks(handle
, inode
, &map
,
766 create
? EXT4_GET_BLOCKS_CREATE
: 0);
769 return create
? ERR_PTR(-ENOSPC
) : NULL
;
773 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
775 return ERR_PTR(-ENOMEM
);
776 if (map
.m_flags
& EXT4_MAP_NEW
) {
777 J_ASSERT(create
!= 0);
778 J_ASSERT(handle
!= NULL
);
781 * Now that we do not always journal data, we should
782 * keep in mind whether this should always journal the
783 * new buffer as metadata. For now, regular file
784 * writes use ext4_get_block instead, so it's not a
788 BUFFER_TRACE(bh
, "call get_create_access");
789 err
= ext4_journal_get_create_access(handle
, bh
);
794 if (!buffer_uptodate(bh
)) {
795 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
796 set_buffer_uptodate(bh
);
799 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
800 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
804 BUFFER_TRACE(bh
, "not a new buffer");
811 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
812 ext4_lblk_t block
, int create
)
814 struct buffer_head
*bh
;
816 bh
= ext4_getblk(handle
, inode
, block
, create
);
819 if (!bh
|| buffer_uptodate(bh
))
821 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
823 if (buffer_uptodate(bh
))
826 return ERR_PTR(-EIO
);
829 int ext4_walk_page_buffers(handle_t
*handle
,
830 struct buffer_head
*head
,
834 int (*fn
)(handle_t
*handle
,
835 struct buffer_head
*bh
))
837 struct buffer_head
*bh
;
838 unsigned block_start
, block_end
;
839 unsigned blocksize
= head
->b_size
;
841 struct buffer_head
*next
;
843 for (bh
= head
, block_start
= 0;
844 ret
== 0 && (bh
!= head
|| !block_start
);
845 block_start
= block_end
, bh
= next
) {
846 next
= bh
->b_this_page
;
847 block_end
= block_start
+ blocksize
;
848 if (block_end
<= from
|| block_start
>= to
) {
849 if (partial
&& !buffer_uptodate(bh
))
853 err
= (*fn
)(handle
, bh
);
861 * To preserve ordering, it is essential that the hole instantiation and
862 * the data write be encapsulated in a single transaction. We cannot
863 * close off a transaction and start a new one between the ext4_get_block()
864 * and the commit_write(). So doing the jbd2_journal_start at the start of
865 * prepare_write() is the right place.
867 * Also, this function can nest inside ext4_writepage(). In that case, we
868 * *know* that ext4_writepage() has generated enough buffer credits to do the
869 * whole page. So we won't block on the journal in that case, which is good,
870 * because the caller may be PF_MEMALLOC.
872 * By accident, ext4 can be reentered when a transaction is open via
873 * quota file writes. If we were to commit the transaction while thus
874 * reentered, there can be a deadlock - we would be holding a quota
875 * lock, and the commit would never complete if another thread had a
876 * transaction open and was blocking on the quota lock - a ranking
879 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
880 * will _not_ run commit under these circumstances because handle->h_ref
881 * is elevated. We'll still have enough credits for the tiny quotafile
884 int do_journal_get_write_access(handle_t
*handle
,
885 struct buffer_head
*bh
)
887 int dirty
= buffer_dirty(bh
);
890 if (!buffer_mapped(bh
) || buffer_freed(bh
))
893 * __block_write_begin() could have dirtied some buffers. Clean
894 * the dirty bit as jbd2_journal_get_write_access() could complain
895 * otherwise about fs integrity issues. Setting of the dirty bit
896 * by __block_write_begin() isn't a real problem here as we clear
897 * the bit before releasing a page lock and thus writeback cannot
898 * ever write the buffer.
901 clear_buffer_dirty(bh
);
902 BUFFER_TRACE(bh
, "get write access");
903 ret
= ext4_journal_get_write_access(handle
, bh
);
905 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
909 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
910 struct buffer_head
*bh_result
, int create
);
912 #ifdef CONFIG_EXT4_FS_ENCRYPTION
913 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
914 get_block_t
*get_block
)
916 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
917 unsigned to
= from
+ len
;
918 struct inode
*inode
= page
->mapping
->host
;
919 unsigned block_start
, block_end
;
922 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
924 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
925 bool decrypt
= false;
927 BUG_ON(!PageLocked(page
));
928 BUG_ON(from
> PAGE_CACHE_SIZE
);
929 BUG_ON(to
> PAGE_CACHE_SIZE
);
932 if (!page_has_buffers(page
))
933 create_empty_buffers(page
, blocksize
, 0);
934 head
= page_buffers(page
);
935 bbits
= ilog2(blocksize
);
936 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
938 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
939 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
940 block_end
= block_start
+ blocksize
;
941 if (block_end
<= from
|| block_start
>= to
) {
942 if (PageUptodate(page
)) {
943 if (!buffer_uptodate(bh
))
944 set_buffer_uptodate(bh
);
949 clear_buffer_new(bh
);
950 if (!buffer_mapped(bh
)) {
951 WARN_ON(bh
->b_size
!= blocksize
);
952 err
= get_block(inode
, block
, bh
, 1);
955 if (buffer_new(bh
)) {
956 unmap_underlying_metadata(bh
->b_bdev
,
958 if (PageUptodate(page
)) {
959 clear_buffer_new(bh
);
960 set_buffer_uptodate(bh
);
961 mark_buffer_dirty(bh
);
964 if (block_end
> to
|| block_start
< from
)
965 zero_user_segments(page
, to
, block_end
,
970 if (PageUptodate(page
)) {
971 if (!buffer_uptodate(bh
))
972 set_buffer_uptodate(bh
);
975 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
976 !buffer_unwritten(bh
) &&
977 (block_start
< from
|| block_end
> to
)) {
978 ll_rw_block(READ
, 1, &bh
);
980 decrypt
= ext4_encrypted_inode(inode
) &&
981 S_ISREG(inode
->i_mode
);
985 * If we issued read requests, let them complete.
987 while (wait_bh
> wait
) {
988 wait_on_buffer(*--wait_bh
);
989 if (!buffer_uptodate(*wait_bh
))
993 page_zero_new_buffers(page
, from
, to
);
995 err
= ext4_decrypt_one(inode
, page
);
1000 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1001 loff_t pos
, unsigned len
, unsigned flags
,
1002 struct page
**pagep
, void **fsdata
)
1004 struct inode
*inode
= mapping
->host
;
1005 int ret
, needed_blocks
;
1012 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1014 * Reserve one block more for addition to orphan list in case
1015 * we allocate blocks but write fails for some reason
1017 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1018 index
= pos
>> PAGE_CACHE_SHIFT
;
1019 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1022 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
1023 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1032 * grab_cache_page_write_begin() can take a long time if the
1033 * system is thrashing due to memory pressure, or if the page
1034 * is being written back. So grab it first before we start
1035 * the transaction handle. This also allows us to allocate
1036 * the page (if needed) without using GFP_NOFS.
1039 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1045 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1046 if (IS_ERR(handle
)) {
1047 page_cache_release(page
);
1048 return PTR_ERR(handle
);
1052 if (page
->mapping
!= mapping
) {
1053 /* The page got truncated from under us */
1055 page_cache_release(page
);
1056 ext4_journal_stop(handle
);
1059 /* In case writeback began while the page was unlocked */
1060 wait_for_stable_page(page
);
1062 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1063 if (ext4_should_dioread_nolock(inode
))
1064 ret
= ext4_block_write_begin(page
, pos
, len
,
1065 ext4_get_block_write
);
1067 ret
= ext4_block_write_begin(page
, pos
, len
,
1070 if (ext4_should_dioread_nolock(inode
))
1071 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1073 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1075 if (!ret
&& ext4_should_journal_data(inode
)) {
1076 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1078 do_journal_get_write_access
);
1084 * __block_write_begin may have instantiated a few blocks
1085 * outside i_size. Trim these off again. Don't need
1086 * i_size_read because we hold i_mutex.
1088 * Add inode to orphan list in case we crash before
1091 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1092 ext4_orphan_add(handle
, inode
);
1094 ext4_journal_stop(handle
);
1095 if (pos
+ len
> inode
->i_size
) {
1096 ext4_truncate_failed_write(inode
);
1098 * If truncate failed early the inode might
1099 * still be on the orphan list; we need to
1100 * make sure the inode is removed from the
1101 * orphan list in that case.
1104 ext4_orphan_del(NULL
, inode
);
1107 if (ret
== -ENOSPC
&&
1108 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1110 page_cache_release(page
);
1117 /* For write_end() in data=journal mode */
1118 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1121 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1123 set_buffer_uptodate(bh
);
1124 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1125 clear_buffer_meta(bh
);
1126 clear_buffer_prio(bh
);
1131 * We need to pick up the new inode size which generic_commit_write gave us
1132 * `file' can be NULL - eg, when called from page_symlink().
1134 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1135 * buffers are managed internally.
1137 static int ext4_write_end(struct file
*file
,
1138 struct address_space
*mapping
,
1139 loff_t pos
, unsigned len
, unsigned copied
,
1140 struct page
*page
, void *fsdata
)
1142 handle_t
*handle
= ext4_journal_current_handle();
1143 struct inode
*inode
= mapping
->host
;
1144 loff_t old_size
= inode
->i_size
;
1146 int i_size_changed
= 0;
1148 trace_ext4_write_end(inode
, pos
, len
, copied
);
1149 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1150 ret
= ext4_jbd2_file_inode(handle
, inode
);
1153 page_cache_release(page
);
1158 if (ext4_has_inline_data(inode
)) {
1159 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1165 copied
= block_write_end(file
, mapping
, pos
,
1166 len
, copied
, page
, fsdata
);
1168 * it's important to update i_size while still holding page lock:
1169 * page writeout could otherwise come in and zero beyond i_size.
1171 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1173 page_cache_release(page
);
1176 pagecache_isize_extended(inode
, old_size
, pos
);
1178 * Don't mark the inode dirty under page lock. First, it unnecessarily
1179 * makes the holding time of page lock longer. Second, it forces lock
1180 * ordering of page lock and transaction start for journaling
1184 ext4_mark_inode_dirty(handle
, inode
);
1186 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1187 /* if we have allocated more blocks and copied
1188 * less. We will have blocks allocated outside
1189 * inode->i_size. So truncate them
1191 ext4_orphan_add(handle
, inode
);
1193 ret2
= ext4_journal_stop(handle
);
1197 if (pos
+ len
> inode
->i_size
) {
1198 ext4_truncate_failed_write(inode
);
1200 * If truncate failed early the inode might still be
1201 * on the orphan list; we need to make sure the inode
1202 * is removed from the orphan list in that case.
1205 ext4_orphan_del(NULL
, inode
);
1208 return ret
? ret
: copied
;
1211 static int ext4_journalled_write_end(struct file
*file
,
1212 struct address_space
*mapping
,
1213 loff_t pos
, unsigned len
, unsigned copied
,
1214 struct page
*page
, void *fsdata
)
1216 handle_t
*handle
= ext4_journal_current_handle();
1217 struct inode
*inode
= mapping
->host
;
1218 loff_t old_size
= inode
->i_size
;
1222 int size_changed
= 0;
1224 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1225 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1228 BUG_ON(!ext4_handle_valid(handle
));
1230 if (ext4_has_inline_data(inode
))
1231 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1235 if (!PageUptodate(page
))
1237 page_zero_new_buffers(page
, from
+copied
, to
);
1240 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1241 to
, &partial
, write_end_fn
);
1243 SetPageUptodate(page
);
1245 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1246 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1247 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1249 page_cache_release(page
);
1252 pagecache_isize_extended(inode
, old_size
, pos
);
1255 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1260 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1261 /* if we have allocated more blocks and copied
1262 * less. We will have blocks allocated outside
1263 * inode->i_size. So truncate them
1265 ext4_orphan_add(handle
, inode
);
1267 ret2
= ext4_journal_stop(handle
);
1270 if (pos
+ len
> inode
->i_size
) {
1271 ext4_truncate_failed_write(inode
);
1273 * If truncate failed early the inode might still be
1274 * on the orphan list; we need to make sure the inode
1275 * is removed from the orphan list in that case.
1278 ext4_orphan_del(NULL
, inode
);
1281 return ret
? ret
: copied
;
1285 * Reserve a single cluster located at lblock
1287 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1289 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1290 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1291 unsigned int md_needed
;
1295 * We will charge metadata quota at writeout time; this saves
1296 * us from metadata over-estimation, though we may go over by
1297 * a small amount in the end. Here we just reserve for data.
1299 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1304 * recalculate the amount of metadata blocks to reserve
1305 * in order to allocate nrblocks
1306 * worse case is one extent per block
1308 spin_lock(&ei
->i_block_reservation_lock
);
1310 * ext4_calc_metadata_amount() has side effects, which we have
1311 * to be prepared undo if we fail to claim space.
1314 trace_ext4_da_reserve_space(inode
, 0);
1316 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1317 spin_unlock(&ei
->i_block_reservation_lock
);
1318 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1321 ei
->i_reserved_data_blocks
++;
1322 spin_unlock(&ei
->i_block_reservation_lock
);
1324 return 0; /* success */
1327 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1329 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1330 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1333 return; /* Nothing to release, exit */
1335 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1337 trace_ext4_da_release_space(inode
, to_free
);
1338 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1340 * if there aren't enough reserved blocks, then the
1341 * counter is messed up somewhere. Since this
1342 * function is called from invalidate page, it's
1343 * harmless to return without any action.
1345 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1346 "ino %lu, to_free %d with only %d reserved "
1347 "data blocks", inode
->i_ino
, to_free
,
1348 ei
->i_reserved_data_blocks
);
1350 to_free
= ei
->i_reserved_data_blocks
;
1352 ei
->i_reserved_data_blocks
-= to_free
;
1354 /* update fs dirty data blocks counter */
1355 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1357 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1359 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1362 static void ext4_da_page_release_reservation(struct page
*page
,
1363 unsigned int offset
,
1364 unsigned int length
)
1366 int to_release
= 0, contiguous_blks
= 0;
1367 struct buffer_head
*head
, *bh
;
1368 unsigned int curr_off
= 0;
1369 struct inode
*inode
= page
->mapping
->host
;
1370 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1371 unsigned int stop
= offset
+ length
;
1375 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1377 head
= page_buffers(page
);
1380 unsigned int next_off
= curr_off
+ bh
->b_size
;
1382 if (next_off
> stop
)
1385 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1388 clear_buffer_delay(bh
);
1389 } else if (contiguous_blks
) {
1390 lblk
= page
->index
<<
1391 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1392 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1394 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1395 contiguous_blks
= 0;
1397 curr_off
= next_off
;
1398 } while ((bh
= bh
->b_this_page
) != head
);
1400 if (contiguous_blks
) {
1401 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1402 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1403 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1406 /* If we have released all the blocks belonging to a cluster, then we
1407 * need to release the reserved space for that cluster. */
1408 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1409 while (num_clusters
> 0) {
1410 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1411 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1412 if (sbi
->s_cluster_ratio
== 1 ||
1413 !ext4_find_delalloc_cluster(inode
, lblk
))
1414 ext4_da_release_space(inode
, 1);
1421 * Delayed allocation stuff
1424 struct mpage_da_data
{
1425 struct inode
*inode
;
1426 struct writeback_control
*wbc
;
1428 pgoff_t first_page
; /* The first page to write */
1429 pgoff_t next_page
; /* Current page to examine */
1430 pgoff_t last_page
; /* Last page to examine */
1432 * Extent to map - this can be after first_page because that can be
1433 * fully mapped. We somewhat abuse m_flags to store whether the extent
1434 * is delalloc or unwritten.
1436 struct ext4_map_blocks map
;
1437 struct ext4_io_submit io_submit
; /* IO submission data */
1440 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1445 struct pagevec pvec
;
1446 struct inode
*inode
= mpd
->inode
;
1447 struct address_space
*mapping
= inode
->i_mapping
;
1449 /* This is necessary when next_page == 0. */
1450 if (mpd
->first_page
>= mpd
->next_page
)
1453 index
= mpd
->first_page
;
1454 end
= mpd
->next_page
- 1;
1456 ext4_lblk_t start
, last
;
1457 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1458 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1459 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1462 pagevec_init(&pvec
, 0);
1463 while (index
<= end
) {
1464 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1467 for (i
= 0; i
< nr_pages
; i
++) {
1468 struct page
*page
= pvec
.pages
[i
];
1469 if (page
->index
> end
)
1471 BUG_ON(!PageLocked(page
));
1472 BUG_ON(PageWriteback(page
));
1474 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1475 ClearPageUptodate(page
);
1479 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1480 pagevec_release(&pvec
);
1484 static void ext4_print_free_blocks(struct inode
*inode
)
1486 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1487 struct super_block
*sb
= inode
->i_sb
;
1488 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1490 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1491 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1492 ext4_count_free_clusters(sb
)));
1493 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1494 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1495 (long long) EXT4_C2B(EXT4_SB(sb
),
1496 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1497 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1498 (long long) EXT4_C2B(EXT4_SB(sb
),
1499 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1500 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1501 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1502 ei
->i_reserved_data_blocks
);
1506 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1508 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1517 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1518 struct ext4_map_blocks
*map
,
1519 struct buffer_head
*bh
)
1521 struct extent_status es
;
1523 sector_t invalid_block
= ~((sector_t
) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525 struct ext4_map_blocks orig_map
;
1527 memcpy(&orig_map
, map
, sizeof(*map
));
1530 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1536 (unsigned long) map
->m_lblk
);
1538 /* Lookup extent status tree firstly */
1539 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1540 if (ext4_es_is_hole(&es
)) {
1542 down_read(&EXT4_I(inode
)->i_data_sem
);
1547 * Delayed extent could be allocated by fallocate.
1548 * So we need to check it.
1550 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1551 map_bh(bh
, inode
->i_sb
, invalid_block
);
1553 set_buffer_delay(bh
);
1557 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1558 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1559 if (retval
> map
->m_len
)
1560 retval
= map
->m_len
;
1561 map
->m_len
= retval
;
1562 if (ext4_es_is_written(&es
))
1563 map
->m_flags
|= EXT4_MAP_MAPPED
;
1564 else if (ext4_es_is_unwritten(&es
))
1565 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1569 #ifdef ES_AGGRESSIVE_TEST
1570 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1576 * Try to see if we can get the block without requesting a new
1577 * file system block.
1579 down_read(&EXT4_I(inode
)->i_data_sem
);
1580 if (ext4_has_inline_data(inode
))
1582 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1583 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1585 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1591 * XXX: __block_prepare_write() unmaps passed block,
1595 * If the block was allocated from previously allocated cluster,
1596 * then we don't need to reserve it again. However we still need
1597 * to reserve metadata for every block we're going to write.
1599 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
<= 1 ||
1600 !ext4_find_delalloc_cluster(inode
, map
->m_lblk
)) {
1601 ret
= ext4_da_reserve_space(inode
, iblock
);
1603 /* not enough space to reserve */
1609 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1610 ~0, EXTENT_STATUS_DELAYED
);
1616 map_bh(bh
, inode
->i_sb
, invalid_block
);
1618 set_buffer_delay(bh
);
1619 } else if (retval
> 0) {
1621 unsigned int status
;
1623 if (unlikely(retval
!= map
->m_len
)) {
1624 ext4_warning(inode
->i_sb
,
1625 "ES len assertion failed for inode "
1626 "%lu: retval %d != map->m_len %d",
1627 inode
->i_ino
, retval
, map
->m_len
);
1631 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1632 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1633 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1634 map
->m_pblk
, status
);
1640 up_read((&EXT4_I(inode
)->i_data_sem
));
1646 * This is a special get_block_t callback which is used by
1647 * ext4_da_write_begin(). It will either return mapped block or
1648 * reserve space for a single block.
1650 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1651 * We also have b_blocknr = -1 and b_bdev initialized properly
1653 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1654 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1655 * initialized properly.
1657 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1658 struct buffer_head
*bh
, int create
)
1660 struct ext4_map_blocks map
;
1663 BUG_ON(create
== 0);
1664 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1666 map
.m_lblk
= iblock
;
1670 * first, we need to know whether the block is allocated already
1671 * preallocated blocks are unmapped but should treated
1672 * the same as allocated blocks.
1674 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1678 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1679 ext4_update_bh_state(bh
, map
.m_flags
);
1681 if (buffer_unwritten(bh
)) {
1682 /* A delayed write to unwritten bh should be marked
1683 * new and mapped. Mapped ensures that we don't do
1684 * get_block multiple times when we write to the same
1685 * offset and new ensures that we do proper zero out
1686 * for partial write.
1689 set_buffer_mapped(bh
);
1694 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1700 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1706 static int __ext4_journalled_writepage(struct page
*page
,
1709 struct address_space
*mapping
= page
->mapping
;
1710 struct inode
*inode
= mapping
->host
;
1711 struct buffer_head
*page_bufs
= NULL
;
1712 handle_t
*handle
= NULL
;
1713 int ret
= 0, err
= 0;
1714 int inline_data
= ext4_has_inline_data(inode
);
1715 struct buffer_head
*inode_bh
= NULL
;
1717 ClearPageChecked(page
);
1720 BUG_ON(page
->index
!= 0);
1721 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1722 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1723 if (inode_bh
== NULL
)
1726 page_bufs
= page_buffers(page
);
1731 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1735 * We need to release the page lock before we start the
1736 * journal, so grab a reference so the page won't disappear
1737 * out from under us.
1742 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1743 ext4_writepage_trans_blocks(inode
));
1744 if (IS_ERR(handle
)) {
1745 ret
= PTR_ERR(handle
);
1747 goto out_no_pagelock
;
1749 BUG_ON(!ext4_handle_valid(handle
));
1753 if (page
->mapping
!= mapping
) {
1754 /* The page got truncated from under us */
1755 ext4_journal_stop(handle
);
1761 BUFFER_TRACE(inode_bh
, "get write access");
1762 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1764 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1767 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1768 do_journal_get_write_access
);
1770 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1775 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1776 err
= ext4_journal_stop(handle
);
1780 if (!ext4_has_inline_data(inode
))
1781 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1783 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1792 * Note that we don't need to start a transaction unless we're journaling data
1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794 * need to file the inode to the transaction's list in ordered mode because if
1795 * we are writing back data added by write(), the inode is already there and if
1796 * we are writing back data modified via mmap(), no one guarantees in which
1797 * transaction the data will hit the disk. In case we are journaling data, we
1798 * cannot start transaction directly because transaction start ranks above page
1799 * lock so we have to do some magic.
1801 * This function can get called via...
1802 * - ext4_writepages after taking page lock (have journal handle)
1803 * - journal_submit_inode_data_buffers (no journal handle)
1804 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805 * - grab_page_cache when doing write_begin (have journal handle)
1807 * We don't do any block allocation in this function. If we have page with
1808 * multiple blocks we need to write those buffer_heads that are mapped. This
1809 * is important for mmaped based write. So if we do with blocksize 1K
1810 * truncate(f, 1024);
1811 * a = mmap(f, 0, 4096);
1813 * truncate(f, 4096);
1814 * we have in the page first buffer_head mapped via page_mkwrite call back
1815 * but other buffer_heads would be unmapped but dirty (dirty done via the
1816 * do_wp_page). So writepage should write the first block. If we modify
1817 * the mmap area beyond 1024 we will again get a page_fault and the
1818 * page_mkwrite callback will do the block allocation and mark the
1819 * buffer_heads mapped.
1821 * We redirty the page if we have any buffer_heads that is either delay or
1822 * unwritten in the page.
1824 * We can get recursively called as show below.
1826 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1829 * But since we don't do any block allocation we should not deadlock.
1830 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1832 static int ext4_writepage(struct page
*page
,
1833 struct writeback_control
*wbc
)
1838 struct buffer_head
*page_bufs
= NULL
;
1839 struct inode
*inode
= page
->mapping
->host
;
1840 struct ext4_io_submit io_submit
;
1841 bool keep_towrite
= false;
1843 trace_ext4_writepage(page
);
1844 size
= i_size_read(inode
);
1845 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1846 len
= size
& ~PAGE_CACHE_MASK
;
1848 len
= PAGE_CACHE_SIZE
;
1850 page_bufs
= page_buffers(page
);
1852 * We cannot do block allocation or other extent handling in this
1853 * function. If there are buffers needing that, we have to redirty
1854 * the page. But we may reach here when we do a journal commit via
1855 * journal_submit_inode_data_buffers() and in that case we must write
1856 * allocated buffers to achieve data=ordered mode guarantees.
1858 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1859 ext4_bh_delay_or_unwritten
)) {
1860 redirty_page_for_writepage(wbc
, page
);
1861 if (current
->flags
& PF_MEMALLOC
) {
1863 * For memory cleaning there's no point in writing only
1864 * some buffers. So just bail out. Warn if we came here
1865 * from direct reclaim.
1867 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1872 keep_towrite
= true;
1875 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1877 * It's mmapped pagecache. Add buffers and journal it. There
1878 * doesn't seem much point in redirtying the page here.
1880 return __ext4_journalled_writepage(page
, len
);
1882 ext4_io_submit_init(&io_submit
, wbc
);
1883 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1884 if (!io_submit
.io_end
) {
1885 redirty_page_for_writepage(wbc
, page
);
1889 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
1890 ext4_io_submit(&io_submit
);
1891 /* Drop io_end reference we got from init */
1892 ext4_put_io_end_defer(io_submit
.io_end
);
1896 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1899 loff_t size
= i_size_read(mpd
->inode
);
1902 BUG_ON(page
->index
!= mpd
->first_page
);
1903 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1904 len
= size
& ~PAGE_CACHE_MASK
;
1906 len
= PAGE_CACHE_SIZE
;
1907 clear_page_dirty_for_io(page
);
1908 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
1910 mpd
->wbc
->nr_to_write
--;
1916 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919 * mballoc gives us at most this number of blocks...
1920 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1921 * The rest of mballoc seems to handle chunks up to full group size.
1923 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1926 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1928 * @mpd - extent of blocks
1929 * @lblk - logical number of the block in the file
1930 * @bh - buffer head we want to add to the extent
1932 * The function is used to collect contig. blocks in the same state. If the
1933 * buffer doesn't require mapping for writeback and we haven't started the
1934 * extent of buffers to map yet, the function returns 'true' immediately - the
1935 * caller can write the buffer right away. Otherwise the function returns true
1936 * if the block has been added to the extent, false if the block couldn't be
1939 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1940 struct buffer_head
*bh
)
1942 struct ext4_map_blocks
*map
= &mpd
->map
;
1944 /* Buffer that doesn't need mapping for writeback? */
1945 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1946 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1947 /* So far no extent to map => we write the buffer right away */
1948 if (map
->m_len
== 0)
1953 /* First block in the extent? */
1954 if (map
->m_len
== 0) {
1957 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
1961 /* Don't go larger than mballoc is willing to allocate */
1962 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
1965 /* Can we merge the block to our big extent? */
1966 if (lblk
== map
->m_lblk
+ map
->m_len
&&
1967 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
1975 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1977 * @mpd - extent of blocks for mapping
1978 * @head - the first buffer in the page
1979 * @bh - buffer we should start processing from
1980 * @lblk - logical number of the block in the file corresponding to @bh
1982 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1983 * the page for IO if all buffers in this page were mapped and there's no
1984 * accumulated extent of buffers to map or add buffers in the page to the
1985 * extent of buffers to map. The function returns 1 if the caller can continue
1986 * by processing the next page, 0 if it should stop adding buffers to the
1987 * extent to map because we cannot extend it anymore. It can also return value
1988 * < 0 in case of error during IO submission.
1990 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
1991 struct buffer_head
*head
,
1992 struct buffer_head
*bh
,
1995 struct inode
*inode
= mpd
->inode
;
1997 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
1998 >> inode
->i_blkbits
;
2001 BUG_ON(buffer_locked(bh
));
2003 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2004 /* Found extent to map? */
2007 /* Everything mapped so far and we hit EOF */
2010 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2011 /* So far everything mapped? Submit the page for IO. */
2012 if (mpd
->map
.m_len
== 0) {
2013 err
= mpage_submit_page(mpd
, head
->b_page
);
2017 return lblk
< blocks
;
2021 * mpage_map_buffers - update buffers corresponding to changed extent and
2022 * submit fully mapped pages for IO
2024 * @mpd - description of extent to map, on return next extent to map
2026 * Scan buffers corresponding to changed extent (we expect corresponding pages
2027 * to be already locked) and update buffer state according to new extent state.
2028 * We map delalloc buffers to their physical location, clear unwritten bits,
2029 * and mark buffers as uninit when we perform writes to unwritten extents
2030 * and do extent conversion after IO is finished. If the last page is not fully
2031 * mapped, we update @map to the next extent in the last page that needs
2032 * mapping. Otherwise we submit the page for IO.
2034 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2036 struct pagevec pvec
;
2038 struct inode
*inode
= mpd
->inode
;
2039 struct buffer_head
*head
, *bh
;
2040 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
2046 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2047 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2048 lblk
= start
<< bpp_bits
;
2049 pblock
= mpd
->map
.m_pblk
;
2051 pagevec_init(&pvec
, 0);
2052 while (start
<= end
) {
2053 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2057 for (i
= 0; i
< nr_pages
; i
++) {
2058 struct page
*page
= pvec
.pages
[i
];
2060 if (page
->index
> end
)
2062 /* Up to 'end' pages must be contiguous */
2063 BUG_ON(page
->index
!= start
);
2064 bh
= head
= page_buffers(page
);
2066 if (lblk
< mpd
->map
.m_lblk
)
2068 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2070 * Buffer after end of mapped extent.
2071 * Find next buffer in the page to map.
2074 mpd
->map
.m_flags
= 0;
2076 * FIXME: If dioread_nolock supports
2077 * blocksize < pagesize, we need to make
2078 * sure we add size mapped so far to
2079 * io_end->size as the following call
2080 * can submit the page for IO.
2082 err
= mpage_process_page_bufs(mpd
, head
,
2084 pagevec_release(&pvec
);
2089 if (buffer_delay(bh
)) {
2090 clear_buffer_delay(bh
);
2091 bh
->b_blocknr
= pblock
++;
2093 clear_buffer_unwritten(bh
);
2094 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2097 * FIXME: This is going to break if dioread_nolock
2098 * supports blocksize < pagesize as we will try to
2099 * convert potentially unmapped parts of inode.
2101 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
2102 /* Page fully mapped - let IO run! */
2103 err
= mpage_submit_page(mpd
, page
);
2105 pagevec_release(&pvec
);
2110 pagevec_release(&pvec
);
2112 /* Extent fully mapped and matches with page boundary. We are done. */
2114 mpd
->map
.m_flags
= 0;
2118 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2120 struct inode
*inode
= mpd
->inode
;
2121 struct ext4_map_blocks
*map
= &mpd
->map
;
2122 int get_blocks_flags
;
2123 int err
, dioread_nolock
;
2125 trace_ext4_da_write_pages_extent(inode
, map
);
2127 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2128 * to convert an unwritten extent to be initialized (in the case
2129 * where we have written into one or more preallocated blocks). It is
2130 * possible that we're going to need more metadata blocks than
2131 * previously reserved. However we must not fail because we're in
2132 * writeback and there is nothing we can do about it so it might result
2133 * in data loss. So use reserved blocks to allocate metadata if
2136 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2137 * the blocks in question are delalloc blocks. This indicates
2138 * that the blocks and quotas has already been checked when
2139 * the data was copied into the page cache.
2141 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2142 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2143 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2145 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2146 if (map
->m_flags
& (1 << BH_Delay
))
2147 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2149 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2152 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2153 if (!mpd
->io_submit
.io_end
->handle
&&
2154 ext4_handle_valid(handle
)) {
2155 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2156 handle
->h_rsv_handle
= NULL
;
2158 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2161 BUG_ON(map
->m_len
== 0);
2162 if (map
->m_flags
& EXT4_MAP_NEW
) {
2163 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2166 for (i
= 0; i
< map
->m_len
; i
++)
2167 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2173 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2174 * mpd->len and submit pages underlying it for IO
2176 * @handle - handle for journal operations
2177 * @mpd - extent to map
2178 * @give_up_on_write - we set this to true iff there is a fatal error and there
2179 * is no hope of writing the data. The caller should discard
2180 * dirty pages to avoid infinite loops.
2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184 * them to initialized or split the described range from larger unwritten
2185 * extent. Note that we need not map all the described range since allocation
2186 * can return less blocks or the range is covered by more unwritten extents. We
2187 * cannot map more because we are limited by reserved transaction credits. On
2188 * the other hand we always make sure that the last touched page is fully
2189 * mapped so that it can be written out (and thus forward progress is
2190 * guaranteed). After mapping we submit all mapped pages for IO.
2192 static int mpage_map_and_submit_extent(handle_t
*handle
,
2193 struct mpage_da_data
*mpd
,
2194 bool *give_up_on_write
)
2196 struct inode
*inode
= mpd
->inode
;
2197 struct ext4_map_blocks
*map
= &mpd
->map
;
2202 mpd
->io_submit
.io_end
->offset
=
2203 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2205 err
= mpage_map_one_extent(handle
, mpd
);
2207 struct super_block
*sb
= inode
->i_sb
;
2209 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2210 goto invalidate_dirty_pages
;
2212 * Let the uper layers retry transient errors.
2213 * In the case of ENOSPC, if ext4_count_free_blocks()
2214 * is non-zero, a commit should free up blocks.
2216 if ((err
== -ENOMEM
) ||
2217 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2219 goto update_disksize
;
2222 ext4_msg(sb
, KERN_CRIT
,
2223 "Delayed block allocation failed for "
2224 "inode %lu at logical offset %llu with"
2225 " max blocks %u with error %d",
2227 (unsigned long long)map
->m_lblk
,
2228 (unsigned)map
->m_len
, -err
);
2229 ext4_msg(sb
, KERN_CRIT
,
2230 "This should not happen!! Data will "
2233 ext4_print_free_blocks(inode
);
2234 invalidate_dirty_pages
:
2235 *give_up_on_write
= true;
2240 * Update buffer state, submit mapped pages, and get us new
2243 err
= mpage_map_and_submit_buffers(mpd
);
2245 goto update_disksize
;
2246 } while (map
->m_len
);
2250 * Update on-disk size after IO is submitted. Races with
2251 * truncate are avoided by checking i_size under i_data_sem.
2253 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2254 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2258 down_write(&EXT4_I(inode
)->i_data_sem
);
2259 i_size
= i_size_read(inode
);
2260 if (disksize
> i_size
)
2262 if (disksize
> EXT4_I(inode
)->i_disksize
)
2263 EXT4_I(inode
)->i_disksize
= disksize
;
2264 err2
= ext4_mark_inode_dirty(handle
, inode
);
2265 up_write(&EXT4_I(inode
)->i_data_sem
);
2267 ext4_error(inode
->i_sb
,
2268 "Failed to mark inode %lu dirty",
2277 * Calculate the total number of credits to reserve for one writepages
2278 * iteration. This is called from ext4_writepages(). We map an extent of
2279 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2280 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2281 * bpp - 1 blocks in bpp different extents.
2283 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2285 int bpp
= ext4_journal_blocks_per_page(inode
);
2287 return ext4_meta_trans_blocks(inode
,
2288 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2292 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2293 * and underlying extent to map
2295 * @mpd - where to look for pages
2297 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2298 * IO immediately. When we find a page which isn't mapped we start accumulating
2299 * extent of buffers underlying these pages that needs mapping (formed by
2300 * either delayed or unwritten buffers). We also lock the pages containing
2301 * these buffers. The extent found is returned in @mpd structure (starting at
2302 * mpd->lblk with length mpd->len blocks).
2304 * Note that this function can attach bios to one io_end structure which are
2305 * neither logically nor physically contiguous. Although it may seem as an
2306 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2307 * case as we need to track IO to all buffers underlying a page in one io_end.
2309 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2311 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2312 struct pagevec pvec
;
2313 unsigned int nr_pages
;
2314 long left
= mpd
->wbc
->nr_to_write
;
2315 pgoff_t index
= mpd
->first_page
;
2316 pgoff_t end
= mpd
->last_page
;
2319 int blkbits
= mpd
->inode
->i_blkbits
;
2321 struct buffer_head
*head
;
2323 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2324 tag
= PAGECACHE_TAG_TOWRITE
;
2326 tag
= PAGECACHE_TAG_DIRTY
;
2328 pagevec_init(&pvec
, 0);
2330 mpd
->next_page
= index
;
2331 while (index
<= end
) {
2332 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2333 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2337 for (i
= 0; i
< nr_pages
; i
++) {
2338 struct page
*page
= pvec
.pages
[i
];
2341 * At this point, the page may be truncated or
2342 * invalidated (changing page->mapping to NULL), or
2343 * even swizzled back from swapper_space to tmpfs file
2344 * mapping. However, page->index will not change
2345 * because we have a reference on the page.
2347 if (page
->index
> end
)
2351 * Accumulated enough dirty pages? This doesn't apply
2352 * to WB_SYNC_ALL mode. For integrity sync we have to
2353 * keep going because someone may be concurrently
2354 * dirtying pages, and we might have synced a lot of
2355 * newly appeared dirty pages, but have not synced all
2356 * of the old dirty pages.
2358 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2361 /* If we can't merge this page, we are done. */
2362 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2367 * If the page is no longer dirty, or its mapping no
2368 * longer corresponds to inode we are writing (which
2369 * means it has been truncated or invalidated), or the
2370 * page is already under writeback and we are not doing
2371 * a data integrity writeback, skip the page
2373 if (!PageDirty(page
) ||
2374 (PageWriteback(page
) &&
2375 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2376 unlikely(page
->mapping
!= mapping
)) {
2381 wait_on_page_writeback(page
);
2382 BUG_ON(PageWriteback(page
));
2384 if (mpd
->map
.m_len
== 0)
2385 mpd
->first_page
= page
->index
;
2386 mpd
->next_page
= page
->index
+ 1;
2387 /* Add all dirty buffers to mpd */
2388 lblk
= ((ext4_lblk_t
)page
->index
) <<
2389 (PAGE_CACHE_SHIFT
- blkbits
);
2390 head
= page_buffers(page
);
2391 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2397 pagevec_release(&pvec
);
2402 pagevec_release(&pvec
);
2406 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2409 struct address_space
*mapping
= data
;
2410 int ret
= ext4_writepage(page
, wbc
);
2411 mapping_set_error(mapping
, ret
);
2415 static int ext4_writepages(struct address_space
*mapping
,
2416 struct writeback_control
*wbc
)
2418 pgoff_t writeback_index
= 0;
2419 long nr_to_write
= wbc
->nr_to_write
;
2420 int range_whole
= 0;
2422 handle_t
*handle
= NULL
;
2423 struct mpage_da_data mpd
;
2424 struct inode
*inode
= mapping
->host
;
2425 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2426 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2428 struct blk_plug plug
;
2429 bool give_up_on_write
= false;
2431 trace_ext4_writepages(inode
, wbc
);
2434 * No pages to write? This is mainly a kludge to avoid starting
2435 * a transaction for special inodes like journal inode on last iput()
2436 * because that could violate lock ordering on umount
2438 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2439 goto out_writepages
;
2441 if (ext4_should_journal_data(inode
)) {
2442 struct blk_plug plug
;
2444 blk_start_plug(&plug
);
2445 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2446 blk_finish_plug(&plug
);
2447 goto out_writepages
;
2451 * If the filesystem has aborted, it is read-only, so return
2452 * right away instead of dumping stack traces later on that
2453 * will obscure the real source of the problem. We test
2454 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2455 * the latter could be true if the filesystem is mounted
2456 * read-only, and in that case, ext4_writepages should
2457 * *never* be called, so if that ever happens, we would want
2460 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2462 goto out_writepages
;
2465 if (ext4_should_dioread_nolock(inode
)) {
2467 * We may need to convert up to one extent per block in
2468 * the page and we may dirty the inode.
2470 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2474 * If we have inline data and arrive here, it means that
2475 * we will soon create the block for the 1st page, so
2476 * we'd better clear the inline data here.
2478 if (ext4_has_inline_data(inode
)) {
2479 /* Just inode will be modified... */
2480 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2481 if (IS_ERR(handle
)) {
2482 ret
= PTR_ERR(handle
);
2483 goto out_writepages
;
2485 BUG_ON(ext4_test_inode_state(inode
,
2486 EXT4_STATE_MAY_INLINE_DATA
));
2487 ext4_destroy_inline_data(handle
, inode
);
2488 ext4_journal_stop(handle
);
2491 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2494 if (wbc
->range_cyclic
) {
2495 writeback_index
= mapping
->writeback_index
;
2496 if (writeback_index
)
2498 mpd
.first_page
= writeback_index
;
2501 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2502 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2507 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2509 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2510 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2512 blk_start_plug(&plug
);
2513 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2514 /* For each extent of pages we use new io_end */
2515 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2516 if (!mpd
.io_submit
.io_end
) {
2522 * We have two constraints: We find one extent to map and we
2523 * must always write out whole page (makes a difference when
2524 * blocksize < pagesize) so that we don't block on IO when we
2525 * try to write out the rest of the page. Journalled mode is
2526 * not supported by delalloc.
2528 BUG_ON(ext4_should_journal_data(inode
));
2529 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2531 /* start a new transaction */
2532 handle
= ext4_journal_start_with_reserve(inode
,
2533 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2534 if (IS_ERR(handle
)) {
2535 ret
= PTR_ERR(handle
);
2536 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2537 "%ld pages, ino %lu; err %d", __func__
,
2538 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2539 /* Release allocated io_end */
2540 ext4_put_io_end(mpd
.io_submit
.io_end
);
2544 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2545 ret
= mpage_prepare_extent_to_map(&mpd
);
2548 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2552 * We scanned the whole range (or exhausted
2553 * nr_to_write), submitted what was mapped and
2554 * didn't find anything needing mapping. We are
2561 * Caution: If the handle is synchronous,
2562 * ext4_journal_stop() can wait for transaction commit
2563 * to finish which may depend on writeback of pages to
2564 * complete or on page lock to be released. In that
2565 * case, we have to wait until after after we have
2566 * submitted all the IO, released page locks we hold,
2567 * and dropped io_end reference (for extent conversion
2568 * to be able to complete) before stopping the handle.
2570 if (!ext4_handle_valid(handle
) || handle
->h_sync
== 0) {
2571 ext4_journal_stop(handle
);
2574 /* Submit prepared bio */
2575 ext4_io_submit(&mpd
.io_submit
);
2576 /* Unlock pages we didn't use */
2577 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2579 * Drop our io_end reference we got from init. We have
2580 * to be careful and use deferred io_end finishing if
2581 * we are still holding the transaction as we can
2582 * release the last reference to io_end which may end
2583 * up doing unwritten extent conversion.
2586 ext4_put_io_end_defer(mpd
.io_submit
.io_end
);
2587 ext4_journal_stop(handle
);
2589 ext4_put_io_end(mpd
.io_submit
.io_end
);
2591 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2593 * Commit the transaction which would
2594 * free blocks released in the transaction
2597 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2601 /* Fatal error - ENOMEM, EIO... */
2605 blk_finish_plug(&plug
);
2606 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2608 mpd
.last_page
= writeback_index
- 1;
2614 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2616 * Set the writeback_index so that range_cyclic
2617 * mode will write it back later
2619 mapping
->writeback_index
= mpd
.first_page
;
2622 trace_ext4_writepages_result(inode
, wbc
, ret
,
2623 nr_to_write
- wbc
->nr_to_write
);
2627 static int ext4_nonda_switch(struct super_block
*sb
)
2629 s64 free_clusters
, dirty_clusters
;
2630 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2633 * switch to non delalloc mode if we are running low
2634 * on free block. The free block accounting via percpu
2635 * counters can get slightly wrong with percpu_counter_batch getting
2636 * accumulated on each CPU without updating global counters
2637 * Delalloc need an accurate free block accounting. So switch
2638 * to non delalloc when we are near to error range.
2641 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2643 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2645 * Start pushing delalloc when 1/2 of free blocks are dirty.
2647 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2648 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2650 if (2 * free_clusters
< 3 * dirty_clusters
||
2651 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2653 * free block count is less than 150% of dirty blocks
2654 * or free blocks is less than watermark
2661 /* We always reserve for an inode update; the superblock could be there too */
2662 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2664 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
2665 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
)))
2668 if (pos
+ len
<= 0x7fffffffULL
)
2671 /* We might need to update the superblock to set LARGE_FILE */
2675 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2676 loff_t pos
, unsigned len
, unsigned flags
,
2677 struct page
**pagep
, void **fsdata
)
2679 int ret
, retries
= 0;
2682 struct inode
*inode
= mapping
->host
;
2685 index
= pos
>> PAGE_CACHE_SHIFT
;
2687 if (ext4_nonda_switch(inode
->i_sb
)) {
2688 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2689 return ext4_write_begin(file
, mapping
, pos
,
2690 len
, flags
, pagep
, fsdata
);
2692 *fsdata
= (void *)0;
2693 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2695 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2696 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2706 * grab_cache_page_write_begin() can take a long time if the
2707 * system is thrashing due to memory pressure, or if the page
2708 * is being written back. So grab it first before we start
2709 * the transaction handle. This also allows us to allocate
2710 * the page (if needed) without using GFP_NOFS.
2713 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2719 * With delayed allocation, we don't log the i_disksize update
2720 * if there is delayed block allocation. But we still need
2721 * to journalling the i_disksize update if writes to the end
2722 * of file which has an already mapped buffer.
2725 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2726 ext4_da_write_credits(inode
, pos
, len
));
2727 if (IS_ERR(handle
)) {
2728 page_cache_release(page
);
2729 return PTR_ERR(handle
);
2733 if (page
->mapping
!= mapping
) {
2734 /* The page got truncated from under us */
2736 page_cache_release(page
);
2737 ext4_journal_stop(handle
);
2740 /* In case writeback began while the page was unlocked */
2741 wait_for_stable_page(page
);
2743 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2744 ret
= ext4_block_write_begin(page
, pos
, len
,
2745 ext4_da_get_block_prep
);
2747 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2751 ext4_journal_stop(handle
);
2753 * block_write_begin may have instantiated a few blocks
2754 * outside i_size. Trim these off again. Don't need
2755 * i_size_read because we hold i_mutex.
2757 if (pos
+ len
> inode
->i_size
)
2758 ext4_truncate_failed_write(inode
);
2760 if (ret
== -ENOSPC
&&
2761 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2764 page_cache_release(page
);
2773 * Check if we should update i_disksize
2774 * when write to the end of file but not require block allocation
2776 static int ext4_da_should_update_i_disksize(struct page
*page
,
2777 unsigned long offset
)
2779 struct buffer_head
*bh
;
2780 struct inode
*inode
= page
->mapping
->host
;
2784 bh
= page_buffers(page
);
2785 idx
= offset
>> inode
->i_blkbits
;
2787 for (i
= 0; i
< idx
; i
++)
2788 bh
= bh
->b_this_page
;
2790 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2795 static int ext4_da_write_end(struct file
*file
,
2796 struct address_space
*mapping
,
2797 loff_t pos
, unsigned len
, unsigned copied
,
2798 struct page
*page
, void *fsdata
)
2800 struct inode
*inode
= mapping
->host
;
2802 handle_t
*handle
= ext4_journal_current_handle();
2804 unsigned long start
, end
;
2805 int write_mode
= (int)(unsigned long)fsdata
;
2807 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2808 return ext4_write_end(file
, mapping
, pos
,
2809 len
, copied
, page
, fsdata
);
2811 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2812 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2813 end
= start
+ copied
- 1;
2816 * generic_write_end() will run mark_inode_dirty() if i_size
2817 * changes. So let's piggyback the i_disksize mark_inode_dirty
2820 new_i_size
= pos
+ copied
;
2821 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2822 if (ext4_has_inline_data(inode
) ||
2823 ext4_da_should_update_i_disksize(page
, end
)) {
2824 ext4_update_i_disksize(inode
, new_i_size
);
2825 /* We need to mark inode dirty even if
2826 * new_i_size is less that inode->i_size
2827 * bu greater than i_disksize.(hint delalloc)
2829 ext4_mark_inode_dirty(handle
, inode
);
2833 if (write_mode
!= CONVERT_INLINE_DATA
&&
2834 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2835 ext4_has_inline_data(inode
))
2836 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2839 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2845 ret2
= ext4_journal_stop(handle
);
2849 return ret
? ret
: copied
;
2852 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2853 unsigned int length
)
2856 * Drop reserved blocks
2858 BUG_ON(!PageLocked(page
));
2859 if (!page_has_buffers(page
))
2862 ext4_da_page_release_reservation(page
, offset
, length
);
2865 ext4_invalidatepage(page
, offset
, length
);
2871 * Force all delayed allocation blocks to be allocated for a given inode.
2873 int ext4_alloc_da_blocks(struct inode
*inode
)
2875 trace_ext4_alloc_da_blocks(inode
);
2877 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
2881 * We do something simple for now. The filemap_flush() will
2882 * also start triggering a write of the data blocks, which is
2883 * not strictly speaking necessary (and for users of
2884 * laptop_mode, not even desirable). However, to do otherwise
2885 * would require replicating code paths in:
2887 * ext4_writepages() ->
2888 * write_cache_pages() ---> (via passed in callback function)
2889 * __mpage_da_writepage() -->
2890 * mpage_add_bh_to_extent()
2891 * mpage_da_map_blocks()
2893 * The problem is that write_cache_pages(), located in
2894 * mm/page-writeback.c, marks pages clean in preparation for
2895 * doing I/O, which is not desirable if we're not planning on
2898 * We could call write_cache_pages(), and then redirty all of
2899 * the pages by calling redirty_page_for_writepage() but that
2900 * would be ugly in the extreme. So instead we would need to
2901 * replicate parts of the code in the above functions,
2902 * simplifying them because we wouldn't actually intend to
2903 * write out the pages, but rather only collect contiguous
2904 * logical block extents, call the multi-block allocator, and
2905 * then update the buffer heads with the block allocations.
2907 * For now, though, we'll cheat by calling filemap_flush(),
2908 * which will map the blocks, and start the I/O, but not
2909 * actually wait for the I/O to complete.
2911 return filemap_flush(inode
->i_mapping
);
2915 * bmap() is special. It gets used by applications such as lilo and by
2916 * the swapper to find the on-disk block of a specific piece of data.
2918 * Naturally, this is dangerous if the block concerned is still in the
2919 * journal. If somebody makes a swapfile on an ext4 data-journaling
2920 * filesystem and enables swap, then they may get a nasty shock when the
2921 * data getting swapped to that swapfile suddenly gets overwritten by
2922 * the original zero's written out previously to the journal and
2923 * awaiting writeback in the kernel's buffer cache.
2925 * So, if we see any bmap calls here on a modified, data-journaled file,
2926 * take extra steps to flush any blocks which might be in the cache.
2928 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2930 struct inode
*inode
= mapping
->host
;
2935 * We can get here for an inline file via the FIBMAP ioctl
2937 if (ext4_has_inline_data(inode
))
2940 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2941 test_opt(inode
->i_sb
, DELALLOC
)) {
2943 * With delalloc we want to sync the file
2944 * so that we can make sure we allocate
2947 filemap_write_and_wait(mapping
);
2950 if (EXT4_JOURNAL(inode
) &&
2951 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2953 * This is a REALLY heavyweight approach, but the use of
2954 * bmap on dirty files is expected to be extremely rare:
2955 * only if we run lilo or swapon on a freshly made file
2956 * do we expect this to happen.
2958 * (bmap requires CAP_SYS_RAWIO so this does not
2959 * represent an unprivileged user DOS attack --- we'd be
2960 * in trouble if mortal users could trigger this path at
2963 * NB. EXT4_STATE_JDATA is not set on files other than
2964 * regular files. If somebody wants to bmap a directory
2965 * or symlink and gets confused because the buffer
2966 * hasn't yet been flushed to disk, they deserve
2967 * everything they get.
2970 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2971 journal
= EXT4_JOURNAL(inode
);
2972 jbd2_journal_lock_updates(journal
);
2973 err
= jbd2_journal_flush(journal
);
2974 jbd2_journal_unlock_updates(journal
);
2980 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2983 static int ext4_readpage(struct file
*file
, struct page
*page
)
2986 struct inode
*inode
= page
->mapping
->host
;
2988 trace_ext4_readpage(page
);
2990 if (ext4_has_inline_data(inode
))
2991 ret
= ext4_readpage_inline(inode
, page
);
2994 return ext4_mpage_readpages(page
->mapping
, NULL
, page
, 1);
3000 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3001 struct list_head
*pages
, unsigned nr_pages
)
3003 struct inode
*inode
= mapping
->host
;
3005 /* If the file has inline data, no need to do readpages. */
3006 if (ext4_has_inline_data(inode
))
3009 return ext4_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
3012 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3013 unsigned int length
)
3015 trace_ext4_invalidatepage(page
, offset
, length
);
3017 /* No journalling happens on data buffers when this function is used */
3018 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3020 block_invalidatepage(page
, offset
, length
);
3023 static int __ext4_journalled_invalidatepage(struct page
*page
,
3024 unsigned int offset
,
3025 unsigned int length
)
3027 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3029 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3032 * If it's a full truncate we just forget about the pending dirtying
3034 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
3035 ClearPageChecked(page
);
3037 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3040 /* Wrapper for aops... */
3041 static void ext4_journalled_invalidatepage(struct page
*page
,
3042 unsigned int offset
,
3043 unsigned int length
)
3045 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3048 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3050 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3052 trace_ext4_releasepage(page
);
3054 /* Page has dirty journalled data -> cannot release */
3055 if (PageChecked(page
))
3058 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3060 return try_to_free_buffers(page
);
3064 * ext4_get_block used when preparing for a DIO write or buffer write.
3065 * We allocate an uinitialized extent if blocks haven't been allocated.
3066 * The extent will be converted to initialized after the IO is complete.
3068 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3069 struct buffer_head
*bh_result
, int create
)
3071 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3072 inode
->i_ino
, create
);
3073 return _ext4_get_block(inode
, iblock
, bh_result
,
3074 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3077 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3078 struct buffer_head
*bh_result
, int create
)
3080 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3081 inode
->i_ino
, create
);
3082 return _ext4_get_block(inode
, iblock
, bh_result
,
3083 EXT4_GET_BLOCKS_NO_LOCK
);
3086 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3087 ssize_t size
, void *private)
3089 ext4_io_end_t
*io_end
= iocb
->private;
3091 /* if not async direct IO just return */
3095 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3096 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3097 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3100 iocb
->private = NULL
;
3101 io_end
->offset
= offset
;
3102 io_end
->size
= size
;
3103 ext4_put_io_end(io_end
);
3107 * For ext4 extent files, ext4 will do direct-io write to holes,
3108 * preallocated extents, and those write extend the file, no need to
3109 * fall back to buffered IO.
3111 * For holes, we fallocate those blocks, mark them as unwritten
3112 * If those blocks were preallocated, we mark sure they are split, but
3113 * still keep the range to write as unwritten.
3115 * The unwritten extents will be converted to written when DIO is completed.
3116 * For async direct IO, since the IO may still pending when return, we
3117 * set up an end_io call back function, which will do the conversion
3118 * when async direct IO completed.
3120 * If the O_DIRECT write will extend the file then add this inode to the
3121 * orphan list. So recovery will truncate it back to the original size
3122 * if the machine crashes during the write.
3125 static ssize_t
ext4_ext_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3128 struct file
*file
= iocb
->ki_filp
;
3129 struct inode
*inode
= file
->f_mapping
->host
;
3131 size_t count
= iov_iter_count(iter
);
3133 get_block_t
*get_block_func
= NULL
;
3135 loff_t final_size
= offset
+ count
;
3136 ext4_io_end_t
*io_end
= NULL
;
3138 /* Use the old path for reads and writes beyond i_size. */
3139 if (iov_iter_rw(iter
) != WRITE
|| final_size
> inode
->i_size
)
3140 return ext4_ind_direct_IO(iocb
, iter
, offset
);
3142 BUG_ON(iocb
->private == NULL
);
3145 * Make all waiters for direct IO properly wait also for extent
3146 * conversion. This also disallows race between truncate() and
3147 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3149 if (iov_iter_rw(iter
) == WRITE
)
3150 inode_dio_begin(inode
);
3152 /* If we do a overwrite dio, i_mutex locking can be released */
3153 overwrite
= *((int *)iocb
->private);
3156 down_read(&EXT4_I(inode
)->i_data_sem
);
3157 mutex_unlock(&inode
->i_mutex
);
3161 * We could direct write to holes and fallocate.
3163 * Allocated blocks to fill the hole are marked as
3164 * unwritten to prevent parallel buffered read to expose
3165 * the stale data before DIO complete the data IO.
3167 * As to previously fallocated extents, ext4 get_block will
3168 * just simply mark the buffer mapped but still keep the
3169 * extents unwritten.
3171 * For non AIO case, we will convert those unwritten extents
3172 * to written after return back from blockdev_direct_IO.
3174 * For async DIO, the conversion needs to be deferred when the
3175 * IO is completed. The ext4 end_io callback function will be
3176 * called to take care of the conversion work. Here for async
3177 * case, we allocate an io_end structure to hook to the iocb.
3179 iocb
->private = NULL
;
3181 get_block_func
= ext4_get_block_write_nolock
;
3183 ext4_inode_aio_set(inode
, NULL
);
3184 if (!is_sync_kiocb(iocb
)) {
3185 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3191 * Grab reference for DIO. Will be dropped in
3194 iocb
->private = ext4_get_io_end(io_end
);
3196 * we save the io structure for current async direct
3197 * IO, so that later ext4_map_blocks() could flag the
3198 * io structure whether there is a unwritten extents
3199 * needs to be converted when IO is completed.
3201 ext4_inode_aio_set(inode
, io_end
);
3203 get_block_func
= ext4_get_block_write
;
3204 dio_flags
= DIO_LOCKING
;
3206 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3207 BUG_ON(ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
));
3210 ret
= dax_do_io(iocb
, inode
, iter
, offset
, get_block_func
,
3211 ext4_end_io_dio
, dio_flags
);
3213 ret
= __blockdev_direct_IO(iocb
, inode
,
3214 inode
->i_sb
->s_bdev
, iter
, offset
,
3216 ext4_end_io_dio
, NULL
, dio_flags
);
3219 * Put our reference to io_end. This can free the io_end structure e.g.
3220 * in sync IO case or in case of error. It can even perform extent
3221 * conversion if all bios we submitted finished before we got here.
3222 * Note that in that case iocb->private can be already set to NULL
3226 ext4_inode_aio_set(inode
, NULL
);
3227 ext4_put_io_end(io_end
);
3229 * When no IO was submitted ext4_end_io_dio() was not
3230 * called so we have to put iocb's reference.
3232 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3233 WARN_ON(iocb
->private != io_end
);
3234 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3235 ext4_put_io_end(io_end
);
3236 iocb
->private = NULL
;
3239 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3240 EXT4_STATE_DIO_UNWRITTEN
)) {
3243 * for non AIO case, since the IO is already
3244 * completed, we could do the conversion right here
3246 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3250 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3254 if (iov_iter_rw(iter
) == WRITE
)
3255 inode_dio_end(inode
);
3256 /* take i_mutex locking again if we do a ovewrite dio */
3258 up_read(&EXT4_I(inode
)->i_data_sem
);
3259 mutex_lock(&inode
->i_mutex
);
3265 static ssize_t
ext4_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3268 struct file
*file
= iocb
->ki_filp
;
3269 struct inode
*inode
= file
->f_mapping
->host
;
3270 size_t count
= iov_iter_count(iter
);
3273 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3274 if (ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
3279 * If we are doing data journalling we don't support O_DIRECT
3281 if (ext4_should_journal_data(inode
))
3284 /* Let buffer I/O handle the inline data case. */
3285 if (ext4_has_inline_data(inode
))
3288 trace_ext4_direct_IO_enter(inode
, offset
, count
, iov_iter_rw(iter
));
3289 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3290 ret
= ext4_ext_direct_IO(iocb
, iter
, offset
);
3292 ret
= ext4_ind_direct_IO(iocb
, iter
, offset
);
3293 trace_ext4_direct_IO_exit(inode
, offset
, count
, iov_iter_rw(iter
), ret
);
3298 * Pages can be marked dirty completely asynchronously from ext4's journalling
3299 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3300 * much here because ->set_page_dirty is called under VFS locks. The page is
3301 * not necessarily locked.
3303 * We cannot just dirty the page and leave attached buffers clean, because the
3304 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3305 * or jbddirty because all the journalling code will explode.
3307 * So what we do is to mark the page "pending dirty" and next time writepage
3308 * is called, propagate that into the buffers appropriately.
3310 static int ext4_journalled_set_page_dirty(struct page
*page
)
3312 SetPageChecked(page
);
3313 return __set_page_dirty_nobuffers(page
);
3316 static const struct address_space_operations ext4_aops
= {
3317 .readpage
= ext4_readpage
,
3318 .readpages
= ext4_readpages
,
3319 .writepage
= ext4_writepage
,
3320 .writepages
= ext4_writepages
,
3321 .write_begin
= ext4_write_begin
,
3322 .write_end
= ext4_write_end
,
3324 .invalidatepage
= ext4_invalidatepage
,
3325 .releasepage
= ext4_releasepage
,
3326 .direct_IO
= ext4_direct_IO
,
3327 .migratepage
= buffer_migrate_page
,
3328 .is_partially_uptodate
= block_is_partially_uptodate
,
3329 .error_remove_page
= generic_error_remove_page
,
3332 static const struct address_space_operations ext4_journalled_aops
= {
3333 .readpage
= ext4_readpage
,
3334 .readpages
= ext4_readpages
,
3335 .writepage
= ext4_writepage
,
3336 .writepages
= ext4_writepages
,
3337 .write_begin
= ext4_write_begin
,
3338 .write_end
= ext4_journalled_write_end
,
3339 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3341 .invalidatepage
= ext4_journalled_invalidatepage
,
3342 .releasepage
= ext4_releasepage
,
3343 .direct_IO
= ext4_direct_IO
,
3344 .is_partially_uptodate
= block_is_partially_uptodate
,
3345 .error_remove_page
= generic_error_remove_page
,
3348 static const struct address_space_operations ext4_da_aops
= {
3349 .readpage
= ext4_readpage
,
3350 .readpages
= ext4_readpages
,
3351 .writepage
= ext4_writepage
,
3352 .writepages
= ext4_writepages
,
3353 .write_begin
= ext4_da_write_begin
,
3354 .write_end
= ext4_da_write_end
,
3356 .invalidatepage
= ext4_da_invalidatepage
,
3357 .releasepage
= ext4_releasepage
,
3358 .direct_IO
= ext4_direct_IO
,
3359 .migratepage
= buffer_migrate_page
,
3360 .is_partially_uptodate
= block_is_partially_uptodate
,
3361 .error_remove_page
= generic_error_remove_page
,
3364 void ext4_set_aops(struct inode
*inode
)
3366 switch (ext4_inode_journal_mode(inode
)) {
3367 case EXT4_INODE_ORDERED_DATA_MODE
:
3368 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3370 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3371 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3373 case EXT4_INODE_JOURNAL_DATA_MODE
:
3374 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3379 if (test_opt(inode
->i_sb
, DELALLOC
))
3380 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3382 inode
->i_mapping
->a_ops
= &ext4_aops
;
3385 static int __ext4_block_zero_page_range(handle_t
*handle
,
3386 struct address_space
*mapping
, loff_t from
, loff_t length
)
3388 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3389 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3390 unsigned blocksize
, pos
;
3392 struct inode
*inode
= mapping
->host
;
3393 struct buffer_head
*bh
;
3397 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3398 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3402 blocksize
= inode
->i_sb
->s_blocksize
;
3404 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3406 if (!page_has_buffers(page
))
3407 create_empty_buffers(page
, blocksize
, 0);
3409 /* Find the buffer that contains "offset" */
3410 bh
= page_buffers(page
);
3412 while (offset
>= pos
) {
3413 bh
= bh
->b_this_page
;
3417 if (buffer_freed(bh
)) {
3418 BUFFER_TRACE(bh
, "freed: skip");
3421 if (!buffer_mapped(bh
)) {
3422 BUFFER_TRACE(bh
, "unmapped");
3423 ext4_get_block(inode
, iblock
, bh
, 0);
3424 /* unmapped? It's a hole - nothing to do */
3425 if (!buffer_mapped(bh
)) {
3426 BUFFER_TRACE(bh
, "still unmapped");
3431 /* Ok, it's mapped. Make sure it's up-to-date */
3432 if (PageUptodate(page
))
3433 set_buffer_uptodate(bh
);
3435 if (!buffer_uptodate(bh
)) {
3437 ll_rw_block(READ
, 1, &bh
);
3439 /* Uhhuh. Read error. Complain and punt. */
3440 if (!buffer_uptodate(bh
))
3442 if (S_ISREG(inode
->i_mode
) &&
3443 ext4_encrypted_inode(inode
)) {
3444 /* We expect the key to be set. */
3445 BUG_ON(!ext4_has_encryption_key(inode
));
3446 BUG_ON(blocksize
!= PAGE_CACHE_SIZE
);
3447 WARN_ON_ONCE(ext4_decrypt_one(inode
, page
));
3450 if (ext4_should_journal_data(inode
)) {
3451 BUFFER_TRACE(bh
, "get write access");
3452 err
= ext4_journal_get_write_access(handle
, bh
);
3456 zero_user(page
, offset
, length
);
3457 BUFFER_TRACE(bh
, "zeroed end of block");
3459 if (ext4_should_journal_data(inode
)) {
3460 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3463 mark_buffer_dirty(bh
);
3464 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3465 err
= ext4_jbd2_file_inode(handle
, inode
);
3470 page_cache_release(page
);
3475 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3476 * starting from file offset 'from'. The range to be zero'd must
3477 * be contained with in one block. If the specified range exceeds
3478 * the end of the block it will be shortened to end of the block
3479 * that cooresponds to 'from'
3481 static int ext4_block_zero_page_range(handle_t
*handle
,
3482 struct address_space
*mapping
, loff_t from
, loff_t length
)
3484 struct inode
*inode
= mapping
->host
;
3485 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3486 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3487 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3490 * correct length if it does not fall between
3491 * 'from' and the end of the block
3493 if (length
> max
|| length
< 0)
3497 return dax_zero_page_range(inode
, from
, length
, ext4_get_block
);
3498 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3502 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3503 * up to the end of the block which corresponds to `from'.
3504 * This required during truncate. We need to physically zero the tail end
3505 * of that block so it doesn't yield old data if the file is later grown.
3507 static int ext4_block_truncate_page(handle_t
*handle
,
3508 struct address_space
*mapping
, loff_t from
)
3510 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3513 struct inode
*inode
= mapping
->host
;
3515 blocksize
= inode
->i_sb
->s_blocksize
;
3516 length
= blocksize
- (offset
& (blocksize
- 1));
3518 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3521 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3522 loff_t lstart
, loff_t length
)
3524 struct super_block
*sb
= inode
->i_sb
;
3525 struct address_space
*mapping
= inode
->i_mapping
;
3526 unsigned partial_start
, partial_end
;
3527 ext4_fsblk_t start
, end
;
3528 loff_t byte_end
= (lstart
+ length
- 1);
3531 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3532 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3534 start
= lstart
>> sb
->s_blocksize_bits
;
3535 end
= byte_end
>> sb
->s_blocksize_bits
;
3537 /* Handle partial zero within the single block */
3539 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3540 err
= ext4_block_zero_page_range(handle
, mapping
,
3544 /* Handle partial zero out on the start of the range */
3545 if (partial_start
) {
3546 err
= ext4_block_zero_page_range(handle
, mapping
,
3547 lstart
, sb
->s_blocksize
);
3551 /* Handle partial zero out on the end of the range */
3552 if (partial_end
!= sb
->s_blocksize
- 1)
3553 err
= ext4_block_zero_page_range(handle
, mapping
,
3554 byte_end
- partial_end
,
3559 int ext4_can_truncate(struct inode
*inode
)
3561 if (S_ISREG(inode
->i_mode
))
3563 if (S_ISDIR(inode
->i_mode
))
3565 if (S_ISLNK(inode
->i_mode
))
3566 return !ext4_inode_is_fast_symlink(inode
);
3571 * We have to make sure i_disksize gets properly updated before we truncate
3572 * page cache due to hole punching or zero range. Otherwise i_disksize update
3573 * can get lost as it may have been postponed to submission of writeback but
3574 * that will never happen after we truncate page cache.
3576 int ext4_update_disksize_before_punch(struct inode
*inode
, loff_t offset
,
3580 loff_t size
= i_size_read(inode
);
3582 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3583 if (offset
> size
|| offset
+ len
< size
)
3586 if (EXT4_I(inode
)->i_disksize
>= size
)
3589 handle
= ext4_journal_start(inode
, EXT4_HT_MISC
, 1);
3591 return PTR_ERR(handle
);
3592 ext4_update_i_disksize(inode
, size
);
3593 ext4_mark_inode_dirty(handle
, inode
);
3594 ext4_journal_stop(handle
);
3600 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3601 * associated with the given offset and length
3603 * @inode: File inode
3604 * @offset: The offset where the hole will begin
3605 * @len: The length of the hole
3607 * Returns: 0 on success or negative on failure
3610 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3612 struct super_block
*sb
= inode
->i_sb
;
3613 ext4_lblk_t first_block
, stop_block
;
3614 struct address_space
*mapping
= inode
->i_mapping
;
3615 loff_t first_block_offset
, last_block_offset
;
3617 unsigned int credits
;
3620 if (!S_ISREG(inode
->i_mode
))
3623 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3626 * Write out all dirty pages to avoid race conditions
3627 * Then release them.
3629 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3630 ret
= filemap_write_and_wait_range(mapping
, offset
,
3631 offset
+ length
- 1);
3636 mutex_lock(&inode
->i_mutex
);
3638 /* No need to punch hole beyond i_size */
3639 if (offset
>= inode
->i_size
)
3643 * If the hole extends beyond i_size, set the hole
3644 * to end after the page that contains i_size
3646 if (offset
+ length
> inode
->i_size
) {
3647 length
= inode
->i_size
+
3648 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3652 if (offset
& (sb
->s_blocksize
- 1) ||
3653 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3655 * Attach jinode to inode for jbd2 if we do any zeroing of
3658 ret
= ext4_inode_attach_jinode(inode
);
3664 /* Wait all existing dio workers, newcomers will block on i_mutex */
3665 ext4_inode_block_unlocked_dio(inode
);
3666 inode_dio_wait(inode
);
3669 * Prevent page faults from reinstantiating pages we have released from
3672 down_write(&EXT4_I(inode
)->i_mmap_sem
);
3673 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3674 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3676 /* Now release the pages and zero block aligned part of pages*/
3677 if (last_block_offset
> first_block_offset
) {
3678 ret
= ext4_update_disksize_before_punch(inode
, offset
, length
);
3681 truncate_pagecache_range(inode
, first_block_offset
,
3685 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3686 credits
= ext4_writepage_trans_blocks(inode
);
3688 credits
= ext4_blocks_for_truncate(inode
);
3689 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3690 if (IS_ERR(handle
)) {
3691 ret
= PTR_ERR(handle
);
3692 ext4_std_error(sb
, ret
);
3696 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3701 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3702 EXT4_BLOCK_SIZE_BITS(sb
);
3703 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3705 /* If there are no blocks to remove, return now */
3706 if (first_block
>= stop_block
)
3709 down_write(&EXT4_I(inode
)->i_data_sem
);
3710 ext4_discard_preallocations(inode
);
3712 ret
= ext4_es_remove_extent(inode
, first_block
,
3713 stop_block
- first_block
);
3715 up_write(&EXT4_I(inode
)->i_data_sem
);
3719 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3720 ret
= ext4_ext_remove_space(inode
, first_block
,
3723 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
3726 up_write(&EXT4_I(inode
)->i_data_sem
);
3728 ext4_handle_sync(handle
);
3730 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3731 ext4_mark_inode_dirty(handle
, inode
);
3733 ext4_journal_stop(handle
);
3735 up_write(&EXT4_I(inode
)->i_mmap_sem
);
3736 ext4_inode_resume_unlocked_dio(inode
);
3738 mutex_unlock(&inode
->i_mutex
);
3742 int ext4_inode_attach_jinode(struct inode
*inode
)
3744 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3745 struct jbd2_inode
*jinode
;
3747 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3750 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3751 spin_lock(&inode
->i_lock
);
3754 spin_unlock(&inode
->i_lock
);
3757 ei
->jinode
= jinode
;
3758 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3761 spin_unlock(&inode
->i_lock
);
3762 if (unlikely(jinode
!= NULL
))
3763 jbd2_free_inode(jinode
);
3770 * We block out ext4_get_block() block instantiations across the entire
3771 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3772 * simultaneously on behalf of the same inode.
3774 * As we work through the truncate and commit bits of it to the journal there
3775 * is one core, guiding principle: the file's tree must always be consistent on
3776 * disk. We must be able to restart the truncate after a crash.
3778 * The file's tree may be transiently inconsistent in memory (although it
3779 * probably isn't), but whenever we close off and commit a journal transaction,
3780 * the contents of (the filesystem + the journal) must be consistent and
3781 * restartable. It's pretty simple, really: bottom up, right to left (although
3782 * left-to-right works OK too).
3784 * Note that at recovery time, journal replay occurs *before* the restart of
3785 * truncate against the orphan inode list.
3787 * The committed inode has the new, desired i_size (which is the same as
3788 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3789 * that this inode's truncate did not complete and it will again call
3790 * ext4_truncate() to have another go. So there will be instantiated blocks
3791 * to the right of the truncation point in a crashed ext4 filesystem. But
3792 * that's fine - as long as they are linked from the inode, the post-crash
3793 * ext4_truncate() run will find them and release them.
3795 void ext4_truncate(struct inode
*inode
)
3797 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3798 unsigned int credits
;
3800 struct address_space
*mapping
= inode
->i_mapping
;
3803 * There is a possibility that we're either freeing the inode
3804 * or it's a completely new inode. In those cases we might not
3805 * have i_mutex locked because it's not necessary.
3807 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3808 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3809 trace_ext4_truncate_enter(inode
);
3811 if (!ext4_can_truncate(inode
))
3814 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3816 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3817 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3819 if (ext4_has_inline_data(inode
)) {
3822 ext4_inline_data_truncate(inode
, &has_inline
);
3827 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3828 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3829 if (ext4_inode_attach_jinode(inode
) < 0)
3833 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3834 credits
= ext4_writepage_trans_blocks(inode
);
3836 credits
= ext4_blocks_for_truncate(inode
);
3838 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3839 if (IS_ERR(handle
)) {
3840 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3844 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3845 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3848 * We add the inode to the orphan list, so that if this
3849 * truncate spans multiple transactions, and we crash, we will
3850 * resume the truncate when the filesystem recovers. It also
3851 * marks the inode dirty, to catch the new size.
3853 * Implication: the file must always be in a sane, consistent
3854 * truncatable state while each transaction commits.
3856 if (ext4_orphan_add(handle
, inode
))
3859 down_write(&EXT4_I(inode
)->i_data_sem
);
3861 ext4_discard_preallocations(inode
);
3863 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3864 ext4_ext_truncate(handle
, inode
);
3866 ext4_ind_truncate(handle
, inode
);
3868 up_write(&ei
->i_data_sem
);
3871 ext4_handle_sync(handle
);
3875 * If this was a simple ftruncate() and the file will remain alive,
3876 * then we need to clear up the orphan record which we created above.
3877 * However, if this was a real unlink then we were called by
3878 * ext4_evict_inode(), and we allow that function to clean up the
3879 * orphan info for us.
3882 ext4_orphan_del(handle
, inode
);
3884 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3885 ext4_mark_inode_dirty(handle
, inode
);
3886 ext4_journal_stop(handle
);
3888 trace_ext4_truncate_exit(inode
);
3892 * ext4_get_inode_loc returns with an extra refcount against the inode's
3893 * underlying buffer_head on success. If 'in_mem' is true, we have all
3894 * data in memory that is needed to recreate the on-disk version of this
3897 static int __ext4_get_inode_loc(struct inode
*inode
,
3898 struct ext4_iloc
*iloc
, int in_mem
)
3900 struct ext4_group_desc
*gdp
;
3901 struct buffer_head
*bh
;
3902 struct super_block
*sb
= inode
->i_sb
;
3904 int inodes_per_block
, inode_offset
;
3907 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3910 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3911 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3916 * Figure out the offset within the block group inode table
3918 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3919 inode_offset
= ((inode
->i_ino
- 1) %
3920 EXT4_INODES_PER_GROUP(sb
));
3921 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3922 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3924 bh
= sb_getblk(sb
, block
);
3927 if (!buffer_uptodate(bh
)) {
3931 * If the buffer has the write error flag, we have failed
3932 * to write out another inode in the same block. In this
3933 * case, we don't have to read the block because we may
3934 * read the old inode data successfully.
3936 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3937 set_buffer_uptodate(bh
);
3939 if (buffer_uptodate(bh
)) {
3940 /* someone brought it uptodate while we waited */
3946 * If we have all information of the inode in memory and this
3947 * is the only valid inode in the block, we need not read the
3951 struct buffer_head
*bitmap_bh
;
3954 start
= inode_offset
& ~(inodes_per_block
- 1);
3956 /* Is the inode bitmap in cache? */
3957 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3958 if (unlikely(!bitmap_bh
))
3962 * If the inode bitmap isn't in cache then the
3963 * optimisation may end up performing two reads instead
3964 * of one, so skip it.
3966 if (!buffer_uptodate(bitmap_bh
)) {
3970 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3971 if (i
== inode_offset
)
3973 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3977 if (i
== start
+ inodes_per_block
) {
3978 /* all other inodes are free, so skip I/O */
3979 memset(bh
->b_data
, 0, bh
->b_size
);
3980 set_buffer_uptodate(bh
);
3988 * If we need to do any I/O, try to pre-readahead extra
3989 * blocks from the inode table.
3991 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3992 ext4_fsblk_t b
, end
, table
;
3994 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
3996 table
= ext4_inode_table(sb
, gdp
);
3997 /* s_inode_readahead_blks is always a power of 2 */
3998 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4002 num
= EXT4_INODES_PER_GROUP(sb
);
4003 if (ext4_has_group_desc_csum(sb
))
4004 num
-= ext4_itable_unused_count(sb
, gdp
);
4005 table
+= num
/ inodes_per_block
;
4009 sb_breadahead(sb
, b
++);
4013 * There are other valid inodes in the buffer, this inode
4014 * has in-inode xattrs, or we don't have this inode in memory.
4015 * Read the block from disk.
4017 trace_ext4_load_inode(inode
);
4019 bh
->b_end_io
= end_buffer_read_sync
;
4020 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
4022 if (!buffer_uptodate(bh
)) {
4023 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4024 "unable to read itable block");
4034 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4036 /* We have all inode data except xattrs in memory here. */
4037 return __ext4_get_inode_loc(inode
, iloc
,
4038 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4041 void ext4_set_inode_flags(struct inode
*inode
)
4043 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4044 unsigned int new_fl
= 0;
4046 if (flags
& EXT4_SYNC_FL
)
4048 if (flags
& EXT4_APPEND_FL
)
4050 if (flags
& EXT4_IMMUTABLE_FL
)
4051 new_fl
|= S_IMMUTABLE
;
4052 if (flags
& EXT4_NOATIME_FL
)
4053 new_fl
|= S_NOATIME
;
4054 if (flags
& EXT4_DIRSYNC_FL
)
4055 new_fl
|= S_DIRSYNC
;
4056 if (test_opt(inode
->i_sb
, DAX
))
4058 inode_set_flags(inode
, new_fl
,
4059 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
);
4062 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4063 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4065 unsigned int vfs_fl
;
4066 unsigned long old_fl
, new_fl
;
4069 vfs_fl
= ei
->vfs_inode
.i_flags
;
4070 old_fl
= ei
->i_flags
;
4071 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4072 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4074 if (vfs_fl
& S_SYNC
)
4075 new_fl
|= EXT4_SYNC_FL
;
4076 if (vfs_fl
& S_APPEND
)
4077 new_fl
|= EXT4_APPEND_FL
;
4078 if (vfs_fl
& S_IMMUTABLE
)
4079 new_fl
|= EXT4_IMMUTABLE_FL
;
4080 if (vfs_fl
& S_NOATIME
)
4081 new_fl
|= EXT4_NOATIME_FL
;
4082 if (vfs_fl
& S_DIRSYNC
)
4083 new_fl
|= EXT4_DIRSYNC_FL
;
4084 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4087 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4088 struct ext4_inode_info
*ei
)
4091 struct inode
*inode
= &(ei
->vfs_inode
);
4092 struct super_block
*sb
= inode
->i_sb
;
4094 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4095 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4096 /* we are using combined 48 bit field */
4097 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4098 le32_to_cpu(raw_inode
->i_blocks_lo
);
4099 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4100 /* i_blocks represent file system block size */
4101 return i_blocks
<< (inode
->i_blkbits
- 9);
4106 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4110 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4111 struct ext4_inode
*raw_inode
,
4112 struct ext4_inode_info
*ei
)
4114 __le32
*magic
= (void *)raw_inode
+
4115 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4116 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4117 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4118 ext4_find_inline_data_nolock(inode
);
4120 EXT4_I(inode
)->i_inline_off
= 0;
4123 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4125 struct ext4_iloc iloc
;
4126 struct ext4_inode
*raw_inode
;
4127 struct ext4_inode_info
*ei
;
4128 struct inode
*inode
;
4129 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4135 inode
= iget_locked(sb
, ino
);
4137 return ERR_PTR(-ENOMEM
);
4138 if (!(inode
->i_state
& I_NEW
))
4144 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4147 raw_inode
= ext4_raw_inode(&iloc
);
4149 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4150 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4151 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4152 EXT4_INODE_SIZE(inode
->i_sb
)) {
4153 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4154 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4155 EXT4_INODE_SIZE(inode
->i_sb
));
4160 ei
->i_extra_isize
= 0;
4162 /* Precompute checksum seed for inode metadata */
4163 if (ext4_has_metadata_csum(sb
)) {
4164 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4166 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4167 __le32 gen
= raw_inode
->i_generation
;
4168 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4170 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4174 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4175 EXT4_ERROR_INODE(inode
, "checksum invalid");
4180 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4181 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4182 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4183 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4184 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4185 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4187 i_uid_write(inode
, i_uid
);
4188 i_gid_write(inode
, i_gid
);
4189 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4191 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4192 ei
->i_inline_off
= 0;
4193 ei
->i_dir_start_lookup
= 0;
4194 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4195 /* We now have enough fields to check if the inode was active or not.
4196 * This is needed because nfsd might try to access dead inodes
4197 * the test is that same one that e2fsck uses
4198 * NeilBrown 1999oct15
4200 if (inode
->i_nlink
== 0) {
4201 if ((inode
->i_mode
== 0 ||
4202 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4203 ino
!= EXT4_BOOT_LOADER_INO
) {
4204 /* this inode is deleted */
4208 /* The only unlinked inodes we let through here have
4209 * valid i_mode and are being read by the orphan
4210 * recovery code: that's fine, we're about to complete
4211 * the process of deleting those.
4212 * OR it is the EXT4_BOOT_LOADER_INO which is
4213 * not initialized on a new filesystem. */
4215 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4216 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4217 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4218 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4220 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4221 inode
->i_size
= ext4_isize(raw_inode
);
4222 ei
->i_disksize
= inode
->i_size
;
4224 ei
->i_reserved_quota
= 0;
4226 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4227 ei
->i_block_group
= iloc
.block_group
;
4228 ei
->i_last_alloc_group
= ~0;
4230 * NOTE! The in-memory inode i_data array is in little-endian order
4231 * even on big-endian machines: we do NOT byteswap the block numbers!
4233 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4234 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4235 INIT_LIST_HEAD(&ei
->i_orphan
);
4238 * Set transaction id's of transactions that have to be committed
4239 * to finish f[data]sync. We set them to currently running transaction
4240 * as we cannot be sure that the inode or some of its metadata isn't
4241 * part of the transaction - the inode could have been reclaimed and
4242 * now it is reread from disk.
4245 transaction_t
*transaction
;
4248 read_lock(&journal
->j_state_lock
);
4249 if (journal
->j_running_transaction
)
4250 transaction
= journal
->j_running_transaction
;
4252 transaction
= journal
->j_committing_transaction
;
4254 tid
= transaction
->t_tid
;
4256 tid
= journal
->j_commit_sequence
;
4257 read_unlock(&journal
->j_state_lock
);
4258 ei
->i_sync_tid
= tid
;
4259 ei
->i_datasync_tid
= tid
;
4262 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4263 if (ei
->i_extra_isize
== 0) {
4264 /* The extra space is currently unused. Use it. */
4265 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4266 EXT4_GOOD_OLD_INODE_SIZE
;
4268 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4272 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4273 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4274 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4275 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4277 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4278 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4279 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4280 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4282 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4287 if (ei
->i_file_acl
&&
4288 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4289 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4293 } else if (!ext4_has_inline_data(inode
)) {
4294 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4295 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4296 (S_ISLNK(inode
->i_mode
) &&
4297 !ext4_inode_is_fast_symlink(inode
))))
4298 /* Validate extent which is part of inode */
4299 ret
= ext4_ext_check_inode(inode
);
4300 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4301 (S_ISLNK(inode
->i_mode
) &&
4302 !ext4_inode_is_fast_symlink(inode
))) {
4303 /* Validate block references which are part of inode */
4304 ret
= ext4_ind_check_inode(inode
);
4310 if (S_ISREG(inode
->i_mode
)) {
4311 inode
->i_op
= &ext4_file_inode_operations
;
4312 inode
->i_fop
= &ext4_file_operations
;
4313 ext4_set_aops(inode
);
4314 } else if (S_ISDIR(inode
->i_mode
)) {
4315 inode
->i_op
= &ext4_dir_inode_operations
;
4316 inode
->i_fop
= &ext4_dir_operations
;
4317 } else if (S_ISLNK(inode
->i_mode
)) {
4318 if (ext4_inode_is_fast_symlink(inode
) &&
4319 !ext4_encrypted_inode(inode
)) {
4320 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4321 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4322 sizeof(ei
->i_data
) - 1);
4324 inode
->i_op
= &ext4_symlink_inode_operations
;
4325 ext4_set_aops(inode
);
4327 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4328 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4329 inode
->i_op
= &ext4_special_inode_operations
;
4330 if (raw_inode
->i_block
[0])
4331 init_special_inode(inode
, inode
->i_mode
,
4332 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4334 init_special_inode(inode
, inode
->i_mode
,
4335 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4336 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4337 make_bad_inode(inode
);
4340 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4344 ext4_set_inode_flags(inode
);
4345 unlock_new_inode(inode
);
4351 return ERR_PTR(ret
);
4354 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4356 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4357 return ERR_PTR(-EIO
);
4358 return ext4_iget(sb
, ino
);
4361 static int ext4_inode_blocks_set(handle_t
*handle
,
4362 struct ext4_inode
*raw_inode
,
4363 struct ext4_inode_info
*ei
)
4365 struct inode
*inode
= &(ei
->vfs_inode
);
4366 u64 i_blocks
= inode
->i_blocks
;
4367 struct super_block
*sb
= inode
->i_sb
;
4369 if (i_blocks
<= ~0U) {
4371 * i_blocks can be represented in a 32 bit variable
4372 * as multiple of 512 bytes
4374 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4375 raw_inode
->i_blocks_high
= 0;
4376 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4379 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4382 if (i_blocks
<= 0xffffffffffffULL
) {
4384 * i_blocks can be represented in a 48 bit variable
4385 * as multiple of 512 bytes
4387 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4388 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4389 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4391 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4392 /* i_block is stored in file system block size */
4393 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4394 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4395 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4400 struct other_inode
{
4401 unsigned long orig_ino
;
4402 struct ext4_inode
*raw_inode
;
4405 static int other_inode_match(struct inode
* inode
, unsigned long ino
,
4408 struct other_inode
*oi
= (struct other_inode
*) data
;
4410 if ((inode
->i_ino
!= ino
) ||
4411 (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4412 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
4413 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4415 spin_lock(&inode
->i_lock
);
4416 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4417 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) == 0) &&
4418 (inode
->i_state
& I_DIRTY_TIME
)) {
4419 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4421 inode
->i_state
&= ~(I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
);
4422 spin_unlock(&inode
->i_lock
);
4424 spin_lock(&ei
->i_raw_lock
);
4425 EXT4_INODE_SET_XTIME(i_ctime
, inode
, oi
->raw_inode
);
4426 EXT4_INODE_SET_XTIME(i_mtime
, inode
, oi
->raw_inode
);
4427 EXT4_INODE_SET_XTIME(i_atime
, inode
, oi
->raw_inode
);
4428 ext4_inode_csum_set(inode
, oi
->raw_inode
, ei
);
4429 spin_unlock(&ei
->i_raw_lock
);
4430 trace_ext4_other_inode_update_time(inode
, oi
->orig_ino
);
4433 spin_unlock(&inode
->i_lock
);
4438 * Opportunistically update the other time fields for other inodes in
4439 * the same inode table block.
4441 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4442 unsigned long orig_ino
, char *buf
)
4444 struct other_inode oi
;
4446 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4447 int inode_size
= EXT4_INODE_SIZE(sb
);
4449 oi
.orig_ino
= orig_ino
;
4451 * Calculate the first inode in the inode table block. Inode
4452 * numbers are one-based. That is, the first inode in a block
4453 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4455 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
4456 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
4457 if (ino
== orig_ino
)
4459 oi
.raw_inode
= (struct ext4_inode
*) buf
;
4460 (void) find_inode_nowait(sb
, ino
, other_inode_match
, &oi
);
4465 * Post the struct inode info into an on-disk inode location in the
4466 * buffer-cache. This gobbles the caller's reference to the
4467 * buffer_head in the inode location struct.
4469 * The caller must have write access to iloc->bh.
4471 static int ext4_do_update_inode(handle_t
*handle
,
4472 struct inode
*inode
,
4473 struct ext4_iloc
*iloc
)
4475 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4476 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4477 struct buffer_head
*bh
= iloc
->bh
;
4478 struct super_block
*sb
= inode
->i_sb
;
4479 int err
= 0, rc
, block
;
4480 int need_datasync
= 0, set_large_file
= 0;
4484 spin_lock(&ei
->i_raw_lock
);
4486 /* For fields not tracked in the in-memory inode,
4487 * initialise them to zero for new inodes. */
4488 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4489 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4491 ext4_get_inode_flags(ei
);
4492 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4493 i_uid
= i_uid_read(inode
);
4494 i_gid
= i_gid_read(inode
);
4495 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4496 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4497 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4499 * Fix up interoperability with old kernels. Otherwise, old inodes get
4500 * re-used with the upper 16 bits of the uid/gid intact
4503 raw_inode
->i_uid_high
=
4504 cpu_to_le16(high_16_bits(i_uid
));
4505 raw_inode
->i_gid_high
=
4506 cpu_to_le16(high_16_bits(i_gid
));
4508 raw_inode
->i_uid_high
= 0;
4509 raw_inode
->i_gid_high
= 0;
4512 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4513 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4514 raw_inode
->i_uid_high
= 0;
4515 raw_inode
->i_gid_high
= 0;
4517 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4519 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4520 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4521 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4522 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4524 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
4526 spin_unlock(&ei
->i_raw_lock
);
4529 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4530 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4531 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4532 raw_inode
->i_file_acl_high
=
4533 cpu_to_le16(ei
->i_file_acl
>> 32);
4534 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4535 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4536 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4539 if (ei
->i_disksize
> 0x7fffffffULL
) {
4540 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4541 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4542 EXT4_SB(sb
)->s_es
->s_rev_level
==
4543 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4546 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4547 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4548 if (old_valid_dev(inode
->i_rdev
)) {
4549 raw_inode
->i_block
[0] =
4550 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4551 raw_inode
->i_block
[1] = 0;
4553 raw_inode
->i_block
[0] = 0;
4554 raw_inode
->i_block
[1] =
4555 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4556 raw_inode
->i_block
[2] = 0;
4558 } else if (!ext4_has_inline_data(inode
)) {
4559 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4560 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4563 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4564 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4565 if (ei
->i_extra_isize
) {
4566 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4567 raw_inode
->i_version_hi
=
4568 cpu_to_le32(inode
->i_version
>> 32);
4569 raw_inode
->i_extra_isize
=
4570 cpu_to_le16(ei
->i_extra_isize
);
4573 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4574 spin_unlock(&ei
->i_raw_lock
);
4575 if (inode
->i_sb
->s_flags
& MS_LAZYTIME
)
4576 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
4579 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4580 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4583 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4584 if (set_large_file
) {
4585 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
4586 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
4589 ext4_update_dynamic_rev(sb
);
4590 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4591 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4592 ext4_handle_sync(handle
);
4593 err
= ext4_handle_dirty_super(handle
, sb
);
4595 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4598 ext4_std_error(inode
->i_sb
, err
);
4603 * ext4_write_inode()
4605 * We are called from a few places:
4607 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4608 * Here, there will be no transaction running. We wait for any running
4609 * transaction to commit.
4611 * - Within flush work (sys_sync(), kupdate and such).
4612 * We wait on commit, if told to.
4614 * - Within iput_final() -> write_inode_now()
4615 * We wait on commit, if told to.
4617 * In all cases it is actually safe for us to return without doing anything,
4618 * because the inode has been copied into a raw inode buffer in
4619 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4622 * Note that we are absolutely dependent upon all inode dirtiers doing the
4623 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4624 * which we are interested.
4626 * It would be a bug for them to not do this. The code:
4628 * mark_inode_dirty(inode)
4630 * inode->i_size = expr;
4632 * is in error because write_inode() could occur while `stuff()' is running,
4633 * and the new i_size will be lost. Plus the inode will no longer be on the
4634 * superblock's dirty inode list.
4636 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4640 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
4643 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4644 if (ext4_journal_current_handle()) {
4645 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4651 * No need to force transaction in WB_SYNC_NONE mode. Also
4652 * ext4_sync_fs() will force the commit after everything is
4655 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4658 err
= ext4_force_commit(inode
->i_sb
);
4660 struct ext4_iloc iloc
;
4662 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4666 * sync(2) will flush the whole buffer cache. No need to do
4667 * it here separately for each inode.
4669 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4670 sync_dirty_buffer(iloc
.bh
);
4671 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4672 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4673 "IO error syncing inode");
4682 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4683 * buffers that are attached to a page stradding i_size and are undergoing
4684 * commit. In that case we have to wait for commit to finish and try again.
4686 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4690 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4691 tid_t commit_tid
= 0;
4694 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4696 * All buffers in the last page remain valid? Then there's nothing to
4697 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4700 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4703 page
= find_lock_page(inode
->i_mapping
,
4704 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4707 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4708 PAGE_CACHE_SIZE
- offset
);
4710 page_cache_release(page
);
4714 read_lock(&journal
->j_state_lock
);
4715 if (journal
->j_committing_transaction
)
4716 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4717 read_unlock(&journal
->j_state_lock
);
4719 jbd2_log_wait_commit(journal
, commit_tid
);
4726 * Called from notify_change.
4728 * We want to trap VFS attempts to truncate the file as soon as
4729 * possible. In particular, we want to make sure that when the VFS
4730 * shrinks i_size, we put the inode on the orphan list and modify
4731 * i_disksize immediately, so that during the subsequent flushing of
4732 * dirty pages and freeing of disk blocks, we can guarantee that any
4733 * commit will leave the blocks being flushed in an unused state on
4734 * disk. (On recovery, the inode will get truncated and the blocks will
4735 * be freed, so we have a strong guarantee that no future commit will
4736 * leave these blocks visible to the user.)
4738 * Another thing we have to assure is that if we are in ordered mode
4739 * and inode is still attached to the committing transaction, we must
4740 * we start writeout of all the dirty pages which are being truncated.
4741 * This way we are sure that all the data written in the previous
4742 * transaction are already on disk (truncate waits for pages under
4745 * Called with inode->i_mutex down.
4747 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4749 struct inode
*inode
= d_inode(dentry
);
4752 const unsigned int ia_valid
= attr
->ia_valid
;
4754 error
= setattr_prepare(dentry
, attr
);
4758 if (is_quota_modification(inode
, attr
))
4759 dquot_initialize(inode
);
4760 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4761 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4764 /* (user+group)*(old+new) structure, inode write (sb,
4765 * inode block, ? - but truncate inode update has it) */
4766 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4767 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4768 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4769 if (IS_ERR(handle
)) {
4770 error
= PTR_ERR(handle
);
4773 error
= dquot_transfer(inode
, attr
);
4775 ext4_journal_stop(handle
);
4778 /* Update corresponding info in inode so that everything is in
4779 * one transaction */
4780 if (attr
->ia_valid
& ATTR_UID
)
4781 inode
->i_uid
= attr
->ia_uid
;
4782 if (attr
->ia_valid
& ATTR_GID
)
4783 inode
->i_gid
= attr
->ia_gid
;
4784 error
= ext4_mark_inode_dirty(handle
, inode
);
4785 ext4_journal_stop(handle
);
4788 if (attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
!= inode
->i_size
) {
4791 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4792 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4794 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4798 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4799 inode_inc_iversion(inode
);
4801 if (S_ISREG(inode
->i_mode
) &&
4802 (attr
->ia_size
< inode
->i_size
)) {
4803 if (ext4_should_order_data(inode
)) {
4804 error
= ext4_begin_ordered_truncate(inode
,
4809 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4810 if (IS_ERR(handle
)) {
4811 error
= PTR_ERR(handle
);
4814 if (ext4_handle_valid(handle
)) {
4815 error
= ext4_orphan_add(handle
, inode
);
4818 down_write(&EXT4_I(inode
)->i_data_sem
);
4819 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4820 rc
= ext4_mark_inode_dirty(handle
, inode
);
4824 * We have to update i_size under i_data_sem together
4825 * with i_disksize to avoid races with writeback code
4826 * running ext4_wb_update_i_disksize().
4829 i_size_write(inode
, attr
->ia_size
);
4830 up_write(&EXT4_I(inode
)->i_data_sem
);
4831 ext4_journal_stop(handle
);
4833 ext4_orphan_del(NULL
, inode
);
4837 loff_t oldsize
= inode
->i_size
;
4839 i_size_write(inode
, attr
->ia_size
);
4840 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
4844 * Blocks are going to be removed from the inode. Wait
4845 * for dio in flight. Temporarily disable
4846 * dioread_nolock to prevent livelock.
4849 if (!ext4_should_journal_data(inode
)) {
4850 ext4_inode_block_unlocked_dio(inode
);
4851 inode_dio_wait(inode
);
4852 ext4_inode_resume_unlocked_dio(inode
);
4854 ext4_wait_for_tail_page_commit(inode
);
4856 down_write(&EXT4_I(inode
)->i_mmap_sem
);
4858 * Truncate pagecache after we've waited for commit
4859 * in data=journal mode to make pages freeable.
4861 truncate_pagecache(inode
, inode
->i_size
);
4862 up_write(&EXT4_I(inode
)->i_mmap_sem
);
4865 * We want to call ext4_truncate() even if attr->ia_size ==
4866 * inode->i_size for cases like truncation of fallocated space
4868 if (attr
->ia_valid
& ATTR_SIZE
)
4869 ext4_truncate(inode
);
4872 setattr_copy(inode
, attr
);
4873 mark_inode_dirty(inode
);
4877 * If the call to ext4_truncate failed to get a transaction handle at
4878 * all, we need to clean up the in-core orphan list manually.
4880 if (orphan
&& inode
->i_nlink
)
4881 ext4_orphan_del(NULL
, inode
);
4883 if (!rc
&& (ia_valid
& ATTR_MODE
))
4884 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
4887 ext4_std_error(inode
->i_sb
, error
);
4893 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4896 struct inode
*inode
;
4897 unsigned long long delalloc_blocks
;
4899 inode
= d_inode(dentry
);
4900 generic_fillattr(inode
, stat
);
4903 * If there is inline data in the inode, the inode will normally not
4904 * have data blocks allocated (it may have an external xattr block).
4905 * Report at least one sector for such files, so tools like tar, rsync,
4906 * others doen't incorrectly think the file is completely sparse.
4908 if (unlikely(ext4_has_inline_data(inode
)))
4909 stat
->blocks
+= (stat
->size
+ 511) >> 9;
4912 * We can't update i_blocks if the block allocation is delayed
4913 * otherwise in the case of system crash before the real block
4914 * allocation is done, we will have i_blocks inconsistent with
4915 * on-disk file blocks.
4916 * We always keep i_blocks updated together with real
4917 * allocation. But to not confuse with user, stat
4918 * will return the blocks that include the delayed allocation
4919 * blocks for this file.
4921 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4922 EXT4_I(inode
)->i_reserved_data_blocks
);
4923 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
4927 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
4930 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4931 return ext4_ind_trans_blocks(inode
, lblocks
);
4932 return ext4_ext_index_trans_blocks(inode
, pextents
);
4936 * Account for index blocks, block groups bitmaps and block group
4937 * descriptor blocks if modify datablocks and index blocks
4938 * worse case, the indexs blocks spread over different block groups
4940 * If datablocks are discontiguous, they are possible to spread over
4941 * different block groups too. If they are contiguous, with flexbg,
4942 * they could still across block group boundary.
4944 * Also account for superblock, inode, quota and xattr blocks
4946 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
4949 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4955 * How many index blocks need to touch to map @lblocks logical blocks
4956 * to @pextents physical extents?
4958 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
4963 * Now let's see how many group bitmaps and group descriptors need
4966 groups
= idxblocks
+ pextents
;
4968 if (groups
> ngroups
)
4970 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4971 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4973 /* bitmaps and block group descriptor blocks */
4974 ret
+= groups
+ gdpblocks
;
4976 /* Blocks for super block, inode, quota and xattr blocks */
4977 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4983 * Calculate the total number of credits to reserve to fit
4984 * the modification of a single pages into a single transaction,
4985 * which may include multiple chunks of block allocations.
4987 * This could be called via ext4_write_begin()
4989 * We need to consider the worse case, when
4990 * one new block per extent.
4992 int ext4_writepage_trans_blocks(struct inode
*inode
)
4994 int bpp
= ext4_journal_blocks_per_page(inode
);
4997 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
4999 /* Account for data blocks for journalled mode */
5000 if (ext4_should_journal_data(inode
))
5006 * Calculate the journal credits for a chunk of data modification.
5008 * This is called from DIO, fallocate or whoever calling
5009 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5011 * journal buffers for data blocks are not included here, as DIO
5012 * and fallocate do no need to journal data buffers.
5014 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5016 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5020 * The caller must have previously called ext4_reserve_inode_write().
5021 * Give this, we know that the caller already has write access to iloc->bh.
5023 int ext4_mark_iloc_dirty(handle_t
*handle
,
5024 struct inode
*inode
, struct ext4_iloc
*iloc
)
5028 if (IS_I_VERSION(inode
))
5029 inode_inc_iversion(inode
);
5031 /* the do_update_inode consumes one bh->b_count */
5034 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5035 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5041 * On success, We end up with an outstanding reference count against
5042 * iloc->bh. This _must_ be cleaned up later.
5046 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5047 struct ext4_iloc
*iloc
)
5051 err
= ext4_get_inode_loc(inode
, iloc
);
5053 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5054 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5060 ext4_std_error(inode
->i_sb
, err
);
5065 * Expand an inode by new_extra_isize bytes.
5066 * Returns 0 on success or negative error number on failure.
5068 static int ext4_expand_extra_isize(struct inode
*inode
,
5069 unsigned int new_extra_isize
,
5070 struct ext4_iloc iloc
,
5073 struct ext4_inode
*raw_inode
;
5074 struct ext4_xattr_ibody_header
*header
;
5076 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5079 raw_inode
= ext4_raw_inode(&iloc
);
5081 header
= IHDR(inode
, raw_inode
);
5083 /* No extended attributes present */
5084 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5085 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5086 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5088 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5092 /* try to expand with EAs present */
5093 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5098 * What we do here is to mark the in-core inode as clean with respect to inode
5099 * dirtiness (it may still be data-dirty).
5100 * This means that the in-core inode may be reaped by prune_icache
5101 * without having to perform any I/O. This is a very good thing,
5102 * because *any* task may call prune_icache - even ones which
5103 * have a transaction open against a different journal.
5105 * Is this cheating? Not really. Sure, we haven't written the
5106 * inode out, but prune_icache isn't a user-visible syncing function.
5107 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5108 * we start and wait on commits.
5110 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5112 struct ext4_iloc iloc
;
5113 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5114 static unsigned int mnt_count
;
5118 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5119 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5122 if (ext4_handle_valid(handle
) &&
5123 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5124 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5126 * We need extra buffer credits since we may write into EA block
5127 * with this same handle. If journal_extend fails, then it will
5128 * only result in a minor loss of functionality for that inode.
5129 * If this is felt to be critical, then e2fsck should be run to
5130 * force a large enough s_min_extra_isize.
5132 if ((jbd2_journal_extend(handle
,
5133 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5134 ret
= ext4_expand_extra_isize(inode
,
5135 sbi
->s_want_extra_isize
,
5138 ext4_set_inode_state(inode
,
5139 EXT4_STATE_NO_EXPAND
);
5141 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5142 ext4_warning(inode
->i_sb
,
5143 "Unable to expand inode %lu. Delete"
5144 " some EAs or run e2fsck.",
5147 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5152 return ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5156 * ext4_dirty_inode() is called from __mark_inode_dirty()
5158 * We're really interested in the case where a file is being extended.
5159 * i_size has been changed by generic_commit_write() and we thus need
5160 * to include the updated inode in the current transaction.
5162 * Also, dquot_alloc_block() will always dirty the inode when blocks
5163 * are allocated to the file.
5165 * If the inode is marked synchronous, we don't honour that here - doing
5166 * so would cause a commit on atime updates, which we don't bother doing.
5167 * We handle synchronous inodes at the highest possible level.
5169 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5170 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5171 * to copy into the on-disk inode structure are the timestamp files.
5173 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5177 if (flags
== I_DIRTY_TIME
)
5179 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5183 ext4_mark_inode_dirty(handle
, inode
);
5185 ext4_journal_stop(handle
);
5192 * Bind an inode's backing buffer_head into this transaction, to prevent
5193 * it from being flushed to disk early. Unlike
5194 * ext4_reserve_inode_write, this leaves behind no bh reference and
5195 * returns no iloc structure, so the caller needs to repeat the iloc
5196 * lookup to mark the inode dirty later.
5198 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5200 struct ext4_iloc iloc
;
5204 err
= ext4_get_inode_loc(inode
, &iloc
);
5206 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5207 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5209 err
= ext4_handle_dirty_metadata(handle
,
5215 ext4_std_error(inode
->i_sb
, err
);
5220 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5227 * We have to be very careful here: changing a data block's
5228 * journaling status dynamically is dangerous. If we write a
5229 * data block to the journal, change the status and then delete
5230 * that block, we risk forgetting to revoke the old log record
5231 * from the journal and so a subsequent replay can corrupt data.
5232 * So, first we make sure that the journal is empty and that
5233 * nobody is changing anything.
5236 journal
= EXT4_JOURNAL(inode
);
5239 if (is_journal_aborted(journal
))
5241 /* We have to allocate physical blocks for delalloc blocks
5242 * before flushing journal. otherwise delalloc blocks can not
5243 * be allocated any more. even more truncate on delalloc blocks
5244 * could trigger BUG by flushing delalloc blocks in journal.
5245 * There is no delalloc block in non-journal data mode.
5247 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5248 err
= ext4_alloc_da_blocks(inode
);
5253 /* Wait for all existing dio workers */
5254 ext4_inode_block_unlocked_dio(inode
);
5255 inode_dio_wait(inode
);
5257 jbd2_journal_lock_updates(journal
);
5260 * OK, there are no updates running now, and all cached data is
5261 * synced to disk. We are now in a completely consistent state
5262 * which doesn't have anything in the journal, and we know that
5263 * no filesystem updates are running, so it is safe to modify
5264 * the inode's in-core data-journaling state flag now.
5268 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5270 err
= jbd2_journal_flush(journal
);
5272 jbd2_journal_unlock_updates(journal
);
5273 ext4_inode_resume_unlocked_dio(inode
);
5276 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5278 ext4_set_aops(inode
);
5280 jbd2_journal_unlock_updates(journal
);
5281 ext4_inode_resume_unlocked_dio(inode
);
5283 /* Finally we can mark the inode as dirty. */
5285 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5287 return PTR_ERR(handle
);
5289 err
= ext4_mark_inode_dirty(handle
, inode
);
5290 ext4_handle_sync(handle
);
5291 ext4_journal_stop(handle
);
5292 ext4_std_error(inode
->i_sb
, err
);
5297 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5299 return !buffer_mapped(bh
);
5302 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5304 struct page
*page
= vmf
->page
;
5308 struct file
*file
= vma
->vm_file
;
5309 struct inode
*inode
= file_inode(file
);
5310 struct address_space
*mapping
= inode
->i_mapping
;
5312 get_block_t
*get_block
;
5315 sb_start_pagefault(inode
->i_sb
);
5316 file_update_time(vma
->vm_file
);
5318 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5319 /* Delalloc case is easy... */
5320 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5321 !ext4_should_journal_data(inode
) &&
5322 !ext4_nonda_switch(inode
->i_sb
)) {
5324 ret
= __block_page_mkwrite(vma
, vmf
,
5325 ext4_da_get_block_prep
);
5326 } while (ret
== -ENOSPC
&&
5327 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5332 size
= i_size_read(inode
);
5333 /* Page got truncated from under us? */
5334 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5336 ret
= VM_FAULT_NOPAGE
;
5340 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5341 len
= size
& ~PAGE_CACHE_MASK
;
5343 len
= PAGE_CACHE_SIZE
;
5345 * Return if we have all the buffers mapped. This avoids the need to do
5346 * journal_start/journal_stop which can block and take a long time
5348 if (page_has_buffers(page
)) {
5349 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5351 ext4_bh_unmapped
)) {
5352 /* Wait so that we don't change page under IO */
5353 wait_for_stable_page(page
);
5354 ret
= VM_FAULT_LOCKED
;
5359 /* OK, we need to fill the hole... */
5360 if (ext4_should_dioread_nolock(inode
))
5361 get_block
= ext4_get_block_write
;
5363 get_block
= ext4_get_block
;
5365 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5366 ext4_writepage_trans_blocks(inode
));
5367 if (IS_ERR(handle
)) {
5368 ret
= VM_FAULT_SIGBUS
;
5371 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5372 if (!ret
&& ext4_should_journal_data(inode
)) {
5373 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5374 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5376 ret
= VM_FAULT_SIGBUS
;
5377 ext4_journal_stop(handle
);
5380 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5382 ext4_journal_stop(handle
);
5383 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5386 ret
= block_page_mkwrite_return(ret
);
5388 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5389 sb_end_pagefault(inode
->i_sb
);
5393 int ext4_filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5395 struct inode
*inode
= file_inode(vma
->vm_file
);
5398 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5399 err
= filemap_fault(vma
, vmf
);
5400 up_read(&EXT4_I(inode
)->i_mmap_sem
);