2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly
;
34 module_param_named(mballoc_debug
, ext4_mballoc_debug
, ushort
, 0644);
35 MODULE_PARM_DESC(mballoc_debug
, "Debugging level for ext4's mballoc");
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
48 * - reservation for superuser
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
147 * The regular allocator (using the buddy cache) supports a few tunables.
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
176 * mballoc operates on the following data:
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
181 * there are two types of preallocations:
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
234 * so, now we're building a concurrency table:
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
250 * i_data_sem serializes them
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
259 * i_data_sem or another mutex should serializes them
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
281 * Logic in few words:
286 * mark bits in on-disk bitmap
289 * - use preallocation:
290 * find proper PA (per-inode or group)
292 * mark bits in on-disk bitmap
298 * mark bits in on-disk bitmap
301 * - discard preallocations in group:
303 * move them onto local list
304 * load on-disk bitmap
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
309 * - discard inode's preallocations:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
328 * - release consumed pa:
333 * - generate in-core bitmap:
337 * - discard all for given object (inode, locality group):
342 * - discard all for given group:
349 static struct kmem_cache
*ext4_pspace_cachep
;
350 static struct kmem_cache
*ext4_ac_cachep
;
351 static struct kmem_cache
*ext4_free_data_cachep
;
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
359 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
367 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
369 static void ext4_free_data_callback(struct super_block
*sb
,
370 struct ext4_journal_cb_entry
*jce
, int rc
);
372 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
374 #if BITS_PER_LONG == 64
375 *bit
+= ((unsigned long) addr
& 7UL) << 3;
376 addr
= (void *) ((unsigned long) addr
& ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit
+= ((unsigned long) addr
& 3UL) << 3;
379 addr
= (void *) ((unsigned long) addr
& ~3UL);
381 #error "how many bits you are?!"
386 static inline int mb_test_bit(int bit
, void *addr
)
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
392 addr
= mb_correct_addr_and_bit(&bit
, addr
);
393 return ext4_test_bit(bit
, addr
);
396 static inline void mb_set_bit(int bit
, void *addr
)
398 addr
= mb_correct_addr_and_bit(&bit
, addr
);
399 ext4_set_bit(bit
, addr
);
402 static inline void mb_clear_bit(int bit
, void *addr
)
404 addr
= mb_correct_addr_and_bit(&bit
, addr
);
405 ext4_clear_bit(bit
, addr
);
408 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
410 addr
= mb_correct_addr_and_bit(&bit
, addr
);
411 return ext4_test_and_clear_bit(bit
, addr
);
414 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
416 int fix
= 0, ret
, tmpmax
;
417 addr
= mb_correct_addr_and_bit(&fix
, addr
);
421 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
427 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
429 int fix
= 0, ret
, tmpmax
;
430 addr
= mb_correct_addr_and_bit(&fix
, addr
);
434 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
440 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
444 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
447 if (order
> e4b
->bd_blkbits
+ 1) {
452 /* at order 0 we see each particular block */
454 *max
= 1 << (e4b
->bd_blkbits
+ 3);
455 return e4b
->bd_bitmap
;
458 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
459 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
465 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
466 int first
, int count
)
469 struct super_block
*sb
= e4b
->bd_sb
;
471 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
473 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
474 for (i
= 0; i
< count
; i
++) {
475 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
476 ext4_fsblk_t blocknr
;
478 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
479 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
480 ext4_grp_locked_error(sb
, e4b
->bd_group
,
481 inode
? inode
->i_ino
: 0,
483 "freeing block already freed "
487 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
491 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
495 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
497 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
498 for (i
= 0; i
< count
; i
++) {
499 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
500 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
504 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
506 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
507 unsigned char *b1
, *b2
;
509 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
510 b2
= (unsigned char *) bitmap
;
511 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
512 if (b1
[i
] != b2
[i
]) {
513 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
517 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
525 static inline void mb_free_blocks_double(struct inode
*inode
,
526 struct ext4_buddy
*e4b
, int first
, int count
)
530 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
531 int first
, int count
)
535 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
541 #ifdef AGGRESSIVE_CHECK
543 #define MB_CHECK_ASSERT(assert) \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
553 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
554 const char *function
, int line
)
556 struct super_block
*sb
= e4b
->bd_sb
;
557 int order
= e4b
->bd_blkbits
+ 1;
564 struct ext4_group_info
*grp
;
567 struct list_head
*cur
;
572 static int mb_check_counter
;
573 if (mb_check_counter
++ % 100 != 0)
578 buddy
= mb_find_buddy(e4b
, order
, &max
);
579 MB_CHECK_ASSERT(buddy
);
580 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
581 MB_CHECK_ASSERT(buddy2
);
582 MB_CHECK_ASSERT(buddy
!= buddy2
);
583 MB_CHECK_ASSERT(max
* 2 == max2
);
586 for (i
= 0; i
< max
; i
++) {
588 if (mb_test_bit(i
, buddy
)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i
<< 1, buddy2
)) {
592 mb_test_bit((i
<<1)+1, buddy2
));
593 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
595 mb_test_bit(i
<< 1, buddy2
));
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
602 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
604 for (j
= 0; j
< (1 << order
); j
++) {
605 k
= (i
* (1 << order
)) + j
;
607 !mb_test_bit(k
, e4b
->bd_bitmap
));
611 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
616 buddy
= mb_find_buddy(e4b
, 0, &max
);
617 for (i
= 0; i
< max
; i
++) {
618 if (!mb_test_bit(i
, buddy
)) {
619 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
627 /* check used bits only */
628 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
629 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
631 MB_CHECK_ASSERT(k
< max2
);
632 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
636 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
638 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
639 list_for_each(cur
, &grp
->bb_prealloc_list
) {
640 ext4_group_t groupnr
;
641 struct ext4_prealloc_space
*pa
;
642 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
643 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
644 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
645 for (i
= 0; i
< pa
->pa_len
; i
++)
646 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
654 #define mb_check_buddy(e4b)
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
663 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
664 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
665 struct ext4_group_info
*grp
)
667 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
673 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
675 border
= 2 << sb
->s_blocksize_bits
;
678 /* find how many blocks can be covered since this position */
679 max
= ffs(first
| border
) - 1;
681 /* find how many blocks of power 2 we need to mark */
688 /* mark multiblock chunks only */
689 grp
->bb_counters
[min
]++;
691 mb_clear_bit(first
>> min
,
692 buddy
+ sbi
->s_mb_offsets
[min
]);
700 * Cache the order of the largest free extent we have available in this block
704 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
709 grp
->bb_largest_free_order
= -1; /* uninit */
711 bits
= sb
->s_blocksize_bits
+ 1;
712 for (i
= bits
; i
>= 0; i
--) {
713 if (grp
->bb_counters
[i
] > 0) {
714 grp
->bb_largest_free_order
= i
;
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block
*sb
,
722 void *buddy
, void *bitmap
, ext4_group_t group
)
724 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
725 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
726 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
731 unsigned fragments
= 0;
732 unsigned long long period
= get_cycles();
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
737 grp
->bb_first_free
= i
;
741 i
= mb_find_next_bit(bitmap
, max
, i
);
745 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
747 grp
->bb_counters
[0]++;
749 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
751 grp
->bb_fragments
= fragments
;
753 if (free
!= grp
->bb_free
) {
754 ext4_grp_locked_error(sb
, group
, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp
))
764 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
768 mb_set_largest_free_order(sb
, grp
);
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
772 period
= get_cycles() - period
;
773 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
774 EXT4_SB(sb
)->s_mb_buddies_generated
++;
775 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
776 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
779 static void mb_regenerate_buddy(struct ext4_buddy
*e4b
)
785 while ((buddy
= mb_find_buddy(e4b
, order
++, &count
))) {
786 ext4_set_bits(buddy
, 0, count
);
788 e4b
->bd_info
->bb_fragments
= 0;
789 memset(e4b
->bd_info
->bb_counters
, 0,
790 sizeof(*e4b
->bd_info
->bb_counters
) *
791 (e4b
->bd_sb
->s_blocksize_bits
+ 2));
793 ext4_mb_generate_buddy(e4b
->bd_sb
, e4b
->bd_buddy
,
794 e4b
->bd_bitmap
, e4b
->bd_group
);
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
817 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
819 ext4_group_t ngroups
;
825 ext4_group_t first_group
, group
;
827 struct super_block
*sb
;
828 struct buffer_head
*bhs
;
829 struct buffer_head
**bh
= NULL
;
833 struct ext4_group_info
*grinfo
;
835 mb_debug(1, "init page %lu\n", page
->index
);
837 inode
= page
->mapping
->host
;
839 ngroups
= ext4_get_groups_count(sb
);
840 blocksize
= 1 << inode
->i_blkbits
;
841 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
843 groups_per_page
= blocks_per_page
>> 1;
844 if (groups_per_page
== 0)
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page
> 1) {
849 i
= sizeof(struct buffer_head
*) * groups_per_page
;
850 bh
= kzalloc(i
, GFP_NOFS
);
858 first_group
= page
->index
* blocks_per_page
/ 2;
860 /* read all groups the page covers into the cache */
861 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
862 if (group
>= ngroups
)
865 grinfo
= ext4_get_group_info(sb
, group
);
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
872 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
876 if (!(bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
))) {
880 mb_debug(1, "read bitmap for group %u\n", group
);
883 /* wait for I/O completion */
884 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
885 if (bh
[i
] && ext4_wait_block_bitmap(sb
, group
, bh
[i
])) {
891 first_block
= page
->index
* blocks_per_page
;
892 for (i
= 0; i
< blocks_per_page
; i
++) {
893 group
= (first_block
+ i
) >> 1;
894 if (group
>= ngroups
)
897 if (!bh
[group
- first_group
])
898 /* skip initialized uptodate buddy */
902 * data carry information regarding this
903 * particular group in the format specified
907 data
= page_address(page
) + (i
* blocksize
);
908 bitmap
= bh
[group
- first_group
]->b_data
;
911 * We place the buddy block and bitmap block
914 if ((first_block
+ i
) & 1) {
915 /* this is block of buddy */
916 BUG_ON(incore
== NULL
);
917 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 group
, page
->index
, i
* blocksize
);
919 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
920 grinfo
= ext4_get_group_info(sb
, group
);
921 grinfo
->bb_fragments
= 0;
922 memset(grinfo
->bb_counters
, 0,
923 sizeof(*grinfo
->bb_counters
) *
924 (sb
->s_blocksize_bits
+2));
926 * incore got set to the group block bitmap below
928 ext4_lock_group(sb
, group
);
930 memset(data
, 0xff, blocksize
);
931 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
932 ext4_unlock_group(sb
, group
);
935 /* this is block of bitmap */
936 BUG_ON(incore
!= NULL
);
937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 group
, page
->index
, i
* blocksize
);
939 trace_ext4_mb_bitmap_load(sb
, group
);
941 /* see comments in ext4_mb_put_pa() */
942 ext4_lock_group(sb
, group
);
943 memcpy(data
, bitmap
, blocksize
);
945 /* mark all preallocated blks used in in-core bitmap */
946 ext4_mb_generate_from_pa(sb
, data
, group
);
947 ext4_mb_generate_from_freelist(sb
, data
, group
);
948 ext4_unlock_group(sb
, group
);
950 /* set incore so that the buddy information can be
951 * generated using this
956 SetPageUptodate(page
);
960 for (i
= 0; i
< groups_per_page
; i
++)
969 * Lock the buddy and bitmap pages. This make sure other parallel init_group
970 * on the same buddy page doesn't happen whild holding the buddy page lock.
971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
974 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
975 ext4_group_t group
, struct ext4_buddy
*e4b
)
977 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
978 int block
, pnum
, poff
;
982 e4b
->bd_buddy_page
= NULL
;
983 e4b
->bd_bitmap_page
= NULL
;
985 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
987 * the buddy cache inode stores the block bitmap
988 * and buddy information in consecutive blocks.
989 * So for each group we need two blocks.
992 pnum
= block
/ blocks_per_page
;
993 poff
= block
% blocks_per_page
;
994 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
997 BUG_ON(page
->mapping
!= inode
->i_mapping
);
998 e4b
->bd_bitmap_page
= page
;
999 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1001 if (blocks_per_page
>= 2) {
1002 /* buddy and bitmap are on the same page */
1007 pnum
= block
/ blocks_per_page
;
1008 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1011 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1012 e4b
->bd_buddy_page
= page
;
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1018 if (e4b
->bd_bitmap_page
) {
1019 unlock_page(e4b
->bd_bitmap_page
);
1020 page_cache_release(e4b
->bd_bitmap_page
);
1022 if (e4b
->bd_buddy_page
) {
1023 unlock_page(e4b
->bd_buddy_page
);
1024 page_cache_release(e4b
->bd_buddy_page
);
1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1030 * block group lock of all groups for this page; do not hold the BG lock when
1031 * calling this routine!
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1037 struct ext4_group_info
*this_grp
;
1038 struct ext4_buddy e4b
;
1043 mb_debug(1, "init group %u\n", group
);
1044 this_grp
= ext4_get_group_info(sb
, group
);
1046 * This ensures that we don't reinit the buddy cache
1047 * page which map to the group from which we are already
1048 * allocating. If we are looking at the buddy cache we would
1049 * have taken a reference using ext4_mb_load_buddy and that
1050 * would have pinned buddy page to page cache.
1051 * The call to ext4_mb_get_buddy_page_lock will mark the
1054 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1055 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1057 * somebody initialized the group
1058 * return without doing anything
1063 page
= e4b
.bd_bitmap_page
;
1064 ret
= ext4_mb_init_cache(page
, NULL
);
1067 if (!PageUptodate(page
)) {
1072 if (e4b
.bd_buddy_page
== NULL
) {
1074 * If both the bitmap and buddy are in
1075 * the same page we don't need to force
1081 /* init buddy cache */
1082 page
= e4b
.bd_buddy_page
;
1083 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1086 if (!PageUptodate(page
)) {
1091 ext4_mb_put_buddy_page_lock(&e4b
);
1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1097 * block group lock of all groups for this page; do not hold the BG lock when
1098 * calling this routine!
1100 static noinline_for_stack
int
1101 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1102 struct ext4_buddy
*e4b
)
1104 int blocks_per_page
;
1110 struct ext4_group_info
*grp
;
1111 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1112 struct inode
*inode
= sbi
->s_buddy_cache
;
1115 mb_debug(1, "load group %u\n", group
);
1117 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1118 grp
= ext4_get_group_info(sb
, group
);
1120 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1123 e4b
->bd_group
= group
;
1124 e4b
->bd_buddy_page
= NULL
;
1125 e4b
->bd_bitmap_page
= NULL
;
1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1129 * we need full data about the group
1130 * to make a good selection
1132 ret
= ext4_mb_init_group(sb
, group
);
1138 * the buddy cache inode stores the block bitmap
1139 * and buddy information in consecutive blocks.
1140 * So for each group we need two blocks.
1143 pnum
= block
/ blocks_per_page
;
1144 poff
= block
% blocks_per_page
;
1146 /* we could use find_or_create_page(), but it locks page
1147 * what we'd like to avoid in fast path ... */
1148 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1149 if (page
== NULL
|| !PageUptodate(page
)) {
1152 * drop the page reference and try
1153 * to get the page with lock. If we
1154 * are not uptodate that implies
1155 * somebody just created the page but
1156 * is yet to initialize the same. So
1157 * wait for it to initialize.
1159 page_cache_release(page
);
1160 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1162 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1163 if (!PageUptodate(page
)) {
1164 ret
= ext4_mb_init_cache(page
, NULL
);
1169 mb_cmp_bitmaps(e4b
, page_address(page
) +
1170 (poff
* sb
->s_blocksize
));
1179 if (!PageUptodate(page
)) {
1184 /* Pages marked accessed already */
1185 e4b
->bd_bitmap_page
= page
;
1186 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1189 pnum
= block
/ blocks_per_page
;
1190 poff
= block
% blocks_per_page
;
1192 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1193 if (page
== NULL
|| !PageUptodate(page
)) {
1195 page_cache_release(page
);
1196 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1198 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1199 if (!PageUptodate(page
)) {
1200 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1213 if (!PageUptodate(page
)) {
1218 /* Pages marked accessed already */
1219 e4b
->bd_buddy_page
= page
;
1220 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1222 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1223 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1229 page_cache_release(page
);
1230 if (e4b
->bd_bitmap_page
)
1231 page_cache_release(e4b
->bd_bitmap_page
);
1232 if (e4b
->bd_buddy_page
)
1233 page_cache_release(e4b
->bd_buddy_page
);
1234 e4b
->bd_buddy
= NULL
;
1235 e4b
->bd_bitmap
= NULL
;
1239 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1241 if (e4b
->bd_bitmap_page
)
1242 page_cache_release(e4b
->bd_bitmap_page
);
1243 if (e4b
->bd_buddy_page
)
1244 page_cache_release(e4b
->bd_buddy_page
);
1248 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1251 int bb_incr
= 1 << (e4b
->bd_blkbits
- 1);
1254 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1255 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1258 while (order
<= e4b
->bd_blkbits
+ 1) {
1260 if (!mb_test_bit(block
, bb
)) {
1261 /* this block is part of buddy of order 'order' */
1271 static void mb_clear_bits(void *bm
, int cur
, int len
)
1277 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1278 /* fast path: clear whole word at once */
1279 addr
= bm
+ (cur
>> 3);
1284 mb_clear_bit(cur
, bm
);
1289 /* clear bits in given range
1290 * will return first found zero bit if any, -1 otherwise
1292 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1299 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1300 /* fast path: clear whole word at once */
1301 addr
= bm
+ (cur
>> 3);
1302 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1303 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1308 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1316 void ext4_set_bits(void *bm
, int cur
, int len
)
1322 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1323 /* fast path: set whole word at once */
1324 addr
= bm
+ (cur
>> 3);
1329 mb_set_bit(cur
, bm
);
1335 * _________________________________________________________________ */
1337 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1339 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1340 mb_clear_bit(*bit
, bitmap
);
1346 mb_set_bit(*bit
, bitmap
);
1351 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1355 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1360 /* Bits in range [first; last] are known to be set since
1361 * corresponding blocks were allocated. Bits in range
1362 * (first; last) will stay set because they form buddies on
1363 * upper layer. We just deal with borders if they don't
1364 * align with upper layer and then go up.
1365 * Releasing entire group is all about clearing
1366 * single bit of highest order buddy.
1370 * ---------------------------------
1372 * ---------------------------------
1373 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1374 * ---------------------------------
1376 * \_____________________/
1378 * Neither [1] nor [6] is aligned to above layer.
1379 * Left neighbour [0] is free, so mark it busy,
1380 * decrease bb_counters and extend range to
1382 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1383 * mark [6] free, increase bb_counters and shrink range to
1385 * Then shift range to [0; 2], go up and do the same.
1390 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1392 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1397 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1398 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1399 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1408 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1409 int first
, int count
)
1411 int left_is_free
= 0;
1412 int right_is_free
= 0;
1414 int last
= first
+ count
- 1;
1415 struct super_block
*sb
= e4b
->bd_sb
;
1417 if (WARN_ON(count
== 0))
1419 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1420 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1421 /* Don't bother if the block group is corrupt. */
1422 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
)))
1425 mb_check_buddy(e4b
);
1426 mb_free_blocks_double(inode
, e4b
, first
, count
);
1428 e4b
->bd_info
->bb_free
+= count
;
1429 if (first
< e4b
->bd_info
->bb_first_free
)
1430 e4b
->bd_info
->bb_first_free
= first
;
1432 /* access memory sequentially: check left neighbour,
1433 * clear range and then check right neighbour
1436 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1437 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1438 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1439 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1441 if (unlikely(block
!= -1)) {
1442 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1443 ext4_fsblk_t blocknr
;
1445 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1446 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1447 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1448 inode
? inode
->i_ino
: 0,
1450 "freeing already freed block "
1451 "(bit %u); block bitmap corrupt.",
1453 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))
1454 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
1455 e4b
->bd_info
->bb_free
);
1456 /* Mark the block group as corrupt. */
1457 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
,
1458 &e4b
->bd_info
->bb_state
);
1459 mb_regenerate_buddy(e4b
);
1463 /* let's maintain fragments counter */
1464 if (left_is_free
&& right_is_free
)
1465 e4b
->bd_info
->bb_fragments
--;
1466 else if (!left_is_free
&& !right_is_free
)
1467 e4b
->bd_info
->bb_fragments
++;
1469 /* buddy[0] == bd_bitmap is a special case, so handle
1470 * it right away and let mb_buddy_mark_free stay free of
1471 * zero order checks.
1472 * Check if neighbours are to be coaleasced,
1473 * adjust bitmap bb_counters and borders appropriately.
1476 first
+= !left_is_free
;
1477 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1480 last
-= !right_is_free
;
1481 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1485 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1488 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1489 mb_check_buddy(e4b
);
1492 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1493 int needed
, struct ext4_free_extent
*ex
)
1499 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1502 buddy
= mb_find_buddy(e4b
, 0, &max
);
1503 BUG_ON(buddy
== NULL
);
1504 BUG_ON(block
>= max
);
1505 if (mb_test_bit(block
, buddy
)) {
1512 /* find actual order */
1513 order
= mb_find_order_for_block(e4b
, block
);
1514 block
= block
>> order
;
1516 ex
->fe_len
= 1 << order
;
1517 ex
->fe_start
= block
<< order
;
1518 ex
->fe_group
= e4b
->bd_group
;
1520 /* calc difference from given start */
1521 next
= next
- ex
->fe_start
;
1523 ex
->fe_start
+= next
;
1525 while (needed
> ex
->fe_len
&&
1526 mb_find_buddy(e4b
, order
, &max
)) {
1528 if (block
+ 1 >= max
)
1531 next
= (block
+ 1) * (1 << order
);
1532 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1535 order
= mb_find_order_for_block(e4b
, next
);
1537 block
= next
>> order
;
1538 ex
->fe_len
+= 1 << order
;
1541 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1545 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1551 int start
= ex
->fe_start
;
1552 int len
= ex
->fe_len
;
1557 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1558 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1559 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1560 mb_check_buddy(e4b
);
1561 mb_mark_used_double(e4b
, start
, len
);
1563 e4b
->bd_info
->bb_free
-= len
;
1564 if (e4b
->bd_info
->bb_first_free
== start
)
1565 e4b
->bd_info
->bb_first_free
+= len
;
1567 /* let's maintain fragments counter */
1569 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1570 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1571 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1573 e4b
->bd_info
->bb_fragments
++;
1574 else if (!mlen
&& !max
)
1575 e4b
->bd_info
->bb_fragments
--;
1577 /* let's maintain buddy itself */
1579 ord
= mb_find_order_for_block(e4b
, start
);
1581 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1582 /* the whole chunk may be allocated at once! */
1584 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1585 BUG_ON((start
>> ord
) >= max
);
1586 mb_set_bit(start
>> ord
, buddy
);
1587 e4b
->bd_info
->bb_counters
[ord
]--;
1594 /* store for history */
1596 ret
= len
| (ord
<< 16);
1598 /* we have to split large buddy */
1600 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1601 mb_set_bit(start
>> ord
, buddy
);
1602 e4b
->bd_info
->bb_counters
[ord
]--;
1605 cur
= (start
>> ord
) & ~1U;
1606 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1607 mb_clear_bit(cur
, buddy
);
1608 mb_clear_bit(cur
+ 1, buddy
);
1609 e4b
->bd_info
->bb_counters
[ord
]++;
1610 e4b
->bd_info
->bb_counters
[ord
]++;
1612 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1614 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1615 mb_check_buddy(e4b
);
1621 * Must be called under group lock!
1623 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1624 struct ext4_buddy
*e4b
)
1626 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1629 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1630 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1632 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1633 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1634 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1636 /* preallocation can change ac_b_ex, thus we store actually
1637 * allocated blocks for history */
1638 ac
->ac_f_ex
= ac
->ac_b_ex
;
1640 ac
->ac_status
= AC_STATUS_FOUND
;
1641 ac
->ac_tail
= ret
& 0xffff;
1642 ac
->ac_buddy
= ret
>> 16;
1645 * take the page reference. We want the page to be pinned
1646 * so that we don't get a ext4_mb_init_cache_call for this
1647 * group until we update the bitmap. That would mean we
1648 * double allocate blocks. The reference is dropped
1649 * in ext4_mb_release_context
1651 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1652 get_page(ac
->ac_bitmap_page
);
1653 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1654 get_page(ac
->ac_buddy_page
);
1655 /* store last allocated for subsequent stream allocation */
1656 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1657 spin_lock(&sbi
->s_md_lock
);
1658 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1659 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1660 spin_unlock(&sbi
->s_md_lock
);
1665 * regular allocator, for general purposes allocation
1668 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1669 struct ext4_buddy
*e4b
,
1672 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1673 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1674 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1675 struct ext4_free_extent ex
;
1678 if (ac
->ac_status
== AC_STATUS_FOUND
)
1681 * We don't want to scan for a whole year
1683 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1684 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1685 ac
->ac_status
= AC_STATUS_BREAK
;
1690 * Haven't found good chunk so far, let's continue
1692 if (bex
->fe_len
< gex
->fe_len
)
1695 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1696 && bex
->fe_group
== e4b
->bd_group
) {
1697 /* recheck chunk's availability - we don't know
1698 * when it was found (within this lock-unlock
1700 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1701 if (max
>= gex
->fe_len
) {
1702 ext4_mb_use_best_found(ac
, e4b
);
1709 * The routine checks whether found extent is good enough. If it is,
1710 * then the extent gets marked used and flag is set to the context
1711 * to stop scanning. Otherwise, the extent is compared with the
1712 * previous found extent and if new one is better, then it's stored
1713 * in the context. Later, the best found extent will be used, if
1714 * mballoc can't find good enough extent.
1716 * FIXME: real allocation policy is to be designed yet!
1718 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1719 struct ext4_free_extent
*ex
,
1720 struct ext4_buddy
*e4b
)
1722 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1723 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1725 BUG_ON(ex
->fe_len
<= 0);
1726 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1727 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1728 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1733 * The special case - take what you catch first
1735 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1737 ext4_mb_use_best_found(ac
, e4b
);
1742 * Let's check whether the chuck is good enough
1744 if (ex
->fe_len
== gex
->fe_len
) {
1746 ext4_mb_use_best_found(ac
, e4b
);
1751 * If this is first found extent, just store it in the context
1753 if (bex
->fe_len
== 0) {
1759 * If new found extent is better, store it in the context
1761 if (bex
->fe_len
< gex
->fe_len
) {
1762 /* if the request isn't satisfied, any found extent
1763 * larger than previous best one is better */
1764 if (ex
->fe_len
> bex
->fe_len
)
1766 } else if (ex
->fe_len
> gex
->fe_len
) {
1767 /* if the request is satisfied, then we try to find
1768 * an extent that still satisfy the request, but is
1769 * smaller than previous one */
1770 if (ex
->fe_len
< bex
->fe_len
)
1774 ext4_mb_check_limits(ac
, e4b
, 0);
1777 static noinline_for_stack
1778 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1779 struct ext4_buddy
*e4b
)
1781 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1782 ext4_group_t group
= ex
.fe_group
;
1786 BUG_ON(ex
.fe_len
<= 0);
1787 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1791 ext4_lock_group(ac
->ac_sb
, group
);
1792 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1796 ext4_mb_use_best_found(ac
, e4b
);
1799 ext4_unlock_group(ac
->ac_sb
, group
);
1800 ext4_mb_unload_buddy(e4b
);
1805 static noinline_for_stack
1806 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1807 struct ext4_buddy
*e4b
)
1809 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1812 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1813 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1814 struct ext4_free_extent ex
;
1816 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1818 if (grp
->bb_free
== 0)
1821 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1825 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))) {
1826 ext4_mb_unload_buddy(e4b
);
1830 ext4_lock_group(ac
->ac_sb
, group
);
1831 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1832 ac
->ac_g_ex
.fe_len
, &ex
);
1833 ex
.fe_logical
= 0xDEADFA11; /* debug value */
1835 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1838 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1840 /* use do_div to get remainder (would be 64-bit modulo) */
1841 if (do_div(start
, sbi
->s_stripe
) == 0) {
1844 ext4_mb_use_best_found(ac
, e4b
);
1846 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1847 BUG_ON(ex
.fe_len
<= 0);
1848 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1849 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1852 ext4_mb_use_best_found(ac
, e4b
);
1853 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1854 /* Sometimes, caller may want to merge even small
1855 * number of blocks to an existing extent */
1856 BUG_ON(ex
.fe_len
<= 0);
1857 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1858 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1861 ext4_mb_use_best_found(ac
, e4b
);
1863 ext4_unlock_group(ac
->ac_sb
, group
);
1864 ext4_mb_unload_buddy(e4b
);
1870 * The routine scans buddy structures (not bitmap!) from given order
1871 * to max order and tries to find big enough chunk to satisfy the req
1873 static noinline_for_stack
1874 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1875 struct ext4_buddy
*e4b
)
1877 struct super_block
*sb
= ac
->ac_sb
;
1878 struct ext4_group_info
*grp
= e4b
->bd_info
;
1884 BUG_ON(ac
->ac_2order
<= 0);
1885 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1886 if (grp
->bb_counters
[i
] == 0)
1889 buddy
= mb_find_buddy(e4b
, i
, &max
);
1890 BUG_ON(buddy
== NULL
);
1892 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1897 ac
->ac_b_ex
.fe_len
= 1 << i
;
1898 ac
->ac_b_ex
.fe_start
= k
<< i
;
1899 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1901 ext4_mb_use_best_found(ac
, e4b
);
1903 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1905 if (EXT4_SB(sb
)->s_mb_stats
)
1906 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1913 * The routine scans the group and measures all found extents.
1914 * In order to optimize scanning, caller must pass number of
1915 * free blocks in the group, so the routine can know upper limit.
1917 static noinline_for_stack
1918 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1919 struct ext4_buddy
*e4b
)
1921 struct super_block
*sb
= ac
->ac_sb
;
1922 void *bitmap
= e4b
->bd_bitmap
;
1923 struct ext4_free_extent ex
;
1927 free
= e4b
->bd_info
->bb_free
;
1930 i
= e4b
->bd_info
->bb_first_free
;
1932 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1933 i
= mb_find_next_zero_bit(bitmap
,
1934 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1935 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1937 * IF we have corrupt bitmap, we won't find any
1938 * free blocks even though group info says we
1939 * we have free blocks
1941 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1942 "%d free clusters as per "
1943 "group info. But bitmap says 0",
1948 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1949 BUG_ON(ex
.fe_len
<= 0);
1950 if (free
< ex
.fe_len
) {
1951 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1952 "%d free clusters as per "
1953 "group info. But got %d blocks",
1956 * The number of free blocks differs. This mostly
1957 * indicate that the bitmap is corrupt. So exit
1958 * without claiming the space.
1962 ex
.fe_logical
= 0xDEADC0DE; /* debug value */
1963 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1969 ext4_mb_check_limits(ac
, e4b
, 1);
1973 * This is a special case for storages like raid5
1974 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1976 static noinline_for_stack
1977 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1978 struct ext4_buddy
*e4b
)
1980 struct super_block
*sb
= ac
->ac_sb
;
1981 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1982 void *bitmap
= e4b
->bd_bitmap
;
1983 struct ext4_free_extent ex
;
1984 ext4_fsblk_t first_group_block
;
1989 BUG_ON(sbi
->s_stripe
== 0);
1991 /* find first stripe-aligned block in group */
1992 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1994 a
= first_group_block
+ sbi
->s_stripe
- 1;
1995 do_div(a
, sbi
->s_stripe
);
1996 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1998 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
1999 if (!mb_test_bit(i
, bitmap
)) {
2000 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
2001 if (max
>= sbi
->s_stripe
) {
2003 ex
.fe_logical
= 0xDEADF00D; /* debug value */
2005 ext4_mb_use_best_found(ac
, e4b
);
2013 /* This is now called BEFORE we load the buddy bitmap. */
2014 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
2015 ext4_group_t group
, int cr
)
2017 unsigned free
, fragments
;
2018 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
2019 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2021 BUG_ON(cr
< 0 || cr
>= 4);
2023 free
= grp
->bb_free
;
2026 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
2029 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2032 /* We only do this if the grp has never been initialized */
2033 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
2034 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
2039 fragments
= grp
->bb_fragments
;
2045 BUG_ON(ac
->ac_2order
== 0);
2047 /* Avoid using the first bg of a flexgroup for data files */
2048 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2049 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2050 ((group
% flex_size
) == 0))
2053 if ((ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1) ||
2054 (free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2057 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2062 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2066 if (free
>= ac
->ac_g_ex
.fe_len
)
2078 static noinline_for_stack
int
2079 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2081 ext4_group_t ngroups
, group
, i
;
2084 struct ext4_sb_info
*sbi
;
2085 struct super_block
*sb
;
2086 struct ext4_buddy e4b
;
2090 ngroups
= ext4_get_groups_count(sb
);
2091 /* non-extent files are limited to low blocks/groups */
2092 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2093 ngroups
= sbi
->s_blockfile_groups
;
2095 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2097 /* first, try the goal */
2098 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2099 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2102 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2106 * ac->ac2_order is set only if the fe_len is a power of 2
2107 * if ac2_order is set we also set criteria to 0 so that we
2108 * try exact allocation using buddy.
2110 i
= fls(ac
->ac_g_ex
.fe_len
);
2113 * We search using buddy data only if the order of the request
2114 * is greater than equal to the sbi_s_mb_order2_reqs
2115 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2117 if (i
>= sbi
->s_mb_order2_reqs
) {
2119 * This should tell if fe_len is exactly power of 2
2121 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2122 ac
->ac_2order
= i
- 1;
2125 /* if stream allocation is enabled, use global goal */
2126 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2127 /* TBD: may be hot point */
2128 spin_lock(&sbi
->s_md_lock
);
2129 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2130 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2131 spin_unlock(&sbi
->s_md_lock
);
2134 /* Let's just scan groups to find more-less suitable blocks */
2135 cr
= ac
->ac_2order
? 0 : 1;
2137 * cr == 0 try to get exact allocation,
2138 * cr == 3 try to get anything
2141 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2142 ac
->ac_criteria
= cr
;
2144 * searching for the right group start
2145 * from the goal value specified
2147 group
= ac
->ac_g_ex
.fe_group
;
2149 for (i
= 0; i
< ngroups
; group
++, i
++) {
2152 * Artificially restricted ngroups for non-extent
2153 * files makes group > ngroups possible on first loop.
2155 if (group
>= ngroups
)
2158 /* This now checks without needing the buddy page */
2159 if (!ext4_mb_good_group(ac
, group
, cr
))
2162 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2166 ext4_lock_group(sb
, group
);
2169 * We need to check again after locking the
2172 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2173 ext4_unlock_group(sb
, group
);
2174 ext4_mb_unload_buddy(&e4b
);
2178 ac
->ac_groups_scanned
++;
2179 if (cr
== 0 && ac
->ac_2order
< sb
->s_blocksize_bits
+2)
2180 ext4_mb_simple_scan_group(ac
, &e4b
);
2181 else if (cr
== 1 && sbi
->s_stripe
&&
2182 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2183 ext4_mb_scan_aligned(ac
, &e4b
);
2185 ext4_mb_complex_scan_group(ac
, &e4b
);
2187 ext4_unlock_group(sb
, group
);
2188 ext4_mb_unload_buddy(&e4b
);
2190 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2195 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2196 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2198 * We've been searching too long. Let's try to allocate
2199 * the best chunk we've found so far
2202 ext4_mb_try_best_found(ac
, &e4b
);
2203 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2205 * Someone more lucky has already allocated it.
2206 * The only thing we can do is just take first
2208 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2210 ac
->ac_b_ex
.fe_group
= 0;
2211 ac
->ac_b_ex
.fe_start
= 0;
2212 ac
->ac_b_ex
.fe_len
= 0;
2213 ac
->ac_status
= AC_STATUS_CONTINUE
;
2214 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2216 atomic_inc(&sbi
->s_mb_lost_chunks
);
2224 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2226 struct super_block
*sb
= seq
->private;
2229 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2232 return (void *) ((unsigned long) group
);
2235 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2237 struct super_block
*sb
= seq
->private;
2241 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2244 return (void *) ((unsigned long) group
);
2247 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2249 struct super_block
*sb
= seq
->private;
2250 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2252 int err
, buddy_loaded
= 0;
2253 struct ext4_buddy e4b
;
2254 struct ext4_group_info
*grinfo
;
2256 struct ext4_group_info info
;
2257 ext4_grpblk_t counters
[EXT4_MAX_BLOCK_LOG_SIZE
+ 2];
2262 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2263 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2264 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2265 "group", "free", "frags", "first",
2266 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2267 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2269 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2270 sizeof(struct ext4_group_info
);
2271 grinfo
= ext4_get_group_info(sb
, group
);
2272 /* Load the group info in memory only if not already loaded. */
2273 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2274 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2276 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2282 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2285 ext4_mb_unload_buddy(&e4b
);
2287 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2288 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2289 for (i
= 0; i
<= 13; i
++)
2290 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2291 sg
.info
.bb_counters
[i
] : 0);
2292 seq_printf(seq
, " ]\n");
2297 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2301 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2302 .start
= ext4_mb_seq_groups_start
,
2303 .next
= ext4_mb_seq_groups_next
,
2304 .stop
= ext4_mb_seq_groups_stop
,
2305 .show
= ext4_mb_seq_groups_show
,
2308 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2310 struct super_block
*sb
= PDE_DATA(inode
);
2313 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2315 struct seq_file
*m
= file
->private_data
;
2322 static const struct file_operations ext4_mb_seq_groups_fops
= {
2323 .owner
= THIS_MODULE
,
2324 .open
= ext4_mb_seq_groups_open
,
2326 .llseek
= seq_lseek
,
2327 .release
= seq_release
,
2330 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2332 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2333 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2340 * Allocate the top-level s_group_info array for the specified number
2343 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2345 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2347 struct ext4_group_info
***new_groupinfo
;
2349 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2350 EXT4_DESC_PER_BLOCK_BITS(sb
);
2351 if (size
<= sbi
->s_group_info_size
)
2354 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2355 new_groupinfo
= ext4_kvzalloc(size
, GFP_KERNEL
);
2356 if (!new_groupinfo
) {
2357 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2360 if (sbi
->s_group_info
) {
2361 memcpy(new_groupinfo
, sbi
->s_group_info
,
2362 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2363 kvfree(sbi
->s_group_info
);
2365 sbi
->s_group_info
= new_groupinfo
;
2366 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2367 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2368 sbi
->s_group_info_size
);
2372 /* Create and initialize ext4_group_info data for the given group. */
2373 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2374 struct ext4_group_desc
*desc
)
2378 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2379 struct ext4_group_info
**meta_group_info
;
2380 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2383 * First check if this group is the first of a reserved block.
2384 * If it's true, we have to allocate a new table of pointers
2385 * to ext4_group_info structures
2387 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2388 metalen
= sizeof(*meta_group_info
) <<
2389 EXT4_DESC_PER_BLOCK_BITS(sb
);
2390 meta_group_info
= kmalloc(metalen
, GFP_NOFS
);
2391 if (meta_group_info
== NULL
) {
2392 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2393 "for a buddy group");
2394 goto exit_meta_group_info
;
2396 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2401 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2402 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2404 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_NOFS
);
2405 if (meta_group_info
[i
] == NULL
) {
2406 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2407 goto exit_group_info
;
2409 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2410 &(meta_group_info
[i
]->bb_state
));
2413 * initialize bb_free to be able to skip
2414 * empty groups without initialization
2416 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2417 meta_group_info
[i
]->bb_free
=
2418 ext4_free_clusters_after_init(sb
, group
, desc
);
2420 meta_group_info
[i
]->bb_free
=
2421 ext4_free_group_clusters(sb
, desc
);
2424 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2425 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2426 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2427 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2431 struct buffer_head
*bh
;
2432 meta_group_info
[i
]->bb_bitmap
=
2433 kmalloc(sb
->s_blocksize
, GFP_NOFS
);
2434 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2435 bh
= ext4_read_block_bitmap(sb
, group
);
2437 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2446 /* If a meta_group_info table has been allocated, release it now */
2447 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2448 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2449 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2451 exit_meta_group_info
:
2453 } /* ext4_mb_add_groupinfo */
2455 static int ext4_mb_init_backend(struct super_block
*sb
)
2457 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2459 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2461 struct ext4_group_desc
*desc
;
2462 struct kmem_cache
*cachep
;
2464 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2468 sbi
->s_buddy_cache
= new_inode(sb
);
2469 if (sbi
->s_buddy_cache
== NULL
) {
2470 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2473 /* To avoid potentially colliding with an valid on-disk inode number,
2474 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2475 * not in the inode hash, so it should never be found by iget(), but
2476 * this will avoid confusion if it ever shows up during debugging. */
2477 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2478 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2479 for (i
= 0; i
< ngroups
; i
++) {
2480 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2482 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2485 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2492 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2494 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2495 i
= sbi
->s_group_info_size
;
2497 kfree(sbi
->s_group_info
[i
]);
2498 iput(sbi
->s_buddy_cache
);
2500 kvfree(sbi
->s_group_info
);
2504 static void ext4_groupinfo_destroy_slabs(void)
2508 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2509 if (ext4_groupinfo_caches
[i
])
2510 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2511 ext4_groupinfo_caches
[i
] = NULL
;
2515 static int ext4_groupinfo_create_slab(size_t size
)
2517 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2519 int blocksize_bits
= order_base_2(size
);
2520 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2521 struct kmem_cache
*cachep
;
2523 if (cache_index
>= NR_GRPINFO_CACHES
)
2526 if (unlikely(cache_index
< 0))
2529 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2530 if (ext4_groupinfo_caches
[cache_index
]) {
2531 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2532 return 0; /* Already created */
2535 slab_size
= offsetof(struct ext4_group_info
,
2536 bb_counters
[blocksize_bits
+ 2]);
2538 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2539 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2542 ext4_groupinfo_caches
[cache_index
] = cachep
;
2544 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2547 "EXT4-fs: no memory for groupinfo slab cache\n");
2554 int ext4_mb_init(struct super_block
*sb
)
2556 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2558 unsigned offset
, offset_incr
;
2562 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2564 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2565 if (sbi
->s_mb_offsets
== NULL
) {
2570 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2571 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2572 if (sbi
->s_mb_maxs
== NULL
) {
2577 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2581 /* order 0 is regular bitmap */
2582 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2583 sbi
->s_mb_offsets
[0] = 0;
2587 offset_incr
= 1 << (sb
->s_blocksize_bits
- 1);
2588 max
= sb
->s_blocksize
<< 2;
2590 sbi
->s_mb_offsets
[i
] = offset
;
2591 sbi
->s_mb_maxs
[i
] = max
;
2592 offset
+= offset_incr
;
2593 offset_incr
= offset_incr
>> 1;
2596 } while (i
<= sb
->s_blocksize_bits
+ 1);
2598 spin_lock_init(&sbi
->s_md_lock
);
2599 spin_lock_init(&sbi
->s_bal_lock
);
2601 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2602 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2603 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2604 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2605 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2607 * The default group preallocation is 512, which for 4k block
2608 * sizes translates to 2 megabytes. However for bigalloc file
2609 * systems, this is probably too big (i.e, if the cluster size
2610 * is 1 megabyte, then group preallocation size becomes half a
2611 * gigabyte!). As a default, we will keep a two megabyte
2612 * group pralloc size for cluster sizes up to 64k, and after
2613 * that, we will force a minimum group preallocation size of
2614 * 32 clusters. This translates to 8 megs when the cluster
2615 * size is 256k, and 32 megs when the cluster size is 1 meg,
2616 * which seems reasonable as a default.
2618 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2619 sbi
->s_cluster_bits
, 32);
2621 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2622 * to the lowest multiple of s_stripe which is bigger than
2623 * the s_mb_group_prealloc as determined above. We want
2624 * the preallocation size to be an exact multiple of the
2625 * RAID stripe size so that preallocations don't fragment
2628 if (sbi
->s_stripe
> 1) {
2629 sbi
->s_mb_group_prealloc
= roundup(
2630 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2633 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2634 if (sbi
->s_locality_groups
== NULL
) {
2638 for_each_possible_cpu(i
) {
2639 struct ext4_locality_group
*lg
;
2640 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2641 mutex_init(&lg
->lg_mutex
);
2642 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2643 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2644 spin_lock_init(&lg
->lg_prealloc_lock
);
2647 /* init file for buddy data */
2648 ret
= ext4_mb_init_backend(sb
);
2650 goto out_free_locality_groups
;
2653 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2654 &ext4_mb_seq_groups_fops
, sb
);
2658 out_free_locality_groups
:
2659 free_percpu(sbi
->s_locality_groups
);
2660 sbi
->s_locality_groups
= NULL
;
2662 kfree(sbi
->s_mb_offsets
);
2663 sbi
->s_mb_offsets
= NULL
;
2664 kfree(sbi
->s_mb_maxs
);
2665 sbi
->s_mb_maxs
= NULL
;
2669 /* need to called with the ext4 group lock held */
2670 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2672 struct ext4_prealloc_space
*pa
;
2673 struct list_head
*cur
, *tmp
;
2676 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2677 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2678 list_del(&pa
->pa_group_list
);
2680 kmem_cache_free(ext4_pspace_cachep
, pa
);
2683 mb_debug(1, "mballoc: %u PAs left\n", count
);
2687 int ext4_mb_release(struct super_block
*sb
)
2689 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2691 int num_meta_group_infos
;
2692 struct ext4_group_info
*grinfo
;
2693 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2694 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2697 remove_proc_entry("mb_groups", sbi
->s_proc
);
2699 if (sbi
->s_group_info
) {
2700 for (i
= 0; i
< ngroups
; i
++) {
2701 grinfo
= ext4_get_group_info(sb
, i
);
2703 kfree(grinfo
->bb_bitmap
);
2705 ext4_lock_group(sb
, i
);
2706 ext4_mb_cleanup_pa(grinfo
);
2707 ext4_unlock_group(sb
, i
);
2708 kmem_cache_free(cachep
, grinfo
);
2710 num_meta_group_infos
= (ngroups
+
2711 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2712 EXT4_DESC_PER_BLOCK_BITS(sb
);
2713 for (i
= 0; i
< num_meta_group_infos
; i
++)
2714 kfree(sbi
->s_group_info
[i
]);
2715 kvfree(sbi
->s_group_info
);
2717 kfree(sbi
->s_mb_offsets
);
2718 kfree(sbi
->s_mb_maxs
);
2719 iput(sbi
->s_buddy_cache
);
2720 if (sbi
->s_mb_stats
) {
2721 ext4_msg(sb
, KERN_INFO
,
2722 "mballoc: %u blocks %u reqs (%u success)",
2723 atomic_read(&sbi
->s_bal_allocated
),
2724 atomic_read(&sbi
->s_bal_reqs
),
2725 atomic_read(&sbi
->s_bal_success
));
2726 ext4_msg(sb
, KERN_INFO
,
2727 "mballoc: %u extents scanned, %u goal hits, "
2728 "%u 2^N hits, %u breaks, %u lost",
2729 atomic_read(&sbi
->s_bal_ex_scanned
),
2730 atomic_read(&sbi
->s_bal_goals
),
2731 atomic_read(&sbi
->s_bal_2orders
),
2732 atomic_read(&sbi
->s_bal_breaks
),
2733 atomic_read(&sbi
->s_mb_lost_chunks
));
2734 ext4_msg(sb
, KERN_INFO
,
2735 "mballoc: %lu generated and it took %Lu",
2736 sbi
->s_mb_buddies_generated
,
2737 sbi
->s_mb_generation_time
);
2738 ext4_msg(sb
, KERN_INFO
,
2739 "mballoc: %u preallocated, %u discarded",
2740 atomic_read(&sbi
->s_mb_preallocated
),
2741 atomic_read(&sbi
->s_mb_discarded
));
2744 free_percpu(sbi
->s_locality_groups
);
2749 static inline int ext4_issue_discard(struct super_block
*sb
,
2750 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2752 ext4_fsblk_t discard_block
;
2754 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2755 ext4_group_first_block_no(sb
, block_group
));
2756 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2757 trace_ext4_discard_blocks(sb
,
2758 (unsigned long long) discard_block
, count
);
2759 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2763 * This function is called by the jbd2 layer once the commit has finished,
2764 * so we know we can free the blocks that were released with that commit.
2766 static void ext4_free_data_callback(struct super_block
*sb
,
2767 struct ext4_journal_cb_entry
*jce
,
2770 struct ext4_free_data
*entry
= (struct ext4_free_data
*)jce
;
2771 struct ext4_buddy e4b
;
2772 struct ext4_group_info
*db
;
2773 int err
, count
= 0, count2
= 0;
2775 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2776 entry
->efd_count
, entry
->efd_group
, entry
);
2778 if (test_opt(sb
, DISCARD
)) {
2779 err
= ext4_issue_discard(sb
, entry
->efd_group
,
2780 entry
->efd_start_cluster
,
2782 if (err
&& err
!= -EOPNOTSUPP
)
2783 ext4_msg(sb
, KERN_WARNING
, "discard request in"
2784 " group:%d block:%d count:%d failed"
2785 " with %d", entry
->efd_group
,
2786 entry
->efd_start_cluster
,
2787 entry
->efd_count
, err
);
2790 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
2791 /* we expect to find existing buddy because it's pinned */
2796 /* there are blocks to put in buddy to make them really free */
2797 count
+= entry
->efd_count
;
2799 ext4_lock_group(sb
, entry
->efd_group
);
2800 /* Take it out of per group rb tree */
2801 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
2802 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
2805 * Clear the trimmed flag for the group so that the next
2806 * ext4_trim_fs can trim it.
2807 * If the volume is mounted with -o discard, online discard
2808 * is supported and the free blocks will be trimmed online.
2810 if (!test_opt(sb
, DISCARD
))
2811 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2813 if (!db
->bb_free_root
.rb_node
) {
2814 /* No more items in the per group rb tree
2815 * balance refcounts from ext4_mb_free_metadata()
2817 page_cache_release(e4b
.bd_buddy_page
);
2818 page_cache_release(e4b
.bd_bitmap_page
);
2820 ext4_unlock_group(sb
, entry
->efd_group
);
2821 kmem_cache_free(ext4_free_data_cachep
, entry
);
2822 ext4_mb_unload_buddy(&e4b
);
2824 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2827 int __init
ext4_init_mballoc(void)
2829 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2830 SLAB_RECLAIM_ACCOUNT
);
2831 if (ext4_pspace_cachep
== NULL
)
2834 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2835 SLAB_RECLAIM_ACCOUNT
);
2836 if (ext4_ac_cachep
== NULL
) {
2837 kmem_cache_destroy(ext4_pspace_cachep
);
2841 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
2842 SLAB_RECLAIM_ACCOUNT
);
2843 if (ext4_free_data_cachep
== NULL
) {
2844 kmem_cache_destroy(ext4_pspace_cachep
);
2845 kmem_cache_destroy(ext4_ac_cachep
);
2851 void ext4_exit_mballoc(void)
2854 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2855 * before destroying the slab cache.
2858 kmem_cache_destroy(ext4_pspace_cachep
);
2859 kmem_cache_destroy(ext4_ac_cachep
);
2860 kmem_cache_destroy(ext4_free_data_cachep
);
2861 ext4_groupinfo_destroy_slabs();
2866 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2867 * Returns 0 if success or error code
2869 static noinline_for_stack
int
2870 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2871 handle_t
*handle
, unsigned int reserv_clstrs
)
2873 struct buffer_head
*bitmap_bh
= NULL
;
2874 struct ext4_group_desc
*gdp
;
2875 struct buffer_head
*gdp_bh
;
2876 struct ext4_sb_info
*sbi
;
2877 struct super_block
*sb
;
2881 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2882 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2888 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2892 BUFFER_TRACE(bitmap_bh
, "getting write access");
2893 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2898 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2902 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2903 ext4_free_group_clusters(sb
, gdp
));
2905 BUFFER_TRACE(gdp_bh
, "get_write_access");
2906 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2910 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2912 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2913 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2914 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2915 "fs metadata", block
, block
+len
);
2916 /* File system mounted not to panic on error
2917 * Fix the bitmap and repeat the block allocation
2918 * We leak some of the blocks here.
2920 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2921 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2922 ac
->ac_b_ex
.fe_len
);
2923 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2924 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2930 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2931 #ifdef AGGRESSIVE_CHECK
2934 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2935 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2936 bitmap_bh
->b_data
));
2940 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2941 ac
->ac_b_ex
.fe_len
);
2942 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2943 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2944 ext4_free_group_clusters_set(sb
, gdp
,
2945 ext4_free_clusters_after_init(sb
,
2946 ac
->ac_b_ex
.fe_group
, gdp
));
2948 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2949 ext4_free_group_clusters_set(sb
, gdp
, len
);
2950 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
2951 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
2953 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2954 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
2956 * Now reduce the dirty block count also. Should not go negative
2958 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2959 /* release all the reserved blocks if non delalloc */
2960 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
2963 if (sbi
->s_log_groups_per_flex
) {
2964 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2965 ac
->ac_b_ex
.fe_group
);
2966 atomic64_sub(ac
->ac_b_ex
.fe_len
,
2967 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
2970 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2973 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2981 * here we normalize request for locality group
2982 * Group request are normalized to s_mb_group_prealloc, which goes to
2983 * s_strip if we set the same via mount option.
2984 * s_mb_group_prealloc can be configured via
2985 * /sys/fs/ext4/<partition>/mb_group_prealloc
2987 * XXX: should we try to preallocate more than the group has now?
2989 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2991 struct super_block
*sb
= ac
->ac_sb
;
2992 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2995 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2996 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2997 current
->pid
, ac
->ac_g_ex
.fe_len
);
3001 * Normalization means making request better in terms of
3002 * size and alignment
3004 static noinline_for_stack
void
3005 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3006 struct ext4_allocation_request
*ar
)
3008 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3011 loff_t size
, start_off
;
3012 loff_t orig_size __maybe_unused
;
3014 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3015 struct ext4_prealloc_space
*pa
;
3017 /* do normalize only data requests, metadata requests
3018 do not need preallocation */
3019 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3022 /* sometime caller may want exact blocks */
3023 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3026 /* caller may indicate that preallocation isn't
3027 * required (it's a tail, for example) */
3028 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3031 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3032 ext4_mb_normalize_group_request(ac
);
3036 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3038 /* first, let's learn actual file size
3039 * given current request is allocated */
3040 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3041 size
= size
<< bsbits
;
3042 if (size
< i_size_read(ac
->ac_inode
))
3043 size
= i_size_read(ac
->ac_inode
);
3046 /* max size of free chunks */
3049 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3050 (req <= (size) || max <= (chunk_size))
3052 /* first, try to predict filesize */
3053 /* XXX: should this table be tunable? */
3055 if (size
<= 16 * 1024) {
3057 } else if (size
<= 32 * 1024) {
3059 } else if (size
<= 64 * 1024) {
3061 } else if (size
<= 128 * 1024) {
3063 } else if (size
<= 256 * 1024) {
3065 } else if (size
<= 512 * 1024) {
3067 } else if (size
<= 1024 * 1024) {
3069 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3070 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3071 (21 - bsbits
)) << 21;
3072 size
= 2 * 1024 * 1024;
3073 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3074 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3075 (22 - bsbits
)) << 22;
3076 size
= 4 * 1024 * 1024;
3077 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3078 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3079 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3080 (23 - bsbits
)) << 23;
3081 size
= 8 * 1024 * 1024;
3083 start_off
= (loff_t
) ac
->ac_o_ex
.fe_logical
<< bsbits
;
3084 size
= (loff_t
) EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3085 ac
->ac_o_ex
.fe_len
) << bsbits
;
3087 size
= size
>> bsbits
;
3088 start
= start_off
>> bsbits
;
3090 /* don't cover already allocated blocks in selected range */
3091 if (ar
->pleft
&& start
<= ar
->lleft
) {
3092 size
-= ar
->lleft
+ 1 - start
;
3093 start
= ar
->lleft
+ 1;
3095 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3096 size
-= start
+ size
- ar
->lright
;
3100 /* check we don't cross already preallocated blocks */
3102 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3107 spin_lock(&pa
->pa_lock
);
3108 if (pa
->pa_deleted
) {
3109 spin_unlock(&pa
->pa_lock
);
3113 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3116 /* PA must not overlap original request */
3117 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3118 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3120 /* skip PAs this normalized request doesn't overlap with */
3121 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3122 spin_unlock(&pa
->pa_lock
);
3125 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3127 /* adjust start or end to be adjacent to this pa */
3128 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3129 BUG_ON(pa_end
< start
);
3131 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3132 BUG_ON(pa
->pa_lstart
> end
);
3133 end
= pa
->pa_lstart
;
3135 spin_unlock(&pa
->pa_lock
);
3140 /* XXX: extra loop to check we really don't overlap preallocations */
3142 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3145 spin_lock(&pa
->pa_lock
);
3146 if (pa
->pa_deleted
== 0) {
3147 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3149 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3151 spin_unlock(&pa
->pa_lock
);
3155 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3156 start
> ac
->ac_o_ex
.fe_logical
) {
3157 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3158 "start %lu, size %lu, fe_logical %lu",
3159 (unsigned long) start
, (unsigned long) size
,
3160 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3163 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3165 /* now prepare goal request */
3167 /* XXX: is it better to align blocks WRT to logical
3168 * placement or satisfy big request as is */
3169 ac
->ac_g_ex
.fe_logical
= start
;
3170 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3172 /* define goal start in order to merge */
3173 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3174 /* merge to the right */
3175 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3176 &ac
->ac_f_ex
.fe_group
,
3177 &ac
->ac_f_ex
.fe_start
);
3178 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3180 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3181 /* merge to the left */
3182 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3183 &ac
->ac_f_ex
.fe_group
,
3184 &ac
->ac_f_ex
.fe_start
);
3185 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3188 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3189 (unsigned) orig_size
, (unsigned) start
);
3192 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3194 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3196 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3197 atomic_inc(&sbi
->s_bal_reqs
);
3198 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3199 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3200 atomic_inc(&sbi
->s_bal_success
);
3201 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3202 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3203 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3204 atomic_inc(&sbi
->s_bal_goals
);
3205 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3206 atomic_inc(&sbi
->s_bal_breaks
);
3209 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3210 trace_ext4_mballoc_alloc(ac
);
3212 trace_ext4_mballoc_prealloc(ac
);
3216 * Called on failure; free up any blocks from the inode PA for this
3217 * context. We don't need this for MB_GROUP_PA because we only change
3218 * pa_free in ext4_mb_release_context(), but on failure, we've already
3219 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3221 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3223 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3224 struct ext4_buddy e4b
;
3228 if (ac
->ac_f_ex
.fe_len
== 0)
3230 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3233 * This should never happen since we pin the
3234 * pages in the ext4_allocation_context so
3235 * ext4_mb_load_buddy() should never fail.
3237 WARN(1, "mb_load_buddy failed (%d)", err
);
3240 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3241 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3242 ac
->ac_f_ex
.fe_len
);
3243 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3244 ext4_mb_unload_buddy(&e4b
);
3247 if (pa
->pa_type
== MB_INODE_PA
)
3248 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3252 * use blocks preallocated to inode
3254 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3255 struct ext4_prealloc_space
*pa
)
3257 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3262 /* found preallocated blocks, use them */
3263 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3264 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3265 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3266 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3267 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3268 &ac
->ac_b_ex
.fe_start
);
3269 ac
->ac_b_ex
.fe_len
= len
;
3270 ac
->ac_status
= AC_STATUS_FOUND
;
3273 BUG_ON(start
< pa
->pa_pstart
);
3274 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3275 BUG_ON(pa
->pa_free
< len
);
3278 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3282 * use blocks preallocated to locality group
3284 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3285 struct ext4_prealloc_space
*pa
)
3287 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3289 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3290 &ac
->ac_b_ex
.fe_group
,
3291 &ac
->ac_b_ex
.fe_start
);
3292 ac
->ac_b_ex
.fe_len
= len
;
3293 ac
->ac_status
= AC_STATUS_FOUND
;
3296 /* we don't correct pa_pstart or pa_plen here to avoid
3297 * possible race when the group is being loaded concurrently
3298 * instead we correct pa later, after blocks are marked
3299 * in on-disk bitmap -- see ext4_mb_release_context()
3300 * Other CPUs are prevented from allocating from this pa by lg_mutex
3302 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3306 * Return the prealloc space that have minimal distance
3307 * from the goal block. @cpa is the prealloc
3308 * space that is having currently known minimal distance
3309 * from the goal block.
3311 static struct ext4_prealloc_space
*
3312 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3313 struct ext4_prealloc_space
*pa
,
3314 struct ext4_prealloc_space
*cpa
)
3316 ext4_fsblk_t cur_distance
, new_distance
;
3319 atomic_inc(&pa
->pa_count
);
3322 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3323 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3325 if (cur_distance
<= new_distance
)
3328 /* drop the previous reference */
3329 atomic_dec(&cpa
->pa_count
);
3330 atomic_inc(&pa
->pa_count
);
3335 * search goal blocks in preallocated space
3337 static noinline_for_stack
int
3338 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3340 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3342 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3343 struct ext4_locality_group
*lg
;
3344 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3345 ext4_fsblk_t goal_block
;
3347 /* only data can be preallocated */
3348 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3351 /* first, try per-file preallocation */
3353 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3355 /* all fields in this condition don't change,
3356 * so we can skip locking for them */
3357 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3358 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3359 EXT4_C2B(sbi
, pa
->pa_len
)))
3362 /* non-extent files can't have physical blocks past 2^32 */
3363 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3364 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3365 EXT4_MAX_BLOCK_FILE_PHYS
))
3368 /* found preallocated blocks, use them */
3369 spin_lock(&pa
->pa_lock
);
3370 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3371 atomic_inc(&pa
->pa_count
);
3372 ext4_mb_use_inode_pa(ac
, pa
);
3373 spin_unlock(&pa
->pa_lock
);
3374 ac
->ac_criteria
= 10;
3378 spin_unlock(&pa
->pa_lock
);
3382 /* can we use group allocation? */
3383 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3386 /* inode may have no locality group for some reason */
3390 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3391 if (order
> PREALLOC_TB_SIZE
- 1)
3392 /* The max size of hash table is PREALLOC_TB_SIZE */
3393 order
= PREALLOC_TB_SIZE
- 1;
3395 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3397 * search for the prealloc space that is having
3398 * minimal distance from the goal block.
3400 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3402 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3404 spin_lock(&pa
->pa_lock
);
3405 if (pa
->pa_deleted
== 0 &&
3406 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3408 cpa
= ext4_mb_check_group_pa(goal_block
,
3411 spin_unlock(&pa
->pa_lock
);
3416 ext4_mb_use_group_pa(ac
, cpa
);
3417 ac
->ac_criteria
= 20;
3424 * the function goes through all block freed in the group
3425 * but not yet committed and marks them used in in-core bitmap.
3426 * buddy must be generated from this bitmap
3427 * Need to be called with the ext4 group lock held
3429 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3433 struct ext4_group_info
*grp
;
3434 struct ext4_free_data
*entry
;
3436 grp
= ext4_get_group_info(sb
, group
);
3437 n
= rb_first(&(grp
->bb_free_root
));
3440 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3441 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3448 * the function goes through all preallocation in this group and marks them
3449 * used in in-core bitmap. buddy must be generated from this bitmap
3450 * Need to be called with ext4 group lock held
3452 static noinline_for_stack
3453 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3456 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3457 struct ext4_prealloc_space
*pa
;
3458 struct list_head
*cur
;
3459 ext4_group_t groupnr
;
3460 ext4_grpblk_t start
;
3461 int preallocated
= 0;
3464 /* all form of preallocation discards first load group,
3465 * so the only competing code is preallocation use.
3466 * we don't need any locking here
3467 * notice we do NOT ignore preallocations with pa_deleted
3468 * otherwise we could leave used blocks available for
3469 * allocation in buddy when concurrent ext4_mb_put_pa()
3470 * is dropping preallocation
3472 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3473 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3474 spin_lock(&pa
->pa_lock
);
3475 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3478 spin_unlock(&pa
->pa_lock
);
3479 if (unlikely(len
== 0))
3481 BUG_ON(groupnr
!= group
);
3482 ext4_set_bits(bitmap
, start
, len
);
3483 preallocated
+= len
;
3485 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3488 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3490 struct ext4_prealloc_space
*pa
;
3491 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3493 BUG_ON(atomic_read(&pa
->pa_count
));
3494 BUG_ON(pa
->pa_deleted
== 0);
3495 kmem_cache_free(ext4_pspace_cachep
, pa
);
3499 * drops a reference to preallocated space descriptor
3500 * if this was the last reference and the space is consumed
3502 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3503 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3506 ext4_fsblk_t grp_blk
;
3508 /* in this short window concurrent discard can set pa_deleted */
3509 spin_lock(&pa
->pa_lock
);
3510 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3511 spin_unlock(&pa
->pa_lock
);
3515 if (pa
->pa_deleted
== 1) {
3516 spin_unlock(&pa
->pa_lock
);
3521 spin_unlock(&pa
->pa_lock
);
3523 grp_blk
= pa
->pa_pstart
;
3525 * If doing group-based preallocation, pa_pstart may be in the
3526 * next group when pa is used up
3528 if (pa
->pa_type
== MB_GROUP_PA
)
3531 grp
= ext4_get_group_number(sb
, grp_blk
);
3536 * P1 (buddy init) P2 (regular allocation)
3537 * find block B in PA
3538 * copy on-disk bitmap to buddy
3539 * mark B in on-disk bitmap
3540 * drop PA from group
3541 * mark all PAs in buddy
3543 * thus, P1 initializes buddy with B available. to prevent this
3544 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3547 ext4_lock_group(sb
, grp
);
3548 list_del(&pa
->pa_group_list
);
3549 ext4_unlock_group(sb
, grp
);
3551 spin_lock(pa
->pa_obj_lock
);
3552 list_del_rcu(&pa
->pa_inode_list
);
3553 spin_unlock(pa
->pa_obj_lock
);
3555 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3559 * creates new preallocated space for given inode
3561 static noinline_for_stack
int
3562 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3564 struct super_block
*sb
= ac
->ac_sb
;
3565 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3566 struct ext4_prealloc_space
*pa
;
3567 struct ext4_group_info
*grp
;
3568 struct ext4_inode_info
*ei
;
3570 /* preallocate only when found space is larger then requested */
3571 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3572 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3573 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3575 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3579 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3585 /* we can't allocate as much as normalizer wants.
3586 * so, found space must get proper lstart
3587 * to cover original request */
3588 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3589 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3591 /* we're limited by original request in that
3592 * logical block must be covered any way
3593 * winl is window we can move our chunk within */
3594 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3596 /* also, we should cover whole original request */
3597 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3599 /* the smallest one defines real window */
3600 win
= min(winl
, wins
);
3602 offs
= ac
->ac_o_ex
.fe_logical
%
3603 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3604 if (offs
&& offs
< win
)
3607 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3608 EXT4_NUM_B2C(sbi
, win
);
3609 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3610 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3613 /* preallocation can change ac_b_ex, thus we store actually
3614 * allocated blocks for history */
3615 ac
->ac_f_ex
= ac
->ac_b_ex
;
3617 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3618 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3619 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3620 pa
->pa_free
= pa
->pa_len
;
3621 atomic_set(&pa
->pa_count
, 1);
3622 spin_lock_init(&pa
->pa_lock
);
3623 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3624 INIT_LIST_HEAD(&pa
->pa_group_list
);
3626 pa
->pa_type
= MB_INODE_PA
;
3628 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3629 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3630 trace_ext4_mb_new_inode_pa(ac
, pa
);
3632 ext4_mb_use_inode_pa(ac
, pa
);
3633 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3635 ei
= EXT4_I(ac
->ac_inode
);
3636 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3638 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3639 pa
->pa_inode
= ac
->ac_inode
;
3641 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3642 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3643 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3645 spin_lock(pa
->pa_obj_lock
);
3646 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3647 spin_unlock(pa
->pa_obj_lock
);
3653 * creates new preallocated space for locality group inodes belongs to
3655 static noinline_for_stack
int
3656 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3658 struct super_block
*sb
= ac
->ac_sb
;
3659 struct ext4_locality_group
*lg
;
3660 struct ext4_prealloc_space
*pa
;
3661 struct ext4_group_info
*grp
;
3663 /* preallocate only when found space is larger then requested */
3664 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3665 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3666 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3668 BUG_ON(ext4_pspace_cachep
== NULL
);
3669 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3673 /* preallocation can change ac_b_ex, thus we store actually
3674 * allocated blocks for history */
3675 ac
->ac_f_ex
= ac
->ac_b_ex
;
3677 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3678 pa
->pa_lstart
= pa
->pa_pstart
;
3679 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3680 pa
->pa_free
= pa
->pa_len
;
3681 atomic_set(&pa
->pa_count
, 1);
3682 spin_lock_init(&pa
->pa_lock
);
3683 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3684 INIT_LIST_HEAD(&pa
->pa_group_list
);
3686 pa
->pa_type
= MB_GROUP_PA
;
3688 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3689 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3690 trace_ext4_mb_new_group_pa(ac
, pa
);
3692 ext4_mb_use_group_pa(ac
, pa
);
3693 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3695 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3699 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3700 pa
->pa_inode
= NULL
;
3702 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3703 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3704 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3707 * We will later add the new pa to the right bucket
3708 * after updating the pa_free in ext4_mb_release_context
3713 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3717 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3718 err
= ext4_mb_new_group_pa(ac
);
3720 err
= ext4_mb_new_inode_pa(ac
);
3725 * finds all unused blocks in on-disk bitmap, frees them in
3726 * in-core bitmap and buddy.
3727 * @pa must be unlinked from inode and group lists, so that
3728 * nobody else can find/use it.
3729 * the caller MUST hold group/inode locks.
3730 * TODO: optimize the case when there are no in-core structures yet
3732 static noinline_for_stack
int
3733 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3734 struct ext4_prealloc_space
*pa
)
3736 struct super_block
*sb
= e4b
->bd_sb
;
3737 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3742 unsigned long long grp_blk_start
;
3746 BUG_ON(pa
->pa_deleted
== 0);
3747 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3748 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3749 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3750 end
= bit
+ pa
->pa_len
;
3753 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3756 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3757 mb_debug(1, " free preallocated %u/%u in group %u\n",
3758 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3759 (unsigned) next
- bit
, (unsigned) group
);
3762 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3763 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3764 EXT4_C2B(sbi
, bit
)),
3766 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3769 if (free
!= pa
->pa_free
) {
3770 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3771 "pa %p: logic %lu, phys. %lu, len %lu",
3772 pa
, (unsigned long) pa
->pa_lstart
,
3773 (unsigned long) pa
->pa_pstart
,
3774 (unsigned long) pa
->pa_len
);
3775 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3778 * pa is already deleted so we use the value obtained
3779 * from the bitmap and continue.
3782 atomic_add(free
, &sbi
->s_mb_discarded
);
3787 static noinline_for_stack
int
3788 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3789 struct ext4_prealloc_space
*pa
)
3791 struct super_block
*sb
= e4b
->bd_sb
;
3795 trace_ext4_mb_release_group_pa(sb
, pa
);
3796 BUG_ON(pa
->pa_deleted
== 0);
3797 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3798 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3799 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3800 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3801 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3807 * releases all preallocations in given group
3809 * first, we need to decide discard policy:
3810 * - when do we discard
3812 * - how many do we discard
3813 * 1) how many requested
3815 static noinline_for_stack
int
3816 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3817 ext4_group_t group
, int needed
)
3819 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3820 struct buffer_head
*bitmap_bh
= NULL
;
3821 struct ext4_prealloc_space
*pa
, *tmp
;
3822 struct list_head list
;
3823 struct ext4_buddy e4b
;
3828 mb_debug(1, "discard preallocation for group %u\n", group
);
3830 if (list_empty(&grp
->bb_prealloc_list
))
3833 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3834 if (bitmap_bh
== NULL
) {
3835 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3839 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3841 ext4_error(sb
, "Error loading buddy information for %u", group
);
3847 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3849 INIT_LIST_HEAD(&list
);
3851 ext4_lock_group(sb
, group
);
3852 list_for_each_entry_safe(pa
, tmp
,
3853 &grp
->bb_prealloc_list
, pa_group_list
) {
3854 spin_lock(&pa
->pa_lock
);
3855 if (atomic_read(&pa
->pa_count
)) {
3856 spin_unlock(&pa
->pa_lock
);
3860 if (pa
->pa_deleted
) {
3861 spin_unlock(&pa
->pa_lock
);
3865 /* seems this one can be freed ... */
3868 /* we can trust pa_free ... */
3869 free
+= pa
->pa_free
;
3871 spin_unlock(&pa
->pa_lock
);
3873 list_del(&pa
->pa_group_list
);
3874 list_add(&pa
->u
.pa_tmp_list
, &list
);
3877 /* if we still need more blocks and some PAs were used, try again */
3878 if (free
< needed
&& busy
) {
3880 ext4_unlock_group(sb
, group
);
3885 /* found anything to free? */
3886 if (list_empty(&list
)) {
3891 /* now free all selected PAs */
3892 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3894 /* remove from object (inode or locality group) */
3895 spin_lock(pa
->pa_obj_lock
);
3896 list_del_rcu(&pa
->pa_inode_list
);
3897 spin_unlock(pa
->pa_obj_lock
);
3899 if (pa
->pa_type
== MB_GROUP_PA
)
3900 ext4_mb_release_group_pa(&e4b
, pa
);
3902 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3904 list_del(&pa
->u
.pa_tmp_list
);
3905 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3909 ext4_unlock_group(sb
, group
);
3910 ext4_mb_unload_buddy(&e4b
);
3916 * releases all non-used preallocated blocks for given inode
3918 * It's important to discard preallocations under i_data_sem
3919 * We don't want another block to be served from the prealloc
3920 * space when we are discarding the inode prealloc space.
3922 * FIXME!! Make sure it is valid at all the call sites
3924 void ext4_discard_preallocations(struct inode
*inode
)
3926 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3927 struct super_block
*sb
= inode
->i_sb
;
3928 struct buffer_head
*bitmap_bh
= NULL
;
3929 struct ext4_prealloc_space
*pa
, *tmp
;
3930 ext4_group_t group
= 0;
3931 struct list_head list
;
3932 struct ext4_buddy e4b
;
3935 if (!S_ISREG(inode
->i_mode
)) {
3936 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3940 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3941 trace_ext4_discard_preallocations(inode
);
3943 INIT_LIST_HEAD(&list
);
3946 /* first, collect all pa's in the inode */
3947 spin_lock(&ei
->i_prealloc_lock
);
3948 while (!list_empty(&ei
->i_prealloc_list
)) {
3949 pa
= list_entry(ei
->i_prealloc_list
.next
,
3950 struct ext4_prealloc_space
, pa_inode_list
);
3951 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3952 spin_lock(&pa
->pa_lock
);
3953 if (atomic_read(&pa
->pa_count
)) {
3954 /* this shouldn't happen often - nobody should
3955 * use preallocation while we're discarding it */
3956 spin_unlock(&pa
->pa_lock
);
3957 spin_unlock(&ei
->i_prealloc_lock
);
3958 ext4_msg(sb
, KERN_ERR
,
3959 "uh-oh! used pa while discarding");
3961 schedule_timeout_uninterruptible(HZ
);
3965 if (pa
->pa_deleted
== 0) {
3967 spin_unlock(&pa
->pa_lock
);
3968 list_del_rcu(&pa
->pa_inode_list
);
3969 list_add(&pa
->u
.pa_tmp_list
, &list
);
3973 /* someone is deleting pa right now */
3974 spin_unlock(&pa
->pa_lock
);
3975 spin_unlock(&ei
->i_prealloc_lock
);
3977 /* we have to wait here because pa_deleted
3978 * doesn't mean pa is already unlinked from
3979 * the list. as we might be called from
3980 * ->clear_inode() the inode will get freed
3981 * and concurrent thread which is unlinking
3982 * pa from inode's list may access already
3983 * freed memory, bad-bad-bad */
3985 /* XXX: if this happens too often, we can
3986 * add a flag to force wait only in case
3987 * of ->clear_inode(), but not in case of
3988 * regular truncate */
3989 schedule_timeout_uninterruptible(HZ
);
3992 spin_unlock(&ei
->i_prealloc_lock
);
3994 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3995 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3996 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
3998 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4000 ext4_error(sb
, "Error loading buddy information for %u",
4005 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4006 if (bitmap_bh
== NULL
) {
4007 ext4_error(sb
, "Error reading block bitmap for %u",
4009 ext4_mb_unload_buddy(&e4b
);
4013 ext4_lock_group(sb
, group
);
4014 list_del(&pa
->pa_group_list
);
4015 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4016 ext4_unlock_group(sb
, group
);
4018 ext4_mb_unload_buddy(&e4b
);
4021 list_del(&pa
->u
.pa_tmp_list
);
4022 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4026 #ifdef CONFIG_EXT4_DEBUG
4027 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4029 struct super_block
*sb
= ac
->ac_sb
;
4030 ext4_group_t ngroups
, i
;
4032 if (!ext4_mballoc_debug
||
4033 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
4036 ext4_msg(ac
->ac_sb
, KERN_ERR
, "Can't allocate:"
4037 " Allocation context details:");
4038 ext4_msg(ac
->ac_sb
, KERN_ERR
, "status %d flags %d",
4039 ac
->ac_status
, ac
->ac_flags
);
4040 ext4_msg(ac
->ac_sb
, KERN_ERR
, "orig %lu/%lu/%lu@%lu, "
4041 "goal %lu/%lu/%lu@%lu, "
4042 "best %lu/%lu/%lu@%lu cr %d",
4043 (unsigned long)ac
->ac_o_ex
.fe_group
,
4044 (unsigned long)ac
->ac_o_ex
.fe_start
,
4045 (unsigned long)ac
->ac_o_ex
.fe_len
,
4046 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4047 (unsigned long)ac
->ac_g_ex
.fe_group
,
4048 (unsigned long)ac
->ac_g_ex
.fe_start
,
4049 (unsigned long)ac
->ac_g_ex
.fe_len
,
4050 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4051 (unsigned long)ac
->ac_b_ex
.fe_group
,
4052 (unsigned long)ac
->ac_b_ex
.fe_start
,
4053 (unsigned long)ac
->ac_b_ex
.fe_len
,
4054 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4055 (int)ac
->ac_criteria
);
4056 ext4_msg(ac
->ac_sb
, KERN_ERR
, "%d found", ac
->ac_found
);
4057 ext4_msg(ac
->ac_sb
, KERN_ERR
, "groups: ");
4058 ngroups
= ext4_get_groups_count(sb
);
4059 for (i
= 0; i
< ngroups
; i
++) {
4060 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4061 struct ext4_prealloc_space
*pa
;
4062 ext4_grpblk_t start
;
4063 struct list_head
*cur
;
4064 ext4_lock_group(sb
, i
);
4065 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4066 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4068 spin_lock(&pa
->pa_lock
);
4069 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4071 spin_unlock(&pa
->pa_lock
);
4072 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
4075 ext4_unlock_group(sb
, i
);
4077 if (grp
->bb_free
== 0)
4079 printk(KERN_ERR
"%u: %d/%d \n",
4080 i
, grp
->bb_free
, grp
->bb_fragments
);
4082 printk(KERN_ERR
"\n");
4085 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4092 * We use locality group preallocation for small size file. The size of the
4093 * file is determined by the current size or the resulting size after
4094 * allocation which ever is larger
4096 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4098 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4100 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4101 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4104 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4107 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4110 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4111 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4114 if ((size
== isize
) &&
4115 !ext4_fs_is_busy(sbi
) &&
4116 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
4117 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4121 if (sbi
->s_mb_group_prealloc
<= 0) {
4122 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4126 /* don't use group allocation for large files */
4127 size
= max(size
, isize
);
4128 if (size
> sbi
->s_mb_stream_request
) {
4129 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4133 BUG_ON(ac
->ac_lg
!= NULL
);
4135 * locality group prealloc space are per cpu. The reason for having
4136 * per cpu locality group is to reduce the contention between block
4137 * request from multiple CPUs.
4139 ac
->ac_lg
= raw_cpu_ptr(sbi
->s_locality_groups
);
4141 /* we're going to use group allocation */
4142 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4144 /* serialize all allocations in the group */
4145 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4148 static noinline_for_stack
int
4149 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4150 struct ext4_allocation_request
*ar
)
4152 struct super_block
*sb
= ar
->inode
->i_sb
;
4153 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4154 struct ext4_super_block
*es
= sbi
->s_es
;
4158 ext4_grpblk_t block
;
4160 /* we can't allocate > group size */
4163 /* just a dirty hack to filter too big requests */
4164 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4165 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4167 /* start searching from the goal */
4169 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4170 goal
>= ext4_blocks_count(es
))
4171 goal
= le32_to_cpu(es
->s_first_data_block
);
4172 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4174 /* set up allocation goals */
4175 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4176 ac
->ac_status
= AC_STATUS_CONTINUE
;
4178 ac
->ac_inode
= ar
->inode
;
4179 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4180 ac
->ac_o_ex
.fe_group
= group
;
4181 ac
->ac_o_ex
.fe_start
= block
;
4182 ac
->ac_o_ex
.fe_len
= len
;
4183 ac
->ac_g_ex
= ac
->ac_o_ex
;
4184 ac
->ac_flags
= ar
->flags
;
4186 /* we have to define context: we'll we work with a file or
4187 * locality group. this is a policy, actually */
4188 ext4_mb_group_or_file(ac
);
4190 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4191 "left: %u/%u, right %u/%u to %swritable\n",
4192 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4193 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4194 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4195 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4196 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4201 static noinline_for_stack
void
4202 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4203 struct ext4_locality_group
*lg
,
4204 int order
, int total_entries
)
4206 ext4_group_t group
= 0;
4207 struct ext4_buddy e4b
;
4208 struct list_head discard_list
;
4209 struct ext4_prealloc_space
*pa
, *tmp
;
4211 mb_debug(1, "discard locality group preallocation\n");
4213 INIT_LIST_HEAD(&discard_list
);
4215 spin_lock(&lg
->lg_prealloc_lock
);
4216 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4218 spin_lock(&pa
->pa_lock
);
4219 if (atomic_read(&pa
->pa_count
)) {
4221 * This is the pa that we just used
4222 * for block allocation. So don't
4225 spin_unlock(&pa
->pa_lock
);
4228 if (pa
->pa_deleted
) {
4229 spin_unlock(&pa
->pa_lock
);
4232 /* only lg prealloc space */
4233 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4235 /* seems this one can be freed ... */
4237 spin_unlock(&pa
->pa_lock
);
4239 list_del_rcu(&pa
->pa_inode_list
);
4240 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4243 if (total_entries
<= 5) {
4245 * we want to keep only 5 entries
4246 * allowing it to grow to 8. This
4247 * mak sure we don't call discard
4248 * soon for this list.
4253 spin_unlock(&lg
->lg_prealloc_lock
);
4255 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4257 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4258 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4259 ext4_error(sb
, "Error loading buddy information for %u",
4263 ext4_lock_group(sb
, group
);
4264 list_del(&pa
->pa_group_list
);
4265 ext4_mb_release_group_pa(&e4b
, pa
);
4266 ext4_unlock_group(sb
, group
);
4268 ext4_mb_unload_buddy(&e4b
);
4269 list_del(&pa
->u
.pa_tmp_list
);
4270 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4275 * We have incremented pa_count. So it cannot be freed at this
4276 * point. Also we hold lg_mutex. So no parallel allocation is
4277 * possible from this lg. That means pa_free cannot be updated.
4279 * A parallel ext4_mb_discard_group_preallocations is possible.
4280 * which can cause the lg_prealloc_list to be updated.
4283 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4285 int order
, added
= 0, lg_prealloc_count
= 1;
4286 struct super_block
*sb
= ac
->ac_sb
;
4287 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4288 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4290 order
= fls(pa
->pa_free
) - 1;
4291 if (order
> PREALLOC_TB_SIZE
- 1)
4292 /* The max size of hash table is PREALLOC_TB_SIZE */
4293 order
= PREALLOC_TB_SIZE
- 1;
4294 /* Add the prealloc space to lg */
4295 spin_lock(&lg
->lg_prealloc_lock
);
4296 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4298 spin_lock(&tmp_pa
->pa_lock
);
4299 if (tmp_pa
->pa_deleted
) {
4300 spin_unlock(&tmp_pa
->pa_lock
);
4303 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4304 /* Add to the tail of the previous entry */
4305 list_add_tail_rcu(&pa
->pa_inode_list
,
4306 &tmp_pa
->pa_inode_list
);
4309 * we want to count the total
4310 * number of entries in the list
4313 spin_unlock(&tmp_pa
->pa_lock
);
4314 lg_prealloc_count
++;
4317 list_add_tail_rcu(&pa
->pa_inode_list
,
4318 &lg
->lg_prealloc_list
[order
]);
4319 spin_unlock(&lg
->lg_prealloc_lock
);
4321 /* Now trim the list to be not more than 8 elements */
4322 if (lg_prealloc_count
> 8) {
4323 ext4_mb_discard_lg_preallocations(sb
, lg
,
4324 order
, lg_prealloc_count
);
4331 * release all resource we used in allocation
4333 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4335 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4336 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4338 if (pa
->pa_type
== MB_GROUP_PA
) {
4339 /* see comment in ext4_mb_use_group_pa() */
4340 spin_lock(&pa
->pa_lock
);
4341 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4342 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4343 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4344 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4345 spin_unlock(&pa
->pa_lock
);
4350 * We want to add the pa to the right bucket.
4351 * Remove it from the list and while adding
4352 * make sure the list to which we are adding
4355 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4356 spin_lock(pa
->pa_obj_lock
);
4357 list_del_rcu(&pa
->pa_inode_list
);
4358 spin_unlock(pa
->pa_obj_lock
);
4359 ext4_mb_add_n_trim(ac
);
4361 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4363 if (ac
->ac_bitmap_page
)
4364 page_cache_release(ac
->ac_bitmap_page
);
4365 if (ac
->ac_buddy_page
)
4366 page_cache_release(ac
->ac_buddy_page
);
4367 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4368 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4369 ext4_mb_collect_stats(ac
);
4373 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4375 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4379 trace_ext4_mb_discard_preallocations(sb
, needed
);
4380 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4381 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4390 * Main entry point into mballoc to allocate blocks
4391 * it tries to use preallocation first, then falls back
4392 * to usual allocation
4394 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4395 struct ext4_allocation_request
*ar
, int *errp
)
4398 struct ext4_allocation_context
*ac
= NULL
;
4399 struct ext4_sb_info
*sbi
;
4400 struct super_block
*sb
;
4401 ext4_fsblk_t block
= 0;
4402 unsigned int inquota
= 0;
4403 unsigned int reserv_clstrs
= 0;
4406 sb
= ar
->inode
->i_sb
;
4409 trace_ext4_request_blocks(ar
);
4411 /* Allow to use superuser reservation for quota file */
4412 if (IS_NOQUOTA(ar
->inode
))
4413 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4415 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0) {
4416 /* Without delayed allocation we need to verify
4417 * there is enough free blocks to do block allocation
4418 * and verify allocation doesn't exceed the quota limits.
4421 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4423 /* let others to free the space */
4425 ar
->len
= ar
->len
>> 1;
4431 reserv_clstrs
= ar
->len
;
4432 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4433 dquot_alloc_block_nofail(ar
->inode
,
4434 EXT4_C2B(sbi
, ar
->len
));
4437 dquot_alloc_block(ar
->inode
,
4438 EXT4_C2B(sbi
, ar
->len
))) {
4440 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4451 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4458 *errp
= ext4_mb_initialize_context(ac
, ar
);
4464 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4465 if (!ext4_mb_use_preallocated(ac
)) {
4466 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4467 ext4_mb_normalize_request(ac
, ar
);
4469 /* allocate space in core */
4470 *errp
= ext4_mb_regular_allocator(ac
);
4472 goto discard_and_exit
;
4474 /* as we've just preallocated more space than
4475 * user requested originally, we store allocated
4476 * space in a special descriptor */
4477 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4478 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4479 *errp
= ext4_mb_new_preallocation(ac
);
4482 ext4_discard_allocated_blocks(ac
);
4486 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4487 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4488 if (*errp
== -EAGAIN
) {
4490 * drop the reference that we took
4491 * in ext4_mb_use_best_found
4493 ext4_mb_release_context(ac
);
4494 ac
->ac_b_ex
.fe_group
= 0;
4495 ac
->ac_b_ex
.fe_start
= 0;
4496 ac
->ac_b_ex
.fe_len
= 0;
4497 ac
->ac_status
= AC_STATUS_CONTINUE
;
4500 ext4_discard_allocated_blocks(ac
);
4503 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4504 ar
->len
= ac
->ac_b_ex
.fe_len
;
4507 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4515 ac
->ac_b_ex
.fe_len
= 0;
4517 ext4_mb_show_ac(ac
);
4519 ext4_mb_release_context(ac
);
4522 kmem_cache_free(ext4_ac_cachep
, ac
);
4523 if (inquota
&& ar
->len
< inquota
)
4524 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4526 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0)
4527 /* release all the reserved blocks if non delalloc */
4528 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4532 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4538 * We can merge two free data extents only if the physical blocks
4539 * are contiguous, AND the extents were freed by the same transaction,
4540 * AND the blocks are associated with the same group.
4542 static int can_merge(struct ext4_free_data
*entry1
,
4543 struct ext4_free_data
*entry2
)
4545 if ((entry1
->efd_tid
== entry2
->efd_tid
) &&
4546 (entry1
->efd_group
== entry2
->efd_group
) &&
4547 ((entry1
->efd_start_cluster
+ entry1
->efd_count
) == entry2
->efd_start_cluster
))
4552 static noinline_for_stack
int
4553 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4554 struct ext4_free_data
*new_entry
)
4556 ext4_group_t group
= e4b
->bd_group
;
4557 ext4_grpblk_t cluster
;
4558 struct ext4_free_data
*entry
;
4559 struct ext4_group_info
*db
= e4b
->bd_info
;
4560 struct super_block
*sb
= e4b
->bd_sb
;
4561 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4562 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4563 struct rb_node
*parent
= NULL
, *new_node
;
4565 BUG_ON(!ext4_handle_valid(handle
));
4566 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4567 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4569 new_node
= &new_entry
->efd_node
;
4570 cluster
= new_entry
->efd_start_cluster
;
4573 /* first free block exent. We need to
4574 protect buddy cache from being freed,
4575 * otherwise we'll refresh it from
4576 * on-disk bitmap and lose not-yet-available
4578 page_cache_get(e4b
->bd_buddy_page
);
4579 page_cache_get(e4b
->bd_bitmap_page
);
4583 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
4584 if (cluster
< entry
->efd_start_cluster
)
4586 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
4587 n
= &(*n
)->rb_right
;
4589 ext4_grp_locked_error(sb
, group
, 0,
4590 ext4_group_first_block_no(sb
, group
) +
4591 EXT4_C2B(sbi
, cluster
),
4592 "Block already on to-be-freed list");
4597 rb_link_node(new_node
, parent
, n
);
4598 rb_insert_color(new_node
, &db
->bb_free_root
);
4600 /* Now try to see the extent can be merged to left and right */
4601 node
= rb_prev(new_node
);
4603 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4604 if (can_merge(entry
, new_entry
) &&
4605 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4606 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4607 new_entry
->efd_count
+= entry
->efd_count
;
4608 rb_erase(node
, &(db
->bb_free_root
));
4609 kmem_cache_free(ext4_free_data_cachep
, entry
);
4613 node
= rb_next(new_node
);
4615 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4616 if (can_merge(new_entry
, entry
) &&
4617 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4618 new_entry
->efd_count
+= entry
->efd_count
;
4619 rb_erase(node
, &(db
->bb_free_root
));
4620 kmem_cache_free(ext4_free_data_cachep
, entry
);
4623 /* Add the extent to transaction's private list */
4624 ext4_journal_callback_add(handle
, ext4_free_data_callback
,
4625 &new_entry
->efd_jce
);
4630 * ext4_free_blocks() -- Free given blocks and update quota
4631 * @handle: handle for this transaction
4633 * @block: start physical block to free
4634 * @count: number of blocks to count
4635 * @flags: flags used by ext4_free_blocks
4637 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4638 struct buffer_head
*bh
, ext4_fsblk_t block
,
4639 unsigned long count
, int flags
)
4641 struct buffer_head
*bitmap_bh
= NULL
;
4642 struct super_block
*sb
= inode
->i_sb
;
4643 struct ext4_group_desc
*gdp
;
4644 unsigned int overflow
;
4646 struct buffer_head
*gd_bh
;
4647 ext4_group_t block_group
;
4648 struct ext4_sb_info
*sbi
;
4649 struct ext4_buddy e4b
;
4650 unsigned int count_clusters
;
4657 BUG_ON(block
!= bh
->b_blocknr
);
4659 block
= bh
->b_blocknr
;
4663 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4664 !ext4_data_block_valid(sbi
, block
, count
)) {
4665 ext4_error(sb
, "Freeing blocks not in datazone - "
4666 "block = %llu, count = %lu", block
, count
);
4670 ext4_debug("freeing block %llu\n", block
);
4671 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4673 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4674 struct buffer_head
*tbh
= bh
;
4677 BUG_ON(bh
&& (count
> 1));
4679 for (i
= 0; i
< count
; i
++) {
4682 tbh
= sb_find_get_block(inode
->i_sb
,
4686 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4687 inode
, tbh
, block
+ i
);
4692 * We need to make sure we don't reuse the freed block until
4693 * after the transaction is committed, which we can do by
4694 * treating the block as metadata, below. We make an
4695 * exception if the inode is to be written in writeback mode
4696 * since writeback mode has weak data consistency guarantees.
4698 if (!ext4_should_writeback_data(inode
))
4699 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4702 * If the extent to be freed does not begin on a cluster
4703 * boundary, we need to deal with partial clusters at the
4704 * beginning and end of the extent. Normally we will free
4705 * blocks at the beginning or the end unless we are explicitly
4706 * requested to avoid doing so.
4708 overflow
= EXT4_PBLK_COFF(sbi
, block
);
4710 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4711 overflow
= sbi
->s_cluster_ratio
- overflow
;
4713 if (count
> overflow
)
4722 overflow
= EXT4_LBLK_COFF(sbi
, count
);
4724 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4725 if (count
> overflow
)
4730 count
+= sbi
->s_cluster_ratio
- overflow
;
4735 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4737 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4738 ext4_get_group_info(sb
, block_group
))))
4742 * Check to see if we are freeing blocks across a group
4745 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4746 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4747 EXT4_BLOCKS_PER_GROUP(sb
);
4750 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
4751 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4756 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4762 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4763 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4764 in_range(block
, ext4_inode_table(sb
, gdp
),
4765 EXT4_SB(sb
)->s_itb_per_group
) ||
4766 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4767 EXT4_SB(sb
)->s_itb_per_group
)) {
4769 ext4_error(sb
, "Freeing blocks in system zone - "
4770 "Block = %llu, count = %lu", block
, count
);
4771 /* err = 0. ext4_std_error should be a no op */
4775 BUFFER_TRACE(bitmap_bh
, "getting write access");
4776 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4781 * We are about to modify some metadata. Call the journal APIs
4782 * to unshare ->b_data if a currently-committing transaction is
4785 BUFFER_TRACE(gd_bh
, "get_write_access");
4786 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4789 #ifdef AGGRESSIVE_CHECK
4792 for (i
= 0; i
< count_clusters
; i
++)
4793 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4796 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4798 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4802 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4803 struct ext4_free_data
*new_entry
;
4805 * blocks being freed are metadata. these blocks shouldn't
4806 * be used until this transaction is committed
4808 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4811 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
,
4812 GFP_NOFS
|__GFP_NOFAIL
);
4813 new_entry
->efd_start_cluster
= bit
;
4814 new_entry
->efd_group
= block_group
;
4815 new_entry
->efd_count
= count_clusters
;
4816 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
4818 ext4_lock_group(sb
, block_group
);
4819 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4820 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4822 /* need to update group_info->bb_free and bitmap
4823 * with group lock held. generate_buddy look at
4824 * them with group lock_held
4826 if (test_opt(sb
, DISCARD
)) {
4827 err
= ext4_issue_discard(sb
, block_group
, bit
, count
);
4828 if (err
&& err
!= -EOPNOTSUPP
)
4829 ext4_msg(sb
, KERN_WARNING
, "discard request in"
4830 " group:%d block:%d count:%lu failed"
4831 " with %d", block_group
, bit
, count
,
4834 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
4836 ext4_lock_group(sb
, block_group
);
4837 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4838 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4841 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4842 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4843 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
4844 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
4845 ext4_unlock_group(sb
, block_group
);
4847 if (sbi
->s_log_groups_per_flex
) {
4848 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4849 atomic64_add(count_clusters
,
4850 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4853 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4854 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4855 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4857 ext4_mb_unload_buddy(&e4b
);
4859 /* We dirtied the bitmap block */
4860 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4861 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4863 /* And the group descriptor block */
4864 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4865 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4869 if (overflow
&& !err
) {
4877 ext4_std_error(sb
, err
);
4882 * ext4_group_add_blocks() -- Add given blocks to an existing group
4883 * @handle: handle to this transaction
4885 * @block: start physical block to add to the block group
4886 * @count: number of blocks to free
4888 * This marks the blocks as free in the bitmap and buddy.
4890 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4891 ext4_fsblk_t block
, unsigned long count
)
4893 struct buffer_head
*bitmap_bh
= NULL
;
4894 struct buffer_head
*gd_bh
;
4895 ext4_group_t block_group
;
4898 struct ext4_group_desc
*desc
;
4899 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4900 struct ext4_buddy e4b
;
4901 int err
= 0, ret
, blk_free_count
;
4902 ext4_grpblk_t blocks_freed
;
4904 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4909 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4911 * Check to see if we are freeing blocks across a group
4914 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4915 ext4_warning(sb
, "too much blocks added to group %u\n",
4921 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4927 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4933 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4934 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4935 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4936 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4937 sbi
->s_itb_per_group
)) {
4938 ext4_error(sb
, "Adding blocks in system zones - "
4939 "Block = %llu, count = %lu",
4945 BUFFER_TRACE(bitmap_bh
, "getting write access");
4946 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4951 * We are about to modify some metadata. Call the journal APIs
4952 * to unshare ->b_data if a currently-committing transaction is
4955 BUFFER_TRACE(gd_bh
, "get_write_access");
4956 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4960 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4961 BUFFER_TRACE(bitmap_bh
, "clear bit");
4962 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4963 ext4_error(sb
, "bit already cleared for block %llu",
4964 (ext4_fsblk_t
)(block
+ i
));
4965 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4971 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4976 * need to update group_info->bb_free and bitmap
4977 * with group lock held. generate_buddy look at
4978 * them with group lock_held
4980 ext4_lock_group(sb
, block_group
);
4981 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4982 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4983 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
4984 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
4985 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
4986 ext4_group_desc_csum_set(sb
, block_group
, desc
);
4987 ext4_unlock_group(sb
, block_group
);
4988 percpu_counter_add(&sbi
->s_freeclusters_counter
,
4989 EXT4_NUM_B2C(sbi
, blocks_freed
));
4991 if (sbi
->s_log_groups_per_flex
) {
4992 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4993 atomic64_add(EXT4_NUM_B2C(sbi
, blocks_freed
),
4994 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4997 ext4_mb_unload_buddy(&e4b
);
4999 /* We dirtied the bitmap block */
5000 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5001 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5003 /* And the group descriptor block */
5004 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5005 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5011 ext4_std_error(sb
, err
);
5016 * ext4_trim_extent -- function to TRIM one single free extent in the group
5017 * @sb: super block for the file system
5018 * @start: starting block of the free extent in the alloc. group
5019 * @count: number of blocks to TRIM
5020 * @group: alloc. group we are working with
5021 * @e4b: ext4 buddy for the group
5023 * Trim "count" blocks starting at "start" in the "group". To assure that no
5024 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5025 * be called with under the group lock.
5027 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5028 ext4_group_t group
, struct ext4_buddy
*e4b
)
5032 struct ext4_free_extent ex
;
5035 trace_ext4_trim_extent(sb
, group
, start
, count
);
5037 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5039 ex
.fe_start
= start
;
5040 ex
.fe_group
= group
;
5044 * Mark blocks used, so no one can reuse them while
5047 mb_mark_used(e4b
, &ex
);
5048 ext4_unlock_group(sb
, group
);
5049 ret
= ext4_issue_discard(sb
, group
, start
, count
);
5050 ext4_lock_group(sb
, group
);
5051 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5056 * ext4_trim_all_free -- function to trim all free space in alloc. group
5057 * @sb: super block for file system
5058 * @group: group to be trimmed
5059 * @start: first group block to examine
5060 * @max: last group block to examine
5061 * @minblocks: minimum extent block count
5063 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5064 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5068 * ext4_trim_all_free walks through group's block bitmap searching for free
5069 * extents. When the free extent is found, mark it as used in group buddy
5070 * bitmap. Then issue a TRIM command on this extent and free the extent in
5071 * the group buddy bitmap. This is done until whole group is scanned.
5073 static ext4_grpblk_t
5074 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5075 ext4_grpblk_t start
, ext4_grpblk_t max
,
5076 ext4_grpblk_t minblocks
)
5079 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5080 struct ext4_buddy e4b
;
5083 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5085 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5087 ext4_error(sb
, "Error in loading buddy "
5088 "information for %u", group
);
5091 bitmap
= e4b
.bd_bitmap
;
5093 ext4_lock_group(sb
, group
);
5094 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5095 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5098 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5099 e4b
.bd_info
->bb_first_free
: start
;
5101 while (start
<= max
) {
5102 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5105 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5107 if ((next
- start
) >= minblocks
) {
5108 ret
= ext4_trim_extent(sb
, start
,
5109 next
- start
, group
, &e4b
);
5110 if (ret
&& ret
!= -EOPNOTSUPP
)
5113 count
+= next
- start
;
5115 free_count
+= next
- start
;
5118 if (fatal_signal_pending(current
)) {
5119 count
= -ERESTARTSYS
;
5123 if (need_resched()) {
5124 ext4_unlock_group(sb
, group
);
5126 ext4_lock_group(sb
, group
);
5129 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5135 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5138 ext4_unlock_group(sb
, group
);
5139 ext4_mb_unload_buddy(&e4b
);
5141 ext4_debug("trimmed %d blocks in the group %d\n",
5148 * ext4_trim_fs() -- trim ioctl handle function
5149 * @sb: superblock for filesystem
5150 * @range: fstrim_range structure
5152 * start: First Byte to trim
5153 * len: number of Bytes to trim from start
5154 * minlen: minimum extent length in Bytes
5155 * ext4_trim_fs goes through all allocation groups containing Bytes from
5156 * start to start+len. For each such a group ext4_trim_all_free function
5157 * is invoked to trim all free space.
5159 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5161 struct ext4_group_info
*grp
;
5162 ext4_group_t group
, first_group
, last_group
;
5163 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5164 uint64_t start
, end
, minlen
, trimmed
= 0;
5165 ext4_fsblk_t first_data_blk
=
5166 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5167 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5170 start
= range
->start
>> sb
->s_blocksize_bits
;
5171 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5172 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5173 range
->minlen
>> sb
->s_blocksize_bits
);
5175 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5176 start
>= max_blks
||
5177 range
->len
< sb
->s_blocksize
)
5179 if (end
>= max_blks
)
5181 if (end
<= first_data_blk
)
5183 if (start
< first_data_blk
)
5184 start
= first_data_blk
;
5186 /* Determine first and last group to examine based on start and end */
5187 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5188 &first_group
, &first_cluster
);
5189 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5190 &last_group
, &last_cluster
);
5192 /* end now represents the last cluster to discard in this group */
5193 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5195 for (group
= first_group
; group
<= last_group
; group
++) {
5196 grp
= ext4_get_group_info(sb
, group
);
5197 /* We only do this if the grp has never been initialized */
5198 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5199 ret
= ext4_mb_init_group(sb
, group
);
5205 * For all the groups except the last one, last cluster will
5206 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5207 * change it for the last group, note that last_cluster is
5208 * already computed earlier by ext4_get_group_no_and_offset()
5210 if (group
== last_group
)
5213 if (grp
->bb_free
>= minlen
) {
5214 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5224 * For every group except the first one, we are sure
5225 * that the first cluster to discard will be cluster #0.
5231 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5234 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;