gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blobe6798ca34928774eb5e59279960f04704e10f489
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
147 * The regular allocator (using the buddy cache) supports a few tunables.
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
281 * Logic in few words:
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
309 * - discard inode's preallocations:
313 * Locking rules
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
320 * Paths:
321 * - new pa
322 * object
323 * group
325 * - find and use pa:
326 * pa
328 * - release consumed pa:
329 * pa
330 * group
331 * object
333 * - generate in-core bitmap:
334 * group
335 * pa
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
386 static inline int mb_test_bit(int bit, void *addr)
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
396 static inline void mb_set_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
402 static inline void mb_clear_bit(int bit, void *addr)
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
427 static inline int mb_find_next_bit(void *addr, int max, int start)
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 char *bb;
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 return bb;
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
468 int i;
469 struct super_block *sb = e4b->bd_sb;
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 int i;
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
528 return;
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
533 return;
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 return;
539 #endif
541 #ifdef AGGRESSIVE_CHECK
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
551 } while (0)
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
585 count = 0;
586 for (i = 0; i < max; i++) {
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
597 continue;
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
609 count++;
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
624 continue;
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 return 0;
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned int border;
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 border = 2 << sb->s_blocksize_bits;
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
694 len -= chunk;
695 first += chunk;
700 * Cache the order of the largest free extent we have available in this block
701 * group.
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 int i;
707 int bits;
709 grp->bb_largest_free_order = -1; /* uninit */
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 struct ext4_sb_info *sbi = EXT4_SB(sb);
726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 ext4_grpblk_t i = 0;
728 ext4_grpblk_t first;
729 ext4_grpblk_t len;
730 unsigned free = 0;
731 unsigned fragments = 0;
732 unsigned long long period = get_cycles();
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i = mb_find_next_zero_bit(bitmap, max, 0);
737 grp->bb_first_free = i;
738 while (i < max) {
739 fragments++;
740 first = i;
741 i = mb_find_next_bit(bitmap, max, i);
742 len = i - first;
743 free += len;
744 if (len > 1)
745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 else
747 grp->bb_counters[0]++;
748 if (i < max)
749 i = mb_find_next_zero_bit(bitmap, max, i);
751 grp->bb_fragments = fragments;
753 if (free != grp->bb_free) {
754 ext4_grp_locked_error(sb, group, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
757 free, grp->bb_free);
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
762 grp->bb_free = free;
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 percpu_counter_sub(&sbi->s_freeclusters_counter,
765 grp->bb_free);
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 mb_set_largest_free_order(sb, grp);
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772 period = get_cycles() - period;
773 spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 EXT4_SB(sb)->s_mb_buddies_generated++;
775 EXT4_SB(sb)->s_mb_generation_time += period;
776 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 int count;
782 int order = 1;
783 void *buddy;
785 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 ext4_set_bits(buddy, 0, count);
788 e4b->bd_info->bb_fragments = 0;
789 memset(e4b->bd_info->bb_counters, 0,
790 sizeof(*e4b->bd_info->bb_counters) *
791 (e4b->bd_sb->s_blocksize_bits + 2));
793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 e4b->bd_bitmap, e4b->bd_group);
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
803 * { page }
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
817 static int ext4_mb_init_cache(struct page *page, char *incore)
819 ext4_group_t ngroups;
820 int blocksize;
821 int blocks_per_page;
822 int groups_per_page;
823 int err = 0;
824 int i;
825 ext4_group_t first_group, group;
826 int first_block;
827 struct super_block *sb;
828 struct buffer_head *bhs;
829 struct buffer_head **bh = NULL;
830 struct inode *inode;
831 char *data;
832 char *bitmap;
833 struct ext4_group_info *grinfo;
835 mb_debug(1, "init page %lu\n", page->index);
837 inode = page->mapping->host;
838 sb = inode->i_sb;
839 ngroups = ext4_get_groups_count(sb);
840 blocksize = 1 << inode->i_blkbits;
841 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
843 groups_per_page = blocks_per_page >> 1;
844 if (groups_per_page == 0)
845 groups_per_page = 1;
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page > 1) {
849 i = sizeof(struct buffer_head *) * groups_per_page;
850 bh = kzalloc(i, GFP_NOFS);
851 if (bh == NULL) {
852 err = -ENOMEM;
853 goto out;
855 } else
856 bh = &bhs;
858 first_group = page->index * blocks_per_page / 2;
860 /* read all groups the page covers into the cache */
861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 if (group >= ngroups)
863 break;
865 grinfo = ext4_get_group_info(sb, group);
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 bh[i] = NULL;
874 continue;
876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 err = -ENOMEM;
878 goto out;
880 mb_debug(1, "read bitmap for group %u\n", group);
883 /* wait for I/O completion */
884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 err = -EIO;
887 goto out;
891 first_block = page->index * blocks_per_page;
892 for (i = 0; i < blocks_per_page; i++) {
893 group = (first_block + i) >> 1;
894 if (group >= ngroups)
895 break;
897 if (!bh[group - first_group])
898 /* skip initialized uptodate buddy */
899 continue;
902 * data carry information regarding this
903 * particular group in the format specified
904 * above
907 data = page_address(page) + (i * blocksize);
908 bitmap = bh[group - first_group]->b_data;
911 * We place the buddy block and bitmap block
912 * close together
914 if ((first_block + i) & 1) {
915 /* this is block of buddy */
916 BUG_ON(incore == NULL);
917 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 group, page->index, i * blocksize);
919 trace_ext4_mb_buddy_bitmap_load(sb, group);
920 grinfo = ext4_get_group_info(sb, group);
921 grinfo->bb_fragments = 0;
922 memset(grinfo->bb_counters, 0,
923 sizeof(*grinfo->bb_counters) *
924 (sb->s_blocksize_bits+2));
926 * incore got set to the group block bitmap below
928 ext4_lock_group(sb, group);
929 /* init the buddy */
930 memset(data, 0xff, blocksize);
931 ext4_mb_generate_buddy(sb, data, incore, group);
932 ext4_unlock_group(sb, group);
933 incore = NULL;
934 } else {
935 /* this is block of bitmap */
936 BUG_ON(incore != NULL);
937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 group, page->index, i * blocksize);
939 trace_ext4_mb_bitmap_load(sb, group);
941 /* see comments in ext4_mb_put_pa() */
942 ext4_lock_group(sb, group);
943 memcpy(data, bitmap, blocksize);
945 /* mark all preallocated blks used in in-core bitmap */
946 ext4_mb_generate_from_pa(sb, data, group);
947 ext4_mb_generate_from_freelist(sb, data, group);
948 ext4_unlock_group(sb, group);
950 /* set incore so that the buddy information can be
951 * generated using this
953 incore = data;
956 SetPageUptodate(page);
958 out:
959 if (bh) {
960 for (i = 0; i < groups_per_page; i++)
961 brelse(bh[i]);
962 if (bh != &bhs)
963 kfree(bh);
965 return err;
969 * Lock the buddy and bitmap pages. This make sure other parallel init_group
970 * on the same buddy page doesn't happen whild holding the buddy page lock.
971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 ext4_group_t group, struct ext4_buddy *e4b)
977 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 int block, pnum, poff;
979 int blocks_per_page;
980 struct page *page;
982 e4b->bd_buddy_page = NULL;
983 e4b->bd_bitmap_page = NULL;
985 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
987 * the buddy cache inode stores the block bitmap
988 * and buddy information in consecutive blocks.
989 * So for each group we need two blocks.
991 block = group * 2;
992 pnum = block / blocks_per_page;
993 poff = block % blocks_per_page;
994 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 if (!page)
996 return -ENOMEM;
997 BUG_ON(page->mapping != inode->i_mapping);
998 e4b->bd_bitmap_page = page;
999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1001 if (blocks_per_page >= 2) {
1002 /* buddy and bitmap are on the same page */
1003 return 0;
1006 block++;
1007 pnum = block / blocks_per_page;
1008 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 if (!page)
1010 return -ENOMEM;
1011 BUG_ON(page->mapping != inode->i_mapping);
1012 e4b->bd_buddy_page = page;
1013 return 0;
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1018 if (e4b->bd_bitmap_page) {
1019 unlock_page(e4b->bd_bitmap_page);
1020 page_cache_release(e4b->bd_bitmap_page);
1022 if (e4b->bd_buddy_page) {
1023 unlock_page(e4b->bd_buddy_page);
1024 page_cache_release(e4b->bd_buddy_page);
1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1030 * block group lock of all groups for this page; do not hold the BG lock when
1031 * calling this routine!
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1037 struct ext4_group_info *this_grp;
1038 struct ext4_buddy e4b;
1039 struct page *page;
1040 int ret = 0;
1042 might_sleep();
1043 mb_debug(1, "init group %u\n", group);
1044 this_grp = ext4_get_group_info(sb, group);
1046 * This ensures that we don't reinit the buddy cache
1047 * page which map to the group from which we are already
1048 * allocating. If we are looking at the buddy cache we would
1049 * have taken a reference using ext4_mb_load_buddy and that
1050 * would have pinned buddy page to page cache.
1051 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 * page accessed.
1054 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1057 * somebody initialized the group
1058 * return without doing anything
1060 goto err;
1063 page = e4b.bd_bitmap_page;
1064 ret = ext4_mb_init_cache(page, NULL);
1065 if (ret)
1066 goto err;
1067 if (!PageUptodate(page)) {
1068 ret = -EIO;
1069 goto err;
1072 if (e4b.bd_buddy_page == NULL) {
1074 * If both the bitmap and buddy are in
1075 * the same page we don't need to force
1076 * init the buddy
1078 ret = 0;
1079 goto err;
1081 /* init buddy cache */
1082 page = e4b.bd_buddy_page;
1083 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 if (ret)
1085 goto err;
1086 if (!PageUptodate(page)) {
1087 ret = -EIO;
1088 goto err;
1090 err:
1091 ext4_mb_put_buddy_page_lock(&e4b);
1092 return ret;
1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1097 * block group lock of all groups for this page; do not hold the BG lock when
1098 * calling this routine!
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 struct ext4_buddy *e4b)
1104 int blocks_per_page;
1105 int block;
1106 int pnum;
1107 int poff;
1108 struct page *page;
1109 int ret;
1110 struct ext4_group_info *grp;
1111 struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 struct inode *inode = sbi->s_buddy_cache;
1114 might_sleep();
1115 mb_debug(1, "load group %u\n", group);
1117 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 grp = ext4_get_group_info(sb, group);
1120 e4b->bd_blkbits = sb->s_blocksize_bits;
1121 e4b->bd_info = grp;
1122 e4b->bd_sb = sb;
1123 e4b->bd_group = group;
1124 e4b->bd_buddy_page = NULL;
1125 e4b->bd_bitmap_page = NULL;
1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1129 * we need full data about the group
1130 * to make a good selection
1132 ret = ext4_mb_init_group(sb, group);
1133 if (ret)
1134 return ret;
1138 * the buddy cache inode stores the block bitmap
1139 * and buddy information in consecutive blocks.
1140 * So for each group we need two blocks.
1142 block = group * 2;
1143 pnum = block / blocks_per_page;
1144 poff = block % blocks_per_page;
1146 /* we could use find_or_create_page(), but it locks page
1147 * what we'd like to avoid in fast path ... */
1148 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 if (page == NULL || !PageUptodate(page)) {
1150 if (page)
1152 * drop the page reference and try
1153 * to get the page with lock. If we
1154 * are not uptodate that implies
1155 * somebody just created the page but
1156 * is yet to initialize the same. So
1157 * wait for it to initialize.
1159 page_cache_release(page);
1160 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 if (page) {
1162 BUG_ON(page->mapping != inode->i_mapping);
1163 if (!PageUptodate(page)) {
1164 ret = ext4_mb_init_cache(page, NULL);
1165 if (ret) {
1166 unlock_page(page);
1167 goto err;
1169 mb_cmp_bitmaps(e4b, page_address(page) +
1170 (poff * sb->s_blocksize));
1172 unlock_page(page);
1175 if (page == NULL) {
1176 ret = -ENOMEM;
1177 goto err;
1179 if (!PageUptodate(page)) {
1180 ret = -EIO;
1181 goto err;
1184 /* Pages marked accessed already */
1185 e4b->bd_bitmap_page = page;
1186 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1188 block++;
1189 pnum = block / blocks_per_page;
1190 poff = block % blocks_per_page;
1192 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 if (page == NULL || !PageUptodate(page)) {
1194 if (page)
1195 page_cache_release(page);
1196 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 if (page) {
1198 BUG_ON(page->mapping != inode->i_mapping);
1199 if (!PageUptodate(page)) {
1200 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 if (ret) {
1202 unlock_page(page);
1203 goto err;
1206 unlock_page(page);
1209 if (page == NULL) {
1210 ret = -ENOMEM;
1211 goto err;
1213 if (!PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1218 /* Pages marked accessed already */
1219 e4b->bd_buddy_page = page;
1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1222 BUG_ON(e4b->bd_bitmap_page == NULL);
1223 BUG_ON(e4b->bd_buddy_page == NULL);
1225 return 0;
1227 err:
1228 if (page)
1229 page_cache_release(page);
1230 if (e4b->bd_bitmap_page)
1231 page_cache_release(e4b->bd_bitmap_page);
1232 if (e4b->bd_buddy_page)
1233 page_cache_release(e4b->bd_buddy_page);
1234 e4b->bd_buddy = NULL;
1235 e4b->bd_bitmap = NULL;
1236 return ret;
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1241 if (e4b->bd_bitmap_page)
1242 page_cache_release(e4b->bd_bitmap_page);
1243 if (e4b->bd_buddy_page)
1244 page_cache_release(e4b->bd_buddy_page);
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1250 int order = 1;
1251 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1252 void *bb;
1254 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1255 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1257 bb = e4b->bd_buddy;
1258 while (order <= e4b->bd_blkbits + 1) {
1259 block = block >> 1;
1260 if (!mb_test_bit(block, bb)) {
1261 /* this block is part of buddy of order 'order' */
1262 return order;
1264 bb += bb_incr;
1265 bb_incr >>= 1;
1266 order++;
1268 return 0;
1271 static void mb_clear_bits(void *bm, int cur, int len)
1273 __u32 *addr;
1275 len = cur + len;
1276 while (cur < len) {
1277 if ((cur & 31) == 0 && (len - cur) >= 32) {
1278 /* fast path: clear whole word at once */
1279 addr = bm + (cur >> 3);
1280 *addr = 0;
1281 cur += 32;
1282 continue;
1284 mb_clear_bit(cur, bm);
1285 cur++;
1289 /* clear bits in given range
1290 * will return first found zero bit if any, -1 otherwise
1292 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1294 __u32 *addr;
1295 int zero_bit = -1;
1297 len = cur + len;
1298 while (cur < len) {
1299 if ((cur & 31) == 0 && (len - cur) >= 32) {
1300 /* fast path: clear whole word at once */
1301 addr = bm + (cur >> 3);
1302 if (*addr != (__u32)(-1) && zero_bit == -1)
1303 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1304 *addr = 0;
1305 cur += 32;
1306 continue;
1308 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1309 zero_bit = cur;
1310 cur++;
1313 return zero_bit;
1316 void ext4_set_bits(void *bm, int cur, int len)
1318 __u32 *addr;
1320 len = cur + len;
1321 while (cur < len) {
1322 if ((cur & 31) == 0 && (len - cur) >= 32) {
1323 /* fast path: set whole word at once */
1324 addr = bm + (cur >> 3);
1325 *addr = 0xffffffff;
1326 cur += 32;
1327 continue;
1329 mb_set_bit(cur, bm);
1330 cur++;
1335 * _________________________________________________________________ */
1337 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1339 if (mb_test_bit(*bit + side, bitmap)) {
1340 mb_clear_bit(*bit, bitmap);
1341 (*bit) -= side;
1342 return 1;
1344 else {
1345 (*bit) += side;
1346 mb_set_bit(*bit, bitmap);
1347 return -1;
1351 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1353 int max;
1354 int order = 1;
1355 void *buddy = mb_find_buddy(e4b, order, &max);
1357 while (buddy) {
1358 void *buddy2;
1360 /* Bits in range [first; last] are known to be set since
1361 * corresponding blocks were allocated. Bits in range
1362 * (first; last) will stay set because they form buddies on
1363 * upper layer. We just deal with borders if they don't
1364 * align with upper layer and then go up.
1365 * Releasing entire group is all about clearing
1366 * single bit of highest order buddy.
1369 /* Example:
1370 * ---------------------------------
1371 * | 1 | 1 | 1 | 1 |
1372 * ---------------------------------
1373 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1374 * ---------------------------------
1375 * 0 1 2 3 4 5 6 7
1376 * \_____________________/
1378 * Neither [1] nor [6] is aligned to above layer.
1379 * Left neighbour [0] is free, so mark it busy,
1380 * decrease bb_counters and extend range to
1381 * [0; 6]
1382 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1383 * mark [6] free, increase bb_counters and shrink range to
1384 * [0; 5].
1385 * Then shift range to [0; 2], go up and do the same.
1389 if (first & 1)
1390 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1391 if (!(last & 1))
1392 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1393 if (first > last)
1394 break;
1395 order++;
1397 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1398 mb_clear_bits(buddy, first, last - first + 1);
1399 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1400 break;
1402 first >>= 1;
1403 last >>= 1;
1404 buddy = buddy2;
1408 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1409 int first, int count)
1411 int left_is_free = 0;
1412 int right_is_free = 0;
1413 int block;
1414 int last = first + count - 1;
1415 struct super_block *sb = e4b->bd_sb;
1417 if (WARN_ON(count == 0))
1418 return;
1419 BUG_ON(last >= (sb->s_blocksize << 3));
1420 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1421 /* Don't bother if the block group is corrupt. */
1422 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1423 return;
1425 mb_check_buddy(e4b);
1426 mb_free_blocks_double(inode, e4b, first, count);
1428 e4b->bd_info->bb_free += count;
1429 if (first < e4b->bd_info->bb_first_free)
1430 e4b->bd_info->bb_first_free = first;
1432 /* access memory sequentially: check left neighbour,
1433 * clear range and then check right neighbour
1435 if (first != 0)
1436 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1437 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1438 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1439 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1441 if (unlikely(block != -1)) {
1442 struct ext4_sb_info *sbi = EXT4_SB(sb);
1443 ext4_fsblk_t blocknr;
1445 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1446 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1447 ext4_grp_locked_error(sb, e4b->bd_group,
1448 inode ? inode->i_ino : 0,
1449 blocknr,
1450 "freeing already freed block "
1451 "(bit %u); block bitmap corrupt.",
1452 block);
1453 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1454 percpu_counter_sub(&sbi->s_freeclusters_counter,
1455 e4b->bd_info->bb_free);
1456 /* Mark the block group as corrupt. */
1457 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1458 &e4b->bd_info->bb_state);
1459 mb_regenerate_buddy(e4b);
1460 goto done;
1463 /* let's maintain fragments counter */
1464 if (left_is_free && right_is_free)
1465 e4b->bd_info->bb_fragments--;
1466 else if (!left_is_free && !right_is_free)
1467 e4b->bd_info->bb_fragments++;
1469 /* buddy[0] == bd_bitmap is a special case, so handle
1470 * it right away and let mb_buddy_mark_free stay free of
1471 * zero order checks.
1472 * Check if neighbours are to be coaleasced,
1473 * adjust bitmap bb_counters and borders appropriately.
1475 if (first & 1) {
1476 first += !left_is_free;
1477 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479 if (!(last & 1)) {
1480 last -= !right_is_free;
1481 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1484 if (first <= last)
1485 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487 done:
1488 mb_set_largest_free_order(sb, e4b->bd_info);
1489 mb_check_buddy(e4b);
1492 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1493 int needed, struct ext4_free_extent *ex)
1495 int next = block;
1496 int max, order;
1497 void *buddy;
1499 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1500 BUG_ON(ex == NULL);
1502 buddy = mb_find_buddy(e4b, 0, &max);
1503 BUG_ON(buddy == NULL);
1504 BUG_ON(block >= max);
1505 if (mb_test_bit(block, buddy)) {
1506 ex->fe_len = 0;
1507 ex->fe_start = 0;
1508 ex->fe_group = 0;
1509 return 0;
1512 /* find actual order */
1513 order = mb_find_order_for_block(e4b, block);
1514 block = block >> order;
1516 ex->fe_len = 1 << order;
1517 ex->fe_start = block << order;
1518 ex->fe_group = e4b->bd_group;
1520 /* calc difference from given start */
1521 next = next - ex->fe_start;
1522 ex->fe_len -= next;
1523 ex->fe_start += next;
1525 while (needed > ex->fe_len &&
1526 mb_find_buddy(e4b, order, &max)) {
1528 if (block + 1 >= max)
1529 break;
1531 next = (block + 1) * (1 << order);
1532 if (mb_test_bit(next, e4b->bd_bitmap))
1533 break;
1535 order = mb_find_order_for_block(e4b, next);
1537 block = next >> order;
1538 ex->fe_len += 1 << order;
1541 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1542 return ex->fe_len;
1545 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1547 int ord;
1548 int mlen = 0;
1549 int max = 0;
1550 int cur;
1551 int start = ex->fe_start;
1552 int len = ex->fe_len;
1553 unsigned ret = 0;
1554 int len0 = len;
1555 void *buddy;
1557 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1558 BUG_ON(e4b->bd_group != ex->fe_group);
1559 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1560 mb_check_buddy(e4b);
1561 mb_mark_used_double(e4b, start, len);
1563 e4b->bd_info->bb_free -= len;
1564 if (e4b->bd_info->bb_first_free == start)
1565 e4b->bd_info->bb_first_free += len;
1567 /* let's maintain fragments counter */
1568 if (start != 0)
1569 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1570 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1571 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1572 if (mlen && max)
1573 e4b->bd_info->bb_fragments++;
1574 else if (!mlen && !max)
1575 e4b->bd_info->bb_fragments--;
1577 /* let's maintain buddy itself */
1578 while (len) {
1579 ord = mb_find_order_for_block(e4b, start);
1581 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1582 /* the whole chunk may be allocated at once! */
1583 mlen = 1 << ord;
1584 buddy = mb_find_buddy(e4b, ord, &max);
1585 BUG_ON((start >> ord) >= max);
1586 mb_set_bit(start >> ord, buddy);
1587 e4b->bd_info->bb_counters[ord]--;
1588 start += mlen;
1589 len -= mlen;
1590 BUG_ON(len < 0);
1591 continue;
1594 /* store for history */
1595 if (ret == 0)
1596 ret = len | (ord << 16);
1598 /* we have to split large buddy */
1599 BUG_ON(ord <= 0);
1600 buddy = mb_find_buddy(e4b, ord, &max);
1601 mb_set_bit(start >> ord, buddy);
1602 e4b->bd_info->bb_counters[ord]--;
1604 ord--;
1605 cur = (start >> ord) & ~1U;
1606 buddy = mb_find_buddy(e4b, ord, &max);
1607 mb_clear_bit(cur, buddy);
1608 mb_clear_bit(cur + 1, buddy);
1609 e4b->bd_info->bb_counters[ord]++;
1610 e4b->bd_info->bb_counters[ord]++;
1612 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1614 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1615 mb_check_buddy(e4b);
1617 return ret;
1621 * Must be called under group lock!
1623 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1624 struct ext4_buddy *e4b)
1626 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1627 int ret;
1629 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1630 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1632 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1633 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1634 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1636 /* preallocation can change ac_b_ex, thus we store actually
1637 * allocated blocks for history */
1638 ac->ac_f_ex = ac->ac_b_ex;
1640 ac->ac_status = AC_STATUS_FOUND;
1641 ac->ac_tail = ret & 0xffff;
1642 ac->ac_buddy = ret >> 16;
1645 * take the page reference. We want the page to be pinned
1646 * so that we don't get a ext4_mb_init_cache_call for this
1647 * group until we update the bitmap. That would mean we
1648 * double allocate blocks. The reference is dropped
1649 * in ext4_mb_release_context
1651 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1652 get_page(ac->ac_bitmap_page);
1653 ac->ac_buddy_page = e4b->bd_buddy_page;
1654 get_page(ac->ac_buddy_page);
1655 /* store last allocated for subsequent stream allocation */
1656 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1657 spin_lock(&sbi->s_md_lock);
1658 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1659 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1660 spin_unlock(&sbi->s_md_lock);
1665 * regular allocator, for general purposes allocation
1668 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1669 struct ext4_buddy *e4b,
1670 int finish_group)
1672 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1673 struct ext4_free_extent *bex = &ac->ac_b_ex;
1674 struct ext4_free_extent *gex = &ac->ac_g_ex;
1675 struct ext4_free_extent ex;
1676 int max;
1678 if (ac->ac_status == AC_STATUS_FOUND)
1679 return;
1681 * We don't want to scan for a whole year
1683 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1684 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1685 ac->ac_status = AC_STATUS_BREAK;
1686 return;
1690 * Haven't found good chunk so far, let's continue
1692 if (bex->fe_len < gex->fe_len)
1693 return;
1695 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1696 && bex->fe_group == e4b->bd_group) {
1697 /* recheck chunk's availability - we don't know
1698 * when it was found (within this lock-unlock
1699 * period or not) */
1700 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1701 if (max >= gex->fe_len) {
1702 ext4_mb_use_best_found(ac, e4b);
1703 return;
1709 * The routine checks whether found extent is good enough. If it is,
1710 * then the extent gets marked used and flag is set to the context
1711 * to stop scanning. Otherwise, the extent is compared with the
1712 * previous found extent and if new one is better, then it's stored
1713 * in the context. Later, the best found extent will be used, if
1714 * mballoc can't find good enough extent.
1716 * FIXME: real allocation policy is to be designed yet!
1718 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1719 struct ext4_free_extent *ex,
1720 struct ext4_buddy *e4b)
1722 struct ext4_free_extent *bex = &ac->ac_b_ex;
1723 struct ext4_free_extent *gex = &ac->ac_g_ex;
1725 BUG_ON(ex->fe_len <= 0);
1726 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1727 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1728 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1730 ac->ac_found++;
1733 * The special case - take what you catch first
1735 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1736 *bex = *ex;
1737 ext4_mb_use_best_found(ac, e4b);
1738 return;
1742 * Let's check whether the chuck is good enough
1744 if (ex->fe_len == gex->fe_len) {
1745 *bex = *ex;
1746 ext4_mb_use_best_found(ac, e4b);
1747 return;
1751 * If this is first found extent, just store it in the context
1753 if (bex->fe_len == 0) {
1754 *bex = *ex;
1755 return;
1759 * If new found extent is better, store it in the context
1761 if (bex->fe_len < gex->fe_len) {
1762 /* if the request isn't satisfied, any found extent
1763 * larger than previous best one is better */
1764 if (ex->fe_len > bex->fe_len)
1765 *bex = *ex;
1766 } else if (ex->fe_len > gex->fe_len) {
1767 /* if the request is satisfied, then we try to find
1768 * an extent that still satisfy the request, but is
1769 * smaller than previous one */
1770 if (ex->fe_len < bex->fe_len)
1771 *bex = *ex;
1774 ext4_mb_check_limits(ac, e4b, 0);
1777 static noinline_for_stack
1778 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1779 struct ext4_buddy *e4b)
1781 struct ext4_free_extent ex = ac->ac_b_ex;
1782 ext4_group_t group = ex.fe_group;
1783 int max;
1784 int err;
1786 BUG_ON(ex.fe_len <= 0);
1787 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1788 if (err)
1789 return err;
1791 ext4_lock_group(ac->ac_sb, group);
1792 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1794 if (max > 0) {
1795 ac->ac_b_ex = ex;
1796 ext4_mb_use_best_found(ac, e4b);
1799 ext4_unlock_group(ac->ac_sb, group);
1800 ext4_mb_unload_buddy(e4b);
1802 return 0;
1805 static noinline_for_stack
1806 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1807 struct ext4_buddy *e4b)
1809 ext4_group_t group = ac->ac_g_ex.fe_group;
1810 int max;
1811 int err;
1812 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1813 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1814 struct ext4_free_extent ex;
1816 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1817 return 0;
1818 if (grp->bb_free == 0)
1819 return 0;
1821 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1822 if (err)
1823 return err;
1825 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1826 ext4_mb_unload_buddy(e4b);
1827 return 0;
1830 ext4_lock_group(ac->ac_sb, group);
1831 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1832 ac->ac_g_ex.fe_len, &ex);
1833 ex.fe_logical = 0xDEADFA11; /* debug value */
1835 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1836 ext4_fsblk_t start;
1838 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1839 ex.fe_start;
1840 /* use do_div to get remainder (would be 64-bit modulo) */
1841 if (do_div(start, sbi->s_stripe) == 0) {
1842 ac->ac_found++;
1843 ac->ac_b_ex = ex;
1844 ext4_mb_use_best_found(ac, e4b);
1846 } else if (max >= ac->ac_g_ex.fe_len) {
1847 BUG_ON(ex.fe_len <= 0);
1848 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1849 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1850 ac->ac_found++;
1851 ac->ac_b_ex = ex;
1852 ext4_mb_use_best_found(ac, e4b);
1853 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1854 /* Sometimes, caller may want to merge even small
1855 * number of blocks to an existing extent */
1856 BUG_ON(ex.fe_len <= 0);
1857 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1858 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1859 ac->ac_found++;
1860 ac->ac_b_ex = ex;
1861 ext4_mb_use_best_found(ac, e4b);
1863 ext4_unlock_group(ac->ac_sb, group);
1864 ext4_mb_unload_buddy(e4b);
1866 return 0;
1870 * The routine scans buddy structures (not bitmap!) from given order
1871 * to max order and tries to find big enough chunk to satisfy the req
1873 static noinline_for_stack
1874 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1875 struct ext4_buddy *e4b)
1877 struct super_block *sb = ac->ac_sb;
1878 struct ext4_group_info *grp = e4b->bd_info;
1879 void *buddy;
1880 int i;
1881 int k;
1882 int max;
1884 BUG_ON(ac->ac_2order <= 0);
1885 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1886 if (grp->bb_counters[i] == 0)
1887 continue;
1889 buddy = mb_find_buddy(e4b, i, &max);
1890 BUG_ON(buddy == NULL);
1892 k = mb_find_next_zero_bit(buddy, max, 0);
1893 BUG_ON(k >= max);
1895 ac->ac_found++;
1897 ac->ac_b_ex.fe_len = 1 << i;
1898 ac->ac_b_ex.fe_start = k << i;
1899 ac->ac_b_ex.fe_group = e4b->bd_group;
1901 ext4_mb_use_best_found(ac, e4b);
1903 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1905 if (EXT4_SB(sb)->s_mb_stats)
1906 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1908 break;
1913 * The routine scans the group and measures all found extents.
1914 * In order to optimize scanning, caller must pass number of
1915 * free blocks in the group, so the routine can know upper limit.
1917 static noinline_for_stack
1918 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1919 struct ext4_buddy *e4b)
1921 struct super_block *sb = ac->ac_sb;
1922 void *bitmap = e4b->bd_bitmap;
1923 struct ext4_free_extent ex;
1924 int i;
1925 int free;
1927 free = e4b->bd_info->bb_free;
1928 BUG_ON(free <= 0);
1930 i = e4b->bd_info->bb_first_free;
1932 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1933 i = mb_find_next_zero_bit(bitmap,
1934 EXT4_CLUSTERS_PER_GROUP(sb), i);
1935 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1937 * IF we have corrupt bitmap, we won't find any
1938 * free blocks even though group info says we
1939 * we have free blocks
1941 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1942 "%d free clusters as per "
1943 "group info. But bitmap says 0",
1944 free);
1945 break;
1948 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1949 BUG_ON(ex.fe_len <= 0);
1950 if (free < ex.fe_len) {
1951 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1952 "%d free clusters as per "
1953 "group info. But got %d blocks",
1954 free, ex.fe_len);
1956 * The number of free blocks differs. This mostly
1957 * indicate that the bitmap is corrupt. So exit
1958 * without claiming the space.
1960 break;
1962 ex.fe_logical = 0xDEADC0DE; /* debug value */
1963 ext4_mb_measure_extent(ac, &ex, e4b);
1965 i += ex.fe_len;
1966 free -= ex.fe_len;
1969 ext4_mb_check_limits(ac, e4b, 1);
1973 * This is a special case for storages like raid5
1974 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1976 static noinline_for_stack
1977 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1978 struct ext4_buddy *e4b)
1980 struct super_block *sb = ac->ac_sb;
1981 struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 void *bitmap = e4b->bd_bitmap;
1983 struct ext4_free_extent ex;
1984 ext4_fsblk_t first_group_block;
1985 ext4_fsblk_t a;
1986 ext4_grpblk_t i;
1987 int max;
1989 BUG_ON(sbi->s_stripe == 0);
1991 /* find first stripe-aligned block in group */
1992 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1994 a = first_group_block + sbi->s_stripe - 1;
1995 do_div(a, sbi->s_stripe);
1996 i = (a * sbi->s_stripe) - first_group_block;
1998 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1999 if (!mb_test_bit(i, bitmap)) {
2000 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2001 if (max >= sbi->s_stripe) {
2002 ac->ac_found++;
2003 ex.fe_logical = 0xDEADF00D; /* debug value */
2004 ac->ac_b_ex = ex;
2005 ext4_mb_use_best_found(ac, e4b);
2006 break;
2009 i += sbi->s_stripe;
2013 /* This is now called BEFORE we load the buddy bitmap. */
2014 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2015 ext4_group_t group, int cr)
2017 unsigned free, fragments;
2018 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2019 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2021 BUG_ON(cr < 0 || cr >= 4);
2023 free = grp->bb_free;
2024 if (free == 0)
2025 return 0;
2026 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2027 return 0;
2029 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2030 return 0;
2032 /* We only do this if the grp has never been initialized */
2033 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2034 int ret = ext4_mb_init_group(ac->ac_sb, group);
2035 if (ret)
2036 return 0;
2039 fragments = grp->bb_fragments;
2040 if (fragments == 0)
2041 return 0;
2043 switch (cr) {
2044 case 0:
2045 BUG_ON(ac->ac_2order == 0);
2047 /* Avoid using the first bg of a flexgroup for data files */
2048 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2049 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2050 ((group % flex_size) == 0))
2051 return 0;
2053 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2054 (free / fragments) >= ac->ac_g_ex.fe_len)
2055 return 1;
2057 if (grp->bb_largest_free_order < ac->ac_2order)
2058 return 0;
2060 return 1;
2061 case 1:
2062 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2063 return 1;
2064 break;
2065 case 2:
2066 if (free >= ac->ac_g_ex.fe_len)
2067 return 1;
2068 break;
2069 case 3:
2070 return 1;
2071 default:
2072 BUG();
2075 return 0;
2078 static noinline_for_stack int
2079 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2081 ext4_group_t ngroups, group, i;
2082 int cr;
2083 int err = 0;
2084 struct ext4_sb_info *sbi;
2085 struct super_block *sb;
2086 struct ext4_buddy e4b;
2088 sb = ac->ac_sb;
2089 sbi = EXT4_SB(sb);
2090 ngroups = ext4_get_groups_count(sb);
2091 /* non-extent files are limited to low blocks/groups */
2092 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2093 ngroups = sbi->s_blockfile_groups;
2095 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2097 /* first, try the goal */
2098 err = ext4_mb_find_by_goal(ac, &e4b);
2099 if (err || ac->ac_status == AC_STATUS_FOUND)
2100 goto out;
2102 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2103 goto out;
2106 * ac->ac2_order is set only if the fe_len is a power of 2
2107 * if ac2_order is set we also set criteria to 0 so that we
2108 * try exact allocation using buddy.
2110 i = fls(ac->ac_g_ex.fe_len);
2111 ac->ac_2order = 0;
2113 * We search using buddy data only if the order of the request
2114 * is greater than equal to the sbi_s_mb_order2_reqs
2115 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2117 if (i >= sbi->s_mb_order2_reqs) {
2119 * This should tell if fe_len is exactly power of 2
2121 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2122 ac->ac_2order = i - 1;
2125 /* if stream allocation is enabled, use global goal */
2126 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2127 /* TBD: may be hot point */
2128 spin_lock(&sbi->s_md_lock);
2129 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2130 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2131 spin_unlock(&sbi->s_md_lock);
2134 /* Let's just scan groups to find more-less suitable blocks */
2135 cr = ac->ac_2order ? 0 : 1;
2137 * cr == 0 try to get exact allocation,
2138 * cr == 3 try to get anything
2140 repeat:
2141 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2142 ac->ac_criteria = cr;
2144 * searching for the right group start
2145 * from the goal value specified
2147 group = ac->ac_g_ex.fe_group;
2149 for (i = 0; i < ngroups; group++, i++) {
2150 cond_resched();
2152 * Artificially restricted ngroups for non-extent
2153 * files makes group > ngroups possible on first loop.
2155 if (group >= ngroups)
2156 group = 0;
2158 /* This now checks without needing the buddy page */
2159 if (!ext4_mb_good_group(ac, group, cr))
2160 continue;
2162 err = ext4_mb_load_buddy(sb, group, &e4b);
2163 if (err)
2164 goto out;
2166 ext4_lock_group(sb, group);
2169 * We need to check again after locking the
2170 * block group
2172 if (!ext4_mb_good_group(ac, group, cr)) {
2173 ext4_unlock_group(sb, group);
2174 ext4_mb_unload_buddy(&e4b);
2175 continue;
2178 ac->ac_groups_scanned++;
2179 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2180 ext4_mb_simple_scan_group(ac, &e4b);
2181 else if (cr == 1 && sbi->s_stripe &&
2182 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2183 ext4_mb_scan_aligned(ac, &e4b);
2184 else
2185 ext4_mb_complex_scan_group(ac, &e4b);
2187 ext4_unlock_group(sb, group);
2188 ext4_mb_unload_buddy(&e4b);
2190 if (ac->ac_status != AC_STATUS_CONTINUE)
2191 break;
2195 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2196 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2198 * We've been searching too long. Let's try to allocate
2199 * the best chunk we've found so far
2202 ext4_mb_try_best_found(ac, &e4b);
2203 if (ac->ac_status != AC_STATUS_FOUND) {
2205 * Someone more lucky has already allocated it.
2206 * The only thing we can do is just take first
2207 * found block(s)
2208 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2210 ac->ac_b_ex.fe_group = 0;
2211 ac->ac_b_ex.fe_start = 0;
2212 ac->ac_b_ex.fe_len = 0;
2213 ac->ac_status = AC_STATUS_CONTINUE;
2214 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2215 cr = 3;
2216 atomic_inc(&sbi->s_mb_lost_chunks);
2217 goto repeat;
2220 out:
2221 return err;
2224 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2226 struct super_block *sb = seq->private;
2227 ext4_group_t group;
2229 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2230 return NULL;
2231 group = *pos + 1;
2232 return (void *) ((unsigned long) group);
2235 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2237 struct super_block *sb = seq->private;
2238 ext4_group_t group;
2240 ++*pos;
2241 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2242 return NULL;
2243 group = *pos + 1;
2244 return (void *) ((unsigned long) group);
2247 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2249 struct super_block *sb = seq->private;
2250 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2251 int i;
2252 int err, buddy_loaded = 0;
2253 struct ext4_buddy e4b;
2254 struct ext4_group_info *grinfo;
2255 struct sg {
2256 struct ext4_group_info info;
2257 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2258 } sg;
2260 group--;
2261 if (group == 0)
2262 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2263 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2264 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2265 "group", "free", "frags", "first",
2266 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2267 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2269 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2270 sizeof(struct ext4_group_info);
2271 grinfo = ext4_get_group_info(sb, group);
2272 /* Load the group info in memory only if not already loaded. */
2273 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2274 err = ext4_mb_load_buddy(sb, group, &e4b);
2275 if (err) {
2276 seq_printf(seq, "#%-5u: I/O error\n", group);
2277 return 0;
2279 buddy_loaded = 1;
2282 memcpy(&sg, ext4_get_group_info(sb, group), i);
2284 if (buddy_loaded)
2285 ext4_mb_unload_buddy(&e4b);
2287 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2288 sg.info.bb_fragments, sg.info.bb_first_free);
2289 for (i = 0; i <= 13; i++)
2290 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2291 sg.info.bb_counters[i] : 0);
2292 seq_printf(seq, " ]\n");
2294 return 0;
2297 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2301 static const struct seq_operations ext4_mb_seq_groups_ops = {
2302 .start = ext4_mb_seq_groups_start,
2303 .next = ext4_mb_seq_groups_next,
2304 .stop = ext4_mb_seq_groups_stop,
2305 .show = ext4_mb_seq_groups_show,
2308 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2310 struct super_block *sb = PDE_DATA(inode);
2311 int rc;
2313 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2314 if (rc == 0) {
2315 struct seq_file *m = file->private_data;
2316 m->private = sb;
2318 return rc;
2322 static const struct file_operations ext4_mb_seq_groups_fops = {
2323 .owner = THIS_MODULE,
2324 .open = ext4_mb_seq_groups_open,
2325 .read = seq_read,
2326 .llseek = seq_lseek,
2327 .release = seq_release,
2330 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2332 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2333 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2335 BUG_ON(!cachep);
2336 return cachep;
2340 * Allocate the top-level s_group_info array for the specified number
2341 * of groups
2343 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2345 struct ext4_sb_info *sbi = EXT4_SB(sb);
2346 unsigned size;
2347 struct ext4_group_info ***new_groupinfo;
2349 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2350 EXT4_DESC_PER_BLOCK_BITS(sb);
2351 if (size <= sbi->s_group_info_size)
2352 return 0;
2354 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2355 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2356 if (!new_groupinfo) {
2357 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2358 return -ENOMEM;
2360 if (sbi->s_group_info) {
2361 memcpy(new_groupinfo, sbi->s_group_info,
2362 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2363 kvfree(sbi->s_group_info);
2365 sbi->s_group_info = new_groupinfo;
2366 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2367 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2368 sbi->s_group_info_size);
2369 return 0;
2372 /* Create and initialize ext4_group_info data for the given group. */
2373 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2374 struct ext4_group_desc *desc)
2376 int i;
2377 int metalen = 0;
2378 struct ext4_sb_info *sbi = EXT4_SB(sb);
2379 struct ext4_group_info **meta_group_info;
2380 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2383 * First check if this group is the first of a reserved block.
2384 * If it's true, we have to allocate a new table of pointers
2385 * to ext4_group_info structures
2387 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2388 metalen = sizeof(*meta_group_info) <<
2389 EXT4_DESC_PER_BLOCK_BITS(sb);
2390 meta_group_info = kmalloc(metalen, GFP_NOFS);
2391 if (meta_group_info == NULL) {
2392 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2393 "for a buddy group");
2394 goto exit_meta_group_info;
2396 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2397 meta_group_info;
2400 meta_group_info =
2401 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2402 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2404 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2405 if (meta_group_info[i] == NULL) {
2406 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2407 goto exit_group_info;
2409 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2410 &(meta_group_info[i]->bb_state));
2413 * initialize bb_free to be able to skip
2414 * empty groups without initialization
2416 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2417 meta_group_info[i]->bb_free =
2418 ext4_free_clusters_after_init(sb, group, desc);
2419 } else {
2420 meta_group_info[i]->bb_free =
2421 ext4_free_group_clusters(sb, desc);
2424 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2425 init_rwsem(&meta_group_info[i]->alloc_sem);
2426 meta_group_info[i]->bb_free_root = RB_ROOT;
2427 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2429 #ifdef DOUBLE_CHECK
2431 struct buffer_head *bh;
2432 meta_group_info[i]->bb_bitmap =
2433 kmalloc(sb->s_blocksize, GFP_NOFS);
2434 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2435 bh = ext4_read_block_bitmap(sb, group);
2436 BUG_ON(bh == NULL);
2437 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2438 sb->s_blocksize);
2439 put_bh(bh);
2441 #endif
2443 return 0;
2445 exit_group_info:
2446 /* If a meta_group_info table has been allocated, release it now */
2447 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2448 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2449 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2451 exit_meta_group_info:
2452 return -ENOMEM;
2453 } /* ext4_mb_add_groupinfo */
2455 static int ext4_mb_init_backend(struct super_block *sb)
2457 ext4_group_t ngroups = ext4_get_groups_count(sb);
2458 ext4_group_t i;
2459 struct ext4_sb_info *sbi = EXT4_SB(sb);
2460 int err;
2461 struct ext4_group_desc *desc;
2462 struct kmem_cache *cachep;
2464 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2465 if (err)
2466 return err;
2468 sbi->s_buddy_cache = new_inode(sb);
2469 if (sbi->s_buddy_cache == NULL) {
2470 ext4_msg(sb, KERN_ERR, "can't get new inode");
2471 goto err_freesgi;
2473 /* To avoid potentially colliding with an valid on-disk inode number,
2474 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2475 * not in the inode hash, so it should never be found by iget(), but
2476 * this will avoid confusion if it ever shows up during debugging. */
2477 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2478 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2479 for (i = 0; i < ngroups; i++) {
2480 desc = ext4_get_group_desc(sb, i, NULL);
2481 if (desc == NULL) {
2482 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2483 goto err_freebuddy;
2485 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2486 goto err_freebuddy;
2489 return 0;
2491 err_freebuddy:
2492 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2493 while (i-- > 0)
2494 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2495 i = sbi->s_group_info_size;
2496 while (i-- > 0)
2497 kfree(sbi->s_group_info[i]);
2498 iput(sbi->s_buddy_cache);
2499 err_freesgi:
2500 kvfree(sbi->s_group_info);
2501 return -ENOMEM;
2504 static void ext4_groupinfo_destroy_slabs(void)
2506 int i;
2508 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2509 if (ext4_groupinfo_caches[i])
2510 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2511 ext4_groupinfo_caches[i] = NULL;
2515 static int ext4_groupinfo_create_slab(size_t size)
2517 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2518 int slab_size;
2519 int blocksize_bits = order_base_2(size);
2520 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2521 struct kmem_cache *cachep;
2523 if (cache_index >= NR_GRPINFO_CACHES)
2524 return -EINVAL;
2526 if (unlikely(cache_index < 0))
2527 cache_index = 0;
2529 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2530 if (ext4_groupinfo_caches[cache_index]) {
2531 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2532 return 0; /* Already created */
2535 slab_size = offsetof(struct ext4_group_info,
2536 bb_counters[blocksize_bits + 2]);
2538 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2539 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2540 NULL);
2542 ext4_groupinfo_caches[cache_index] = cachep;
2544 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2545 if (!cachep) {
2546 printk(KERN_EMERG
2547 "EXT4-fs: no memory for groupinfo slab cache\n");
2548 return -ENOMEM;
2551 return 0;
2554 int ext4_mb_init(struct super_block *sb)
2556 struct ext4_sb_info *sbi = EXT4_SB(sb);
2557 unsigned i, j;
2558 unsigned offset, offset_incr;
2559 unsigned max;
2560 int ret;
2562 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2564 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2565 if (sbi->s_mb_offsets == NULL) {
2566 ret = -ENOMEM;
2567 goto out;
2570 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2571 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2572 if (sbi->s_mb_maxs == NULL) {
2573 ret = -ENOMEM;
2574 goto out;
2577 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2578 if (ret < 0)
2579 goto out;
2581 /* order 0 is regular bitmap */
2582 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2583 sbi->s_mb_offsets[0] = 0;
2585 i = 1;
2586 offset = 0;
2587 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2588 max = sb->s_blocksize << 2;
2589 do {
2590 sbi->s_mb_offsets[i] = offset;
2591 sbi->s_mb_maxs[i] = max;
2592 offset += offset_incr;
2593 offset_incr = offset_incr >> 1;
2594 max = max >> 1;
2595 i++;
2596 } while (i <= sb->s_blocksize_bits + 1);
2598 spin_lock_init(&sbi->s_md_lock);
2599 spin_lock_init(&sbi->s_bal_lock);
2601 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2602 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2603 sbi->s_mb_stats = MB_DEFAULT_STATS;
2604 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2605 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2607 * The default group preallocation is 512, which for 4k block
2608 * sizes translates to 2 megabytes. However for bigalloc file
2609 * systems, this is probably too big (i.e, if the cluster size
2610 * is 1 megabyte, then group preallocation size becomes half a
2611 * gigabyte!). As a default, we will keep a two megabyte
2612 * group pralloc size for cluster sizes up to 64k, and after
2613 * that, we will force a minimum group preallocation size of
2614 * 32 clusters. This translates to 8 megs when the cluster
2615 * size is 256k, and 32 megs when the cluster size is 1 meg,
2616 * which seems reasonable as a default.
2618 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2619 sbi->s_cluster_bits, 32);
2621 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2622 * to the lowest multiple of s_stripe which is bigger than
2623 * the s_mb_group_prealloc as determined above. We want
2624 * the preallocation size to be an exact multiple of the
2625 * RAID stripe size so that preallocations don't fragment
2626 * the stripes.
2628 if (sbi->s_stripe > 1) {
2629 sbi->s_mb_group_prealloc = roundup(
2630 sbi->s_mb_group_prealloc, sbi->s_stripe);
2633 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2634 if (sbi->s_locality_groups == NULL) {
2635 ret = -ENOMEM;
2636 goto out;
2638 for_each_possible_cpu(i) {
2639 struct ext4_locality_group *lg;
2640 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2641 mutex_init(&lg->lg_mutex);
2642 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2643 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2644 spin_lock_init(&lg->lg_prealloc_lock);
2647 /* init file for buddy data */
2648 ret = ext4_mb_init_backend(sb);
2649 if (ret != 0)
2650 goto out_free_locality_groups;
2652 if (sbi->s_proc)
2653 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2654 &ext4_mb_seq_groups_fops, sb);
2656 return 0;
2658 out_free_locality_groups:
2659 free_percpu(sbi->s_locality_groups);
2660 sbi->s_locality_groups = NULL;
2661 out:
2662 kfree(sbi->s_mb_offsets);
2663 sbi->s_mb_offsets = NULL;
2664 kfree(sbi->s_mb_maxs);
2665 sbi->s_mb_maxs = NULL;
2666 return ret;
2669 /* need to called with the ext4 group lock held */
2670 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2672 struct ext4_prealloc_space *pa;
2673 struct list_head *cur, *tmp;
2674 int count = 0;
2676 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2677 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2678 list_del(&pa->pa_group_list);
2679 count++;
2680 kmem_cache_free(ext4_pspace_cachep, pa);
2682 if (count)
2683 mb_debug(1, "mballoc: %u PAs left\n", count);
2687 int ext4_mb_release(struct super_block *sb)
2689 ext4_group_t ngroups = ext4_get_groups_count(sb);
2690 ext4_group_t i;
2691 int num_meta_group_infos;
2692 struct ext4_group_info *grinfo;
2693 struct ext4_sb_info *sbi = EXT4_SB(sb);
2694 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2696 if (sbi->s_proc)
2697 remove_proc_entry("mb_groups", sbi->s_proc);
2699 if (sbi->s_group_info) {
2700 for (i = 0; i < ngroups; i++) {
2701 grinfo = ext4_get_group_info(sb, i);
2702 #ifdef DOUBLE_CHECK
2703 kfree(grinfo->bb_bitmap);
2704 #endif
2705 ext4_lock_group(sb, i);
2706 ext4_mb_cleanup_pa(grinfo);
2707 ext4_unlock_group(sb, i);
2708 kmem_cache_free(cachep, grinfo);
2710 num_meta_group_infos = (ngroups +
2711 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2712 EXT4_DESC_PER_BLOCK_BITS(sb);
2713 for (i = 0; i < num_meta_group_infos; i++)
2714 kfree(sbi->s_group_info[i]);
2715 kvfree(sbi->s_group_info);
2717 kfree(sbi->s_mb_offsets);
2718 kfree(sbi->s_mb_maxs);
2719 iput(sbi->s_buddy_cache);
2720 if (sbi->s_mb_stats) {
2721 ext4_msg(sb, KERN_INFO,
2722 "mballoc: %u blocks %u reqs (%u success)",
2723 atomic_read(&sbi->s_bal_allocated),
2724 atomic_read(&sbi->s_bal_reqs),
2725 atomic_read(&sbi->s_bal_success));
2726 ext4_msg(sb, KERN_INFO,
2727 "mballoc: %u extents scanned, %u goal hits, "
2728 "%u 2^N hits, %u breaks, %u lost",
2729 atomic_read(&sbi->s_bal_ex_scanned),
2730 atomic_read(&sbi->s_bal_goals),
2731 atomic_read(&sbi->s_bal_2orders),
2732 atomic_read(&sbi->s_bal_breaks),
2733 atomic_read(&sbi->s_mb_lost_chunks));
2734 ext4_msg(sb, KERN_INFO,
2735 "mballoc: %lu generated and it took %Lu",
2736 sbi->s_mb_buddies_generated,
2737 sbi->s_mb_generation_time);
2738 ext4_msg(sb, KERN_INFO,
2739 "mballoc: %u preallocated, %u discarded",
2740 atomic_read(&sbi->s_mb_preallocated),
2741 atomic_read(&sbi->s_mb_discarded));
2744 free_percpu(sbi->s_locality_groups);
2746 return 0;
2749 static inline int ext4_issue_discard(struct super_block *sb,
2750 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2752 ext4_fsblk_t discard_block;
2754 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2755 ext4_group_first_block_no(sb, block_group));
2756 count = EXT4_C2B(EXT4_SB(sb), count);
2757 trace_ext4_discard_blocks(sb,
2758 (unsigned long long) discard_block, count);
2759 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2763 * This function is called by the jbd2 layer once the commit has finished,
2764 * so we know we can free the blocks that were released with that commit.
2766 static void ext4_free_data_callback(struct super_block *sb,
2767 struct ext4_journal_cb_entry *jce,
2768 int rc)
2770 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2771 struct ext4_buddy e4b;
2772 struct ext4_group_info *db;
2773 int err, count = 0, count2 = 0;
2775 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2776 entry->efd_count, entry->efd_group, entry);
2778 if (test_opt(sb, DISCARD)) {
2779 err = ext4_issue_discard(sb, entry->efd_group,
2780 entry->efd_start_cluster,
2781 entry->efd_count);
2782 if (err && err != -EOPNOTSUPP)
2783 ext4_msg(sb, KERN_WARNING, "discard request in"
2784 " group:%d block:%d count:%d failed"
2785 " with %d", entry->efd_group,
2786 entry->efd_start_cluster,
2787 entry->efd_count, err);
2790 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2791 /* we expect to find existing buddy because it's pinned */
2792 BUG_ON(err != 0);
2795 db = e4b.bd_info;
2796 /* there are blocks to put in buddy to make them really free */
2797 count += entry->efd_count;
2798 count2++;
2799 ext4_lock_group(sb, entry->efd_group);
2800 /* Take it out of per group rb tree */
2801 rb_erase(&entry->efd_node, &(db->bb_free_root));
2802 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2805 * Clear the trimmed flag for the group so that the next
2806 * ext4_trim_fs can trim it.
2807 * If the volume is mounted with -o discard, online discard
2808 * is supported and the free blocks will be trimmed online.
2810 if (!test_opt(sb, DISCARD))
2811 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2813 if (!db->bb_free_root.rb_node) {
2814 /* No more items in the per group rb tree
2815 * balance refcounts from ext4_mb_free_metadata()
2817 page_cache_release(e4b.bd_buddy_page);
2818 page_cache_release(e4b.bd_bitmap_page);
2820 ext4_unlock_group(sb, entry->efd_group);
2821 kmem_cache_free(ext4_free_data_cachep, entry);
2822 ext4_mb_unload_buddy(&e4b);
2824 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2827 int __init ext4_init_mballoc(void)
2829 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2830 SLAB_RECLAIM_ACCOUNT);
2831 if (ext4_pspace_cachep == NULL)
2832 return -ENOMEM;
2834 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2835 SLAB_RECLAIM_ACCOUNT);
2836 if (ext4_ac_cachep == NULL) {
2837 kmem_cache_destroy(ext4_pspace_cachep);
2838 return -ENOMEM;
2841 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2842 SLAB_RECLAIM_ACCOUNT);
2843 if (ext4_free_data_cachep == NULL) {
2844 kmem_cache_destroy(ext4_pspace_cachep);
2845 kmem_cache_destroy(ext4_ac_cachep);
2846 return -ENOMEM;
2848 return 0;
2851 void ext4_exit_mballoc(void)
2854 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2855 * before destroying the slab cache.
2857 rcu_barrier();
2858 kmem_cache_destroy(ext4_pspace_cachep);
2859 kmem_cache_destroy(ext4_ac_cachep);
2860 kmem_cache_destroy(ext4_free_data_cachep);
2861 ext4_groupinfo_destroy_slabs();
2866 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2867 * Returns 0 if success or error code
2869 static noinline_for_stack int
2870 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2871 handle_t *handle, unsigned int reserv_clstrs)
2873 struct buffer_head *bitmap_bh = NULL;
2874 struct ext4_group_desc *gdp;
2875 struct buffer_head *gdp_bh;
2876 struct ext4_sb_info *sbi;
2877 struct super_block *sb;
2878 ext4_fsblk_t block;
2879 int err, len;
2881 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2882 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2884 sb = ac->ac_sb;
2885 sbi = EXT4_SB(sb);
2887 err = -EIO;
2888 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2889 if (!bitmap_bh)
2890 goto out_err;
2892 BUFFER_TRACE(bitmap_bh, "getting write access");
2893 err = ext4_journal_get_write_access(handle, bitmap_bh);
2894 if (err)
2895 goto out_err;
2897 err = -EIO;
2898 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2899 if (!gdp)
2900 goto out_err;
2902 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2903 ext4_free_group_clusters(sb, gdp));
2905 BUFFER_TRACE(gdp_bh, "get_write_access");
2906 err = ext4_journal_get_write_access(handle, gdp_bh);
2907 if (err)
2908 goto out_err;
2910 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2912 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2913 if (!ext4_data_block_valid(sbi, block, len)) {
2914 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2915 "fs metadata", block, block+len);
2916 /* File system mounted not to panic on error
2917 * Fix the bitmap and repeat the block allocation
2918 * We leak some of the blocks here.
2920 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2921 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2922 ac->ac_b_ex.fe_len);
2923 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2924 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2925 if (!err)
2926 err = -EAGAIN;
2927 goto out_err;
2930 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2931 #ifdef AGGRESSIVE_CHECK
2933 int i;
2934 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2935 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2936 bitmap_bh->b_data));
2939 #endif
2940 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2941 ac->ac_b_ex.fe_len);
2942 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2943 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2944 ext4_free_group_clusters_set(sb, gdp,
2945 ext4_free_clusters_after_init(sb,
2946 ac->ac_b_ex.fe_group, gdp));
2948 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2949 ext4_free_group_clusters_set(sb, gdp, len);
2950 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2951 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2953 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2954 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2956 * Now reduce the dirty block count also. Should not go negative
2958 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2959 /* release all the reserved blocks if non delalloc */
2960 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2961 reserv_clstrs);
2963 if (sbi->s_log_groups_per_flex) {
2964 ext4_group_t flex_group = ext4_flex_group(sbi,
2965 ac->ac_b_ex.fe_group);
2966 atomic64_sub(ac->ac_b_ex.fe_len,
2967 &sbi->s_flex_groups[flex_group].free_clusters);
2970 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2971 if (err)
2972 goto out_err;
2973 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2975 out_err:
2976 brelse(bitmap_bh);
2977 return err;
2981 * here we normalize request for locality group
2982 * Group request are normalized to s_mb_group_prealloc, which goes to
2983 * s_strip if we set the same via mount option.
2984 * s_mb_group_prealloc can be configured via
2985 * /sys/fs/ext4/<partition>/mb_group_prealloc
2987 * XXX: should we try to preallocate more than the group has now?
2989 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2991 struct super_block *sb = ac->ac_sb;
2992 struct ext4_locality_group *lg = ac->ac_lg;
2994 BUG_ON(lg == NULL);
2995 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2996 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2997 current->pid, ac->ac_g_ex.fe_len);
3001 * Normalization means making request better in terms of
3002 * size and alignment
3004 static noinline_for_stack void
3005 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3006 struct ext4_allocation_request *ar)
3008 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3009 int bsbits, max;
3010 ext4_lblk_t end;
3011 loff_t size, start_off;
3012 loff_t orig_size __maybe_unused;
3013 ext4_lblk_t start;
3014 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3015 struct ext4_prealloc_space *pa;
3017 /* do normalize only data requests, metadata requests
3018 do not need preallocation */
3019 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3020 return;
3022 /* sometime caller may want exact blocks */
3023 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3024 return;
3026 /* caller may indicate that preallocation isn't
3027 * required (it's a tail, for example) */
3028 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3029 return;
3031 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3032 ext4_mb_normalize_group_request(ac);
3033 return ;
3036 bsbits = ac->ac_sb->s_blocksize_bits;
3038 /* first, let's learn actual file size
3039 * given current request is allocated */
3040 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3041 size = size << bsbits;
3042 if (size < i_size_read(ac->ac_inode))
3043 size = i_size_read(ac->ac_inode);
3044 orig_size = size;
3046 /* max size of free chunks */
3047 max = 2 << bsbits;
3049 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3050 (req <= (size) || max <= (chunk_size))
3052 /* first, try to predict filesize */
3053 /* XXX: should this table be tunable? */
3054 start_off = 0;
3055 if (size <= 16 * 1024) {
3056 size = 16 * 1024;
3057 } else if (size <= 32 * 1024) {
3058 size = 32 * 1024;
3059 } else if (size <= 64 * 1024) {
3060 size = 64 * 1024;
3061 } else if (size <= 128 * 1024) {
3062 size = 128 * 1024;
3063 } else if (size <= 256 * 1024) {
3064 size = 256 * 1024;
3065 } else if (size <= 512 * 1024) {
3066 size = 512 * 1024;
3067 } else if (size <= 1024 * 1024) {
3068 size = 1024 * 1024;
3069 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3070 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3071 (21 - bsbits)) << 21;
3072 size = 2 * 1024 * 1024;
3073 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3074 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3075 (22 - bsbits)) << 22;
3076 size = 4 * 1024 * 1024;
3077 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3078 (8<<20)>>bsbits, max, 8 * 1024)) {
3079 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3080 (23 - bsbits)) << 23;
3081 size = 8 * 1024 * 1024;
3082 } else {
3083 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3084 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3085 ac->ac_o_ex.fe_len) << bsbits;
3087 size = size >> bsbits;
3088 start = start_off >> bsbits;
3090 /* don't cover already allocated blocks in selected range */
3091 if (ar->pleft && start <= ar->lleft) {
3092 size -= ar->lleft + 1 - start;
3093 start = ar->lleft + 1;
3095 if (ar->pright && start + size - 1 >= ar->lright)
3096 size -= start + size - ar->lright;
3098 end = start + size;
3100 /* check we don't cross already preallocated blocks */
3101 rcu_read_lock();
3102 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3103 ext4_lblk_t pa_end;
3105 if (pa->pa_deleted)
3106 continue;
3107 spin_lock(&pa->pa_lock);
3108 if (pa->pa_deleted) {
3109 spin_unlock(&pa->pa_lock);
3110 continue;
3113 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3114 pa->pa_len);
3116 /* PA must not overlap original request */
3117 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3118 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3120 /* skip PAs this normalized request doesn't overlap with */
3121 if (pa->pa_lstart >= end || pa_end <= start) {
3122 spin_unlock(&pa->pa_lock);
3123 continue;
3125 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3127 /* adjust start or end to be adjacent to this pa */
3128 if (pa_end <= ac->ac_o_ex.fe_logical) {
3129 BUG_ON(pa_end < start);
3130 start = pa_end;
3131 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3132 BUG_ON(pa->pa_lstart > end);
3133 end = pa->pa_lstart;
3135 spin_unlock(&pa->pa_lock);
3137 rcu_read_unlock();
3138 size = end - start;
3140 /* XXX: extra loop to check we really don't overlap preallocations */
3141 rcu_read_lock();
3142 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3143 ext4_lblk_t pa_end;
3145 spin_lock(&pa->pa_lock);
3146 if (pa->pa_deleted == 0) {
3147 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3148 pa->pa_len);
3149 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3151 spin_unlock(&pa->pa_lock);
3153 rcu_read_unlock();
3155 if (start + size <= ac->ac_o_ex.fe_logical &&
3156 start > ac->ac_o_ex.fe_logical) {
3157 ext4_msg(ac->ac_sb, KERN_ERR,
3158 "start %lu, size %lu, fe_logical %lu",
3159 (unsigned long) start, (unsigned long) size,
3160 (unsigned long) ac->ac_o_ex.fe_logical);
3161 BUG();
3163 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3165 /* now prepare goal request */
3167 /* XXX: is it better to align blocks WRT to logical
3168 * placement or satisfy big request as is */
3169 ac->ac_g_ex.fe_logical = start;
3170 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3172 /* define goal start in order to merge */
3173 if (ar->pright && (ar->lright == (start + size))) {
3174 /* merge to the right */
3175 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3176 &ac->ac_f_ex.fe_group,
3177 &ac->ac_f_ex.fe_start);
3178 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3180 if (ar->pleft && (ar->lleft + 1 == start)) {
3181 /* merge to the left */
3182 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3183 &ac->ac_f_ex.fe_group,
3184 &ac->ac_f_ex.fe_start);
3185 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3188 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3189 (unsigned) orig_size, (unsigned) start);
3192 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3194 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3196 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3197 atomic_inc(&sbi->s_bal_reqs);
3198 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3199 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3200 atomic_inc(&sbi->s_bal_success);
3201 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3202 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3203 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3204 atomic_inc(&sbi->s_bal_goals);
3205 if (ac->ac_found > sbi->s_mb_max_to_scan)
3206 atomic_inc(&sbi->s_bal_breaks);
3209 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3210 trace_ext4_mballoc_alloc(ac);
3211 else
3212 trace_ext4_mballoc_prealloc(ac);
3216 * Called on failure; free up any blocks from the inode PA for this
3217 * context. We don't need this for MB_GROUP_PA because we only change
3218 * pa_free in ext4_mb_release_context(), but on failure, we've already
3219 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3221 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3223 struct ext4_prealloc_space *pa = ac->ac_pa;
3224 struct ext4_buddy e4b;
3225 int err;
3227 if (pa == NULL) {
3228 if (ac->ac_f_ex.fe_len == 0)
3229 return;
3230 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3231 if (err) {
3233 * This should never happen since we pin the
3234 * pages in the ext4_allocation_context so
3235 * ext4_mb_load_buddy() should never fail.
3237 WARN(1, "mb_load_buddy failed (%d)", err);
3238 return;
3240 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3241 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3242 ac->ac_f_ex.fe_len);
3243 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3244 ext4_mb_unload_buddy(&e4b);
3245 return;
3247 if (pa->pa_type == MB_INODE_PA)
3248 pa->pa_free += ac->ac_b_ex.fe_len;
3252 * use blocks preallocated to inode
3254 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3255 struct ext4_prealloc_space *pa)
3257 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3258 ext4_fsblk_t start;
3259 ext4_fsblk_t end;
3260 int len;
3262 /* found preallocated blocks, use them */
3263 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3264 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3265 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3266 len = EXT4_NUM_B2C(sbi, end - start);
3267 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3268 &ac->ac_b_ex.fe_start);
3269 ac->ac_b_ex.fe_len = len;
3270 ac->ac_status = AC_STATUS_FOUND;
3271 ac->ac_pa = pa;
3273 BUG_ON(start < pa->pa_pstart);
3274 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3275 BUG_ON(pa->pa_free < len);
3276 pa->pa_free -= len;
3278 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3282 * use blocks preallocated to locality group
3284 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3285 struct ext4_prealloc_space *pa)
3287 unsigned int len = ac->ac_o_ex.fe_len;
3289 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3290 &ac->ac_b_ex.fe_group,
3291 &ac->ac_b_ex.fe_start);
3292 ac->ac_b_ex.fe_len = len;
3293 ac->ac_status = AC_STATUS_FOUND;
3294 ac->ac_pa = pa;
3296 /* we don't correct pa_pstart or pa_plen here to avoid
3297 * possible race when the group is being loaded concurrently
3298 * instead we correct pa later, after blocks are marked
3299 * in on-disk bitmap -- see ext4_mb_release_context()
3300 * Other CPUs are prevented from allocating from this pa by lg_mutex
3302 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3306 * Return the prealloc space that have minimal distance
3307 * from the goal block. @cpa is the prealloc
3308 * space that is having currently known minimal distance
3309 * from the goal block.
3311 static struct ext4_prealloc_space *
3312 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3313 struct ext4_prealloc_space *pa,
3314 struct ext4_prealloc_space *cpa)
3316 ext4_fsblk_t cur_distance, new_distance;
3318 if (cpa == NULL) {
3319 atomic_inc(&pa->pa_count);
3320 return pa;
3322 cur_distance = abs(goal_block - cpa->pa_pstart);
3323 new_distance = abs(goal_block - pa->pa_pstart);
3325 if (cur_distance <= new_distance)
3326 return cpa;
3328 /* drop the previous reference */
3329 atomic_dec(&cpa->pa_count);
3330 atomic_inc(&pa->pa_count);
3331 return pa;
3335 * search goal blocks in preallocated space
3337 static noinline_for_stack int
3338 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3340 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3341 int order, i;
3342 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3343 struct ext4_locality_group *lg;
3344 struct ext4_prealloc_space *pa, *cpa = NULL;
3345 ext4_fsblk_t goal_block;
3347 /* only data can be preallocated */
3348 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3349 return 0;
3351 /* first, try per-file preallocation */
3352 rcu_read_lock();
3353 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3355 /* all fields in this condition don't change,
3356 * so we can skip locking for them */
3357 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3358 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3359 EXT4_C2B(sbi, pa->pa_len)))
3360 continue;
3362 /* non-extent files can't have physical blocks past 2^32 */
3363 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3364 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3365 EXT4_MAX_BLOCK_FILE_PHYS))
3366 continue;
3368 /* found preallocated blocks, use them */
3369 spin_lock(&pa->pa_lock);
3370 if (pa->pa_deleted == 0 && pa->pa_free) {
3371 atomic_inc(&pa->pa_count);
3372 ext4_mb_use_inode_pa(ac, pa);
3373 spin_unlock(&pa->pa_lock);
3374 ac->ac_criteria = 10;
3375 rcu_read_unlock();
3376 return 1;
3378 spin_unlock(&pa->pa_lock);
3380 rcu_read_unlock();
3382 /* can we use group allocation? */
3383 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3384 return 0;
3386 /* inode may have no locality group for some reason */
3387 lg = ac->ac_lg;
3388 if (lg == NULL)
3389 return 0;
3390 order = fls(ac->ac_o_ex.fe_len) - 1;
3391 if (order > PREALLOC_TB_SIZE - 1)
3392 /* The max size of hash table is PREALLOC_TB_SIZE */
3393 order = PREALLOC_TB_SIZE - 1;
3395 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3397 * search for the prealloc space that is having
3398 * minimal distance from the goal block.
3400 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3401 rcu_read_lock();
3402 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3403 pa_inode_list) {
3404 spin_lock(&pa->pa_lock);
3405 if (pa->pa_deleted == 0 &&
3406 pa->pa_free >= ac->ac_o_ex.fe_len) {
3408 cpa = ext4_mb_check_group_pa(goal_block,
3409 pa, cpa);
3411 spin_unlock(&pa->pa_lock);
3413 rcu_read_unlock();
3415 if (cpa) {
3416 ext4_mb_use_group_pa(ac, cpa);
3417 ac->ac_criteria = 20;
3418 return 1;
3420 return 0;
3424 * the function goes through all block freed in the group
3425 * but not yet committed and marks them used in in-core bitmap.
3426 * buddy must be generated from this bitmap
3427 * Need to be called with the ext4 group lock held
3429 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3430 ext4_group_t group)
3432 struct rb_node *n;
3433 struct ext4_group_info *grp;
3434 struct ext4_free_data *entry;
3436 grp = ext4_get_group_info(sb, group);
3437 n = rb_first(&(grp->bb_free_root));
3439 while (n) {
3440 entry = rb_entry(n, struct ext4_free_data, efd_node);
3441 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3442 n = rb_next(n);
3444 return;
3448 * the function goes through all preallocation in this group and marks them
3449 * used in in-core bitmap. buddy must be generated from this bitmap
3450 * Need to be called with ext4 group lock held
3452 static noinline_for_stack
3453 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3454 ext4_group_t group)
3456 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3457 struct ext4_prealloc_space *pa;
3458 struct list_head *cur;
3459 ext4_group_t groupnr;
3460 ext4_grpblk_t start;
3461 int preallocated = 0;
3462 int len;
3464 /* all form of preallocation discards first load group,
3465 * so the only competing code is preallocation use.
3466 * we don't need any locking here
3467 * notice we do NOT ignore preallocations with pa_deleted
3468 * otherwise we could leave used blocks available for
3469 * allocation in buddy when concurrent ext4_mb_put_pa()
3470 * is dropping preallocation
3472 list_for_each(cur, &grp->bb_prealloc_list) {
3473 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3474 spin_lock(&pa->pa_lock);
3475 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3476 &groupnr, &start);
3477 len = pa->pa_len;
3478 spin_unlock(&pa->pa_lock);
3479 if (unlikely(len == 0))
3480 continue;
3481 BUG_ON(groupnr != group);
3482 ext4_set_bits(bitmap, start, len);
3483 preallocated += len;
3485 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3488 static void ext4_mb_pa_callback(struct rcu_head *head)
3490 struct ext4_prealloc_space *pa;
3491 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3493 BUG_ON(atomic_read(&pa->pa_count));
3494 BUG_ON(pa->pa_deleted == 0);
3495 kmem_cache_free(ext4_pspace_cachep, pa);
3499 * drops a reference to preallocated space descriptor
3500 * if this was the last reference and the space is consumed
3502 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3503 struct super_block *sb, struct ext4_prealloc_space *pa)
3505 ext4_group_t grp;
3506 ext4_fsblk_t grp_blk;
3508 /* in this short window concurrent discard can set pa_deleted */
3509 spin_lock(&pa->pa_lock);
3510 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3511 spin_unlock(&pa->pa_lock);
3512 return;
3515 if (pa->pa_deleted == 1) {
3516 spin_unlock(&pa->pa_lock);
3517 return;
3520 pa->pa_deleted = 1;
3521 spin_unlock(&pa->pa_lock);
3523 grp_blk = pa->pa_pstart;
3525 * If doing group-based preallocation, pa_pstart may be in the
3526 * next group when pa is used up
3528 if (pa->pa_type == MB_GROUP_PA)
3529 grp_blk--;
3531 grp = ext4_get_group_number(sb, grp_blk);
3534 * possible race:
3536 * P1 (buddy init) P2 (regular allocation)
3537 * find block B in PA
3538 * copy on-disk bitmap to buddy
3539 * mark B in on-disk bitmap
3540 * drop PA from group
3541 * mark all PAs in buddy
3543 * thus, P1 initializes buddy with B available. to prevent this
3544 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3545 * against that pair
3547 ext4_lock_group(sb, grp);
3548 list_del(&pa->pa_group_list);
3549 ext4_unlock_group(sb, grp);
3551 spin_lock(pa->pa_obj_lock);
3552 list_del_rcu(&pa->pa_inode_list);
3553 spin_unlock(pa->pa_obj_lock);
3555 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3559 * creates new preallocated space for given inode
3561 static noinline_for_stack int
3562 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3564 struct super_block *sb = ac->ac_sb;
3565 struct ext4_sb_info *sbi = EXT4_SB(sb);
3566 struct ext4_prealloc_space *pa;
3567 struct ext4_group_info *grp;
3568 struct ext4_inode_info *ei;
3570 /* preallocate only when found space is larger then requested */
3571 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3572 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3573 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3575 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3576 if (pa == NULL)
3577 return -ENOMEM;
3579 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3580 int winl;
3581 int wins;
3582 int win;
3583 int offs;
3585 /* we can't allocate as much as normalizer wants.
3586 * so, found space must get proper lstart
3587 * to cover original request */
3588 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3589 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3591 /* we're limited by original request in that
3592 * logical block must be covered any way
3593 * winl is window we can move our chunk within */
3594 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3596 /* also, we should cover whole original request */
3597 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3599 /* the smallest one defines real window */
3600 win = min(winl, wins);
3602 offs = ac->ac_o_ex.fe_logical %
3603 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3604 if (offs && offs < win)
3605 win = offs;
3607 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3608 EXT4_NUM_B2C(sbi, win);
3609 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3610 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3613 /* preallocation can change ac_b_ex, thus we store actually
3614 * allocated blocks for history */
3615 ac->ac_f_ex = ac->ac_b_ex;
3617 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3618 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3619 pa->pa_len = ac->ac_b_ex.fe_len;
3620 pa->pa_free = pa->pa_len;
3621 atomic_set(&pa->pa_count, 1);
3622 spin_lock_init(&pa->pa_lock);
3623 INIT_LIST_HEAD(&pa->pa_inode_list);
3624 INIT_LIST_HEAD(&pa->pa_group_list);
3625 pa->pa_deleted = 0;
3626 pa->pa_type = MB_INODE_PA;
3628 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3629 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3630 trace_ext4_mb_new_inode_pa(ac, pa);
3632 ext4_mb_use_inode_pa(ac, pa);
3633 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3635 ei = EXT4_I(ac->ac_inode);
3636 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3638 pa->pa_obj_lock = &ei->i_prealloc_lock;
3639 pa->pa_inode = ac->ac_inode;
3641 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3642 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3643 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3645 spin_lock(pa->pa_obj_lock);
3646 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3647 spin_unlock(pa->pa_obj_lock);
3649 return 0;
3653 * creates new preallocated space for locality group inodes belongs to
3655 static noinline_for_stack int
3656 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3658 struct super_block *sb = ac->ac_sb;
3659 struct ext4_locality_group *lg;
3660 struct ext4_prealloc_space *pa;
3661 struct ext4_group_info *grp;
3663 /* preallocate only when found space is larger then requested */
3664 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3665 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3666 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3668 BUG_ON(ext4_pspace_cachep == NULL);
3669 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3670 if (pa == NULL)
3671 return -ENOMEM;
3673 /* preallocation can change ac_b_ex, thus we store actually
3674 * allocated blocks for history */
3675 ac->ac_f_ex = ac->ac_b_ex;
3677 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3678 pa->pa_lstart = pa->pa_pstart;
3679 pa->pa_len = ac->ac_b_ex.fe_len;
3680 pa->pa_free = pa->pa_len;
3681 atomic_set(&pa->pa_count, 1);
3682 spin_lock_init(&pa->pa_lock);
3683 INIT_LIST_HEAD(&pa->pa_inode_list);
3684 INIT_LIST_HEAD(&pa->pa_group_list);
3685 pa->pa_deleted = 0;
3686 pa->pa_type = MB_GROUP_PA;
3688 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3689 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3690 trace_ext4_mb_new_group_pa(ac, pa);
3692 ext4_mb_use_group_pa(ac, pa);
3693 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3695 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3696 lg = ac->ac_lg;
3697 BUG_ON(lg == NULL);
3699 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3700 pa->pa_inode = NULL;
3702 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3703 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3704 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3707 * We will later add the new pa to the right bucket
3708 * after updating the pa_free in ext4_mb_release_context
3710 return 0;
3713 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3715 int err;
3717 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3718 err = ext4_mb_new_group_pa(ac);
3719 else
3720 err = ext4_mb_new_inode_pa(ac);
3721 return err;
3725 * finds all unused blocks in on-disk bitmap, frees them in
3726 * in-core bitmap and buddy.
3727 * @pa must be unlinked from inode and group lists, so that
3728 * nobody else can find/use it.
3729 * the caller MUST hold group/inode locks.
3730 * TODO: optimize the case when there are no in-core structures yet
3732 static noinline_for_stack int
3733 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3734 struct ext4_prealloc_space *pa)
3736 struct super_block *sb = e4b->bd_sb;
3737 struct ext4_sb_info *sbi = EXT4_SB(sb);
3738 unsigned int end;
3739 unsigned int next;
3740 ext4_group_t group;
3741 ext4_grpblk_t bit;
3742 unsigned long long grp_blk_start;
3743 int err = 0;
3744 int free = 0;
3746 BUG_ON(pa->pa_deleted == 0);
3747 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3748 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3749 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3750 end = bit + pa->pa_len;
3752 while (bit < end) {
3753 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3754 if (bit >= end)
3755 break;
3756 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3757 mb_debug(1, " free preallocated %u/%u in group %u\n",
3758 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3759 (unsigned) next - bit, (unsigned) group);
3760 free += next - bit;
3762 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3763 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3764 EXT4_C2B(sbi, bit)),
3765 next - bit);
3766 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3767 bit = next + 1;
3769 if (free != pa->pa_free) {
3770 ext4_msg(e4b->bd_sb, KERN_CRIT,
3771 "pa %p: logic %lu, phys. %lu, len %lu",
3772 pa, (unsigned long) pa->pa_lstart,
3773 (unsigned long) pa->pa_pstart,
3774 (unsigned long) pa->pa_len);
3775 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3776 free, pa->pa_free);
3778 * pa is already deleted so we use the value obtained
3779 * from the bitmap and continue.
3782 atomic_add(free, &sbi->s_mb_discarded);
3784 return err;
3787 static noinline_for_stack int
3788 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3789 struct ext4_prealloc_space *pa)
3791 struct super_block *sb = e4b->bd_sb;
3792 ext4_group_t group;
3793 ext4_grpblk_t bit;
3795 trace_ext4_mb_release_group_pa(sb, pa);
3796 BUG_ON(pa->pa_deleted == 0);
3797 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3798 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3799 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3800 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3801 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3803 return 0;
3807 * releases all preallocations in given group
3809 * first, we need to decide discard policy:
3810 * - when do we discard
3811 * 1) ENOSPC
3812 * - how many do we discard
3813 * 1) how many requested
3815 static noinline_for_stack int
3816 ext4_mb_discard_group_preallocations(struct super_block *sb,
3817 ext4_group_t group, int needed)
3819 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3820 struct buffer_head *bitmap_bh = NULL;
3821 struct ext4_prealloc_space *pa, *tmp;
3822 struct list_head list;
3823 struct ext4_buddy e4b;
3824 int err;
3825 int busy = 0;
3826 int free = 0;
3828 mb_debug(1, "discard preallocation for group %u\n", group);
3830 if (list_empty(&grp->bb_prealloc_list))
3831 return 0;
3833 bitmap_bh = ext4_read_block_bitmap(sb, group);
3834 if (bitmap_bh == NULL) {
3835 ext4_error(sb, "Error reading block bitmap for %u", group);
3836 return 0;
3839 err = ext4_mb_load_buddy(sb, group, &e4b);
3840 if (err) {
3841 ext4_error(sb, "Error loading buddy information for %u", group);
3842 put_bh(bitmap_bh);
3843 return 0;
3846 if (needed == 0)
3847 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3849 INIT_LIST_HEAD(&list);
3850 repeat:
3851 ext4_lock_group(sb, group);
3852 list_for_each_entry_safe(pa, tmp,
3853 &grp->bb_prealloc_list, pa_group_list) {
3854 spin_lock(&pa->pa_lock);
3855 if (atomic_read(&pa->pa_count)) {
3856 spin_unlock(&pa->pa_lock);
3857 busy = 1;
3858 continue;
3860 if (pa->pa_deleted) {
3861 spin_unlock(&pa->pa_lock);
3862 continue;
3865 /* seems this one can be freed ... */
3866 pa->pa_deleted = 1;
3868 /* we can trust pa_free ... */
3869 free += pa->pa_free;
3871 spin_unlock(&pa->pa_lock);
3873 list_del(&pa->pa_group_list);
3874 list_add(&pa->u.pa_tmp_list, &list);
3877 /* if we still need more blocks and some PAs were used, try again */
3878 if (free < needed && busy) {
3879 busy = 0;
3880 ext4_unlock_group(sb, group);
3881 cond_resched();
3882 goto repeat;
3885 /* found anything to free? */
3886 if (list_empty(&list)) {
3887 BUG_ON(free != 0);
3888 goto out;
3891 /* now free all selected PAs */
3892 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3894 /* remove from object (inode or locality group) */
3895 spin_lock(pa->pa_obj_lock);
3896 list_del_rcu(&pa->pa_inode_list);
3897 spin_unlock(pa->pa_obj_lock);
3899 if (pa->pa_type == MB_GROUP_PA)
3900 ext4_mb_release_group_pa(&e4b, pa);
3901 else
3902 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3904 list_del(&pa->u.pa_tmp_list);
3905 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3908 out:
3909 ext4_unlock_group(sb, group);
3910 ext4_mb_unload_buddy(&e4b);
3911 put_bh(bitmap_bh);
3912 return free;
3916 * releases all non-used preallocated blocks for given inode
3918 * It's important to discard preallocations under i_data_sem
3919 * We don't want another block to be served from the prealloc
3920 * space when we are discarding the inode prealloc space.
3922 * FIXME!! Make sure it is valid at all the call sites
3924 void ext4_discard_preallocations(struct inode *inode)
3926 struct ext4_inode_info *ei = EXT4_I(inode);
3927 struct super_block *sb = inode->i_sb;
3928 struct buffer_head *bitmap_bh = NULL;
3929 struct ext4_prealloc_space *pa, *tmp;
3930 ext4_group_t group = 0;
3931 struct list_head list;
3932 struct ext4_buddy e4b;
3933 int err;
3935 if (!S_ISREG(inode->i_mode)) {
3936 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3937 return;
3940 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3941 trace_ext4_discard_preallocations(inode);
3943 INIT_LIST_HEAD(&list);
3945 repeat:
3946 /* first, collect all pa's in the inode */
3947 spin_lock(&ei->i_prealloc_lock);
3948 while (!list_empty(&ei->i_prealloc_list)) {
3949 pa = list_entry(ei->i_prealloc_list.next,
3950 struct ext4_prealloc_space, pa_inode_list);
3951 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3952 spin_lock(&pa->pa_lock);
3953 if (atomic_read(&pa->pa_count)) {
3954 /* this shouldn't happen often - nobody should
3955 * use preallocation while we're discarding it */
3956 spin_unlock(&pa->pa_lock);
3957 spin_unlock(&ei->i_prealloc_lock);
3958 ext4_msg(sb, KERN_ERR,
3959 "uh-oh! used pa while discarding");
3960 WARN_ON(1);
3961 schedule_timeout_uninterruptible(HZ);
3962 goto repeat;
3965 if (pa->pa_deleted == 0) {
3966 pa->pa_deleted = 1;
3967 spin_unlock(&pa->pa_lock);
3968 list_del_rcu(&pa->pa_inode_list);
3969 list_add(&pa->u.pa_tmp_list, &list);
3970 continue;
3973 /* someone is deleting pa right now */
3974 spin_unlock(&pa->pa_lock);
3975 spin_unlock(&ei->i_prealloc_lock);
3977 /* we have to wait here because pa_deleted
3978 * doesn't mean pa is already unlinked from
3979 * the list. as we might be called from
3980 * ->clear_inode() the inode will get freed
3981 * and concurrent thread which is unlinking
3982 * pa from inode's list may access already
3983 * freed memory, bad-bad-bad */
3985 /* XXX: if this happens too often, we can
3986 * add a flag to force wait only in case
3987 * of ->clear_inode(), but not in case of
3988 * regular truncate */
3989 schedule_timeout_uninterruptible(HZ);
3990 goto repeat;
3992 spin_unlock(&ei->i_prealloc_lock);
3994 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3995 BUG_ON(pa->pa_type != MB_INODE_PA);
3996 group = ext4_get_group_number(sb, pa->pa_pstart);
3998 err = ext4_mb_load_buddy(sb, group, &e4b);
3999 if (err) {
4000 ext4_error(sb, "Error loading buddy information for %u",
4001 group);
4002 continue;
4005 bitmap_bh = ext4_read_block_bitmap(sb, group);
4006 if (bitmap_bh == NULL) {
4007 ext4_error(sb, "Error reading block bitmap for %u",
4008 group);
4009 ext4_mb_unload_buddy(&e4b);
4010 continue;
4013 ext4_lock_group(sb, group);
4014 list_del(&pa->pa_group_list);
4015 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4016 ext4_unlock_group(sb, group);
4018 ext4_mb_unload_buddy(&e4b);
4019 put_bh(bitmap_bh);
4021 list_del(&pa->u.pa_tmp_list);
4022 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4026 #ifdef CONFIG_EXT4_DEBUG
4027 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4029 struct super_block *sb = ac->ac_sb;
4030 ext4_group_t ngroups, i;
4032 if (!ext4_mballoc_debug ||
4033 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4034 return;
4036 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4037 " Allocation context details:");
4038 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4039 ac->ac_status, ac->ac_flags);
4040 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4041 "goal %lu/%lu/%lu@%lu, "
4042 "best %lu/%lu/%lu@%lu cr %d",
4043 (unsigned long)ac->ac_o_ex.fe_group,
4044 (unsigned long)ac->ac_o_ex.fe_start,
4045 (unsigned long)ac->ac_o_ex.fe_len,
4046 (unsigned long)ac->ac_o_ex.fe_logical,
4047 (unsigned long)ac->ac_g_ex.fe_group,
4048 (unsigned long)ac->ac_g_ex.fe_start,
4049 (unsigned long)ac->ac_g_ex.fe_len,
4050 (unsigned long)ac->ac_g_ex.fe_logical,
4051 (unsigned long)ac->ac_b_ex.fe_group,
4052 (unsigned long)ac->ac_b_ex.fe_start,
4053 (unsigned long)ac->ac_b_ex.fe_len,
4054 (unsigned long)ac->ac_b_ex.fe_logical,
4055 (int)ac->ac_criteria);
4056 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4057 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4058 ngroups = ext4_get_groups_count(sb);
4059 for (i = 0; i < ngroups; i++) {
4060 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4061 struct ext4_prealloc_space *pa;
4062 ext4_grpblk_t start;
4063 struct list_head *cur;
4064 ext4_lock_group(sb, i);
4065 list_for_each(cur, &grp->bb_prealloc_list) {
4066 pa = list_entry(cur, struct ext4_prealloc_space,
4067 pa_group_list);
4068 spin_lock(&pa->pa_lock);
4069 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4070 NULL, &start);
4071 spin_unlock(&pa->pa_lock);
4072 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4073 start, pa->pa_len);
4075 ext4_unlock_group(sb, i);
4077 if (grp->bb_free == 0)
4078 continue;
4079 printk(KERN_ERR "%u: %d/%d \n",
4080 i, grp->bb_free, grp->bb_fragments);
4082 printk(KERN_ERR "\n");
4084 #else
4085 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4087 return;
4089 #endif
4092 * We use locality group preallocation for small size file. The size of the
4093 * file is determined by the current size or the resulting size after
4094 * allocation which ever is larger
4096 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4098 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4100 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4101 int bsbits = ac->ac_sb->s_blocksize_bits;
4102 loff_t size, isize;
4104 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4105 return;
4107 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4108 return;
4110 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4111 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4112 >> bsbits;
4114 if ((size == isize) &&
4115 !ext4_fs_is_busy(sbi) &&
4116 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4117 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4118 return;
4121 if (sbi->s_mb_group_prealloc <= 0) {
4122 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4123 return;
4126 /* don't use group allocation for large files */
4127 size = max(size, isize);
4128 if (size > sbi->s_mb_stream_request) {
4129 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4130 return;
4133 BUG_ON(ac->ac_lg != NULL);
4135 * locality group prealloc space are per cpu. The reason for having
4136 * per cpu locality group is to reduce the contention between block
4137 * request from multiple CPUs.
4139 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4141 /* we're going to use group allocation */
4142 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4144 /* serialize all allocations in the group */
4145 mutex_lock(&ac->ac_lg->lg_mutex);
4148 static noinline_for_stack int
4149 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4150 struct ext4_allocation_request *ar)
4152 struct super_block *sb = ar->inode->i_sb;
4153 struct ext4_sb_info *sbi = EXT4_SB(sb);
4154 struct ext4_super_block *es = sbi->s_es;
4155 ext4_group_t group;
4156 unsigned int len;
4157 ext4_fsblk_t goal;
4158 ext4_grpblk_t block;
4160 /* we can't allocate > group size */
4161 len = ar->len;
4163 /* just a dirty hack to filter too big requests */
4164 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4165 len = EXT4_CLUSTERS_PER_GROUP(sb);
4167 /* start searching from the goal */
4168 goal = ar->goal;
4169 if (goal < le32_to_cpu(es->s_first_data_block) ||
4170 goal >= ext4_blocks_count(es))
4171 goal = le32_to_cpu(es->s_first_data_block);
4172 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4174 /* set up allocation goals */
4175 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4176 ac->ac_status = AC_STATUS_CONTINUE;
4177 ac->ac_sb = sb;
4178 ac->ac_inode = ar->inode;
4179 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4180 ac->ac_o_ex.fe_group = group;
4181 ac->ac_o_ex.fe_start = block;
4182 ac->ac_o_ex.fe_len = len;
4183 ac->ac_g_ex = ac->ac_o_ex;
4184 ac->ac_flags = ar->flags;
4186 /* we have to define context: we'll we work with a file or
4187 * locality group. this is a policy, actually */
4188 ext4_mb_group_or_file(ac);
4190 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4191 "left: %u/%u, right %u/%u to %swritable\n",
4192 (unsigned) ar->len, (unsigned) ar->logical,
4193 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4194 (unsigned) ar->lleft, (unsigned) ar->pleft,
4195 (unsigned) ar->lright, (unsigned) ar->pright,
4196 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4197 return 0;
4201 static noinline_for_stack void
4202 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4203 struct ext4_locality_group *lg,
4204 int order, int total_entries)
4206 ext4_group_t group = 0;
4207 struct ext4_buddy e4b;
4208 struct list_head discard_list;
4209 struct ext4_prealloc_space *pa, *tmp;
4211 mb_debug(1, "discard locality group preallocation\n");
4213 INIT_LIST_HEAD(&discard_list);
4215 spin_lock(&lg->lg_prealloc_lock);
4216 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4217 pa_inode_list) {
4218 spin_lock(&pa->pa_lock);
4219 if (atomic_read(&pa->pa_count)) {
4221 * This is the pa that we just used
4222 * for block allocation. So don't
4223 * free that
4225 spin_unlock(&pa->pa_lock);
4226 continue;
4228 if (pa->pa_deleted) {
4229 spin_unlock(&pa->pa_lock);
4230 continue;
4232 /* only lg prealloc space */
4233 BUG_ON(pa->pa_type != MB_GROUP_PA);
4235 /* seems this one can be freed ... */
4236 pa->pa_deleted = 1;
4237 spin_unlock(&pa->pa_lock);
4239 list_del_rcu(&pa->pa_inode_list);
4240 list_add(&pa->u.pa_tmp_list, &discard_list);
4242 total_entries--;
4243 if (total_entries <= 5) {
4245 * we want to keep only 5 entries
4246 * allowing it to grow to 8. This
4247 * mak sure we don't call discard
4248 * soon for this list.
4250 break;
4253 spin_unlock(&lg->lg_prealloc_lock);
4255 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4257 group = ext4_get_group_number(sb, pa->pa_pstart);
4258 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4259 ext4_error(sb, "Error loading buddy information for %u",
4260 group);
4261 continue;
4263 ext4_lock_group(sb, group);
4264 list_del(&pa->pa_group_list);
4265 ext4_mb_release_group_pa(&e4b, pa);
4266 ext4_unlock_group(sb, group);
4268 ext4_mb_unload_buddy(&e4b);
4269 list_del(&pa->u.pa_tmp_list);
4270 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4275 * We have incremented pa_count. So it cannot be freed at this
4276 * point. Also we hold lg_mutex. So no parallel allocation is
4277 * possible from this lg. That means pa_free cannot be updated.
4279 * A parallel ext4_mb_discard_group_preallocations is possible.
4280 * which can cause the lg_prealloc_list to be updated.
4283 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4285 int order, added = 0, lg_prealloc_count = 1;
4286 struct super_block *sb = ac->ac_sb;
4287 struct ext4_locality_group *lg = ac->ac_lg;
4288 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4290 order = fls(pa->pa_free) - 1;
4291 if (order > PREALLOC_TB_SIZE - 1)
4292 /* The max size of hash table is PREALLOC_TB_SIZE */
4293 order = PREALLOC_TB_SIZE - 1;
4294 /* Add the prealloc space to lg */
4295 spin_lock(&lg->lg_prealloc_lock);
4296 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4297 pa_inode_list) {
4298 spin_lock(&tmp_pa->pa_lock);
4299 if (tmp_pa->pa_deleted) {
4300 spin_unlock(&tmp_pa->pa_lock);
4301 continue;
4303 if (!added && pa->pa_free < tmp_pa->pa_free) {
4304 /* Add to the tail of the previous entry */
4305 list_add_tail_rcu(&pa->pa_inode_list,
4306 &tmp_pa->pa_inode_list);
4307 added = 1;
4309 * we want to count the total
4310 * number of entries in the list
4313 spin_unlock(&tmp_pa->pa_lock);
4314 lg_prealloc_count++;
4316 if (!added)
4317 list_add_tail_rcu(&pa->pa_inode_list,
4318 &lg->lg_prealloc_list[order]);
4319 spin_unlock(&lg->lg_prealloc_lock);
4321 /* Now trim the list to be not more than 8 elements */
4322 if (lg_prealloc_count > 8) {
4323 ext4_mb_discard_lg_preallocations(sb, lg,
4324 order, lg_prealloc_count);
4325 return;
4327 return ;
4331 * release all resource we used in allocation
4333 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4335 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4336 struct ext4_prealloc_space *pa = ac->ac_pa;
4337 if (pa) {
4338 if (pa->pa_type == MB_GROUP_PA) {
4339 /* see comment in ext4_mb_use_group_pa() */
4340 spin_lock(&pa->pa_lock);
4341 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4342 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4343 pa->pa_free -= ac->ac_b_ex.fe_len;
4344 pa->pa_len -= ac->ac_b_ex.fe_len;
4345 spin_unlock(&pa->pa_lock);
4348 if (pa) {
4350 * We want to add the pa to the right bucket.
4351 * Remove it from the list and while adding
4352 * make sure the list to which we are adding
4353 * doesn't grow big.
4355 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4356 spin_lock(pa->pa_obj_lock);
4357 list_del_rcu(&pa->pa_inode_list);
4358 spin_unlock(pa->pa_obj_lock);
4359 ext4_mb_add_n_trim(ac);
4361 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4363 if (ac->ac_bitmap_page)
4364 page_cache_release(ac->ac_bitmap_page);
4365 if (ac->ac_buddy_page)
4366 page_cache_release(ac->ac_buddy_page);
4367 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4368 mutex_unlock(&ac->ac_lg->lg_mutex);
4369 ext4_mb_collect_stats(ac);
4370 return 0;
4373 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4375 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4376 int ret;
4377 int freed = 0;
4379 trace_ext4_mb_discard_preallocations(sb, needed);
4380 for (i = 0; i < ngroups && needed > 0; i++) {
4381 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4382 freed += ret;
4383 needed -= ret;
4386 return freed;
4390 * Main entry point into mballoc to allocate blocks
4391 * it tries to use preallocation first, then falls back
4392 * to usual allocation
4394 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4395 struct ext4_allocation_request *ar, int *errp)
4397 int freed;
4398 struct ext4_allocation_context *ac = NULL;
4399 struct ext4_sb_info *sbi;
4400 struct super_block *sb;
4401 ext4_fsblk_t block = 0;
4402 unsigned int inquota = 0;
4403 unsigned int reserv_clstrs = 0;
4405 might_sleep();
4406 sb = ar->inode->i_sb;
4407 sbi = EXT4_SB(sb);
4409 trace_ext4_request_blocks(ar);
4411 /* Allow to use superuser reservation for quota file */
4412 if (IS_NOQUOTA(ar->inode))
4413 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4415 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4416 /* Without delayed allocation we need to verify
4417 * there is enough free blocks to do block allocation
4418 * and verify allocation doesn't exceed the quota limits.
4420 while (ar->len &&
4421 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4423 /* let others to free the space */
4424 cond_resched();
4425 ar->len = ar->len >> 1;
4427 if (!ar->len) {
4428 *errp = -ENOSPC;
4429 return 0;
4431 reserv_clstrs = ar->len;
4432 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4433 dquot_alloc_block_nofail(ar->inode,
4434 EXT4_C2B(sbi, ar->len));
4435 } else {
4436 while (ar->len &&
4437 dquot_alloc_block(ar->inode,
4438 EXT4_C2B(sbi, ar->len))) {
4440 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4441 ar->len--;
4444 inquota = ar->len;
4445 if (ar->len == 0) {
4446 *errp = -EDQUOT;
4447 goto out;
4451 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4452 if (!ac) {
4453 ar->len = 0;
4454 *errp = -ENOMEM;
4455 goto out;
4458 *errp = ext4_mb_initialize_context(ac, ar);
4459 if (*errp) {
4460 ar->len = 0;
4461 goto out;
4464 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4465 if (!ext4_mb_use_preallocated(ac)) {
4466 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4467 ext4_mb_normalize_request(ac, ar);
4468 repeat:
4469 /* allocate space in core */
4470 *errp = ext4_mb_regular_allocator(ac);
4471 if (*errp)
4472 goto discard_and_exit;
4474 /* as we've just preallocated more space than
4475 * user requested originally, we store allocated
4476 * space in a special descriptor */
4477 if (ac->ac_status == AC_STATUS_FOUND &&
4478 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4479 *errp = ext4_mb_new_preallocation(ac);
4480 if (*errp) {
4481 discard_and_exit:
4482 ext4_discard_allocated_blocks(ac);
4483 goto errout;
4486 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4487 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4488 if (*errp == -EAGAIN) {
4490 * drop the reference that we took
4491 * in ext4_mb_use_best_found
4493 ext4_mb_release_context(ac);
4494 ac->ac_b_ex.fe_group = 0;
4495 ac->ac_b_ex.fe_start = 0;
4496 ac->ac_b_ex.fe_len = 0;
4497 ac->ac_status = AC_STATUS_CONTINUE;
4498 goto repeat;
4499 } else if (*errp) {
4500 ext4_discard_allocated_blocks(ac);
4501 goto errout;
4502 } else {
4503 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4504 ar->len = ac->ac_b_ex.fe_len;
4506 } else {
4507 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4508 if (freed)
4509 goto repeat;
4510 *errp = -ENOSPC;
4513 errout:
4514 if (*errp) {
4515 ac->ac_b_ex.fe_len = 0;
4516 ar->len = 0;
4517 ext4_mb_show_ac(ac);
4519 ext4_mb_release_context(ac);
4520 out:
4521 if (ac)
4522 kmem_cache_free(ext4_ac_cachep, ac);
4523 if (inquota && ar->len < inquota)
4524 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4525 if (!ar->len) {
4526 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4527 /* release all the reserved blocks if non delalloc */
4528 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4529 reserv_clstrs);
4532 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4534 return block;
4538 * We can merge two free data extents only if the physical blocks
4539 * are contiguous, AND the extents were freed by the same transaction,
4540 * AND the blocks are associated with the same group.
4542 static int can_merge(struct ext4_free_data *entry1,
4543 struct ext4_free_data *entry2)
4545 if ((entry1->efd_tid == entry2->efd_tid) &&
4546 (entry1->efd_group == entry2->efd_group) &&
4547 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4548 return 1;
4549 return 0;
4552 static noinline_for_stack int
4553 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4554 struct ext4_free_data *new_entry)
4556 ext4_group_t group = e4b->bd_group;
4557 ext4_grpblk_t cluster;
4558 struct ext4_free_data *entry;
4559 struct ext4_group_info *db = e4b->bd_info;
4560 struct super_block *sb = e4b->bd_sb;
4561 struct ext4_sb_info *sbi = EXT4_SB(sb);
4562 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4563 struct rb_node *parent = NULL, *new_node;
4565 BUG_ON(!ext4_handle_valid(handle));
4566 BUG_ON(e4b->bd_bitmap_page == NULL);
4567 BUG_ON(e4b->bd_buddy_page == NULL);
4569 new_node = &new_entry->efd_node;
4570 cluster = new_entry->efd_start_cluster;
4572 if (!*n) {
4573 /* first free block exent. We need to
4574 protect buddy cache from being freed,
4575 * otherwise we'll refresh it from
4576 * on-disk bitmap and lose not-yet-available
4577 * blocks */
4578 page_cache_get(e4b->bd_buddy_page);
4579 page_cache_get(e4b->bd_bitmap_page);
4581 while (*n) {
4582 parent = *n;
4583 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4584 if (cluster < entry->efd_start_cluster)
4585 n = &(*n)->rb_left;
4586 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4587 n = &(*n)->rb_right;
4588 else {
4589 ext4_grp_locked_error(sb, group, 0,
4590 ext4_group_first_block_no(sb, group) +
4591 EXT4_C2B(sbi, cluster),
4592 "Block already on to-be-freed list");
4593 return 0;
4597 rb_link_node(new_node, parent, n);
4598 rb_insert_color(new_node, &db->bb_free_root);
4600 /* Now try to see the extent can be merged to left and right */
4601 node = rb_prev(new_node);
4602 if (node) {
4603 entry = rb_entry(node, struct ext4_free_data, efd_node);
4604 if (can_merge(entry, new_entry) &&
4605 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4606 new_entry->efd_start_cluster = entry->efd_start_cluster;
4607 new_entry->efd_count += entry->efd_count;
4608 rb_erase(node, &(db->bb_free_root));
4609 kmem_cache_free(ext4_free_data_cachep, entry);
4613 node = rb_next(new_node);
4614 if (node) {
4615 entry = rb_entry(node, struct ext4_free_data, efd_node);
4616 if (can_merge(new_entry, entry) &&
4617 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4618 new_entry->efd_count += entry->efd_count;
4619 rb_erase(node, &(db->bb_free_root));
4620 kmem_cache_free(ext4_free_data_cachep, entry);
4623 /* Add the extent to transaction's private list */
4624 ext4_journal_callback_add(handle, ext4_free_data_callback,
4625 &new_entry->efd_jce);
4626 return 0;
4630 * ext4_free_blocks() -- Free given blocks and update quota
4631 * @handle: handle for this transaction
4632 * @inode: inode
4633 * @block: start physical block to free
4634 * @count: number of blocks to count
4635 * @flags: flags used by ext4_free_blocks
4637 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4638 struct buffer_head *bh, ext4_fsblk_t block,
4639 unsigned long count, int flags)
4641 struct buffer_head *bitmap_bh = NULL;
4642 struct super_block *sb = inode->i_sb;
4643 struct ext4_group_desc *gdp;
4644 unsigned int overflow;
4645 ext4_grpblk_t bit;
4646 struct buffer_head *gd_bh;
4647 ext4_group_t block_group;
4648 struct ext4_sb_info *sbi;
4649 struct ext4_buddy e4b;
4650 unsigned int count_clusters;
4651 int err = 0;
4652 int ret;
4654 might_sleep();
4655 if (bh) {
4656 if (block)
4657 BUG_ON(block != bh->b_blocknr);
4658 else
4659 block = bh->b_blocknr;
4662 sbi = EXT4_SB(sb);
4663 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4664 !ext4_data_block_valid(sbi, block, count)) {
4665 ext4_error(sb, "Freeing blocks not in datazone - "
4666 "block = %llu, count = %lu", block, count);
4667 goto error_return;
4670 ext4_debug("freeing block %llu\n", block);
4671 trace_ext4_free_blocks(inode, block, count, flags);
4673 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4674 struct buffer_head *tbh = bh;
4675 int i;
4677 BUG_ON(bh && (count > 1));
4679 for (i = 0; i < count; i++) {
4680 cond_resched();
4681 if (!bh)
4682 tbh = sb_find_get_block(inode->i_sb,
4683 block + i);
4684 if (!tbh)
4685 continue;
4686 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4687 inode, tbh, block + i);
4692 * We need to make sure we don't reuse the freed block until
4693 * after the transaction is committed, which we can do by
4694 * treating the block as metadata, below. We make an
4695 * exception if the inode is to be written in writeback mode
4696 * since writeback mode has weak data consistency guarantees.
4698 if (!ext4_should_writeback_data(inode))
4699 flags |= EXT4_FREE_BLOCKS_METADATA;
4702 * If the extent to be freed does not begin on a cluster
4703 * boundary, we need to deal with partial clusters at the
4704 * beginning and end of the extent. Normally we will free
4705 * blocks at the beginning or the end unless we are explicitly
4706 * requested to avoid doing so.
4708 overflow = EXT4_PBLK_COFF(sbi, block);
4709 if (overflow) {
4710 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4711 overflow = sbi->s_cluster_ratio - overflow;
4712 block += overflow;
4713 if (count > overflow)
4714 count -= overflow;
4715 else
4716 return;
4717 } else {
4718 block -= overflow;
4719 count += overflow;
4722 overflow = EXT4_LBLK_COFF(sbi, count);
4723 if (overflow) {
4724 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4725 if (count > overflow)
4726 count -= overflow;
4727 else
4728 return;
4729 } else
4730 count += sbi->s_cluster_ratio - overflow;
4733 do_more:
4734 overflow = 0;
4735 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4737 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4738 ext4_get_group_info(sb, block_group))))
4739 return;
4742 * Check to see if we are freeing blocks across a group
4743 * boundary.
4745 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4746 overflow = EXT4_C2B(sbi, bit) + count -
4747 EXT4_BLOCKS_PER_GROUP(sb);
4748 count -= overflow;
4750 count_clusters = EXT4_NUM_B2C(sbi, count);
4751 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4752 if (!bitmap_bh) {
4753 err = -EIO;
4754 goto error_return;
4756 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4757 if (!gdp) {
4758 err = -EIO;
4759 goto error_return;
4762 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4763 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4764 in_range(block, ext4_inode_table(sb, gdp),
4765 EXT4_SB(sb)->s_itb_per_group) ||
4766 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4767 EXT4_SB(sb)->s_itb_per_group)) {
4769 ext4_error(sb, "Freeing blocks in system zone - "
4770 "Block = %llu, count = %lu", block, count);
4771 /* err = 0. ext4_std_error should be a no op */
4772 goto error_return;
4775 BUFFER_TRACE(bitmap_bh, "getting write access");
4776 err = ext4_journal_get_write_access(handle, bitmap_bh);
4777 if (err)
4778 goto error_return;
4781 * We are about to modify some metadata. Call the journal APIs
4782 * to unshare ->b_data if a currently-committing transaction is
4783 * using it
4785 BUFFER_TRACE(gd_bh, "get_write_access");
4786 err = ext4_journal_get_write_access(handle, gd_bh);
4787 if (err)
4788 goto error_return;
4789 #ifdef AGGRESSIVE_CHECK
4791 int i;
4792 for (i = 0; i < count_clusters; i++)
4793 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4795 #endif
4796 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4798 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4799 if (err)
4800 goto error_return;
4802 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4803 struct ext4_free_data *new_entry;
4805 * blocks being freed are metadata. these blocks shouldn't
4806 * be used until this transaction is committed
4808 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4809 * to fail.
4811 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4812 GFP_NOFS|__GFP_NOFAIL);
4813 new_entry->efd_start_cluster = bit;
4814 new_entry->efd_group = block_group;
4815 new_entry->efd_count = count_clusters;
4816 new_entry->efd_tid = handle->h_transaction->t_tid;
4818 ext4_lock_group(sb, block_group);
4819 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4820 ext4_mb_free_metadata(handle, &e4b, new_entry);
4821 } else {
4822 /* need to update group_info->bb_free and bitmap
4823 * with group lock held. generate_buddy look at
4824 * them with group lock_held
4826 if (test_opt(sb, DISCARD)) {
4827 err = ext4_issue_discard(sb, block_group, bit, count);
4828 if (err && err != -EOPNOTSUPP)
4829 ext4_msg(sb, KERN_WARNING, "discard request in"
4830 " group:%d block:%d count:%lu failed"
4831 " with %d", block_group, bit, count,
4832 err);
4833 } else
4834 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4836 ext4_lock_group(sb, block_group);
4837 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4838 mb_free_blocks(inode, &e4b, bit, count_clusters);
4841 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4842 ext4_free_group_clusters_set(sb, gdp, ret);
4843 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4844 ext4_group_desc_csum_set(sb, block_group, gdp);
4845 ext4_unlock_group(sb, block_group);
4847 if (sbi->s_log_groups_per_flex) {
4848 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4849 atomic64_add(count_clusters,
4850 &sbi->s_flex_groups[flex_group].free_clusters);
4853 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4854 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4855 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4857 ext4_mb_unload_buddy(&e4b);
4859 /* We dirtied the bitmap block */
4860 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4861 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4863 /* And the group descriptor block */
4864 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4865 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4866 if (!err)
4867 err = ret;
4869 if (overflow && !err) {
4870 block += count;
4871 count = overflow;
4872 put_bh(bitmap_bh);
4873 goto do_more;
4875 error_return:
4876 brelse(bitmap_bh);
4877 ext4_std_error(sb, err);
4878 return;
4882 * ext4_group_add_blocks() -- Add given blocks to an existing group
4883 * @handle: handle to this transaction
4884 * @sb: super block
4885 * @block: start physical block to add to the block group
4886 * @count: number of blocks to free
4888 * This marks the blocks as free in the bitmap and buddy.
4890 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4891 ext4_fsblk_t block, unsigned long count)
4893 struct buffer_head *bitmap_bh = NULL;
4894 struct buffer_head *gd_bh;
4895 ext4_group_t block_group;
4896 ext4_grpblk_t bit;
4897 unsigned int i;
4898 struct ext4_group_desc *desc;
4899 struct ext4_sb_info *sbi = EXT4_SB(sb);
4900 struct ext4_buddy e4b;
4901 int err = 0, ret, blk_free_count;
4902 ext4_grpblk_t blocks_freed;
4904 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4906 if (count == 0)
4907 return 0;
4909 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4911 * Check to see if we are freeing blocks across a group
4912 * boundary.
4914 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4915 ext4_warning(sb, "too much blocks added to group %u\n",
4916 block_group);
4917 err = -EINVAL;
4918 goto error_return;
4921 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4922 if (!bitmap_bh) {
4923 err = -EIO;
4924 goto error_return;
4927 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4928 if (!desc) {
4929 err = -EIO;
4930 goto error_return;
4933 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4934 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4935 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4936 in_range(block + count - 1, ext4_inode_table(sb, desc),
4937 sbi->s_itb_per_group)) {
4938 ext4_error(sb, "Adding blocks in system zones - "
4939 "Block = %llu, count = %lu",
4940 block, count);
4941 err = -EINVAL;
4942 goto error_return;
4945 BUFFER_TRACE(bitmap_bh, "getting write access");
4946 err = ext4_journal_get_write_access(handle, bitmap_bh);
4947 if (err)
4948 goto error_return;
4951 * We are about to modify some metadata. Call the journal APIs
4952 * to unshare ->b_data if a currently-committing transaction is
4953 * using it
4955 BUFFER_TRACE(gd_bh, "get_write_access");
4956 err = ext4_journal_get_write_access(handle, gd_bh);
4957 if (err)
4958 goto error_return;
4960 for (i = 0, blocks_freed = 0; i < count; i++) {
4961 BUFFER_TRACE(bitmap_bh, "clear bit");
4962 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4963 ext4_error(sb, "bit already cleared for block %llu",
4964 (ext4_fsblk_t)(block + i));
4965 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4966 } else {
4967 blocks_freed++;
4971 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4972 if (err)
4973 goto error_return;
4976 * need to update group_info->bb_free and bitmap
4977 * with group lock held. generate_buddy look at
4978 * them with group lock_held
4980 ext4_lock_group(sb, block_group);
4981 mb_clear_bits(bitmap_bh->b_data, bit, count);
4982 mb_free_blocks(NULL, &e4b, bit, count);
4983 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4984 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4985 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4986 ext4_group_desc_csum_set(sb, block_group, desc);
4987 ext4_unlock_group(sb, block_group);
4988 percpu_counter_add(&sbi->s_freeclusters_counter,
4989 EXT4_NUM_B2C(sbi, blocks_freed));
4991 if (sbi->s_log_groups_per_flex) {
4992 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4993 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4994 &sbi->s_flex_groups[flex_group].free_clusters);
4997 ext4_mb_unload_buddy(&e4b);
4999 /* We dirtied the bitmap block */
5000 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5001 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5003 /* And the group descriptor block */
5004 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5005 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5006 if (!err)
5007 err = ret;
5009 error_return:
5010 brelse(bitmap_bh);
5011 ext4_std_error(sb, err);
5012 return err;
5016 * ext4_trim_extent -- function to TRIM one single free extent in the group
5017 * @sb: super block for the file system
5018 * @start: starting block of the free extent in the alloc. group
5019 * @count: number of blocks to TRIM
5020 * @group: alloc. group we are working with
5021 * @e4b: ext4 buddy for the group
5023 * Trim "count" blocks starting at "start" in the "group". To assure that no
5024 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5025 * be called with under the group lock.
5027 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5028 ext4_group_t group, struct ext4_buddy *e4b)
5029 __releases(bitlock)
5030 __acquires(bitlock)
5032 struct ext4_free_extent ex;
5033 int ret = 0;
5035 trace_ext4_trim_extent(sb, group, start, count);
5037 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5039 ex.fe_start = start;
5040 ex.fe_group = group;
5041 ex.fe_len = count;
5044 * Mark blocks used, so no one can reuse them while
5045 * being trimmed.
5047 mb_mark_used(e4b, &ex);
5048 ext4_unlock_group(sb, group);
5049 ret = ext4_issue_discard(sb, group, start, count);
5050 ext4_lock_group(sb, group);
5051 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5052 return ret;
5056 * ext4_trim_all_free -- function to trim all free space in alloc. group
5057 * @sb: super block for file system
5058 * @group: group to be trimmed
5059 * @start: first group block to examine
5060 * @max: last group block to examine
5061 * @minblocks: minimum extent block count
5063 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5064 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5065 * the extent.
5068 * ext4_trim_all_free walks through group's block bitmap searching for free
5069 * extents. When the free extent is found, mark it as used in group buddy
5070 * bitmap. Then issue a TRIM command on this extent and free the extent in
5071 * the group buddy bitmap. This is done until whole group is scanned.
5073 static ext4_grpblk_t
5074 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5075 ext4_grpblk_t start, ext4_grpblk_t max,
5076 ext4_grpblk_t minblocks)
5078 void *bitmap;
5079 ext4_grpblk_t next, count = 0, free_count = 0;
5080 struct ext4_buddy e4b;
5081 int ret = 0;
5083 trace_ext4_trim_all_free(sb, group, start, max);
5085 ret = ext4_mb_load_buddy(sb, group, &e4b);
5086 if (ret) {
5087 ext4_error(sb, "Error in loading buddy "
5088 "information for %u", group);
5089 return ret;
5091 bitmap = e4b.bd_bitmap;
5093 ext4_lock_group(sb, group);
5094 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5095 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5096 goto out;
5098 start = (e4b.bd_info->bb_first_free > start) ?
5099 e4b.bd_info->bb_first_free : start;
5101 while (start <= max) {
5102 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5103 if (start > max)
5104 break;
5105 next = mb_find_next_bit(bitmap, max + 1, start);
5107 if ((next - start) >= minblocks) {
5108 ret = ext4_trim_extent(sb, start,
5109 next - start, group, &e4b);
5110 if (ret && ret != -EOPNOTSUPP)
5111 break;
5112 ret = 0;
5113 count += next - start;
5115 free_count += next - start;
5116 start = next + 1;
5118 if (fatal_signal_pending(current)) {
5119 count = -ERESTARTSYS;
5120 break;
5123 if (need_resched()) {
5124 ext4_unlock_group(sb, group);
5125 cond_resched();
5126 ext4_lock_group(sb, group);
5129 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5130 break;
5133 if (!ret) {
5134 ret = count;
5135 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5137 out:
5138 ext4_unlock_group(sb, group);
5139 ext4_mb_unload_buddy(&e4b);
5141 ext4_debug("trimmed %d blocks in the group %d\n",
5142 count, group);
5144 return ret;
5148 * ext4_trim_fs() -- trim ioctl handle function
5149 * @sb: superblock for filesystem
5150 * @range: fstrim_range structure
5152 * start: First Byte to trim
5153 * len: number of Bytes to trim from start
5154 * minlen: minimum extent length in Bytes
5155 * ext4_trim_fs goes through all allocation groups containing Bytes from
5156 * start to start+len. For each such a group ext4_trim_all_free function
5157 * is invoked to trim all free space.
5159 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5161 struct ext4_group_info *grp;
5162 ext4_group_t group, first_group, last_group;
5163 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5164 uint64_t start, end, minlen, trimmed = 0;
5165 ext4_fsblk_t first_data_blk =
5166 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5167 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5168 int ret = 0;
5170 start = range->start >> sb->s_blocksize_bits;
5171 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5172 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5173 range->minlen >> sb->s_blocksize_bits);
5175 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5176 start >= max_blks ||
5177 range->len < sb->s_blocksize)
5178 return -EINVAL;
5179 if (end >= max_blks)
5180 end = max_blks - 1;
5181 if (end <= first_data_blk)
5182 goto out;
5183 if (start < first_data_blk)
5184 start = first_data_blk;
5186 /* Determine first and last group to examine based on start and end */
5187 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5188 &first_group, &first_cluster);
5189 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5190 &last_group, &last_cluster);
5192 /* end now represents the last cluster to discard in this group */
5193 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5195 for (group = first_group; group <= last_group; group++) {
5196 grp = ext4_get_group_info(sb, group);
5197 /* We only do this if the grp has never been initialized */
5198 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5199 ret = ext4_mb_init_group(sb, group);
5200 if (ret)
5201 break;
5205 * For all the groups except the last one, last cluster will
5206 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5207 * change it for the last group, note that last_cluster is
5208 * already computed earlier by ext4_get_group_no_and_offset()
5210 if (group == last_group)
5211 end = last_cluster;
5213 if (grp->bb_free >= minlen) {
5214 cnt = ext4_trim_all_free(sb, group, first_cluster,
5215 end, minlen);
5216 if (cnt < 0) {
5217 ret = cnt;
5218 break;
5220 trimmed += cnt;
5224 * For every group except the first one, we are sure
5225 * that the first cluster to discard will be cluster #0.
5227 first_cluster = 0;
5230 if (!ret)
5231 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5233 out:
5234 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5235 return ret;