4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
30 * We guarantee no failure on the returned page.
32 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
34 struct address_space
*mapping
= META_MAPPING(sbi
);
35 struct page
*page
= NULL
;
37 page
= grab_cache_page(mapping
, index
);
42 f2fs_wait_on_page_writeback(page
, META
);
43 SetPageUptodate(page
);
48 * We guarantee no failure on the returned page.
50 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
52 struct address_space
*mapping
= META_MAPPING(sbi
);
54 struct f2fs_io_info fio
= {
56 .rw
= READ_SYNC
| REQ_META
| REQ_PRIO
,
60 page
= grab_cache_page(mapping
, index
);
65 if (PageUptodate(page
))
68 if (f2fs_submit_page_bio(sbi
, page
, &fio
))
72 if (unlikely(page
->mapping
!= mapping
)) {
73 f2fs_put_page(page
, 1);
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
81 block_t blkaddr
, int type
)
87 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
91 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
92 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
96 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
97 blkaddr
< __start_cp_addr(sbi
)))
101 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
102 blkaddr
< MAIN_BLKADDR(sbi
)))
113 * Readahead CP/NAT/SIT/SSA pages
115 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
, int type
)
117 block_t prev_blk_addr
= 0;
119 block_t blkno
= start
;
120 struct f2fs_io_info fio
= {
122 .rw
= READ_SYNC
| REQ_META
| REQ_PRIO
125 for (; nrpages
-- > 0; blkno
++) {
127 if (!is_valid_blkaddr(sbi
, blkno
, type
))
132 if (unlikely(blkno
>=
133 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
135 /* get nat block addr */
136 fio
.blk_addr
= current_nat_addr(sbi
,
137 blkno
* NAT_ENTRY_PER_BLOCK
);
140 /* get sit block addr */
141 fio
.blk_addr
= current_sit_addr(sbi
,
142 blkno
* SIT_ENTRY_PER_BLOCK
);
143 if (blkno
!= start
&& prev_blk_addr
+ 1 != fio
.blk_addr
)
145 prev_blk_addr
= fio
.blk_addr
;
150 fio
.blk_addr
= blkno
;
156 page
= grab_cache_page(META_MAPPING(sbi
), fio
.blk_addr
);
159 if (PageUptodate(page
)) {
160 f2fs_put_page(page
, 1);
164 f2fs_submit_page_mbio(sbi
, page
, &fio
);
165 f2fs_put_page(page
, 0);
168 f2fs_submit_merged_bio(sbi
, META
, READ
);
169 return blkno
- start
;
172 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
175 bool readahead
= false;
177 page
= find_get_page(META_MAPPING(sbi
), index
);
178 if (!page
|| (page
&& !PageUptodate(page
)))
180 f2fs_put_page(page
, 0);
183 ra_meta_pages(sbi
, index
, MAX_BIO_BLOCKS(sbi
), META_POR
);
186 static int f2fs_write_meta_page(struct page
*page
,
187 struct writeback_control
*wbc
)
189 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
191 trace_f2fs_writepage(page
, META
);
193 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
195 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
197 if (unlikely(f2fs_cp_error(sbi
)))
200 f2fs_wait_on_page_writeback(page
, META
);
201 write_meta_page(sbi
, page
);
202 dec_page_count(sbi
, F2FS_DIRTY_META
);
205 if (wbc
->for_reclaim
)
206 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
210 redirty_page_for_writepage(wbc
, page
);
211 return AOP_WRITEPAGE_ACTIVATE
;
214 static int f2fs_write_meta_pages(struct address_space
*mapping
,
215 struct writeback_control
*wbc
)
217 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
220 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
222 /* collect a number of dirty meta pages and write together */
223 if (wbc
->for_kupdate
||
224 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
227 /* if mounting is failed, skip writing node pages */
228 mutex_lock(&sbi
->cp_mutex
);
229 diff
= nr_pages_to_write(sbi
, META
, wbc
);
230 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
);
231 mutex_unlock(&sbi
->cp_mutex
);
232 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
236 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
240 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
243 struct address_space
*mapping
= META_MAPPING(sbi
);
244 pgoff_t index
= 0, end
= LONG_MAX
;
247 struct writeback_control wbc
= {
251 pagevec_init(&pvec
, 0);
253 while (index
<= end
) {
255 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
257 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
258 if (unlikely(nr_pages
== 0))
261 for (i
= 0; i
< nr_pages
; i
++) {
262 struct page
*page
= pvec
.pages
[i
];
266 if (unlikely(page
->mapping
!= mapping
)) {
271 if (!PageDirty(page
)) {
272 /* someone wrote it for us */
273 goto continue_unlock
;
276 if (!clear_page_dirty_for_io(page
))
277 goto continue_unlock
;
279 if (mapping
->a_ops
->writepage(page
, &wbc
)) {
284 if (unlikely(nwritten
>= nr_to_write
))
287 pagevec_release(&pvec
);
292 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
297 static int f2fs_set_meta_page_dirty(struct page
*page
)
299 trace_f2fs_set_page_dirty(page
, META
);
301 SetPageUptodate(page
);
302 if (!PageDirty(page
)) {
303 __set_page_dirty_nobuffers(page
);
304 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
305 SetPagePrivate(page
);
306 f2fs_trace_pid(page
);
312 const struct address_space_operations f2fs_meta_aops
= {
313 .writepage
= f2fs_write_meta_page
,
314 .writepages
= f2fs_write_meta_pages
,
315 .set_page_dirty
= f2fs_set_meta_page_dirty
,
316 .invalidatepage
= f2fs_invalidate_page
,
317 .releasepage
= f2fs_release_page
,
320 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
322 struct inode_management
*im
= &sbi
->im
[type
];
325 if (radix_tree_preload(GFP_NOFS
)) {
330 spin_lock(&im
->ino_lock
);
332 e
= radix_tree_lookup(&im
->ino_root
, ino
);
334 e
= kmem_cache_alloc(ino_entry_slab
, GFP_ATOMIC
);
336 spin_unlock(&im
->ino_lock
);
337 radix_tree_preload_end();
340 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
341 spin_unlock(&im
->ino_lock
);
342 kmem_cache_free(ino_entry_slab
, e
);
343 radix_tree_preload_end();
346 memset(e
, 0, sizeof(struct ino_entry
));
349 list_add_tail(&e
->list
, &im
->ino_list
);
350 if (type
!= ORPHAN_INO
)
353 spin_unlock(&im
->ino_lock
);
354 radix_tree_preload_end();
357 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
359 struct inode_management
*im
= &sbi
->im
[type
];
362 spin_lock(&im
->ino_lock
);
363 e
= radix_tree_lookup(&im
->ino_root
, ino
);
366 radix_tree_delete(&im
->ino_root
, ino
);
368 spin_unlock(&im
->ino_lock
);
369 kmem_cache_free(ino_entry_slab
, e
);
372 spin_unlock(&im
->ino_lock
);
375 void add_dirty_inode(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
377 /* add new dirty ino entry into list */
378 __add_ino_entry(sbi
, ino
, type
);
381 void remove_dirty_inode(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
383 /* remove dirty ino entry from list */
384 __remove_ino_entry(sbi
, ino
, type
);
387 /* mode should be APPEND_INO or UPDATE_INO */
388 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
390 struct inode_management
*im
= &sbi
->im
[mode
];
393 spin_lock(&im
->ino_lock
);
394 e
= radix_tree_lookup(&im
->ino_root
, ino
);
395 spin_unlock(&im
->ino_lock
);
396 return e
? true : false;
399 void release_dirty_inode(struct f2fs_sb_info
*sbi
)
401 struct ino_entry
*e
, *tmp
;
404 for (i
= APPEND_INO
; i
<= UPDATE_INO
; i
++) {
405 struct inode_management
*im
= &sbi
->im
[i
];
407 spin_lock(&im
->ino_lock
);
408 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
410 radix_tree_delete(&im
->ino_root
, e
->ino
);
411 kmem_cache_free(ino_entry_slab
, e
);
414 spin_unlock(&im
->ino_lock
);
418 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
420 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
423 spin_lock(&im
->ino_lock
);
424 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
428 spin_unlock(&im
->ino_lock
);
433 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
435 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
437 spin_lock(&im
->ino_lock
);
438 f2fs_bug_on(sbi
, im
->ino_num
== 0);
440 spin_unlock(&im
->ino_lock
);
443 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
445 /* add new orphan ino entry into list */
446 __add_ino_entry(sbi
, ino
, ORPHAN_INO
);
449 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
451 /* remove orphan entry from orphan list */
452 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
455 static void recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
457 struct inode
*inode
= f2fs_iget(sbi
->sb
, ino
);
458 f2fs_bug_on(sbi
, IS_ERR(inode
));
461 /* truncate all the data during iput */
465 void recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
467 block_t start_blk
, orphan_blocks
, i
, j
;
469 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
472 set_sbi_flag(sbi
, SBI_POR_DOING
);
474 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
475 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
477 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
);
479 for (i
= 0; i
< orphan_blocks
; i
++) {
480 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
481 struct f2fs_orphan_block
*orphan_blk
;
483 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
484 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
485 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
486 recover_orphan_inode(sbi
, ino
);
488 f2fs_put_page(page
, 1);
490 /* clear Orphan Flag */
491 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
492 clear_sbi_flag(sbi
, SBI_POR_DOING
);
496 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
498 struct list_head
*head
;
499 struct f2fs_orphan_block
*orphan_blk
= NULL
;
500 unsigned int nentries
= 0;
501 unsigned short index
;
502 unsigned short orphan_blocks
;
503 struct page
*page
= NULL
;
504 struct ino_entry
*orphan
= NULL
;
505 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
507 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
509 for (index
= 0; index
< orphan_blocks
; index
++)
510 grab_meta_page(sbi
, start_blk
+ index
);
513 spin_lock(&im
->ino_lock
);
514 head
= &im
->ino_list
;
516 /* loop for each orphan inode entry and write them in Jornal block */
517 list_for_each_entry(orphan
, head
, list
) {
519 page
= find_get_page(META_MAPPING(sbi
), start_blk
++);
520 f2fs_bug_on(sbi
, !page
);
522 (struct f2fs_orphan_block
*)page_address(page
);
523 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
524 f2fs_put_page(page
, 0);
527 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
529 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
531 * an orphan block is full of 1020 entries,
532 * then we need to flush current orphan blocks
533 * and bring another one in memory
535 orphan_blk
->blk_addr
= cpu_to_le16(index
);
536 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
537 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
538 set_page_dirty(page
);
539 f2fs_put_page(page
, 1);
547 orphan_blk
->blk_addr
= cpu_to_le16(index
);
548 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
549 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
550 set_page_dirty(page
);
551 f2fs_put_page(page
, 1);
554 spin_unlock(&im
->ino_lock
);
557 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
558 block_t cp_addr
, unsigned long long *version
)
560 struct page
*cp_page_1
, *cp_page_2
= NULL
;
561 unsigned long blk_size
= sbi
->blocksize
;
562 struct f2fs_checkpoint
*cp_block
;
563 unsigned long long cur_version
= 0, pre_version
= 0;
567 /* Read the 1st cp block in this CP pack */
568 cp_page_1
= get_meta_page(sbi
, cp_addr
);
570 /* get the version number */
571 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
572 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
573 if (crc_offset
>= blk_size
)
576 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
577 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
580 pre_version
= cur_cp_version(cp_block
);
582 /* Read the 2nd cp block in this CP pack */
583 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
584 cp_page_2
= get_meta_page(sbi
, cp_addr
);
586 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
587 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
588 if (crc_offset
>= blk_size
)
591 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
592 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
595 cur_version
= cur_cp_version(cp_block
);
597 if (cur_version
== pre_version
) {
598 *version
= cur_version
;
599 f2fs_put_page(cp_page_2
, 1);
603 f2fs_put_page(cp_page_2
, 1);
605 f2fs_put_page(cp_page_1
, 1);
609 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
611 struct f2fs_checkpoint
*cp_block
;
612 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
613 struct page
*cp1
, *cp2
, *cur_page
;
614 unsigned long blk_size
= sbi
->blocksize
;
615 unsigned long long cp1_version
= 0, cp2_version
= 0;
616 unsigned long long cp_start_blk_no
;
617 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
621 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
625 * Finding out valid cp block involves read both
626 * sets( cp pack1 and cp pack 2)
628 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
629 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
631 /* The second checkpoint pack should start at the next segment */
632 cp_start_blk_no
+= ((unsigned long long)1) <<
633 le32_to_cpu(fsb
->log_blocks_per_seg
);
634 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
637 if (ver_after(cp2_version
, cp1_version
))
649 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
650 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
655 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
657 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
659 for (i
= 1; i
< cp_blks
; i
++) {
660 void *sit_bitmap_ptr
;
661 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
663 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
664 sit_bitmap_ptr
= page_address(cur_page
);
665 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
666 f2fs_put_page(cur_page
, 1);
669 f2fs_put_page(cp1
, 1);
670 f2fs_put_page(cp2
, 1);
678 static int __add_dirty_inode(struct inode
*inode
, struct inode_entry
*new)
680 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
682 if (is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_DIR
))
685 set_inode_flag(F2FS_I(inode
), FI_DIRTY_DIR
);
686 F2FS_I(inode
)->dirty_dir
= new;
687 list_add_tail(&new->list
, &sbi
->dir_inode_list
);
688 stat_inc_dirty_dir(sbi
);
692 void update_dirty_page(struct inode
*inode
, struct page
*page
)
694 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
695 struct inode_entry
*new;
698 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
))
701 if (!S_ISDIR(inode
->i_mode
)) {
702 inode_inc_dirty_pages(inode
);
706 new = f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
708 INIT_LIST_HEAD(&new->list
);
710 spin_lock(&sbi
->dir_inode_lock
);
711 ret
= __add_dirty_inode(inode
, new);
712 inode_inc_dirty_pages(inode
);
713 spin_unlock(&sbi
->dir_inode_lock
);
716 kmem_cache_free(inode_entry_slab
, new);
718 SetPagePrivate(page
);
719 f2fs_trace_pid(page
);
722 void add_dirty_dir_inode(struct inode
*inode
)
724 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
725 struct inode_entry
*new =
726 f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
730 INIT_LIST_HEAD(&new->list
);
732 spin_lock(&sbi
->dir_inode_lock
);
733 ret
= __add_dirty_inode(inode
, new);
734 spin_unlock(&sbi
->dir_inode_lock
);
737 kmem_cache_free(inode_entry_slab
, new);
740 void remove_dirty_dir_inode(struct inode
*inode
)
742 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
743 struct inode_entry
*entry
;
745 if (!S_ISDIR(inode
->i_mode
))
748 spin_lock(&sbi
->dir_inode_lock
);
749 if (get_dirty_pages(inode
) ||
750 !is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_DIR
)) {
751 spin_unlock(&sbi
->dir_inode_lock
);
755 entry
= F2FS_I(inode
)->dirty_dir
;
756 list_del(&entry
->list
);
757 F2FS_I(inode
)->dirty_dir
= NULL
;
758 clear_inode_flag(F2FS_I(inode
), FI_DIRTY_DIR
);
759 stat_dec_dirty_dir(sbi
);
760 spin_unlock(&sbi
->dir_inode_lock
);
761 kmem_cache_free(inode_entry_slab
, entry
);
763 /* Only from the recovery routine */
764 if (is_inode_flag_set(F2FS_I(inode
), FI_DELAY_IPUT
)) {
765 clear_inode_flag(F2FS_I(inode
), FI_DELAY_IPUT
);
770 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
772 struct list_head
*head
;
773 struct inode_entry
*entry
;
776 if (unlikely(f2fs_cp_error(sbi
)))
779 spin_lock(&sbi
->dir_inode_lock
);
781 head
= &sbi
->dir_inode_list
;
782 if (list_empty(head
)) {
783 spin_unlock(&sbi
->dir_inode_lock
);
786 entry
= list_entry(head
->next
, struct inode_entry
, list
);
787 inode
= igrab(entry
->inode
);
788 spin_unlock(&sbi
->dir_inode_lock
);
790 filemap_fdatawrite(inode
->i_mapping
);
794 * We should submit bio, since it exists several
795 * wribacking dentry pages in the freeing inode.
797 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
804 * Freeze all the FS-operations for checkpoint.
806 static int block_operations(struct f2fs_sb_info
*sbi
)
808 struct writeback_control wbc
= {
809 .sync_mode
= WB_SYNC_ALL
,
810 .nr_to_write
= LONG_MAX
,
813 struct blk_plug plug
;
816 blk_start_plug(&plug
);
820 /* write all the dirty dentry pages */
821 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
822 f2fs_unlock_all(sbi
);
823 sync_dirty_dir_inodes(sbi
);
824 if (unlikely(f2fs_cp_error(sbi
))) {
828 goto retry_flush_dents
;
832 * POR: we should ensure that there are no dirty node pages
833 * until finishing nat/sit flush.
836 down_write(&sbi
->node_write
);
838 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
839 up_write(&sbi
->node_write
);
840 sync_node_pages(sbi
, 0, &wbc
);
841 if (unlikely(f2fs_cp_error(sbi
))) {
842 f2fs_unlock_all(sbi
);
846 goto retry_flush_nodes
;
849 blk_finish_plug(&plug
);
853 static void unblock_operations(struct f2fs_sb_info
*sbi
)
855 up_write(&sbi
->node_write
);
856 f2fs_unlock_all(sbi
);
859 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
864 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
866 if (!get_pages(sbi
, F2FS_WRITEBACK
))
871 finish_wait(&sbi
->cp_wait
, &wait
);
874 static void do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
876 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
877 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
878 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
879 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
880 nid_t last_nid
= nm_i
->next_scan_nid
;
882 struct page
*cp_page
;
883 unsigned int data_sum_blocks
, orphan_blocks
;
887 int cp_payload_blks
= __cp_payload(sbi
);
890 * This avoids to conduct wrong roll-forward operations and uses
891 * metapages, so should be called prior to sync_meta_pages below.
893 discard_next_dnode(sbi
, NEXT_FREE_BLKADDR(sbi
, curseg
));
895 /* Flush all the NAT/SIT pages */
896 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
897 sync_meta_pages(sbi
, META
, LONG_MAX
);
898 if (unlikely(f2fs_cp_error(sbi
)))
902 next_free_nid(sbi
, &last_nid
);
906 * version number is already updated
908 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
909 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
910 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
911 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
912 ckpt
->cur_node_segno
[i
] =
913 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
914 ckpt
->cur_node_blkoff
[i
] =
915 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
916 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
917 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
919 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
920 ckpt
->cur_data_segno
[i
] =
921 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
922 ckpt
->cur_data_blkoff
[i
] =
923 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
924 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
925 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
928 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
929 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
930 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
932 /* 2 cp + n data seg summary + orphan inode blocks */
933 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
934 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
935 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
937 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
939 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
940 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
943 if (__remain_node_summaries(cpc
->reason
))
944 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
945 cp_payload_blks
+ data_sum_blocks
+
946 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
948 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
949 cp_payload_blks
+ data_sum_blocks
+
952 if (cpc
->reason
== CP_UMOUNT
)
953 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
955 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
957 if (cpc
->reason
== CP_FASTBOOT
)
958 set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
960 clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
963 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
965 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
967 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
968 set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
970 /* update SIT/NAT bitmap */
971 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
972 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
974 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
975 *((__le32
*)((unsigned char *)ckpt
+
976 le32_to_cpu(ckpt
->checksum_offset
)))
977 = cpu_to_le32(crc32
);
979 start_blk
= __start_cp_addr(sbi
);
981 /* write out checkpoint buffer at block 0 */
982 cp_page
= grab_meta_page(sbi
, start_blk
++);
983 kaddr
= page_address(cp_page
);
984 memcpy(kaddr
, ckpt
, F2FS_BLKSIZE
);
985 set_page_dirty(cp_page
);
986 f2fs_put_page(cp_page
, 1);
988 for (i
= 1; i
< 1 + cp_payload_blks
; i
++) {
989 cp_page
= grab_meta_page(sbi
, start_blk
++);
990 kaddr
= page_address(cp_page
);
991 memcpy(kaddr
, (char *)ckpt
+ i
* F2FS_BLKSIZE
, F2FS_BLKSIZE
);
992 set_page_dirty(cp_page
);
993 f2fs_put_page(cp_page
, 1);
997 write_orphan_inodes(sbi
, start_blk
);
998 start_blk
+= orphan_blocks
;
1001 write_data_summaries(sbi
, start_blk
);
1002 start_blk
+= data_sum_blocks
;
1003 if (__remain_node_summaries(cpc
->reason
)) {
1004 write_node_summaries(sbi
, start_blk
);
1005 start_blk
+= NR_CURSEG_NODE_TYPE
;
1008 /* writeout checkpoint block */
1009 cp_page
= grab_meta_page(sbi
, start_blk
);
1010 kaddr
= page_address(cp_page
);
1011 memcpy(kaddr
, ckpt
, F2FS_BLKSIZE
);
1012 set_page_dirty(cp_page
);
1013 f2fs_put_page(cp_page
, 1);
1015 /* wait for previous submitted node/meta pages writeback */
1016 wait_on_all_pages_writeback(sbi
);
1018 if (unlikely(f2fs_cp_error(sbi
)))
1021 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LONG_MAX
);
1022 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LONG_MAX
);
1024 /* update user_block_counts */
1025 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1026 sbi
->alloc_valid_block_count
= 0;
1028 /* Here, we only have one bio having CP pack */
1029 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
1031 /* wait for previous submitted meta pages writeback */
1032 wait_on_all_pages_writeback(sbi
);
1034 release_dirty_inode(sbi
);
1036 if (unlikely(f2fs_cp_error(sbi
)))
1039 clear_prefree_segments(sbi
);
1040 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1044 * We guarantee that this checkpoint procedure will not fail.
1046 void write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1048 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1049 unsigned long long ckpt_ver
;
1051 mutex_lock(&sbi
->cp_mutex
);
1053 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1054 (cpc
->reason
== CP_FASTBOOT
|| cpc
->reason
== CP_SYNC
))
1056 if (unlikely(f2fs_cp_error(sbi
)))
1058 if (f2fs_readonly(sbi
->sb
))
1061 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1063 if (block_operations(sbi
))
1066 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1068 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
1069 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1070 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
1073 * update checkpoint pack index
1074 * Increase the version number so that
1075 * SIT entries and seg summaries are written at correct place
1077 ckpt_ver
= cur_cp_version(ckpt
);
1078 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1080 /* write cached NAT/SIT entries to NAT/SIT area */
1081 flush_nat_entries(sbi
);
1082 flush_sit_entries(sbi
, cpc
);
1084 /* unlock all the fs_lock[] in do_checkpoint() */
1085 do_checkpoint(sbi
, cpc
);
1087 unblock_operations(sbi
);
1088 stat_inc_cp_count(sbi
->stat_info
);
1090 if (cpc
->reason
== CP_RECOVERY
)
1091 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1092 "checkpoint: version = %llx", ckpt_ver
);
1094 mutex_unlock(&sbi
->cp_mutex
);
1095 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1098 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1102 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1103 struct inode_management
*im
= &sbi
->im
[i
];
1105 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1106 spin_lock_init(&im
->ino_lock
);
1107 INIT_LIST_HEAD(&im
->ino_list
);
1111 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1112 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1113 F2FS_ORPHANS_PER_BLOCK
;
1116 int __init
create_checkpoint_caches(void)
1118 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1119 sizeof(struct ino_entry
));
1120 if (!ino_entry_slab
)
1122 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1123 sizeof(struct inode_entry
));
1124 if (!inode_entry_slab
) {
1125 kmem_cache_destroy(ino_entry_slab
);
1131 void destroy_checkpoint_caches(void)
1133 kmem_cache_destroy(ino_entry_slab
);
1134 kmem_cache_destroy(inode_entry_slab
);