gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / f2fs / data.c
blob1e1aae669fa86275d7b6c932aeda89ded129ce17
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
28 static struct kmem_cache *extent_tree_slab;
29 static struct kmem_cache *extent_node_slab;
31 static void f2fs_read_end_io(struct bio *bio, int err)
33 struct bio_vec *bvec;
34 int i;
36 bio_for_each_segment_all(bvec, bio, i) {
37 struct page *page = bvec->bv_page;
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
42 ClearPageUptodate(page);
43 SetPageError(page);
45 unlock_page(page);
47 bio_put(bio);
50 static void f2fs_write_end_io(struct bio *bio, int err)
52 struct f2fs_sb_info *sbi = bio->bi_private;
53 struct bio_vec *bvec;
54 int i;
56 bio_for_each_segment_all(bvec, bio, i) {
57 struct page *page = bvec->bv_page;
59 if (unlikely(err)) {
60 set_page_dirty(page);
61 set_bit(AS_EIO, &page->mapping->flags);
62 f2fs_stop_checkpoint(sbi);
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
72 bio_put(bio);
76 * Low-level block read/write IO operations.
78 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
81 struct bio *bio;
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
86 bio->bi_bdev = sbi->sb->s_bdev;
87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
89 bio->bi_private = sbi;
91 return bio;
94 static void __submit_merged_bio(struct f2fs_bio_info *io)
96 struct f2fs_io_info *fio = &io->fio;
98 if (!io->bio)
99 return;
101 if (is_read_io(fio->rw))
102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
103 else
104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
106 submit_bio(fio->rw, io->bio);
107 io->bio = NULL;
110 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
111 enum page_type type, int rw)
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
118 down_write(&io->io_rwsem);
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
128 __submit_merged_bio(io);
129 up_write(&io->io_rwsem);
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
136 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
137 struct f2fs_io_info *fio)
139 struct bio *bio;
141 trace_f2fs_submit_page_bio(page, fio);
142 f2fs_trace_ios(page, fio, 0);
144 /* Allocate a new bio */
145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
153 submit_bio(fio->rw, bio);
154 return 0;
157 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
158 struct f2fs_io_info *fio)
160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
161 struct f2fs_bio_info *io;
162 bool is_read = is_read_io(fio->rw);
164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
166 verify_block_addr(sbi, fio->blk_addr);
168 down_write(&io->io_rwsem);
170 if (!is_read)
171 inc_page_count(sbi, F2FS_WRITEBACK);
173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
176 alloc_new:
177 if (io->bio == NULL) {
178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
181 io->fio = *fio;
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
186 __submit_merged_bio(io);
187 goto alloc_new;
190 io->last_block_in_bio = fio->blk_addr;
191 f2fs_trace_ios(page, fio, 0);
193 up_write(&io->io_rwsem);
194 trace_f2fs_submit_page_mbio(page, fio);
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
203 void set_data_blkaddr(struct dnode_of_data *dn)
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
210 f2fs_wait_on_page_writeback(node_page, NODE);
212 rn = F2FS_NODE(node_page);
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
217 set_page_dirty(node_page);
220 int reserve_new_block(struct dnode_of_data *dn)
222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
225 return -EPERM;
226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
227 return -ENOSPC;
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
231 dn->data_blkaddr = NEW_ADDR;
232 set_data_blkaddr(dn);
233 mark_inode_dirty(dn->inode);
234 sync_inode_page(dn);
235 return 0;
238 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
240 bool need_put = dn->inode_page ? false : true;
241 int err;
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
249 if (err || need_put)
250 f2fs_put_dnode(dn);
251 return err;
254 static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t max_size = bh_result->b_size;
259 size_t mapped_size;
261 clear_buffer_new(bh_result);
262 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
263 mapped_size = (ei->fofs + ei->len - pgofs) << blkbits;
264 bh_result->b_size = min(max_size, mapped_size);
267 static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
268 struct extent_info *ei)
270 struct f2fs_inode_info *fi = F2FS_I(inode);
271 pgoff_t start_fofs, end_fofs;
272 block_t start_blkaddr;
274 read_lock(&fi->ext_lock);
275 if (fi->ext.len == 0) {
276 read_unlock(&fi->ext_lock);
277 return false;
280 stat_inc_total_hit(inode->i_sb);
282 start_fofs = fi->ext.fofs;
283 end_fofs = fi->ext.fofs + fi->ext.len - 1;
284 start_blkaddr = fi->ext.blk;
286 if (pgofs >= start_fofs && pgofs <= end_fofs) {
287 *ei = fi->ext;
288 stat_inc_read_hit(inode->i_sb);
289 read_unlock(&fi->ext_lock);
290 return true;
292 read_unlock(&fi->ext_lock);
293 return false;
296 static bool update_extent_info(struct inode *inode, pgoff_t fofs,
297 block_t blkaddr)
299 struct f2fs_inode_info *fi = F2FS_I(inode);
300 pgoff_t start_fofs, end_fofs;
301 block_t start_blkaddr, end_blkaddr;
302 int need_update = true;
304 write_lock(&fi->ext_lock);
306 start_fofs = fi->ext.fofs;
307 end_fofs = fi->ext.fofs + fi->ext.len - 1;
308 start_blkaddr = fi->ext.blk;
309 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
311 /* Drop and initialize the matched extent */
312 if (fi->ext.len == 1 && fofs == start_fofs)
313 fi->ext.len = 0;
315 /* Initial extent */
316 if (fi->ext.len == 0) {
317 if (blkaddr != NULL_ADDR) {
318 fi->ext.fofs = fofs;
319 fi->ext.blk = blkaddr;
320 fi->ext.len = 1;
322 goto end_update;
325 /* Front merge */
326 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
327 fi->ext.fofs--;
328 fi->ext.blk--;
329 fi->ext.len++;
330 goto end_update;
333 /* Back merge */
334 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
335 fi->ext.len++;
336 goto end_update;
339 /* Split the existing extent */
340 if (fi->ext.len > 1 &&
341 fofs >= start_fofs && fofs <= end_fofs) {
342 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
343 fi->ext.len = fofs - start_fofs;
344 } else {
345 fi->ext.fofs = fofs + 1;
346 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
347 fi->ext.len -= fofs - start_fofs + 1;
349 } else {
350 need_update = false;
353 /* Finally, if the extent is very fragmented, let's drop the cache. */
354 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
355 fi->ext.len = 0;
356 set_inode_flag(fi, FI_NO_EXTENT);
357 need_update = true;
359 end_update:
360 write_unlock(&fi->ext_lock);
361 return need_update;
364 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
365 struct extent_tree *et, struct extent_info *ei,
366 struct rb_node *parent, struct rb_node **p)
368 struct extent_node *en;
370 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
371 if (!en)
372 return NULL;
374 en->ei = *ei;
375 INIT_LIST_HEAD(&en->list);
377 rb_link_node(&en->rb_node, parent, p);
378 rb_insert_color(&en->rb_node, &et->root);
379 et->count++;
380 atomic_inc(&sbi->total_ext_node);
381 return en;
384 static void __detach_extent_node(struct f2fs_sb_info *sbi,
385 struct extent_tree *et, struct extent_node *en)
387 rb_erase(&en->rb_node, &et->root);
388 et->count--;
389 atomic_dec(&sbi->total_ext_node);
391 if (et->cached_en == en)
392 et->cached_en = NULL;
395 static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
396 nid_t ino)
398 struct extent_tree *et;
400 down_read(&sbi->extent_tree_lock);
401 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
402 if (!et) {
403 up_read(&sbi->extent_tree_lock);
404 return NULL;
406 atomic_inc(&et->refcount);
407 up_read(&sbi->extent_tree_lock);
409 return et;
412 static struct extent_tree *__grab_extent_tree(struct inode *inode)
414 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415 struct extent_tree *et;
416 nid_t ino = inode->i_ino;
418 down_write(&sbi->extent_tree_lock);
419 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
420 if (!et) {
421 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
422 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
423 memset(et, 0, sizeof(struct extent_tree));
424 et->ino = ino;
425 et->root = RB_ROOT;
426 et->cached_en = NULL;
427 rwlock_init(&et->lock);
428 atomic_set(&et->refcount, 0);
429 et->count = 0;
430 sbi->total_ext_tree++;
432 atomic_inc(&et->refcount);
433 up_write(&sbi->extent_tree_lock);
435 return et;
438 static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
439 unsigned int fofs)
441 struct rb_node *node = et->root.rb_node;
442 struct extent_node *en;
444 if (et->cached_en) {
445 struct extent_info *cei = &et->cached_en->ei;
447 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
448 return et->cached_en;
451 while (node) {
452 en = rb_entry(node, struct extent_node, rb_node);
454 if (fofs < en->ei.fofs) {
455 node = node->rb_left;
456 } else if (fofs >= en->ei.fofs + en->ei.len) {
457 node = node->rb_right;
458 } else {
459 et->cached_en = en;
460 return en;
463 return NULL;
466 static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
467 struct extent_tree *et, struct extent_node *en)
469 struct extent_node *prev;
470 struct rb_node *node;
472 node = rb_prev(&en->rb_node);
473 if (!node)
474 return NULL;
476 prev = rb_entry(node, struct extent_node, rb_node);
477 if (__is_back_mergeable(&en->ei, &prev->ei)) {
478 en->ei.fofs = prev->ei.fofs;
479 en->ei.blk = prev->ei.blk;
480 en->ei.len += prev->ei.len;
481 __detach_extent_node(sbi, et, prev);
482 return prev;
484 return NULL;
487 static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
488 struct extent_tree *et, struct extent_node *en)
490 struct extent_node *next;
491 struct rb_node *node;
493 node = rb_next(&en->rb_node);
494 if (!node)
495 return NULL;
497 next = rb_entry(node, struct extent_node, rb_node);
498 if (__is_front_mergeable(&en->ei, &next->ei)) {
499 en->ei.len += next->ei.len;
500 __detach_extent_node(sbi, et, next);
501 return next;
503 return NULL;
506 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
507 struct extent_tree *et, struct extent_info *ei,
508 struct extent_node **den)
510 struct rb_node **p = &et->root.rb_node;
511 struct rb_node *parent = NULL;
512 struct extent_node *en;
514 while (*p) {
515 parent = *p;
516 en = rb_entry(parent, struct extent_node, rb_node);
518 if (ei->fofs < en->ei.fofs) {
519 if (__is_front_mergeable(ei, &en->ei)) {
520 f2fs_bug_on(sbi, !den);
521 en->ei.fofs = ei->fofs;
522 en->ei.blk = ei->blk;
523 en->ei.len += ei->len;
524 *den = __try_back_merge(sbi, et, en);
525 return en;
527 p = &(*p)->rb_left;
528 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
529 if (__is_back_mergeable(ei, &en->ei)) {
530 f2fs_bug_on(sbi, !den);
531 en->ei.len += ei->len;
532 *den = __try_front_merge(sbi, et, en);
533 return en;
535 p = &(*p)->rb_right;
536 } else {
537 f2fs_bug_on(sbi, 1);
541 return __attach_extent_node(sbi, et, ei, parent, p);
544 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
545 struct extent_tree *et, bool free_all)
547 struct rb_node *node, *next;
548 struct extent_node *en;
549 unsigned int count = et->count;
551 node = rb_first(&et->root);
552 while (node) {
553 next = rb_next(node);
554 en = rb_entry(node, struct extent_node, rb_node);
556 if (free_all) {
557 spin_lock(&sbi->extent_lock);
558 if (!list_empty(&en->list))
559 list_del_init(&en->list);
560 spin_unlock(&sbi->extent_lock);
563 if (free_all || list_empty(&en->list)) {
564 __detach_extent_node(sbi, et, en);
565 kmem_cache_free(extent_node_slab, en);
567 node = next;
570 return count - et->count;
573 static void f2fs_init_extent_tree(struct inode *inode,
574 struct f2fs_extent *i_ext)
576 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
577 struct extent_tree *et;
578 struct extent_node *en;
579 struct extent_info ei;
581 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
582 return;
584 et = __grab_extent_tree(inode);
586 write_lock(&et->lock);
587 if (et->count)
588 goto out;
590 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
591 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
593 en = __insert_extent_tree(sbi, et, &ei, NULL);
594 if (en) {
595 et->cached_en = en;
597 spin_lock(&sbi->extent_lock);
598 list_add_tail(&en->list, &sbi->extent_list);
599 spin_unlock(&sbi->extent_lock);
601 out:
602 write_unlock(&et->lock);
603 atomic_dec(&et->refcount);
606 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
607 struct extent_info *ei)
609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
610 struct extent_tree *et;
611 struct extent_node *en;
613 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
615 et = __find_extent_tree(sbi, inode->i_ino);
616 if (!et)
617 return false;
619 read_lock(&et->lock);
620 en = __lookup_extent_tree(et, pgofs);
621 if (en) {
622 *ei = en->ei;
623 spin_lock(&sbi->extent_lock);
624 if (!list_empty(&en->list))
625 list_move_tail(&en->list, &sbi->extent_list);
626 spin_unlock(&sbi->extent_lock);
627 stat_inc_read_hit(sbi->sb);
629 stat_inc_total_hit(sbi->sb);
630 read_unlock(&et->lock);
632 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
634 atomic_dec(&et->refcount);
635 return en ? true : false;
638 static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
639 block_t blkaddr)
641 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
642 struct extent_tree *et;
643 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
644 struct extent_node *den = NULL;
645 struct extent_info ei, dei;
646 unsigned int endofs;
648 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
650 et = __grab_extent_tree(inode);
652 write_lock(&et->lock);
654 /* 1. lookup and remove existing extent info in cache */
655 en = __lookup_extent_tree(et, fofs);
656 if (!en)
657 goto update_extent;
659 dei = en->ei;
660 __detach_extent_node(sbi, et, en);
662 /* 2. if extent can be split more, split and insert the left part */
663 if (dei.len > 1) {
664 /* insert left part of split extent into cache */
665 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
666 set_extent_info(&ei, dei.fofs, dei.blk,
667 fofs - dei.fofs);
668 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
671 /* insert right part of split extent into cache */
672 endofs = dei.fofs + dei.len - 1;
673 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
674 set_extent_info(&ei, fofs + 1,
675 fofs - dei.fofs + dei.blk, endofs - fofs);
676 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
680 update_extent:
681 /* 3. update extent in extent cache */
682 if (blkaddr) {
683 set_extent_info(&ei, fofs, blkaddr, 1);
684 en3 = __insert_extent_tree(sbi, et, &ei, &den);
687 /* 4. update in global extent list */
688 spin_lock(&sbi->extent_lock);
689 if (en && !list_empty(&en->list))
690 list_del(&en->list);
692 * en1 and en2 split from en, they will become more and more smaller
693 * fragments after splitting several times. So if the length is smaller
694 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
696 if (en1)
697 list_add_tail(&en1->list, &sbi->extent_list);
698 if (en2)
699 list_add_tail(&en2->list, &sbi->extent_list);
700 if (en3) {
701 if (list_empty(&en3->list))
702 list_add_tail(&en3->list, &sbi->extent_list);
703 else
704 list_move_tail(&en3->list, &sbi->extent_list);
706 if (den && !list_empty(&den->list))
707 list_del(&den->list);
708 spin_unlock(&sbi->extent_lock);
710 /* 5. release extent node */
711 if (en)
712 kmem_cache_free(extent_node_slab, en);
713 if (den)
714 kmem_cache_free(extent_node_slab, den);
716 write_unlock(&et->lock);
717 atomic_dec(&et->refcount);
720 void f2fs_preserve_extent_tree(struct inode *inode)
722 struct extent_tree *et;
723 struct extent_info *ext = &F2FS_I(inode)->ext;
724 bool sync = false;
726 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
727 return;
729 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
730 if (!et) {
731 if (ext->len) {
732 ext->len = 0;
733 update_inode_page(inode);
735 return;
738 read_lock(&et->lock);
739 if (et->count) {
740 struct extent_node *en;
742 if (et->cached_en) {
743 en = et->cached_en;
744 } else {
745 struct rb_node *node = rb_first(&et->root);
747 if (!node)
748 node = rb_last(&et->root);
749 en = rb_entry(node, struct extent_node, rb_node);
752 if (__is_extent_same(ext, &en->ei))
753 goto out;
755 *ext = en->ei;
756 sync = true;
757 } else if (ext->len) {
758 ext->len = 0;
759 sync = true;
761 out:
762 read_unlock(&et->lock);
763 atomic_dec(&et->refcount);
765 if (sync)
766 update_inode_page(inode);
769 void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
771 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
772 struct extent_node *en, *tmp;
773 unsigned long ino = F2FS_ROOT_INO(sbi);
774 struct radix_tree_iter iter;
775 void **slot;
776 unsigned int found;
777 unsigned int node_cnt = 0, tree_cnt = 0;
779 if (!test_opt(sbi, EXTENT_CACHE))
780 return;
782 if (available_free_memory(sbi, EXTENT_CACHE))
783 return;
785 spin_lock(&sbi->extent_lock);
786 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
787 if (!nr_shrink--)
788 break;
789 list_del_init(&en->list);
791 spin_unlock(&sbi->extent_lock);
793 down_read(&sbi->extent_tree_lock);
794 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
795 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
796 unsigned i;
798 ino = treevec[found - 1]->ino + 1;
799 for (i = 0; i < found; i++) {
800 struct extent_tree *et = treevec[i];
802 atomic_inc(&et->refcount);
803 write_lock(&et->lock);
804 node_cnt += __free_extent_tree(sbi, et, false);
805 write_unlock(&et->lock);
806 atomic_dec(&et->refcount);
809 up_read(&sbi->extent_tree_lock);
811 down_write(&sbi->extent_tree_lock);
812 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
813 F2FS_ROOT_INO(sbi)) {
814 struct extent_tree *et = (struct extent_tree *)*slot;
816 if (!atomic_read(&et->refcount) && !et->count) {
817 radix_tree_delete(&sbi->extent_tree_root, et->ino);
818 kmem_cache_free(extent_tree_slab, et);
819 sbi->total_ext_tree--;
820 tree_cnt++;
823 up_write(&sbi->extent_tree_lock);
825 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
828 void f2fs_destroy_extent_tree(struct inode *inode)
830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
831 struct extent_tree *et;
832 unsigned int node_cnt = 0;
834 if (!test_opt(sbi, EXTENT_CACHE))
835 return;
837 et = __find_extent_tree(sbi, inode->i_ino);
838 if (!et)
839 goto out;
841 /* free all extent info belong to this extent tree */
842 write_lock(&et->lock);
843 node_cnt = __free_extent_tree(sbi, et, true);
844 write_unlock(&et->lock);
846 atomic_dec(&et->refcount);
848 /* try to find and delete extent tree entry in radix tree */
849 down_write(&sbi->extent_tree_lock);
850 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
851 if (!et) {
852 up_write(&sbi->extent_tree_lock);
853 goto out;
855 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
856 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
857 kmem_cache_free(extent_tree_slab, et);
858 sbi->total_ext_tree--;
859 up_write(&sbi->extent_tree_lock);
860 out:
861 trace_f2fs_destroy_extent_tree(inode, node_cnt);
862 return;
865 void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
867 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
868 f2fs_init_extent_tree(inode, i_ext);
870 write_lock(&F2FS_I(inode)->ext_lock);
871 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
872 write_unlock(&F2FS_I(inode)->ext_lock);
875 static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
876 struct extent_info *ei)
878 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
879 return false;
881 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
882 return f2fs_lookup_extent_tree(inode, pgofs, ei);
884 return lookup_extent_info(inode, pgofs, ei);
887 void f2fs_update_extent_cache(struct dnode_of_data *dn)
889 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
890 pgoff_t fofs;
892 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
894 if (is_inode_flag_set(fi, FI_NO_EXTENT))
895 return;
897 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
898 dn->ofs_in_node;
900 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
901 return f2fs_update_extent_tree(dn->inode, fofs,
902 dn->data_blkaddr);
904 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
905 sync_inode_page(dn);
908 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
910 struct address_space *mapping = inode->i_mapping;
911 struct dnode_of_data dn;
912 struct page *page;
913 struct extent_info ei;
914 int err;
915 struct f2fs_io_info fio = {
916 .type = DATA,
917 .rw = sync ? READ_SYNC : READA,
921 * If sync is false, it needs to check its block allocation.
922 * This is need and triggered by two flows:
923 * gc and truncate_partial_data_page.
925 if (!sync)
926 goto search;
928 page = find_get_page(mapping, index);
929 if (page && PageUptodate(page))
930 return page;
931 f2fs_put_page(page, 0);
932 search:
933 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
934 dn.data_blkaddr = ei.blk + index - ei.fofs;
935 goto got_it;
938 set_new_dnode(&dn, inode, NULL, NULL, 0);
939 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
940 if (err)
941 return ERR_PTR(err);
942 f2fs_put_dnode(&dn);
944 if (dn.data_blkaddr == NULL_ADDR)
945 return ERR_PTR(-ENOENT);
947 /* By fallocate(), there is no cached page, but with NEW_ADDR */
948 if (unlikely(dn.data_blkaddr == NEW_ADDR))
949 return ERR_PTR(-EINVAL);
951 got_it:
952 page = grab_cache_page(mapping, index);
953 if (!page)
954 return ERR_PTR(-ENOMEM);
956 if (PageUptodate(page)) {
957 unlock_page(page);
958 return page;
961 fio.blk_addr = dn.data_blkaddr;
962 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
963 if (err)
964 return ERR_PTR(err);
966 if (sync) {
967 wait_on_page_locked(page);
968 if (unlikely(!PageUptodate(page))) {
969 f2fs_put_page(page, 0);
970 return ERR_PTR(-EIO);
973 return page;
977 * If it tries to access a hole, return an error.
978 * Because, the callers, functions in dir.c and GC, should be able to know
979 * whether this page exists or not.
981 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
983 struct address_space *mapping = inode->i_mapping;
984 struct dnode_of_data dn;
985 struct page *page;
986 struct extent_info ei;
987 int err;
988 struct f2fs_io_info fio = {
989 .type = DATA,
990 .rw = READ_SYNC,
992 repeat:
993 page = grab_cache_page(mapping, index);
994 if (!page)
995 return ERR_PTR(-ENOMEM);
997 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
998 dn.data_blkaddr = ei.blk + index - ei.fofs;
999 goto got_it;
1002 set_new_dnode(&dn, inode, NULL, NULL, 0);
1003 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1004 if (err) {
1005 f2fs_put_page(page, 1);
1006 return ERR_PTR(err);
1008 f2fs_put_dnode(&dn);
1010 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1011 f2fs_put_page(page, 1);
1012 return ERR_PTR(-ENOENT);
1015 got_it:
1016 if (PageUptodate(page))
1017 return page;
1020 * A new dentry page is allocated but not able to be written, since its
1021 * new inode page couldn't be allocated due to -ENOSPC.
1022 * In such the case, its blkaddr can be remained as NEW_ADDR.
1023 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
1025 if (dn.data_blkaddr == NEW_ADDR) {
1026 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1027 SetPageUptodate(page);
1028 return page;
1031 fio.blk_addr = dn.data_blkaddr;
1032 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1033 if (err)
1034 return ERR_PTR(err);
1036 lock_page(page);
1037 if (unlikely(!PageUptodate(page))) {
1038 f2fs_put_page(page, 1);
1039 return ERR_PTR(-EIO);
1041 if (unlikely(page->mapping != mapping)) {
1042 f2fs_put_page(page, 1);
1043 goto repeat;
1045 return page;
1049 * Caller ensures that this data page is never allocated.
1050 * A new zero-filled data page is allocated in the page cache.
1052 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1053 * f2fs_unlock_op().
1054 * Note that, ipage is set only by make_empty_dir.
1056 struct page *get_new_data_page(struct inode *inode,
1057 struct page *ipage, pgoff_t index, bool new_i_size)
1059 struct address_space *mapping = inode->i_mapping;
1060 struct page *page;
1061 struct dnode_of_data dn;
1062 int err;
1064 set_new_dnode(&dn, inode, ipage, NULL, 0);
1065 err = f2fs_reserve_block(&dn, index);
1066 if (err)
1067 return ERR_PTR(err);
1068 repeat:
1069 page = grab_cache_page(mapping, index);
1070 if (!page) {
1071 err = -ENOMEM;
1072 goto put_err;
1075 if (PageUptodate(page))
1076 return page;
1078 if (dn.data_blkaddr == NEW_ADDR) {
1079 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1080 SetPageUptodate(page);
1081 } else {
1082 struct f2fs_io_info fio = {
1083 .type = DATA,
1084 .rw = READ_SYNC,
1085 .blk_addr = dn.data_blkaddr,
1087 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1088 if (err)
1089 goto put_err;
1091 lock_page(page);
1092 if (unlikely(!PageUptodate(page))) {
1093 f2fs_put_page(page, 1);
1094 err = -EIO;
1095 goto put_err;
1097 if (unlikely(page->mapping != mapping)) {
1098 f2fs_put_page(page, 1);
1099 goto repeat;
1103 if (new_i_size &&
1104 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1105 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
1106 /* Only the directory inode sets new_i_size */
1107 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
1109 return page;
1111 put_err:
1112 f2fs_put_dnode(&dn);
1113 return ERR_PTR(err);
1116 static int __allocate_data_block(struct dnode_of_data *dn)
1118 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1119 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
1120 struct f2fs_summary sum;
1121 struct node_info ni;
1122 int seg = CURSEG_WARM_DATA;
1123 pgoff_t fofs;
1125 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1126 return -EPERM;
1128 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1129 if (dn->data_blkaddr == NEW_ADDR)
1130 goto alloc;
1132 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1133 return -ENOSPC;
1135 alloc:
1136 get_node_info(sbi, dn->nid, &ni);
1137 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1139 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1140 seg = CURSEG_DIRECT_IO;
1142 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1143 &sum, seg);
1145 /* direct IO doesn't use extent cache to maximize the performance */
1146 set_data_blkaddr(dn);
1148 /* update i_size */
1149 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1150 dn->ofs_in_node;
1151 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1152 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1154 return 0;
1157 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1158 size_t count)
1160 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1161 struct dnode_of_data dn;
1162 u64 start = F2FS_BYTES_TO_BLK(offset);
1163 u64 len = F2FS_BYTES_TO_BLK(count);
1164 bool allocated;
1165 u64 end_offset;
1167 while (len) {
1168 f2fs_balance_fs(sbi);
1169 f2fs_lock_op(sbi);
1171 /* When reading holes, we need its node page */
1172 set_new_dnode(&dn, inode, NULL, NULL, 0);
1173 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1174 goto out;
1176 allocated = false;
1177 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1179 while (dn.ofs_in_node < end_offset && len) {
1180 block_t blkaddr;
1182 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1183 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
1184 if (__allocate_data_block(&dn))
1185 goto sync_out;
1186 allocated = true;
1188 len--;
1189 start++;
1190 dn.ofs_in_node++;
1193 if (allocated)
1194 sync_inode_page(&dn);
1196 f2fs_put_dnode(&dn);
1197 f2fs_unlock_op(sbi);
1199 return;
1201 sync_out:
1202 if (allocated)
1203 sync_inode_page(&dn);
1204 f2fs_put_dnode(&dn);
1205 out:
1206 f2fs_unlock_op(sbi);
1207 return;
1211 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1212 * If original data blocks are allocated, then give them to blockdev.
1213 * Otherwise,
1214 * a. preallocate requested block addresses
1215 * b. do not use extent cache for better performance
1216 * c. give the block addresses to blockdev
1218 static int __get_data_block(struct inode *inode, sector_t iblock,
1219 struct buffer_head *bh_result, int create, bool fiemap)
1221 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1222 unsigned maxblocks = bh_result->b_size >> blkbits;
1223 struct dnode_of_data dn;
1224 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1225 pgoff_t pgofs, end_offset;
1226 int err = 0, ofs = 1;
1227 struct extent_info ei;
1228 bool allocated = false;
1230 /* Get the page offset from the block offset(iblock) */
1231 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1233 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1234 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
1235 goto out;
1238 if (create)
1239 f2fs_lock_op(F2FS_I_SB(inode));
1241 /* When reading holes, we need its node page */
1242 set_new_dnode(&dn, inode, NULL, NULL, 0);
1243 err = get_dnode_of_data(&dn, pgofs, mode);
1244 if (err) {
1245 if (err == -ENOENT)
1246 err = 0;
1247 goto unlock_out;
1249 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1250 goto put_out;
1252 if (dn.data_blkaddr != NULL_ADDR) {
1253 clear_buffer_new(bh_result);
1254 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1255 } else if (create) {
1256 err = __allocate_data_block(&dn);
1257 if (err)
1258 goto put_out;
1259 allocated = true;
1260 set_buffer_new(bh_result);
1261 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1262 } else {
1263 goto put_out;
1266 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1267 bh_result->b_size = (((size_t)1) << blkbits);
1268 dn.ofs_in_node++;
1269 pgofs++;
1271 get_next:
1272 if (dn.ofs_in_node >= end_offset) {
1273 if (allocated)
1274 sync_inode_page(&dn);
1275 allocated = false;
1276 f2fs_put_dnode(&dn);
1278 set_new_dnode(&dn, inode, NULL, NULL, 0);
1279 err = get_dnode_of_data(&dn, pgofs, mode);
1280 if (err) {
1281 if (err == -ENOENT)
1282 err = 0;
1283 goto unlock_out;
1285 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1286 goto put_out;
1288 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1291 if (maxblocks > (bh_result->b_size >> blkbits)) {
1292 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1293 if (blkaddr == NULL_ADDR && create) {
1294 err = __allocate_data_block(&dn);
1295 if (err)
1296 goto sync_out;
1297 allocated = true;
1298 set_buffer_new(bh_result);
1299 blkaddr = dn.data_blkaddr;
1301 /* Give more consecutive addresses for the readahead */
1302 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1303 ofs++;
1304 dn.ofs_in_node++;
1305 pgofs++;
1306 bh_result->b_size += (((size_t)1) << blkbits);
1307 goto get_next;
1310 sync_out:
1311 if (allocated)
1312 sync_inode_page(&dn);
1313 put_out:
1314 f2fs_put_dnode(&dn);
1315 unlock_out:
1316 if (create)
1317 f2fs_unlock_op(F2FS_I_SB(inode));
1318 out:
1319 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1320 return err;
1323 static int get_data_block(struct inode *inode, sector_t iblock,
1324 struct buffer_head *bh_result, int create)
1326 return __get_data_block(inode, iblock, bh_result, create, false);
1329 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1330 struct buffer_head *bh_result, int create)
1332 return __get_data_block(inode, iblock, bh_result, create, true);
1335 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1336 u64 start, u64 len)
1338 return generic_block_fiemap(inode, fieinfo,
1339 start, len, get_data_block_fiemap);
1342 static int f2fs_read_data_page(struct file *file, struct page *page)
1344 struct inode *inode = page->mapping->host;
1345 int ret = -EAGAIN;
1347 trace_f2fs_readpage(page, DATA);
1349 /* If the file has inline data, try to read it directly */
1350 if (f2fs_has_inline_data(inode))
1351 ret = f2fs_read_inline_data(inode, page);
1352 if (ret == -EAGAIN)
1353 ret = mpage_readpage(page, get_data_block);
1355 return ret;
1358 static int f2fs_read_data_pages(struct file *file,
1359 struct address_space *mapping,
1360 struct list_head *pages, unsigned nr_pages)
1362 struct inode *inode = file->f_mapping->host;
1364 /* If the file has inline data, skip readpages */
1365 if (f2fs_has_inline_data(inode))
1366 return 0;
1368 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
1371 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
1373 struct inode *inode = page->mapping->host;
1374 struct dnode_of_data dn;
1375 int err = 0;
1377 set_new_dnode(&dn, inode, NULL, NULL, 0);
1378 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1379 if (err)
1380 return err;
1382 fio->blk_addr = dn.data_blkaddr;
1384 /* This page is already truncated */
1385 if (fio->blk_addr == NULL_ADDR) {
1386 ClearPageUptodate(page);
1387 goto out_writepage;
1390 set_page_writeback(page);
1393 * If current allocation needs SSR,
1394 * it had better in-place writes for updated data.
1396 if (unlikely(fio->blk_addr != NEW_ADDR &&
1397 !is_cold_data(page) &&
1398 need_inplace_update(inode))) {
1399 rewrite_data_page(page, fio);
1400 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1401 trace_f2fs_do_write_data_page(page, IPU);
1402 } else {
1403 write_data_page(page, &dn, fio);
1404 set_data_blkaddr(&dn);
1405 f2fs_update_extent_cache(&dn);
1406 trace_f2fs_do_write_data_page(page, OPU);
1407 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1408 if (page->index == 0)
1409 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1411 out_writepage:
1412 f2fs_put_dnode(&dn);
1413 return err;
1416 static int f2fs_write_data_page(struct page *page,
1417 struct writeback_control *wbc)
1419 struct inode *inode = page->mapping->host;
1420 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1421 loff_t i_size = i_size_read(inode);
1422 const pgoff_t end_index = ((unsigned long long) i_size)
1423 >> PAGE_CACHE_SHIFT;
1424 unsigned offset = 0;
1425 bool need_balance_fs = false;
1426 int err = 0;
1427 struct f2fs_io_info fio = {
1428 .type = DATA,
1429 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1432 trace_f2fs_writepage(page, DATA);
1434 if (page->index < end_index)
1435 goto write;
1438 * If the offset is out-of-range of file size,
1439 * this page does not have to be written to disk.
1441 offset = i_size & (PAGE_CACHE_SIZE - 1);
1442 if ((page->index >= end_index + 1) || !offset)
1443 goto out;
1445 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1446 write:
1447 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1448 goto redirty_out;
1449 if (f2fs_is_drop_cache(inode))
1450 goto out;
1451 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1452 available_free_memory(sbi, BASE_CHECK))
1453 goto redirty_out;
1455 /* Dentry blocks are controlled by checkpoint */
1456 if (S_ISDIR(inode->i_mode)) {
1457 if (unlikely(f2fs_cp_error(sbi)))
1458 goto redirty_out;
1459 err = do_write_data_page(page, &fio);
1460 goto done;
1463 /* we should bypass data pages to proceed the kworkder jobs */
1464 if (unlikely(f2fs_cp_error(sbi))) {
1465 SetPageError(page);
1466 goto out;
1469 if (!wbc->for_reclaim)
1470 need_balance_fs = true;
1471 else if (has_not_enough_free_secs(sbi, 0))
1472 goto redirty_out;
1474 err = -EAGAIN;
1475 f2fs_lock_op(sbi);
1476 if (f2fs_has_inline_data(inode))
1477 err = f2fs_write_inline_data(inode, page);
1478 if (err == -EAGAIN)
1479 err = do_write_data_page(page, &fio);
1480 f2fs_unlock_op(sbi);
1481 done:
1482 if (err && err != -ENOENT)
1483 goto redirty_out;
1485 clear_cold_data(page);
1486 out:
1487 inode_dec_dirty_pages(inode);
1488 if (err)
1489 ClearPageUptodate(page);
1490 unlock_page(page);
1491 if (need_balance_fs)
1492 f2fs_balance_fs(sbi);
1493 if (wbc->for_reclaim)
1494 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1495 return 0;
1497 redirty_out:
1498 redirty_page_for_writepage(wbc, page);
1499 return AOP_WRITEPAGE_ACTIVATE;
1502 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1503 void *data)
1505 struct address_space *mapping = data;
1506 int ret = mapping->a_ops->writepage(page, wbc);
1507 mapping_set_error(mapping, ret);
1508 return ret;
1511 static int f2fs_write_data_pages(struct address_space *mapping,
1512 struct writeback_control *wbc)
1514 struct inode *inode = mapping->host;
1515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1516 bool locked = false;
1517 int ret;
1518 long diff;
1520 trace_f2fs_writepages(mapping->host, wbc, DATA);
1522 /* deal with chardevs and other special file */
1523 if (!mapping->a_ops->writepage)
1524 return 0;
1526 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1527 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1528 available_free_memory(sbi, DIRTY_DENTS))
1529 goto skip_write;
1531 /* during POR, we don't need to trigger writepage at all. */
1532 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1533 goto skip_write;
1535 diff = nr_pages_to_write(sbi, DATA, wbc);
1537 if (!S_ISDIR(inode->i_mode)) {
1538 mutex_lock(&sbi->writepages);
1539 locked = true;
1541 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1542 if (locked)
1543 mutex_unlock(&sbi->writepages);
1545 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1547 remove_dirty_dir_inode(inode);
1549 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1550 return ret;
1552 skip_write:
1553 wbc->pages_skipped += get_dirty_pages(inode);
1554 return 0;
1557 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1559 struct inode *inode = mapping->host;
1561 if (to > inode->i_size) {
1562 truncate_pagecache(inode, inode->i_size);
1563 truncate_blocks(inode, inode->i_size, true);
1567 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1568 loff_t pos, unsigned len, unsigned flags,
1569 struct page **pagep, void **fsdata)
1571 struct inode *inode = mapping->host;
1572 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1573 struct page *page, *ipage;
1574 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1575 struct dnode_of_data dn;
1576 int err = 0;
1578 trace_f2fs_write_begin(inode, pos, len, flags);
1580 f2fs_balance_fs(sbi);
1583 * We should check this at this moment to avoid deadlock on inode page
1584 * and #0 page. The locking rule for inline_data conversion should be:
1585 * lock_page(page #0) -> lock_page(inode_page)
1587 if (index != 0) {
1588 err = f2fs_convert_inline_inode(inode);
1589 if (err)
1590 goto fail;
1592 repeat:
1593 page = grab_cache_page_write_begin(mapping, index, flags);
1594 if (!page) {
1595 err = -ENOMEM;
1596 goto fail;
1599 *pagep = page;
1601 f2fs_lock_op(sbi);
1603 /* check inline_data */
1604 ipage = get_node_page(sbi, inode->i_ino);
1605 if (IS_ERR(ipage)) {
1606 err = PTR_ERR(ipage);
1607 goto unlock_fail;
1610 set_new_dnode(&dn, inode, ipage, ipage, 0);
1612 if (f2fs_has_inline_data(inode)) {
1613 if (pos + len <= MAX_INLINE_DATA) {
1614 read_inline_data(page, ipage);
1615 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1616 sync_inode_page(&dn);
1617 goto put_next;
1619 err = f2fs_convert_inline_page(&dn, page);
1620 if (err)
1621 goto put_fail;
1623 err = f2fs_reserve_block(&dn, index);
1624 if (err)
1625 goto put_fail;
1626 put_next:
1627 f2fs_put_dnode(&dn);
1628 f2fs_unlock_op(sbi);
1630 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1631 return 0;
1633 f2fs_wait_on_page_writeback(page, DATA);
1635 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1636 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1637 unsigned end = start + len;
1639 /* Reading beyond i_size is simple: memset to zero */
1640 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1641 goto out;
1644 if (dn.data_blkaddr == NEW_ADDR) {
1645 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1646 } else {
1647 struct f2fs_io_info fio = {
1648 .type = DATA,
1649 .rw = READ_SYNC,
1650 .blk_addr = dn.data_blkaddr,
1652 err = f2fs_submit_page_bio(sbi, page, &fio);
1653 if (err)
1654 goto fail;
1656 lock_page(page);
1657 if (unlikely(!PageUptodate(page))) {
1658 f2fs_put_page(page, 1);
1659 err = -EIO;
1660 goto fail;
1662 if (unlikely(page->mapping != mapping)) {
1663 f2fs_put_page(page, 1);
1664 goto repeat;
1667 out:
1668 SetPageUptodate(page);
1669 clear_cold_data(page);
1670 return 0;
1672 put_fail:
1673 f2fs_put_dnode(&dn);
1674 unlock_fail:
1675 f2fs_unlock_op(sbi);
1676 f2fs_put_page(page, 1);
1677 fail:
1678 f2fs_write_failed(mapping, pos + len);
1679 return err;
1682 static int f2fs_write_end(struct file *file,
1683 struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned copied,
1685 struct page *page, void *fsdata)
1687 struct inode *inode = page->mapping->host;
1689 trace_f2fs_write_end(inode, pos, len, copied);
1691 set_page_dirty(page);
1693 if (pos + copied > i_size_read(inode)) {
1694 i_size_write(inode, pos + copied);
1695 mark_inode_dirty(inode);
1696 update_inode_page(inode);
1699 f2fs_put_page(page, 1);
1700 return copied;
1703 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1704 loff_t offset)
1706 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1708 if (iov_iter_rw(iter) == READ)
1709 return 0;
1711 if (offset & blocksize_mask)
1712 return -EINVAL;
1714 if (iov_iter_alignment(iter) & blocksize_mask)
1715 return -EINVAL;
1717 return 0;
1720 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1721 loff_t offset)
1723 struct file *file = iocb->ki_filp;
1724 struct address_space *mapping = file->f_mapping;
1725 struct inode *inode = mapping->host;
1726 size_t count = iov_iter_count(iter);
1727 int err;
1729 /* we don't need to use inline_data strictly */
1730 if (f2fs_has_inline_data(inode)) {
1731 err = f2fs_convert_inline_inode(inode);
1732 if (err)
1733 return err;
1736 if (check_direct_IO(inode, iter, offset))
1737 return 0;
1739 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1741 if (iov_iter_rw(iter) == WRITE)
1742 __allocate_data_blocks(inode, offset, count);
1744 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
1745 if (err < 0 && iov_iter_rw(iter) == WRITE)
1746 f2fs_write_failed(mapping, offset + count);
1748 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1750 return err;
1753 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1754 unsigned int length)
1756 struct inode *inode = page->mapping->host;
1757 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1759 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1760 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1761 return;
1763 if (PageDirty(page)) {
1764 if (inode->i_ino == F2FS_META_INO(sbi))
1765 dec_page_count(sbi, F2FS_DIRTY_META);
1766 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1767 dec_page_count(sbi, F2FS_DIRTY_NODES);
1768 else
1769 inode_dec_dirty_pages(inode);
1771 ClearPagePrivate(page);
1774 int f2fs_release_page(struct page *page, gfp_t wait)
1776 /* If this is dirty page, keep PagePrivate */
1777 if (PageDirty(page))
1778 return 0;
1780 ClearPagePrivate(page);
1781 return 1;
1784 static int f2fs_set_data_page_dirty(struct page *page)
1786 struct address_space *mapping = page->mapping;
1787 struct inode *inode = mapping->host;
1789 trace_f2fs_set_page_dirty(page, DATA);
1791 SetPageUptodate(page);
1793 if (f2fs_is_atomic_file(inode)) {
1794 register_inmem_page(inode, page);
1795 return 1;
1798 mark_inode_dirty(inode);
1800 if (!PageDirty(page)) {
1801 __set_page_dirty_nobuffers(page);
1802 update_dirty_page(inode, page);
1803 return 1;
1805 return 0;
1808 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1810 struct inode *inode = mapping->host;
1812 /* we don't need to use inline_data strictly */
1813 if (f2fs_has_inline_data(inode)) {
1814 int err = f2fs_convert_inline_inode(inode);
1815 if (err)
1816 return err;
1818 return generic_block_bmap(mapping, block, get_data_block);
1821 void init_extent_cache_info(struct f2fs_sb_info *sbi)
1823 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1824 init_rwsem(&sbi->extent_tree_lock);
1825 INIT_LIST_HEAD(&sbi->extent_list);
1826 spin_lock_init(&sbi->extent_lock);
1827 sbi->total_ext_tree = 0;
1828 atomic_set(&sbi->total_ext_node, 0);
1831 int __init create_extent_cache(void)
1833 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1834 sizeof(struct extent_tree));
1835 if (!extent_tree_slab)
1836 return -ENOMEM;
1837 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1838 sizeof(struct extent_node));
1839 if (!extent_node_slab) {
1840 kmem_cache_destroy(extent_tree_slab);
1841 return -ENOMEM;
1843 return 0;
1846 void destroy_extent_cache(void)
1848 kmem_cache_destroy(extent_node_slab);
1849 kmem_cache_destroy(extent_tree_slab);
1852 const struct address_space_operations f2fs_dblock_aops = {
1853 .readpage = f2fs_read_data_page,
1854 .readpages = f2fs_read_data_pages,
1855 .writepage = f2fs_write_data_page,
1856 .writepages = f2fs_write_data_pages,
1857 .write_begin = f2fs_write_begin,
1858 .write_end = f2fs_write_end,
1859 .set_page_dirty = f2fs_set_data_page_dirty,
1860 .invalidatepage = f2fs_invalidate_page,
1861 .releasepage = f2fs_release_page,
1862 .direct_IO = f2fs_direct_IO,
1863 .bmap = f2fs_bmap,