4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->fcnt
* sizeof(struct free_nid
)) >>
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 } else if (type
== DIRTY_DENTS
) {
56 if (sbi
->sb
->s_bdi
->dirty_exceeded
)
58 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
59 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
60 } else if (type
== INO_ENTRIES
) {
63 for (i
= 0; i
<= UPDATE_INO
; i
++)
64 mem_size
+= (sbi
->im
[i
].ino_num
*
65 sizeof(struct ino_entry
)) >> PAGE_CACHE_SHIFT
;
66 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
67 } else if (type
== EXTENT_CACHE
) {
68 mem_size
= (sbi
->total_ext_tree
* sizeof(struct extent_tree
) +
69 atomic_read(&sbi
->total_ext_node
) *
70 sizeof(struct extent_node
)) >> PAGE_CACHE_SHIFT
;
71 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
73 if (sbi
->sb
->s_bdi
->dirty_exceeded
)
79 static void clear_node_page_dirty(struct page
*page
)
81 struct address_space
*mapping
= page
->mapping
;
82 unsigned int long flags
;
84 if (PageDirty(page
)) {
85 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
86 radix_tree_tag_clear(&mapping
->page_tree
,
89 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
91 clear_page_dirty_for_io(page
);
92 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
94 ClearPageUptodate(page
);
97 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
99 pgoff_t index
= current_nat_addr(sbi
, nid
);
100 return get_meta_page(sbi
, index
);
103 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
105 struct page
*src_page
;
106 struct page
*dst_page
;
111 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
113 src_off
= current_nat_addr(sbi
, nid
);
114 dst_off
= next_nat_addr(sbi
, src_off
);
116 /* get current nat block page with lock */
117 src_page
= get_meta_page(sbi
, src_off
);
118 dst_page
= grab_meta_page(sbi
, dst_off
);
119 f2fs_bug_on(sbi
, PageDirty(src_page
));
121 src_addr
= page_address(src_page
);
122 dst_addr
= page_address(dst_page
);
123 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
124 set_page_dirty(dst_page
);
125 f2fs_put_page(src_page
, 1);
127 set_to_next_nat(nm_i
, nid
);
132 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
134 return radix_tree_lookup(&nm_i
->nat_root
, n
);
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
138 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
140 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
143 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
146 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
148 kmem_cache_free(nat_entry_slab
, e
);
151 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
152 struct nat_entry
*ne
)
154 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
155 struct nat_entry_set
*head
;
157 if (get_nat_flag(ne
, IS_DIRTY
))
160 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
162 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_ATOMIC
);
164 INIT_LIST_HEAD(&head
->entry_list
);
165 INIT_LIST_HEAD(&head
->set_list
);
168 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
170 list_move_tail(&ne
->list
, &head
->entry_list
);
171 nm_i
->dirty_nat_cnt
++;
173 set_nat_flag(ne
, IS_DIRTY
, true);
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
177 struct nat_entry
*ne
)
179 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
180 struct nat_entry_set
*head
;
182 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
184 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
185 set_nat_flag(ne
, IS_DIRTY
, false);
187 nm_i
->dirty_nat_cnt
--;
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
192 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
194 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
198 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
200 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
204 down_read(&nm_i
->nat_tree_lock
);
205 e
= __lookup_nat_cache(nm_i
, nid
);
206 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
208 up_read(&nm_i
->nat_tree_lock
);
212 bool has_fsynced_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
214 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
216 bool fsynced
= false;
218 down_read(&nm_i
->nat_tree_lock
);
219 e
= __lookup_nat_cache(nm_i
, ino
);
220 if (e
&& get_nat_flag(e
, HAS_FSYNCED_INODE
))
222 up_read(&nm_i
->nat_tree_lock
);
226 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
228 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
230 bool need_update
= true;
232 down_read(&nm_i
->nat_tree_lock
);
233 e
= __lookup_nat_cache(nm_i
, ino
);
234 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
235 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
236 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
238 up_read(&nm_i
->nat_tree_lock
);
242 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
244 struct nat_entry
*new;
246 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_ATOMIC
);
247 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
248 memset(new, 0, sizeof(struct nat_entry
));
249 nat_set_nid(new, nid
);
251 list_add_tail(&new->list
, &nm_i
->nat_entries
);
256 static void cache_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
,
257 struct f2fs_nat_entry
*ne
)
261 down_write(&nm_i
->nat_tree_lock
);
262 e
= __lookup_nat_cache(nm_i
, nid
);
264 e
= grab_nat_entry(nm_i
, nid
);
265 node_info_from_raw_nat(&e
->ni
, ne
);
267 up_write(&nm_i
->nat_tree_lock
);
270 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
271 block_t new_blkaddr
, bool fsync_done
)
273 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
276 down_write(&nm_i
->nat_tree_lock
);
277 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
279 e
= grab_nat_entry(nm_i
, ni
->nid
);
280 copy_node_info(&e
->ni
, ni
);
281 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
282 } else if (new_blkaddr
== NEW_ADDR
) {
284 * when nid is reallocated,
285 * previous nat entry can be remained in nat cache.
286 * So, reinitialize it with new information.
288 copy_node_info(&e
->ni
, ni
);
289 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
293 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
294 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
295 new_blkaddr
== NULL_ADDR
);
296 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
297 new_blkaddr
== NEW_ADDR
);
298 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
299 nat_get_blkaddr(e
) != NULL_ADDR
&&
300 new_blkaddr
== NEW_ADDR
);
302 /* increment version no as node is removed */
303 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
304 unsigned char version
= nat_get_version(e
);
305 nat_set_version(e
, inc_node_version(version
));
309 nat_set_blkaddr(e
, new_blkaddr
);
310 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
311 set_nat_flag(e
, IS_CHECKPOINTED
, false);
312 __set_nat_cache_dirty(nm_i
, e
);
314 /* update fsync_mark if its inode nat entry is still alive */
315 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
317 if (fsync_done
&& ni
->nid
== ni
->ino
)
318 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
319 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
321 up_write(&nm_i
->nat_tree_lock
);
324 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
326 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
328 if (available_free_memory(sbi
, NAT_ENTRIES
))
331 down_write(&nm_i
->nat_tree_lock
);
332 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
333 struct nat_entry
*ne
;
334 ne
= list_first_entry(&nm_i
->nat_entries
,
335 struct nat_entry
, list
);
336 __del_from_nat_cache(nm_i
, ne
);
339 up_write(&nm_i
->nat_tree_lock
);
344 * This function always returns success
346 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
348 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
349 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
350 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
351 nid_t start_nid
= START_NID(nid
);
352 struct f2fs_nat_block
*nat_blk
;
353 struct page
*page
= NULL
;
354 struct f2fs_nat_entry ne
;
360 /* Check nat cache */
361 down_read(&nm_i
->nat_tree_lock
);
362 e
= __lookup_nat_cache(nm_i
, nid
);
364 ni
->ino
= nat_get_ino(e
);
365 ni
->blk_addr
= nat_get_blkaddr(e
);
366 ni
->version
= nat_get_version(e
);
368 up_read(&nm_i
->nat_tree_lock
);
372 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
374 /* Check current segment summary */
375 mutex_lock(&curseg
->curseg_mutex
);
376 i
= lookup_journal_in_cursum(sum
, NAT_JOURNAL
, nid
, 0);
378 ne
= nat_in_journal(sum
, i
);
379 node_info_from_raw_nat(ni
, &ne
);
381 mutex_unlock(&curseg
->curseg_mutex
);
385 /* Fill node_info from nat page */
386 page
= get_current_nat_page(sbi
, start_nid
);
387 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
388 ne
= nat_blk
->entries
[nid
- start_nid
];
389 node_info_from_raw_nat(ni
, &ne
);
390 f2fs_put_page(page
, 1);
392 /* cache nat entry */
393 cache_nat_entry(NM_I(sbi
), nid
, &ne
);
397 * The maximum depth is four.
398 * Offset[0] will have raw inode offset.
400 static int get_node_path(struct f2fs_inode_info
*fi
, long block
,
401 int offset
[4], unsigned int noffset
[4])
403 const long direct_index
= ADDRS_PER_INODE(fi
);
404 const long direct_blks
= ADDRS_PER_BLOCK
;
405 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
406 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
407 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
413 if (block
< direct_index
) {
417 block
-= direct_index
;
418 if (block
< direct_blks
) {
419 offset
[n
++] = NODE_DIR1_BLOCK
;
425 block
-= direct_blks
;
426 if (block
< direct_blks
) {
427 offset
[n
++] = NODE_DIR2_BLOCK
;
433 block
-= direct_blks
;
434 if (block
< indirect_blks
) {
435 offset
[n
++] = NODE_IND1_BLOCK
;
437 offset
[n
++] = block
/ direct_blks
;
438 noffset
[n
] = 4 + offset
[n
- 1];
439 offset
[n
] = block
% direct_blks
;
443 block
-= indirect_blks
;
444 if (block
< indirect_blks
) {
445 offset
[n
++] = NODE_IND2_BLOCK
;
446 noffset
[n
] = 4 + dptrs_per_blk
;
447 offset
[n
++] = block
/ direct_blks
;
448 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
449 offset
[n
] = block
% direct_blks
;
453 block
-= indirect_blks
;
454 if (block
< dindirect_blks
) {
455 offset
[n
++] = NODE_DIND_BLOCK
;
456 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
457 offset
[n
++] = block
/ indirect_blks
;
458 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
459 offset
[n
- 1] * (dptrs_per_blk
+ 1);
460 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
461 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
462 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
464 offset
[n
] = block
% direct_blks
;
475 * Caller should call f2fs_put_dnode(dn).
476 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
477 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
478 * In the case of RDONLY_NODE, we don't need to care about mutex.
480 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
482 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
483 struct page
*npage
[4];
484 struct page
*parent
= NULL
;
486 unsigned int noffset
[4];
491 level
= get_node_path(F2FS_I(dn
->inode
), index
, offset
, noffset
);
493 nids
[0] = dn
->inode
->i_ino
;
494 npage
[0] = dn
->inode_page
;
497 npage
[0] = get_node_page(sbi
, nids
[0]);
498 if (IS_ERR(npage
[0]))
499 return PTR_ERR(npage
[0]);
502 /* if inline_data is set, should not report any block indices */
503 if (f2fs_has_inline_data(dn
->inode
) && index
) {
505 f2fs_put_page(npage
[0], 1);
511 nids
[1] = get_nid(parent
, offset
[0], true);
512 dn
->inode_page
= npage
[0];
513 dn
->inode_page_locked
= true;
515 /* get indirect or direct nodes */
516 for (i
= 1; i
<= level
; i
++) {
519 if (!nids
[i
] && mode
== ALLOC_NODE
) {
521 if (!alloc_nid(sbi
, &(nids
[i
]))) {
527 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
528 if (IS_ERR(npage
[i
])) {
529 alloc_nid_failed(sbi
, nids
[i
]);
530 err
= PTR_ERR(npage
[i
]);
534 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
535 alloc_nid_done(sbi
, nids
[i
]);
537 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
538 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
539 if (IS_ERR(npage
[i
])) {
540 err
= PTR_ERR(npage
[i
]);
546 dn
->inode_page_locked
= false;
549 f2fs_put_page(parent
, 1);
553 npage
[i
] = get_node_page(sbi
, nids
[i
]);
554 if (IS_ERR(npage
[i
])) {
555 err
= PTR_ERR(npage
[i
]);
556 f2fs_put_page(npage
[0], 0);
562 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
565 dn
->nid
= nids
[level
];
566 dn
->ofs_in_node
= offset
[level
];
567 dn
->node_page
= npage
[level
];
568 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
572 f2fs_put_page(parent
, 1);
574 f2fs_put_page(npage
[0], 0);
576 dn
->inode_page
= NULL
;
577 dn
->node_page
= NULL
;
581 static void truncate_node(struct dnode_of_data
*dn
)
583 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
586 get_node_info(sbi
, dn
->nid
, &ni
);
587 if (dn
->inode
->i_blocks
== 0) {
588 f2fs_bug_on(sbi
, ni
.blk_addr
!= NULL_ADDR
);
591 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
593 /* Deallocate node address */
594 invalidate_blocks(sbi
, ni
.blk_addr
);
595 dec_valid_node_count(sbi
, dn
->inode
);
596 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
598 if (dn
->nid
== dn
->inode
->i_ino
) {
599 remove_orphan_inode(sbi
, dn
->nid
);
600 dec_valid_inode_count(sbi
);
605 clear_node_page_dirty(dn
->node_page
);
606 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
608 f2fs_put_page(dn
->node_page
, 1);
610 invalidate_mapping_pages(NODE_MAPPING(sbi
),
611 dn
->node_page
->index
, dn
->node_page
->index
);
613 dn
->node_page
= NULL
;
614 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
617 static int truncate_dnode(struct dnode_of_data
*dn
)
624 /* get direct node */
625 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
626 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
628 else if (IS_ERR(page
))
629 return PTR_ERR(page
);
631 /* Make dnode_of_data for parameter */
632 dn
->node_page
= page
;
634 truncate_data_blocks(dn
);
639 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
642 struct dnode_of_data rdn
= *dn
;
644 struct f2fs_node
*rn
;
646 unsigned int child_nofs
;
651 return NIDS_PER_BLOCK
+ 1;
653 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
655 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
657 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
658 return PTR_ERR(page
);
661 rn
= F2FS_NODE(page
);
663 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
664 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
668 ret
= truncate_dnode(&rdn
);
671 set_nid(page
, i
, 0, false);
674 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
675 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
676 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
677 if (child_nid
== 0) {
678 child_nofs
+= NIDS_PER_BLOCK
+ 1;
682 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
683 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
684 set_nid(page
, i
, 0, false);
686 } else if (ret
< 0 && ret
!= -ENOENT
) {
694 /* remove current indirect node */
695 dn
->node_page
= page
;
699 f2fs_put_page(page
, 1);
701 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
705 f2fs_put_page(page
, 1);
706 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
710 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
711 struct f2fs_inode
*ri
, int *offset
, int depth
)
713 struct page
*pages
[2];
720 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
724 /* get indirect nodes in the path */
725 for (i
= 0; i
< idx
+ 1; i
++) {
726 /* reference count'll be increased */
727 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
728 if (IS_ERR(pages
[i
])) {
729 err
= PTR_ERR(pages
[i
]);
733 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
736 /* free direct nodes linked to a partial indirect node */
737 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
738 child_nid
= get_nid(pages
[idx
], i
, false);
742 err
= truncate_dnode(dn
);
745 set_nid(pages
[idx
], i
, 0, false);
748 if (offset
[idx
+ 1] == 0) {
749 dn
->node_page
= pages
[idx
];
753 f2fs_put_page(pages
[idx
], 1);
759 for (i
= idx
; i
>= 0; i
--)
760 f2fs_put_page(pages
[i
], 1);
762 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
768 * All the block addresses of data and nodes should be nullified.
770 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
772 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
773 int err
= 0, cont
= 1;
774 int level
, offset
[4], noffset
[4];
775 unsigned int nofs
= 0;
776 struct f2fs_inode
*ri
;
777 struct dnode_of_data dn
;
780 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
782 level
= get_node_path(F2FS_I(inode
), from
, offset
, noffset
);
784 page
= get_node_page(sbi
, inode
->i_ino
);
786 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
787 return PTR_ERR(page
);
790 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
793 ri
= F2FS_INODE(page
);
801 if (!offset
[level
- 1])
803 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
804 if (err
< 0 && err
!= -ENOENT
)
806 nofs
+= 1 + NIDS_PER_BLOCK
;
809 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
810 if (!offset
[level
- 1])
812 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
813 if (err
< 0 && err
!= -ENOENT
)
822 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
824 case NODE_DIR1_BLOCK
:
825 case NODE_DIR2_BLOCK
:
826 err
= truncate_dnode(&dn
);
829 case NODE_IND1_BLOCK
:
830 case NODE_IND2_BLOCK
:
831 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
834 case NODE_DIND_BLOCK
:
835 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
842 if (err
< 0 && err
!= -ENOENT
)
844 if (offset
[1] == 0 &&
845 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
847 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
848 f2fs_put_page(page
, 1);
851 f2fs_wait_on_page_writeback(page
, NODE
);
852 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
853 set_page_dirty(page
);
861 f2fs_put_page(page
, 0);
862 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
863 return err
> 0 ? 0 : err
;
866 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
868 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
869 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
870 struct dnode_of_data dn
;
876 npage
= get_node_page(sbi
, nid
);
878 return PTR_ERR(npage
);
880 F2FS_I(inode
)->i_xattr_nid
= 0;
882 /* need to do checkpoint during fsync */
883 F2FS_I(inode
)->xattr_ver
= cur_cp_version(F2FS_CKPT(sbi
));
885 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
888 dn
.inode_page_locked
= true;
894 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
897 void remove_inode_page(struct inode
*inode
)
899 struct dnode_of_data dn
;
901 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
902 if (get_dnode_of_data(&dn
, 0, LOOKUP_NODE
))
905 if (truncate_xattr_node(inode
, dn
.inode_page
)) {
910 /* remove potential inline_data blocks */
911 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
912 S_ISLNK(inode
->i_mode
))
913 truncate_data_blocks_range(&dn
, 1);
915 /* 0 is possible, after f2fs_new_inode() has failed */
916 f2fs_bug_on(F2FS_I_SB(inode
),
917 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
919 /* will put inode & node pages */
923 struct page
*new_inode_page(struct inode
*inode
)
925 struct dnode_of_data dn
;
927 /* allocate inode page for new inode */
928 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
930 /* caller should f2fs_put_page(page, 1); */
931 return new_node_page(&dn
, 0, NULL
);
934 struct page
*new_node_page(struct dnode_of_data
*dn
,
935 unsigned int ofs
, struct page
*ipage
)
937 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
938 struct node_info old_ni
, new_ni
;
942 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
943 return ERR_PTR(-EPERM
);
945 page
= grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
);
947 return ERR_PTR(-ENOMEM
);
949 if (unlikely(!inc_valid_node_count(sbi
, dn
->inode
))) {
954 get_node_info(sbi
, dn
->nid
, &old_ni
);
956 /* Reinitialize old_ni with new node page */
957 f2fs_bug_on(sbi
, old_ni
.blk_addr
!= NULL_ADDR
);
959 new_ni
.ino
= dn
->inode
->i_ino
;
960 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
962 f2fs_wait_on_page_writeback(page
, NODE
);
963 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
964 set_cold_node(dn
->inode
, page
);
965 SetPageUptodate(page
);
966 set_page_dirty(page
);
968 if (f2fs_has_xattr_block(ofs
))
969 F2FS_I(dn
->inode
)->i_xattr_nid
= dn
->nid
;
971 dn
->node_page
= page
;
973 update_inode(dn
->inode
, ipage
);
977 inc_valid_inode_count(sbi
);
982 clear_node_page_dirty(page
);
983 f2fs_put_page(page
, 1);
988 * Caller should do after getting the following values.
989 * 0: f2fs_put_page(page, 0)
990 * LOCKED_PAGE: f2fs_put_page(page, 1)
993 static int read_node_page(struct page
*page
, int rw
)
995 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
997 struct f2fs_io_info fio
= {
1002 get_node_info(sbi
, page
->index
, &ni
);
1004 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1005 ClearPageUptodate(page
);
1006 f2fs_put_page(page
, 1);
1010 if (PageUptodate(page
))
1013 fio
.blk_addr
= ni
.blk_addr
;
1014 return f2fs_submit_page_bio(sbi
, page
, &fio
);
1018 * Readahead a node page
1020 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1025 apage
= find_get_page(NODE_MAPPING(sbi
), nid
);
1026 if (apage
&& PageUptodate(apage
)) {
1027 f2fs_put_page(apage
, 0);
1030 f2fs_put_page(apage
, 0);
1032 apage
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1036 err
= read_node_page(apage
, READA
);
1038 f2fs_put_page(apage
, 0);
1039 else if (err
== LOCKED_PAGE
)
1040 f2fs_put_page(apage
, 1);
1043 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1048 page
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1050 return ERR_PTR(-ENOMEM
);
1052 err
= read_node_page(page
, READ_SYNC
);
1054 return ERR_PTR(err
);
1055 else if (err
!= LOCKED_PAGE
)
1058 if (unlikely(!PageUptodate(page
) || nid
!= nid_of_node(page
))) {
1059 ClearPageUptodate(page
);
1060 f2fs_put_page(page
, 1);
1061 return ERR_PTR(-EIO
);
1063 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1064 f2fs_put_page(page
, 1);
1071 * Return a locked page for the desired node page.
1072 * And, readahead MAX_RA_NODE number of node pages.
1074 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1076 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1077 struct blk_plug plug
;
1082 /* First, try getting the desired direct node. */
1083 nid
= get_nid(parent
, start
, false);
1085 return ERR_PTR(-ENOENT
);
1087 page
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1089 return ERR_PTR(-ENOMEM
);
1091 err
= read_node_page(page
, READ_SYNC
);
1093 return ERR_PTR(err
);
1094 else if (err
== LOCKED_PAGE
)
1097 blk_start_plug(&plug
);
1099 /* Then, try readahead for siblings of the desired node */
1100 end
= start
+ MAX_RA_NODE
;
1101 end
= min(end
, NIDS_PER_BLOCK
);
1102 for (i
= start
+ 1; i
< end
; i
++) {
1103 nid
= get_nid(parent
, i
, false);
1106 ra_node_page(sbi
, nid
);
1109 blk_finish_plug(&plug
);
1112 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1113 f2fs_put_page(page
, 1);
1117 if (unlikely(!PageUptodate(page
))) {
1118 f2fs_put_page(page
, 1);
1119 return ERR_PTR(-EIO
);
1124 void sync_inode_page(struct dnode_of_data
*dn
)
1126 if (IS_INODE(dn
->node_page
) || dn
->inode_page
== dn
->node_page
) {
1127 update_inode(dn
->inode
, dn
->node_page
);
1128 } else if (dn
->inode_page
) {
1129 if (!dn
->inode_page_locked
)
1130 lock_page(dn
->inode_page
);
1131 update_inode(dn
->inode
, dn
->inode_page
);
1132 if (!dn
->inode_page_locked
)
1133 unlock_page(dn
->inode_page
);
1135 update_inode_page(dn
->inode
);
1139 int sync_node_pages(struct f2fs_sb_info
*sbi
, nid_t ino
,
1140 struct writeback_control
*wbc
)
1143 struct pagevec pvec
;
1144 int step
= ino
? 2 : 0;
1145 int nwritten
= 0, wrote
= 0;
1147 pagevec_init(&pvec
, 0);
1153 while (index
<= end
) {
1155 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1156 PAGECACHE_TAG_DIRTY
,
1157 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1161 for (i
= 0; i
< nr_pages
; i
++) {
1162 struct page
*page
= pvec
.pages
[i
];
1165 * flushing sequence with step:
1170 if (step
== 0 && IS_DNODE(page
))
1172 if (step
== 1 && (!IS_DNODE(page
) ||
1173 is_cold_node(page
)))
1175 if (step
== 2 && (!IS_DNODE(page
) ||
1176 !is_cold_node(page
)))
1181 * we should not skip writing node pages.
1183 if (ino
&& ino_of_node(page
) == ino
)
1185 else if (!trylock_page(page
))
1188 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1193 if (ino
&& ino_of_node(page
) != ino
)
1194 goto continue_unlock
;
1196 if (!PageDirty(page
)) {
1197 /* someone wrote it for us */
1198 goto continue_unlock
;
1201 if (!clear_page_dirty_for_io(page
))
1202 goto continue_unlock
;
1204 /* called by fsync() */
1205 if (ino
&& IS_DNODE(page
)) {
1206 set_fsync_mark(page
, 1);
1207 if (IS_INODE(page
)) {
1208 if (!is_checkpointed_node(sbi
, ino
) &&
1209 !has_fsynced_inode(sbi
, ino
))
1210 set_dentry_mark(page
, 1);
1212 set_dentry_mark(page
, 0);
1216 set_fsync_mark(page
, 0);
1217 set_dentry_mark(page
, 0);
1220 if (NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
))
1225 if (--wbc
->nr_to_write
== 0)
1228 pagevec_release(&pvec
);
1231 if (wbc
->nr_to_write
== 0) {
1243 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1247 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1249 pgoff_t index
= 0, end
= LONG_MAX
;
1250 struct pagevec pvec
;
1251 int ret2
= 0, ret
= 0;
1253 pagevec_init(&pvec
, 0);
1255 while (index
<= end
) {
1257 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1258 PAGECACHE_TAG_WRITEBACK
,
1259 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1263 for (i
= 0; i
< nr_pages
; i
++) {
1264 struct page
*page
= pvec
.pages
[i
];
1266 /* until radix tree lookup accepts end_index */
1267 if (unlikely(page
->index
> end
))
1270 if (ino
&& ino_of_node(page
) == ino
) {
1271 f2fs_wait_on_page_writeback(page
, NODE
);
1272 if (TestClearPageError(page
))
1276 pagevec_release(&pvec
);
1280 if (unlikely(test_and_clear_bit(AS_ENOSPC
, &NODE_MAPPING(sbi
)->flags
)))
1282 if (unlikely(test_and_clear_bit(AS_EIO
, &NODE_MAPPING(sbi
)->flags
)))
1289 static int f2fs_write_node_page(struct page
*page
,
1290 struct writeback_control
*wbc
)
1292 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1294 struct node_info ni
;
1295 struct f2fs_io_info fio
= {
1297 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
1300 trace_f2fs_writepage(page
, NODE
);
1302 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1304 if (unlikely(f2fs_cp_error(sbi
)))
1307 f2fs_wait_on_page_writeback(page
, NODE
);
1309 /* get old block addr of this node page */
1310 nid
= nid_of_node(page
);
1311 f2fs_bug_on(sbi
, page
->index
!= nid
);
1313 get_node_info(sbi
, nid
, &ni
);
1315 /* This page is already truncated */
1316 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1317 ClearPageUptodate(page
);
1318 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1323 if (wbc
->for_reclaim
) {
1324 if (!down_read_trylock(&sbi
->node_write
))
1327 down_read(&sbi
->node_write
);
1330 set_page_writeback(page
);
1331 fio
.blk_addr
= ni
.blk_addr
;
1332 write_node_page(sbi
, page
, nid
, &fio
);
1333 set_node_addr(sbi
, &ni
, fio
.blk_addr
, is_fsync_dnode(page
));
1334 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1335 up_read(&sbi
->node_write
);
1338 if (wbc
->for_reclaim
)
1339 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1344 redirty_page_for_writepage(wbc
, page
);
1345 return AOP_WRITEPAGE_ACTIVATE
;
1348 static int f2fs_write_node_pages(struct address_space
*mapping
,
1349 struct writeback_control
*wbc
)
1351 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1354 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1356 /* balancing f2fs's metadata in background */
1357 f2fs_balance_fs_bg(sbi
);
1359 /* collect a number of dirty node pages and write together */
1360 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1363 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1364 wbc
->sync_mode
= WB_SYNC_NONE
;
1365 sync_node_pages(sbi
, 0, wbc
);
1366 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1370 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1374 static int f2fs_set_node_page_dirty(struct page
*page
)
1376 trace_f2fs_set_page_dirty(page
, NODE
);
1378 SetPageUptodate(page
);
1379 if (!PageDirty(page
)) {
1380 __set_page_dirty_nobuffers(page
);
1381 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1382 SetPagePrivate(page
);
1383 f2fs_trace_pid(page
);
1390 * Structure of the f2fs node operations
1392 const struct address_space_operations f2fs_node_aops
= {
1393 .writepage
= f2fs_write_node_page
,
1394 .writepages
= f2fs_write_node_pages
,
1395 .set_page_dirty
= f2fs_set_node_page_dirty
,
1396 .invalidatepage
= f2fs_invalidate_page
,
1397 .releasepage
= f2fs_release_page
,
1400 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1403 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1406 static void __del_from_free_nid_list(struct f2fs_nm_info
*nm_i
,
1410 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1413 static int add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1415 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1417 struct nat_entry
*ne
;
1418 bool allocated
= false;
1420 if (!available_free_memory(sbi
, FREE_NIDS
))
1423 /* 0 nid should not be used */
1424 if (unlikely(nid
== 0))
1428 /* do not add allocated nids */
1429 down_read(&nm_i
->nat_tree_lock
);
1430 ne
= __lookup_nat_cache(nm_i
, nid
);
1432 (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1433 nat_get_blkaddr(ne
) != NULL_ADDR
))
1435 up_read(&nm_i
->nat_tree_lock
);
1440 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1444 if (radix_tree_preload(GFP_NOFS
)) {
1445 kmem_cache_free(free_nid_slab
, i
);
1449 spin_lock(&nm_i
->free_nid_list_lock
);
1450 if (radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
)) {
1451 spin_unlock(&nm_i
->free_nid_list_lock
);
1452 radix_tree_preload_end();
1453 kmem_cache_free(free_nid_slab
, i
);
1456 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1458 spin_unlock(&nm_i
->free_nid_list_lock
);
1459 radix_tree_preload_end();
1463 static void remove_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1466 bool need_free
= false;
1468 spin_lock(&nm_i
->free_nid_list_lock
);
1469 i
= __lookup_free_nid_list(nm_i
, nid
);
1470 if (i
&& i
->state
== NID_NEW
) {
1471 __del_from_free_nid_list(nm_i
, i
);
1475 spin_unlock(&nm_i
->free_nid_list_lock
);
1478 kmem_cache_free(free_nid_slab
, i
);
1481 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1482 struct page
*nat_page
, nid_t start_nid
)
1484 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1485 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1489 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1491 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1493 if (unlikely(start_nid
>= nm_i
->max_nid
))
1496 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1497 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1498 if (blk_addr
== NULL_ADDR
) {
1499 if (add_free_nid(sbi
, start_nid
, true) < 0)
1505 static void build_free_nids(struct f2fs_sb_info
*sbi
)
1507 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1508 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1509 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1511 nid_t nid
= nm_i
->next_scan_nid
;
1513 /* Enough entries */
1514 if (nm_i
->fcnt
> NAT_ENTRY_PER_BLOCK
)
1517 /* readahead nat pages to be scanned */
1518 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
, META_NAT
);
1521 struct page
*page
= get_current_nat_page(sbi
, nid
);
1523 scan_nat_page(sbi
, page
, nid
);
1524 f2fs_put_page(page
, 1);
1526 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1527 if (unlikely(nid
>= nm_i
->max_nid
))
1530 if (i
++ == FREE_NID_PAGES
)
1534 /* go to the next free nat pages to find free nids abundantly */
1535 nm_i
->next_scan_nid
= nid
;
1537 /* find free nids from current sum_pages */
1538 mutex_lock(&curseg
->curseg_mutex
);
1539 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1540 block_t addr
= le32_to_cpu(nat_in_journal(sum
, i
).block_addr
);
1541 nid
= le32_to_cpu(nid_in_journal(sum
, i
));
1542 if (addr
== NULL_ADDR
)
1543 add_free_nid(sbi
, nid
, true);
1545 remove_free_nid(nm_i
, nid
);
1547 mutex_unlock(&curseg
->curseg_mutex
);
1551 * If this function returns success, caller can obtain a new nid
1552 * from second parameter of this function.
1553 * The returned nid could be used ino as well as nid when inode is created.
1555 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1557 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1558 struct free_nid
*i
= NULL
;
1560 if (unlikely(sbi
->total_valid_node_count
+ 1 > nm_i
->available_nids
))
1563 spin_lock(&nm_i
->free_nid_list_lock
);
1565 /* We should not use stale free nids created by build_free_nids */
1566 if (nm_i
->fcnt
&& !on_build_free_nids(nm_i
)) {
1567 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
1568 list_for_each_entry(i
, &nm_i
->free_nid_list
, list
)
1569 if (i
->state
== NID_NEW
)
1572 f2fs_bug_on(sbi
, i
->state
!= NID_NEW
);
1574 i
->state
= NID_ALLOC
;
1576 spin_unlock(&nm_i
->free_nid_list_lock
);
1579 spin_unlock(&nm_i
->free_nid_list_lock
);
1581 /* Let's scan nat pages and its caches to get free nids */
1582 mutex_lock(&nm_i
->build_lock
);
1583 build_free_nids(sbi
);
1584 mutex_unlock(&nm_i
->build_lock
);
1589 * alloc_nid() should be called prior to this function.
1591 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1593 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1596 spin_lock(&nm_i
->free_nid_list_lock
);
1597 i
= __lookup_free_nid_list(nm_i
, nid
);
1598 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1599 __del_from_free_nid_list(nm_i
, i
);
1600 spin_unlock(&nm_i
->free_nid_list_lock
);
1602 kmem_cache_free(free_nid_slab
, i
);
1606 * alloc_nid() should be called prior to this function.
1608 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1610 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1612 bool need_free
= false;
1617 spin_lock(&nm_i
->free_nid_list_lock
);
1618 i
= __lookup_free_nid_list(nm_i
, nid
);
1619 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1620 if (!available_free_memory(sbi
, FREE_NIDS
)) {
1621 __del_from_free_nid_list(nm_i
, i
);
1627 spin_unlock(&nm_i
->free_nid_list_lock
);
1630 kmem_cache_free(free_nid_slab
, i
);
1633 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
1635 void *src_addr
, *dst_addr
;
1638 struct f2fs_inode
*ri
;
1640 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
1641 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
1643 ri
= F2FS_INODE(page
);
1644 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
1645 clear_inode_flag(F2FS_I(inode
), FI_INLINE_XATTR
);
1649 dst_addr
= inline_xattr_addr(ipage
);
1650 src_addr
= inline_xattr_addr(page
);
1651 inline_size
= inline_xattr_size(inode
);
1653 f2fs_wait_on_page_writeback(ipage
, NODE
);
1654 memcpy(dst_addr
, src_addr
, inline_size
);
1656 update_inode(inode
, ipage
);
1657 f2fs_put_page(ipage
, 1);
1660 void recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
1662 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1663 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
1664 nid_t new_xnid
= nid_of_node(page
);
1665 struct node_info ni
;
1667 /* 1: invalidate the previous xattr nid */
1671 /* Deallocate node address */
1672 get_node_info(sbi
, prev_xnid
, &ni
);
1673 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
1674 invalidate_blocks(sbi
, ni
.blk_addr
);
1675 dec_valid_node_count(sbi
, inode
);
1676 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
1679 /* 2: allocate new xattr nid */
1680 if (unlikely(!inc_valid_node_count(sbi
, inode
)))
1681 f2fs_bug_on(sbi
, 1);
1683 remove_free_nid(NM_I(sbi
), new_xnid
);
1684 get_node_info(sbi
, new_xnid
, &ni
);
1685 ni
.ino
= inode
->i_ino
;
1686 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
1687 F2FS_I(inode
)->i_xattr_nid
= new_xnid
;
1689 /* 3: update xattr blkaddr */
1690 refresh_sit_entry(sbi
, NEW_ADDR
, blkaddr
);
1691 set_node_addr(sbi
, &ni
, blkaddr
, false);
1693 update_inode_page(inode
);
1696 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1698 struct f2fs_inode
*src
, *dst
;
1699 nid_t ino
= ino_of_node(page
);
1700 struct node_info old_ni
, new_ni
;
1703 get_node_info(sbi
, ino
, &old_ni
);
1705 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
1708 ipage
= grab_cache_page(NODE_MAPPING(sbi
), ino
);
1712 /* Should not use this inode from free nid list */
1713 remove_free_nid(NM_I(sbi
), ino
);
1715 SetPageUptodate(ipage
);
1716 fill_node_footer(ipage
, ino
, ino
, 0, true);
1718 src
= F2FS_INODE(page
);
1719 dst
= F2FS_INODE(ipage
);
1721 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
1723 dst
->i_blocks
= cpu_to_le64(1);
1724 dst
->i_links
= cpu_to_le32(1);
1725 dst
->i_xattr_nid
= 0;
1726 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
1731 if (unlikely(!inc_valid_node_count(sbi
, NULL
)))
1733 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1734 inc_valid_inode_count(sbi
);
1735 set_page_dirty(ipage
);
1736 f2fs_put_page(ipage
, 1);
1740 int restore_node_summary(struct f2fs_sb_info
*sbi
,
1741 unsigned int segno
, struct f2fs_summary_block
*sum
)
1743 struct f2fs_node
*rn
;
1744 struct f2fs_summary
*sum_entry
;
1746 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
1747 int i
, idx
, last_offset
, nrpages
;
1749 /* scan the node segment */
1750 last_offset
= sbi
->blocks_per_seg
;
1751 addr
= START_BLOCK(sbi
, segno
);
1752 sum_entry
= &sum
->entries
[0];
1754 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
1755 nrpages
= min(last_offset
- i
, bio_blocks
);
1757 /* readahead node pages */
1758 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
);
1760 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
1761 struct page
*page
= get_meta_page(sbi
, idx
);
1763 rn
= F2FS_NODE(page
);
1764 sum_entry
->nid
= rn
->footer
.nid
;
1765 sum_entry
->version
= 0;
1766 sum_entry
->ofs_in_node
= 0;
1768 f2fs_put_page(page
, 1);
1771 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
1777 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
1779 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1780 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1781 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1784 mutex_lock(&curseg
->curseg_mutex
);
1785 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1786 struct nat_entry
*ne
;
1787 struct f2fs_nat_entry raw_ne
;
1788 nid_t nid
= le32_to_cpu(nid_in_journal(sum
, i
));
1790 raw_ne
= nat_in_journal(sum
, i
);
1792 down_write(&nm_i
->nat_tree_lock
);
1793 ne
= __lookup_nat_cache(nm_i
, nid
);
1795 ne
= grab_nat_entry(nm_i
, nid
);
1796 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
1798 __set_nat_cache_dirty(nm_i
, ne
);
1799 up_write(&nm_i
->nat_tree_lock
);
1801 update_nats_in_cursum(sum
, -i
);
1802 mutex_unlock(&curseg
->curseg_mutex
);
1805 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
1806 struct list_head
*head
, int max
)
1808 struct nat_entry_set
*cur
;
1810 if (nes
->entry_cnt
>= max
)
1813 list_for_each_entry(cur
, head
, set_list
) {
1814 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
1815 list_add(&nes
->set_list
, cur
->set_list
.prev
);
1820 list_add_tail(&nes
->set_list
, head
);
1823 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
1824 struct nat_entry_set
*set
)
1826 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1827 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1828 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
1829 bool to_journal
= true;
1830 struct f2fs_nat_block
*nat_blk
;
1831 struct nat_entry
*ne
, *cur
;
1832 struct page
*page
= NULL
;
1833 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1836 * there are two steps to flush nat entries:
1837 * #1, flush nat entries to journal in current hot data summary block.
1838 * #2, flush nat entries to nat page.
1840 if (!__has_cursum_space(sum
, set
->entry_cnt
, NAT_JOURNAL
))
1844 mutex_lock(&curseg
->curseg_mutex
);
1846 page
= get_next_nat_page(sbi
, start_nid
);
1847 nat_blk
= page_address(page
);
1848 f2fs_bug_on(sbi
, !nat_blk
);
1851 /* flush dirty nats in nat entry set */
1852 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
1853 struct f2fs_nat_entry
*raw_ne
;
1854 nid_t nid
= nat_get_nid(ne
);
1857 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
1861 offset
= lookup_journal_in_cursum(sum
,
1862 NAT_JOURNAL
, nid
, 1);
1863 f2fs_bug_on(sbi
, offset
< 0);
1864 raw_ne
= &nat_in_journal(sum
, offset
);
1865 nid_in_journal(sum
, offset
) = cpu_to_le32(nid
);
1867 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
1869 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
1871 down_write(&NM_I(sbi
)->nat_tree_lock
);
1873 __clear_nat_cache_dirty(NM_I(sbi
), ne
);
1874 up_write(&NM_I(sbi
)->nat_tree_lock
);
1876 if (nat_get_blkaddr(ne
) == NULL_ADDR
)
1877 add_free_nid(sbi
, nid
, false);
1881 mutex_unlock(&curseg
->curseg_mutex
);
1883 f2fs_put_page(page
, 1);
1885 f2fs_bug_on(sbi
, set
->entry_cnt
);
1887 down_write(&nm_i
->nat_tree_lock
);
1888 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
1889 up_write(&nm_i
->nat_tree_lock
);
1890 kmem_cache_free(nat_entry_set_slab
, set
);
1894 * This function is called during the checkpointing process.
1896 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
1898 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1899 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1900 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1901 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
1902 struct nat_entry_set
*set
, *tmp
;
1907 if (!nm_i
->dirty_nat_cnt
)
1910 * if there are no enough space in journal to store dirty nat
1911 * entries, remove all entries from journal and merge them
1912 * into nat entry set.
1914 if (!__has_cursum_space(sum
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
1915 remove_nats_in_journal(sbi
);
1917 down_write(&nm_i
->nat_tree_lock
);
1918 while ((found
= __gang_lookup_nat_set(nm_i
,
1919 set_idx
, SETVEC_SIZE
, setvec
))) {
1921 set_idx
= setvec
[found
- 1]->set
+ 1;
1922 for (idx
= 0; idx
< found
; idx
++)
1923 __adjust_nat_entry_set(setvec
[idx
], &sets
,
1924 MAX_NAT_JENTRIES(sum
));
1926 up_write(&nm_i
->nat_tree_lock
);
1928 /* flush dirty nats in nat entry set */
1929 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
1930 __flush_nat_entry_set(sbi
, set
);
1932 f2fs_bug_on(sbi
, nm_i
->dirty_nat_cnt
);
1935 static int init_node_manager(struct f2fs_sb_info
*sbi
)
1937 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
1938 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1939 unsigned char *version_bitmap
;
1940 unsigned int nat_segs
, nat_blocks
;
1942 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
1944 /* segment_count_nat includes pair segment so divide to 2. */
1945 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
1946 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
1948 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
1950 /* not used nids: 0, node, meta, (and root counted as valid node) */
1951 nm_i
->available_nids
= nm_i
->max_nid
- F2FS_RESERVED_NODE_NUM
;
1954 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
1956 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
1957 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
1958 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
1959 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
1960 INIT_LIST_HEAD(&nm_i
->nat_entries
);
1962 mutex_init(&nm_i
->build_lock
);
1963 spin_lock_init(&nm_i
->free_nid_list_lock
);
1964 init_rwsem(&nm_i
->nat_tree_lock
);
1966 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
1967 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
1968 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
1969 if (!version_bitmap
)
1972 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
1974 if (!nm_i
->nat_bitmap
)
1979 int build_node_manager(struct f2fs_sb_info
*sbi
)
1983 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
1987 err
= init_node_manager(sbi
);
1991 build_free_nids(sbi
);
1995 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
1997 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1998 struct free_nid
*i
, *next_i
;
1999 struct nat_entry
*natvec
[NATVEC_SIZE
];
2000 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2007 /* destroy free nid list */
2008 spin_lock(&nm_i
->free_nid_list_lock
);
2009 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2010 f2fs_bug_on(sbi
, i
->state
== NID_ALLOC
);
2011 __del_from_free_nid_list(nm_i
, i
);
2013 spin_unlock(&nm_i
->free_nid_list_lock
);
2014 kmem_cache_free(free_nid_slab
, i
);
2015 spin_lock(&nm_i
->free_nid_list_lock
);
2017 f2fs_bug_on(sbi
, nm_i
->fcnt
);
2018 spin_unlock(&nm_i
->free_nid_list_lock
);
2020 /* destroy nat cache */
2021 down_write(&nm_i
->nat_tree_lock
);
2022 while ((found
= __gang_lookup_nat_cache(nm_i
,
2023 nid
, NATVEC_SIZE
, natvec
))) {
2026 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2027 for (idx
= 0; idx
< found
; idx
++)
2028 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2030 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2032 /* destroy nat set cache */
2034 while ((found
= __gang_lookup_nat_set(nm_i
,
2035 nid
, SETVEC_SIZE
, setvec
))) {
2038 nid
= setvec
[found
- 1]->set
+ 1;
2039 for (idx
= 0; idx
< found
; idx
++) {
2040 /* entry_cnt is not zero, when cp_error was occurred */
2041 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2042 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2043 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2046 up_write(&nm_i
->nat_tree_lock
);
2048 kfree(nm_i
->nat_bitmap
);
2049 sbi
->nm_info
= NULL
;
2053 int __init
create_node_manager_caches(void)
2055 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2056 sizeof(struct nat_entry
));
2057 if (!nat_entry_slab
)
2060 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2061 sizeof(struct free_nid
));
2063 goto destroy_nat_entry
;
2065 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2066 sizeof(struct nat_entry_set
));
2067 if (!nat_entry_set_slab
)
2068 goto destroy_free_nid
;
2072 kmem_cache_destroy(free_nid_slab
);
2074 kmem_cache_destroy(nat_entry_slab
);
2079 void destroy_node_manager_caches(void)
2081 kmem_cache_destroy(nat_entry_set_slab
);
2082 kmem_cache_destroy(free_nid_slab
);
2083 kmem_cache_destroy(nat_entry_slab
);