gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / f2fs / segment.c
blobf939660941bbc7a69fc24d84023e7561134f687b
1 /*
2 * fs/f2fs/segment.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
34 * MSB and LSB are reversed in a byte by f2fs_set_bit.
36 static inline unsigned long __reverse_ffs(unsigned long word)
38 int num = 0;
40 #if BITS_PER_LONG == 64
41 if ((word & 0xffffffff) == 0) {
42 num += 32;
43 word >>= 32;
45 #endif
46 if ((word & 0xffff) == 0) {
47 num += 16;
48 word >>= 16;
50 if ((word & 0xff) == 0) {
51 num += 8;
52 word >>= 8;
54 if ((word & 0xf0) == 0)
55 num += 4;
56 else
57 word >>= 4;
58 if ((word & 0xc) == 0)
59 num += 2;
60 else
61 word >>= 2;
62 if ((word & 0x2) == 0)
63 num += 1;
64 return num;
68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
69 * f2fs_set_bit makes MSB and LSB reversed in a byte.
70 * Example:
71 * LSB <--> MSB
72 * f2fs_set_bit(0, bitmap) => 0000 0001
73 * f2fs_set_bit(7, bitmap) => 1000 0000
75 static unsigned long __find_rev_next_bit(const unsigned long *addr,
76 unsigned long size, unsigned long offset)
78 const unsigned long *p = addr + BIT_WORD(offset);
79 unsigned long result = offset & ~(BITS_PER_LONG - 1);
80 unsigned long tmp;
81 unsigned long mask, submask;
82 unsigned long quot, rest;
84 if (offset >= size)
85 return size;
87 size -= result;
88 offset %= BITS_PER_LONG;
89 if (!offset)
90 goto aligned;
92 tmp = *(p++);
93 quot = (offset >> 3) << 3;
94 rest = offset & 0x7;
95 mask = ~0UL << quot;
96 submask = (unsigned char)(0xff << rest) >> rest;
97 submask <<= quot;
98 mask &= submask;
99 tmp &= mask;
100 if (size < BITS_PER_LONG)
101 goto found_first;
102 if (tmp)
103 goto found_middle;
105 size -= BITS_PER_LONG;
106 result += BITS_PER_LONG;
107 aligned:
108 while (size & ~(BITS_PER_LONG-1)) {
109 tmp = *(p++);
110 if (tmp)
111 goto found_middle;
112 result += BITS_PER_LONG;
113 size -= BITS_PER_LONG;
115 if (!size)
116 return result;
117 tmp = *p;
118 found_first:
119 tmp &= (~0UL >> (BITS_PER_LONG - size));
120 if (tmp == 0UL) /* Are any bits set? */
121 return result + size; /* Nope. */
122 found_middle:
123 return result + __reverse_ffs(tmp);
126 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
127 unsigned long size, unsigned long offset)
129 const unsigned long *p = addr + BIT_WORD(offset);
130 unsigned long result = offset & ~(BITS_PER_LONG - 1);
131 unsigned long tmp;
132 unsigned long mask, submask;
133 unsigned long quot, rest;
135 if (offset >= size)
136 return size;
138 size -= result;
139 offset %= BITS_PER_LONG;
140 if (!offset)
141 goto aligned;
143 tmp = *(p++);
144 quot = (offset >> 3) << 3;
145 rest = offset & 0x7;
146 mask = ~(~0UL << quot);
147 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
148 submask <<= quot;
149 mask += submask;
150 tmp |= mask;
151 if (size < BITS_PER_LONG)
152 goto found_first;
153 if (~tmp)
154 goto found_middle;
156 size -= BITS_PER_LONG;
157 result += BITS_PER_LONG;
158 aligned:
159 while (size & ~(BITS_PER_LONG - 1)) {
160 tmp = *(p++);
161 if (~tmp)
162 goto found_middle;
163 result += BITS_PER_LONG;
164 size -= BITS_PER_LONG;
166 if (!size)
167 return result;
168 tmp = *p;
170 found_first:
171 tmp |= ~0UL << size;
172 if (tmp == ~0UL) /* Are any bits zero? */
173 return result + size; /* Nope. */
174 found_middle:
175 return result + __reverse_ffz(tmp);
178 void register_inmem_page(struct inode *inode, struct page *page)
180 struct f2fs_inode_info *fi = F2FS_I(inode);
181 struct inmem_pages *new;
182 int err;
184 SetPagePrivate(page);
185 f2fs_trace_pid(page);
187 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
189 /* add atomic page indices to the list */
190 new->page = page;
191 INIT_LIST_HEAD(&new->list);
192 retry:
193 /* increase reference count with clean state */
194 mutex_lock(&fi->inmem_lock);
195 err = radix_tree_insert(&fi->inmem_root, page->index, new);
196 if (err == -EEXIST) {
197 mutex_unlock(&fi->inmem_lock);
198 kmem_cache_free(inmem_entry_slab, new);
199 return;
200 } else if (err) {
201 mutex_unlock(&fi->inmem_lock);
202 goto retry;
204 get_page(page);
205 list_add_tail(&new->list, &fi->inmem_pages);
206 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
207 mutex_unlock(&fi->inmem_lock);
209 trace_f2fs_register_inmem_page(page, INMEM);
212 void commit_inmem_pages(struct inode *inode, bool abort)
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct f2fs_inode_info *fi = F2FS_I(inode);
216 struct inmem_pages *cur, *tmp;
217 bool submit_bio = false;
218 struct f2fs_io_info fio = {
219 .type = DATA,
220 .rw = WRITE_SYNC | REQ_PRIO,
224 * The abort is true only when f2fs_evict_inode is called.
225 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
226 * that we don't need to call f2fs_balance_fs.
227 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
228 * inode becomes free by iget_locked in f2fs_iget.
230 if (!abort) {
231 f2fs_balance_fs(sbi);
232 f2fs_lock_op(sbi);
235 mutex_lock(&fi->inmem_lock);
236 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
237 if (!abort) {
238 lock_page(cur->page);
239 if (cur->page->mapping == inode->i_mapping) {
240 f2fs_wait_on_page_writeback(cur->page, DATA);
241 if (clear_page_dirty_for_io(cur->page))
242 inode_dec_dirty_pages(inode);
243 trace_f2fs_commit_inmem_page(cur->page, INMEM);
244 do_write_data_page(cur->page, &fio);
245 submit_bio = true;
247 f2fs_put_page(cur->page, 1);
248 } else {
249 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
250 put_page(cur->page);
252 radix_tree_delete(&fi->inmem_root, cur->page->index);
253 list_del(&cur->list);
254 kmem_cache_free(inmem_entry_slab, cur);
255 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
257 mutex_unlock(&fi->inmem_lock);
259 if (!abort) {
260 f2fs_unlock_op(sbi);
261 if (submit_bio)
262 f2fs_submit_merged_bio(sbi, DATA, WRITE);
267 * This function balances dirty node and dentry pages.
268 * In addition, it controls garbage collection.
270 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
273 * We should do GC or end up with checkpoint, if there are so many dirty
274 * dir/node pages without enough free segments.
276 if (has_not_enough_free_secs(sbi, 0)) {
277 mutex_lock(&sbi->gc_mutex);
278 f2fs_gc(sbi);
282 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
284 /* try to shrink extent cache when there is no enough memory */
285 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
287 /* check the # of cached NAT entries and prefree segments */
288 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
289 excess_prefree_segs(sbi) ||
290 !available_free_memory(sbi, INO_ENTRIES))
291 f2fs_sync_fs(sbi->sb, true);
294 static int issue_flush_thread(void *data)
296 struct f2fs_sb_info *sbi = data;
297 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
298 wait_queue_head_t *q = &fcc->flush_wait_queue;
299 repeat:
300 if (kthread_should_stop())
301 return 0;
303 if (!llist_empty(&fcc->issue_list)) {
304 struct bio *bio = bio_alloc(GFP_NOIO, 0);
305 struct flush_cmd *cmd, *next;
306 int ret;
308 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
309 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
311 bio->bi_bdev = sbi->sb->s_bdev;
312 ret = submit_bio_wait(WRITE_FLUSH, bio);
314 llist_for_each_entry_safe(cmd, next,
315 fcc->dispatch_list, llnode) {
316 cmd->ret = ret;
317 complete(&cmd->wait);
319 bio_put(bio);
320 fcc->dispatch_list = NULL;
323 wait_event_interruptible(*q,
324 kthread_should_stop() || !llist_empty(&fcc->issue_list));
325 goto repeat;
328 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
330 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
331 struct flush_cmd cmd;
333 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
334 test_opt(sbi, FLUSH_MERGE));
336 if (test_opt(sbi, NOBARRIER))
337 return 0;
339 if (!test_opt(sbi, FLUSH_MERGE))
340 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
342 init_completion(&cmd.wait);
344 llist_add(&cmd.llnode, &fcc->issue_list);
346 if (!fcc->dispatch_list)
347 wake_up(&fcc->flush_wait_queue);
349 wait_for_completion(&cmd.wait);
351 return cmd.ret;
354 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
356 dev_t dev = sbi->sb->s_bdev->bd_dev;
357 struct flush_cmd_control *fcc;
358 int err = 0;
360 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
361 if (!fcc)
362 return -ENOMEM;
363 init_waitqueue_head(&fcc->flush_wait_queue);
364 init_llist_head(&fcc->issue_list);
365 SM_I(sbi)->cmd_control_info = fcc;
366 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
367 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
368 if (IS_ERR(fcc->f2fs_issue_flush)) {
369 err = PTR_ERR(fcc->f2fs_issue_flush);
370 kfree(fcc);
371 SM_I(sbi)->cmd_control_info = NULL;
372 return err;
375 return err;
378 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
380 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
382 if (fcc && fcc->f2fs_issue_flush)
383 kthread_stop(fcc->f2fs_issue_flush);
384 kfree(fcc);
385 SM_I(sbi)->cmd_control_info = NULL;
388 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
389 enum dirty_type dirty_type)
391 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
393 /* need not be added */
394 if (IS_CURSEG(sbi, segno))
395 return;
397 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
398 dirty_i->nr_dirty[dirty_type]++;
400 if (dirty_type == DIRTY) {
401 struct seg_entry *sentry = get_seg_entry(sbi, segno);
402 enum dirty_type t = sentry->type;
404 if (unlikely(t >= DIRTY)) {
405 f2fs_bug_on(sbi, 1);
406 return;
408 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
409 dirty_i->nr_dirty[t]++;
413 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
414 enum dirty_type dirty_type)
416 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
418 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
419 dirty_i->nr_dirty[dirty_type]--;
421 if (dirty_type == DIRTY) {
422 struct seg_entry *sentry = get_seg_entry(sbi, segno);
423 enum dirty_type t = sentry->type;
425 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
426 dirty_i->nr_dirty[t]--;
428 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
429 clear_bit(GET_SECNO(sbi, segno),
430 dirty_i->victim_secmap);
435 * Should not occur error such as -ENOMEM.
436 * Adding dirty entry into seglist is not critical operation.
437 * If a given segment is one of current working segments, it won't be added.
439 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
441 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
442 unsigned short valid_blocks;
444 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
445 return;
447 mutex_lock(&dirty_i->seglist_lock);
449 valid_blocks = get_valid_blocks(sbi, segno, 0);
451 if (valid_blocks == 0) {
452 __locate_dirty_segment(sbi, segno, PRE);
453 __remove_dirty_segment(sbi, segno, DIRTY);
454 } else if (valid_blocks < sbi->blocks_per_seg) {
455 __locate_dirty_segment(sbi, segno, DIRTY);
456 } else {
457 /* Recovery routine with SSR needs this */
458 __remove_dirty_segment(sbi, segno, DIRTY);
461 mutex_unlock(&dirty_i->seglist_lock);
464 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
465 block_t blkstart, block_t blklen)
467 sector_t start = SECTOR_FROM_BLOCK(blkstart);
468 sector_t len = SECTOR_FROM_BLOCK(blklen);
469 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
470 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
473 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
475 if (f2fs_issue_discard(sbi, blkaddr, 1)) {
476 struct page *page = grab_meta_page(sbi, blkaddr);
477 /* zero-filled page */
478 set_page_dirty(page);
479 f2fs_put_page(page, 1);
483 static void __add_discard_entry(struct f2fs_sb_info *sbi,
484 struct cp_control *cpc, unsigned int start, unsigned int end)
486 struct list_head *head = &SM_I(sbi)->discard_list;
487 struct discard_entry *new, *last;
489 if (!list_empty(head)) {
490 last = list_last_entry(head, struct discard_entry, list);
491 if (START_BLOCK(sbi, cpc->trim_start) + start ==
492 last->blkaddr + last->len) {
493 last->len += end - start;
494 goto done;
498 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
499 INIT_LIST_HEAD(&new->list);
500 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
501 new->len = end - start;
502 list_add_tail(&new->list, head);
503 done:
504 SM_I(sbi)->nr_discards += end - start;
505 cpc->trimmed += end - start;
508 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
510 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
511 int max_blocks = sbi->blocks_per_seg;
512 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
513 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
514 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
515 unsigned long *dmap = SIT_I(sbi)->tmp_map;
516 unsigned int start = 0, end = -1;
517 bool force = (cpc->reason == CP_DISCARD);
518 int i;
520 if (!force && (!test_opt(sbi, DISCARD) ||
521 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
522 return;
524 if (force && !se->valid_blocks) {
525 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
527 * if this segment is registered in the prefree list, then
528 * we should skip adding a discard candidate, and let the
529 * checkpoint do that later.
531 mutex_lock(&dirty_i->seglist_lock);
532 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
533 mutex_unlock(&dirty_i->seglist_lock);
534 cpc->trimmed += sbi->blocks_per_seg;
535 return;
537 mutex_unlock(&dirty_i->seglist_lock);
539 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
540 return;
543 /* zero block will be discarded through the prefree list */
544 if (!se->valid_blocks || se->valid_blocks == max_blocks)
545 return;
547 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
548 for (i = 0; i < entries; i++)
549 dmap[i] = force ? ~ckpt_map[i] :
550 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
552 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
553 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
554 if (start >= max_blocks)
555 break;
557 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
559 if (force && end - start < cpc->trim_minlen)
560 continue;
562 __add_discard_entry(sbi, cpc, start, end);
566 void release_discard_addrs(struct f2fs_sb_info *sbi)
568 struct list_head *head = &(SM_I(sbi)->discard_list);
569 struct discard_entry *entry, *this;
571 /* drop caches */
572 list_for_each_entry_safe(entry, this, head, list) {
573 list_del(&entry->list);
574 kmem_cache_free(discard_entry_slab, entry);
579 * Should call clear_prefree_segments after checkpoint is done.
581 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
583 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
584 unsigned int segno;
586 mutex_lock(&dirty_i->seglist_lock);
587 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
588 __set_test_and_free(sbi, segno);
589 mutex_unlock(&dirty_i->seglist_lock);
592 void clear_prefree_segments(struct f2fs_sb_info *sbi)
594 struct list_head *head = &(SM_I(sbi)->discard_list);
595 struct discard_entry *entry, *this;
596 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
597 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
598 unsigned int start = 0, end = -1;
600 mutex_lock(&dirty_i->seglist_lock);
602 while (1) {
603 int i;
604 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
605 if (start >= MAIN_SEGS(sbi))
606 break;
607 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
608 start + 1);
610 for (i = start; i < end; i++)
611 clear_bit(i, prefree_map);
613 dirty_i->nr_dirty[PRE] -= end - start;
615 if (!test_opt(sbi, DISCARD))
616 continue;
618 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
619 (end - start) << sbi->log_blocks_per_seg);
621 mutex_unlock(&dirty_i->seglist_lock);
623 /* send small discards */
624 list_for_each_entry_safe(entry, this, head, list) {
625 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
626 list_del(&entry->list);
627 SM_I(sbi)->nr_discards -= entry->len;
628 kmem_cache_free(discard_entry_slab, entry);
632 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
634 struct sit_info *sit_i = SIT_I(sbi);
636 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
637 sit_i->dirty_sentries++;
638 return false;
641 return true;
644 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
645 unsigned int segno, int modified)
647 struct seg_entry *se = get_seg_entry(sbi, segno);
648 se->type = type;
649 if (modified)
650 __mark_sit_entry_dirty(sbi, segno);
653 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
655 struct seg_entry *se;
656 unsigned int segno, offset;
657 long int new_vblocks;
659 segno = GET_SEGNO(sbi, blkaddr);
661 se = get_seg_entry(sbi, segno);
662 new_vblocks = se->valid_blocks + del;
663 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
665 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
666 (new_vblocks > sbi->blocks_per_seg)));
668 se->valid_blocks = new_vblocks;
669 se->mtime = get_mtime(sbi);
670 SIT_I(sbi)->max_mtime = se->mtime;
672 /* Update valid block bitmap */
673 if (del > 0) {
674 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
675 f2fs_bug_on(sbi, 1);
676 } else {
677 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
678 f2fs_bug_on(sbi, 1);
680 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
681 se->ckpt_valid_blocks += del;
683 __mark_sit_entry_dirty(sbi, segno);
685 /* update total number of valid blocks to be written in ckpt area */
686 SIT_I(sbi)->written_valid_blocks += del;
688 if (sbi->segs_per_sec > 1)
689 get_sec_entry(sbi, segno)->valid_blocks += del;
692 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
694 update_sit_entry(sbi, new, 1);
695 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
696 update_sit_entry(sbi, old, -1);
698 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
699 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
702 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
704 unsigned int segno = GET_SEGNO(sbi, addr);
705 struct sit_info *sit_i = SIT_I(sbi);
707 f2fs_bug_on(sbi, addr == NULL_ADDR);
708 if (addr == NEW_ADDR)
709 return;
711 /* add it into sit main buffer */
712 mutex_lock(&sit_i->sentry_lock);
714 update_sit_entry(sbi, addr, -1);
716 /* add it into dirty seglist */
717 locate_dirty_segment(sbi, segno);
719 mutex_unlock(&sit_i->sentry_lock);
723 * This function should be resided under the curseg_mutex lock
725 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
726 struct f2fs_summary *sum)
728 struct curseg_info *curseg = CURSEG_I(sbi, type);
729 void *addr = curseg->sum_blk;
730 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
731 memcpy(addr, sum, sizeof(struct f2fs_summary));
735 * Calculate the number of current summary pages for writing
737 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
739 int valid_sum_count = 0;
740 int i, sum_in_page;
742 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
743 if (sbi->ckpt->alloc_type[i] == SSR)
744 valid_sum_count += sbi->blocks_per_seg;
745 else {
746 if (for_ra)
747 valid_sum_count += le16_to_cpu(
748 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
749 else
750 valid_sum_count += curseg_blkoff(sbi, i);
754 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
755 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
756 if (valid_sum_count <= sum_in_page)
757 return 1;
758 else if ((valid_sum_count - sum_in_page) <=
759 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
760 return 2;
761 return 3;
765 * Caller should put this summary page
767 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
769 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
772 static void write_sum_page(struct f2fs_sb_info *sbi,
773 struct f2fs_summary_block *sum_blk, block_t blk_addr)
775 struct page *page = grab_meta_page(sbi, blk_addr);
776 void *kaddr = page_address(page);
777 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
778 set_page_dirty(page);
779 f2fs_put_page(page, 1);
782 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
784 struct curseg_info *curseg = CURSEG_I(sbi, type);
785 unsigned int segno = curseg->segno + 1;
786 struct free_segmap_info *free_i = FREE_I(sbi);
788 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
789 return !test_bit(segno, free_i->free_segmap);
790 return 0;
794 * Find a new segment from the free segments bitmap to right order
795 * This function should be returned with success, otherwise BUG
797 static void get_new_segment(struct f2fs_sb_info *sbi,
798 unsigned int *newseg, bool new_sec, int dir)
800 struct free_segmap_info *free_i = FREE_I(sbi);
801 unsigned int segno, secno, zoneno;
802 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
803 unsigned int hint = *newseg / sbi->segs_per_sec;
804 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
805 unsigned int left_start = hint;
806 bool init = true;
807 int go_left = 0;
808 int i;
810 spin_lock(&free_i->segmap_lock);
812 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
813 segno = find_next_zero_bit(free_i->free_segmap,
814 MAIN_SEGS(sbi), *newseg + 1);
815 if (segno - *newseg < sbi->segs_per_sec -
816 (*newseg % sbi->segs_per_sec))
817 goto got_it;
819 find_other_zone:
820 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
821 if (secno >= MAIN_SECS(sbi)) {
822 if (dir == ALLOC_RIGHT) {
823 secno = find_next_zero_bit(free_i->free_secmap,
824 MAIN_SECS(sbi), 0);
825 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
826 } else {
827 go_left = 1;
828 left_start = hint - 1;
831 if (go_left == 0)
832 goto skip_left;
834 while (test_bit(left_start, free_i->free_secmap)) {
835 if (left_start > 0) {
836 left_start--;
837 continue;
839 left_start = find_next_zero_bit(free_i->free_secmap,
840 MAIN_SECS(sbi), 0);
841 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
842 break;
844 secno = left_start;
845 skip_left:
846 hint = secno;
847 segno = secno * sbi->segs_per_sec;
848 zoneno = secno / sbi->secs_per_zone;
850 /* give up on finding another zone */
851 if (!init)
852 goto got_it;
853 if (sbi->secs_per_zone == 1)
854 goto got_it;
855 if (zoneno == old_zoneno)
856 goto got_it;
857 if (dir == ALLOC_LEFT) {
858 if (!go_left && zoneno + 1 >= total_zones)
859 goto got_it;
860 if (go_left && zoneno == 0)
861 goto got_it;
863 for (i = 0; i < NR_CURSEG_TYPE; i++)
864 if (CURSEG_I(sbi, i)->zone == zoneno)
865 break;
867 if (i < NR_CURSEG_TYPE) {
868 /* zone is in user, try another */
869 if (go_left)
870 hint = zoneno * sbi->secs_per_zone - 1;
871 else if (zoneno + 1 >= total_zones)
872 hint = 0;
873 else
874 hint = (zoneno + 1) * sbi->secs_per_zone;
875 init = false;
876 goto find_other_zone;
878 got_it:
879 /* set it as dirty segment in free segmap */
880 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
881 __set_inuse(sbi, segno);
882 *newseg = segno;
883 spin_unlock(&free_i->segmap_lock);
886 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
888 struct curseg_info *curseg = CURSEG_I(sbi, type);
889 struct summary_footer *sum_footer;
891 curseg->segno = curseg->next_segno;
892 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
893 curseg->next_blkoff = 0;
894 curseg->next_segno = NULL_SEGNO;
896 sum_footer = &(curseg->sum_blk->footer);
897 memset(sum_footer, 0, sizeof(struct summary_footer));
898 if (IS_DATASEG(type))
899 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
900 if (IS_NODESEG(type))
901 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
902 __set_sit_entry_type(sbi, type, curseg->segno, modified);
906 * Allocate a current working segment.
907 * This function always allocates a free segment in LFS manner.
909 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
911 struct curseg_info *curseg = CURSEG_I(sbi, type);
912 unsigned int segno = curseg->segno;
913 int dir = ALLOC_LEFT;
915 write_sum_page(sbi, curseg->sum_blk,
916 GET_SUM_BLOCK(sbi, segno));
917 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
918 dir = ALLOC_RIGHT;
920 if (test_opt(sbi, NOHEAP))
921 dir = ALLOC_RIGHT;
923 get_new_segment(sbi, &segno, new_sec, dir);
924 curseg->next_segno = segno;
925 reset_curseg(sbi, type, 1);
926 curseg->alloc_type = LFS;
929 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
930 struct curseg_info *seg, block_t start)
932 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
933 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
934 unsigned long *target_map = SIT_I(sbi)->tmp_map;
935 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
936 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
937 int i, pos;
939 for (i = 0; i < entries; i++)
940 target_map[i] = ckpt_map[i] | cur_map[i];
942 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
944 seg->next_blkoff = pos;
948 * If a segment is written by LFS manner, next block offset is just obtained
949 * by increasing the current block offset. However, if a segment is written by
950 * SSR manner, next block offset obtained by calling __next_free_blkoff
952 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
953 struct curseg_info *seg)
955 if (seg->alloc_type == SSR)
956 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
957 else
958 seg->next_blkoff++;
962 * This function always allocates a used segment(from dirty seglist) by SSR
963 * manner, so it should recover the existing segment information of valid blocks
965 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
967 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
968 struct curseg_info *curseg = CURSEG_I(sbi, type);
969 unsigned int new_segno = curseg->next_segno;
970 struct f2fs_summary_block *sum_node;
971 struct page *sum_page;
973 write_sum_page(sbi, curseg->sum_blk,
974 GET_SUM_BLOCK(sbi, curseg->segno));
975 __set_test_and_inuse(sbi, new_segno);
977 mutex_lock(&dirty_i->seglist_lock);
978 __remove_dirty_segment(sbi, new_segno, PRE);
979 __remove_dirty_segment(sbi, new_segno, DIRTY);
980 mutex_unlock(&dirty_i->seglist_lock);
982 reset_curseg(sbi, type, 1);
983 curseg->alloc_type = SSR;
984 __next_free_blkoff(sbi, curseg, 0);
986 if (reuse) {
987 sum_page = get_sum_page(sbi, new_segno);
988 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
989 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
990 f2fs_put_page(sum_page, 1);
994 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
996 struct curseg_info *curseg = CURSEG_I(sbi, type);
997 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
999 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1000 return v_ops->get_victim(sbi,
1001 &(curseg)->next_segno, BG_GC, type, SSR);
1003 /* For data segments, let's do SSR more intensively */
1004 for (; type >= CURSEG_HOT_DATA; type--)
1005 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1006 BG_GC, type, SSR))
1007 return 1;
1008 return 0;
1012 * flush out current segment and replace it with new segment
1013 * This function should be returned with success, otherwise BUG
1015 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1016 int type, bool force)
1018 struct curseg_info *curseg = CURSEG_I(sbi, type);
1020 if (force)
1021 new_curseg(sbi, type, true);
1022 else if (type == CURSEG_WARM_NODE)
1023 new_curseg(sbi, type, false);
1024 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1025 new_curseg(sbi, type, false);
1026 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1027 change_curseg(sbi, type, true);
1028 else
1029 new_curseg(sbi, type, false);
1031 stat_inc_seg_type(sbi, curseg);
1034 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1036 struct curseg_info *curseg = CURSEG_I(sbi, type);
1037 unsigned int old_segno;
1039 old_segno = curseg->segno;
1040 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1041 locate_dirty_segment(sbi, old_segno);
1044 void allocate_new_segments(struct f2fs_sb_info *sbi)
1046 int i;
1048 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1049 __allocate_new_segments(sbi, i);
1052 static const struct segment_allocation default_salloc_ops = {
1053 .allocate_segment = allocate_segment_by_default,
1056 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1058 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1059 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1060 unsigned int start_segno, end_segno;
1061 struct cp_control cpc;
1063 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1064 range->len < sbi->blocksize)
1065 return -EINVAL;
1067 cpc.trimmed = 0;
1068 if (end <= MAIN_BLKADDR(sbi))
1069 goto out;
1071 /* start/end segment number in main_area */
1072 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1073 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1074 GET_SEGNO(sbi, end);
1075 cpc.reason = CP_DISCARD;
1076 cpc.trim_minlen = F2FS_BYTES_TO_BLK(range->minlen);
1078 /* do checkpoint to issue discard commands safely */
1079 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1080 cpc.trim_start = start_segno;
1081 cpc.trim_end = min_t(unsigned int, rounddown(start_segno +
1082 BATCHED_TRIM_SEGMENTS(sbi),
1083 sbi->segs_per_sec) - 1, end_segno);
1085 mutex_lock(&sbi->gc_mutex);
1086 write_checkpoint(sbi, &cpc);
1087 mutex_unlock(&sbi->gc_mutex);
1089 out:
1090 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1091 return 0;
1094 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1096 struct curseg_info *curseg = CURSEG_I(sbi, type);
1097 if (curseg->next_blkoff < sbi->blocks_per_seg)
1098 return true;
1099 return false;
1102 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1104 if (p_type == DATA)
1105 return CURSEG_HOT_DATA;
1106 else
1107 return CURSEG_HOT_NODE;
1110 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1112 if (p_type == DATA) {
1113 struct inode *inode = page->mapping->host;
1115 if (S_ISDIR(inode->i_mode))
1116 return CURSEG_HOT_DATA;
1117 else
1118 return CURSEG_COLD_DATA;
1119 } else {
1120 if (IS_DNODE(page) && is_cold_node(page))
1121 return CURSEG_WARM_NODE;
1122 else
1123 return CURSEG_COLD_NODE;
1127 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1129 if (p_type == DATA) {
1130 struct inode *inode = page->mapping->host;
1132 if (S_ISDIR(inode->i_mode))
1133 return CURSEG_HOT_DATA;
1134 else if (is_cold_data(page) || file_is_cold(inode))
1135 return CURSEG_COLD_DATA;
1136 else
1137 return CURSEG_WARM_DATA;
1138 } else {
1139 if (IS_DNODE(page))
1140 return is_cold_node(page) ? CURSEG_WARM_NODE :
1141 CURSEG_HOT_NODE;
1142 else
1143 return CURSEG_COLD_NODE;
1147 static int __get_segment_type(struct page *page, enum page_type p_type)
1149 switch (F2FS_P_SB(page)->active_logs) {
1150 case 2:
1151 return __get_segment_type_2(page, p_type);
1152 case 4:
1153 return __get_segment_type_4(page, p_type);
1155 /* NR_CURSEG_TYPE(6) logs by default */
1156 f2fs_bug_on(F2FS_P_SB(page),
1157 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1158 return __get_segment_type_6(page, p_type);
1161 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1162 block_t old_blkaddr, block_t *new_blkaddr,
1163 struct f2fs_summary *sum, int type)
1165 struct sit_info *sit_i = SIT_I(sbi);
1166 struct curseg_info *curseg;
1167 bool direct_io = (type == CURSEG_DIRECT_IO);
1169 type = direct_io ? CURSEG_WARM_DATA : type;
1171 curseg = CURSEG_I(sbi, type);
1173 mutex_lock(&curseg->curseg_mutex);
1174 mutex_lock(&sit_i->sentry_lock);
1176 /* direct_io'ed data is aligned to the segment for better performance */
1177 if (direct_io && curseg->next_blkoff)
1178 __allocate_new_segments(sbi, type);
1180 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1183 * __add_sum_entry should be resided under the curseg_mutex
1184 * because, this function updates a summary entry in the
1185 * current summary block.
1187 __add_sum_entry(sbi, type, sum);
1189 __refresh_next_blkoff(sbi, curseg);
1191 stat_inc_block_count(sbi, curseg);
1193 if (!__has_curseg_space(sbi, type))
1194 sit_i->s_ops->allocate_segment(sbi, type, false);
1196 * SIT information should be updated before segment allocation,
1197 * since SSR needs latest valid block information.
1199 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1201 mutex_unlock(&sit_i->sentry_lock);
1203 if (page && IS_NODESEG(type))
1204 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1206 mutex_unlock(&curseg->curseg_mutex);
1209 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1210 struct f2fs_summary *sum,
1211 struct f2fs_io_info *fio)
1213 int type = __get_segment_type(page, fio->type);
1215 allocate_data_block(sbi, page, fio->blk_addr, &fio->blk_addr, sum, type);
1217 /* writeout dirty page into bdev */
1218 f2fs_submit_page_mbio(sbi, page, fio);
1221 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1223 struct f2fs_io_info fio = {
1224 .type = META,
1225 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1226 .blk_addr = page->index,
1229 set_page_writeback(page);
1230 f2fs_submit_page_mbio(sbi, page, &fio);
1233 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1234 unsigned int nid, struct f2fs_io_info *fio)
1236 struct f2fs_summary sum;
1237 set_summary(&sum, nid, 0, 0);
1238 do_write_page(sbi, page, &sum, fio);
1241 void write_data_page(struct page *page, struct dnode_of_data *dn,
1242 struct f2fs_io_info *fio)
1244 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1245 struct f2fs_summary sum;
1246 struct node_info ni;
1248 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1249 get_node_info(sbi, dn->nid, &ni);
1250 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1251 do_write_page(sbi, page, &sum, fio);
1252 dn->data_blkaddr = fio->blk_addr;
1255 void rewrite_data_page(struct page *page, struct f2fs_io_info *fio)
1257 stat_inc_inplace_blocks(F2FS_P_SB(page));
1258 f2fs_submit_page_mbio(F2FS_P_SB(page), page, fio);
1261 void recover_data_page(struct f2fs_sb_info *sbi,
1262 struct page *page, struct f2fs_summary *sum,
1263 block_t old_blkaddr, block_t new_blkaddr)
1265 struct sit_info *sit_i = SIT_I(sbi);
1266 struct curseg_info *curseg;
1267 unsigned int segno, old_cursegno;
1268 struct seg_entry *se;
1269 int type;
1271 segno = GET_SEGNO(sbi, new_blkaddr);
1272 se = get_seg_entry(sbi, segno);
1273 type = se->type;
1275 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1276 if (old_blkaddr == NULL_ADDR)
1277 type = CURSEG_COLD_DATA;
1278 else
1279 type = CURSEG_WARM_DATA;
1281 curseg = CURSEG_I(sbi, type);
1283 mutex_lock(&curseg->curseg_mutex);
1284 mutex_lock(&sit_i->sentry_lock);
1286 old_cursegno = curseg->segno;
1288 /* change the current segment */
1289 if (segno != curseg->segno) {
1290 curseg->next_segno = segno;
1291 change_curseg(sbi, type, true);
1294 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1295 __add_sum_entry(sbi, type, sum);
1297 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1298 locate_dirty_segment(sbi, old_cursegno);
1300 mutex_unlock(&sit_i->sentry_lock);
1301 mutex_unlock(&curseg->curseg_mutex);
1304 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1305 struct page *page, enum page_type type)
1307 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1308 struct f2fs_bio_info *io = &sbi->write_io[btype];
1309 struct bio_vec *bvec;
1310 int i;
1312 down_read(&io->io_rwsem);
1313 if (!io->bio)
1314 goto out;
1316 bio_for_each_segment_all(bvec, io->bio, i) {
1317 if (page == bvec->bv_page) {
1318 up_read(&io->io_rwsem);
1319 return true;
1323 out:
1324 up_read(&io->io_rwsem);
1325 return false;
1328 void f2fs_wait_on_page_writeback(struct page *page,
1329 enum page_type type)
1331 if (PageWriteback(page)) {
1332 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1334 if (is_merged_page(sbi, page, type))
1335 f2fs_submit_merged_bio(sbi, type, WRITE);
1336 wait_on_page_writeback(page);
1340 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1342 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1343 struct curseg_info *seg_i;
1344 unsigned char *kaddr;
1345 struct page *page;
1346 block_t start;
1347 int i, j, offset;
1349 start = start_sum_block(sbi);
1351 page = get_meta_page(sbi, start++);
1352 kaddr = (unsigned char *)page_address(page);
1354 /* Step 1: restore nat cache */
1355 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1356 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1358 /* Step 2: restore sit cache */
1359 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1360 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1361 SUM_JOURNAL_SIZE);
1362 offset = 2 * SUM_JOURNAL_SIZE;
1364 /* Step 3: restore summary entries */
1365 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1366 unsigned short blk_off;
1367 unsigned int segno;
1369 seg_i = CURSEG_I(sbi, i);
1370 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1371 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1372 seg_i->next_segno = segno;
1373 reset_curseg(sbi, i, 0);
1374 seg_i->alloc_type = ckpt->alloc_type[i];
1375 seg_i->next_blkoff = blk_off;
1377 if (seg_i->alloc_type == SSR)
1378 blk_off = sbi->blocks_per_seg;
1380 for (j = 0; j < blk_off; j++) {
1381 struct f2fs_summary *s;
1382 s = (struct f2fs_summary *)(kaddr + offset);
1383 seg_i->sum_blk->entries[j] = *s;
1384 offset += SUMMARY_SIZE;
1385 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1386 SUM_FOOTER_SIZE)
1387 continue;
1389 f2fs_put_page(page, 1);
1390 page = NULL;
1392 page = get_meta_page(sbi, start++);
1393 kaddr = (unsigned char *)page_address(page);
1394 offset = 0;
1397 f2fs_put_page(page, 1);
1398 return 0;
1401 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1403 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1404 struct f2fs_summary_block *sum;
1405 struct curseg_info *curseg;
1406 struct page *new;
1407 unsigned short blk_off;
1408 unsigned int segno = 0;
1409 block_t blk_addr = 0;
1411 /* get segment number and block addr */
1412 if (IS_DATASEG(type)) {
1413 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1414 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1415 CURSEG_HOT_DATA]);
1416 if (__exist_node_summaries(sbi))
1417 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1418 else
1419 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1420 } else {
1421 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1422 CURSEG_HOT_NODE]);
1423 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1424 CURSEG_HOT_NODE]);
1425 if (__exist_node_summaries(sbi))
1426 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1427 type - CURSEG_HOT_NODE);
1428 else
1429 blk_addr = GET_SUM_BLOCK(sbi, segno);
1432 new = get_meta_page(sbi, blk_addr);
1433 sum = (struct f2fs_summary_block *)page_address(new);
1435 if (IS_NODESEG(type)) {
1436 if (__exist_node_summaries(sbi)) {
1437 struct f2fs_summary *ns = &sum->entries[0];
1438 int i;
1439 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1440 ns->version = 0;
1441 ns->ofs_in_node = 0;
1443 } else {
1444 int err;
1446 err = restore_node_summary(sbi, segno, sum);
1447 if (err) {
1448 f2fs_put_page(new, 1);
1449 return err;
1454 /* set uncompleted segment to curseg */
1455 curseg = CURSEG_I(sbi, type);
1456 mutex_lock(&curseg->curseg_mutex);
1457 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1458 curseg->next_segno = segno;
1459 reset_curseg(sbi, type, 0);
1460 curseg->alloc_type = ckpt->alloc_type[type];
1461 curseg->next_blkoff = blk_off;
1462 mutex_unlock(&curseg->curseg_mutex);
1463 f2fs_put_page(new, 1);
1464 return 0;
1467 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1469 int type = CURSEG_HOT_DATA;
1470 int err;
1472 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1473 int npages = npages_for_summary_flush(sbi, true);
1475 if (npages >= 2)
1476 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1477 META_CP);
1479 /* restore for compacted data summary */
1480 if (read_compacted_summaries(sbi))
1481 return -EINVAL;
1482 type = CURSEG_HOT_NODE;
1485 if (__exist_node_summaries(sbi))
1486 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1487 NR_CURSEG_TYPE - type, META_CP);
1489 for (; type <= CURSEG_COLD_NODE; type++) {
1490 err = read_normal_summaries(sbi, type);
1491 if (err)
1492 return err;
1495 return 0;
1498 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1500 struct page *page;
1501 unsigned char *kaddr;
1502 struct f2fs_summary *summary;
1503 struct curseg_info *seg_i;
1504 int written_size = 0;
1505 int i, j;
1507 page = grab_meta_page(sbi, blkaddr++);
1508 kaddr = (unsigned char *)page_address(page);
1510 /* Step 1: write nat cache */
1511 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1512 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1513 written_size += SUM_JOURNAL_SIZE;
1515 /* Step 2: write sit cache */
1516 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1517 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1518 SUM_JOURNAL_SIZE);
1519 written_size += SUM_JOURNAL_SIZE;
1521 /* Step 3: write summary entries */
1522 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1523 unsigned short blkoff;
1524 seg_i = CURSEG_I(sbi, i);
1525 if (sbi->ckpt->alloc_type[i] == SSR)
1526 blkoff = sbi->blocks_per_seg;
1527 else
1528 blkoff = curseg_blkoff(sbi, i);
1530 for (j = 0; j < blkoff; j++) {
1531 if (!page) {
1532 page = grab_meta_page(sbi, blkaddr++);
1533 kaddr = (unsigned char *)page_address(page);
1534 written_size = 0;
1536 summary = (struct f2fs_summary *)(kaddr + written_size);
1537 *summary = seg_i->sum_blk->entries[j];
1538 written_size += SUMMARY_SIZE;
1540 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1541 SUM_FOOTER_SIZE)
1542 continue;
1544 set_page_dirty(page);
1545 f2fs_put_page(page, 1);
1546 page = NULL;
1549 if (page) {
1550 set_page_dirty(page);
1551 f2fs_put_page(page, 1);
1555 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1556 block_t blkaddr, int type)
1558 int i, end;
1559 if (IS_DATASEG(type))
1560 end = type + NR_CURSEG_DATA_TYPE;
1561 else
1562 end = type + NR_CURSEG_NODE_TYPE;
1564 for (i = type; i < end; i++) {
1565 struct curseg_info *sum = CURSEG_I(sbi, i);
1566 mutex_lock(&sum->curseg_mutex);
1567 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1568 mutex_unlock(&sum->curseg_mutex);
1572 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1574 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1575 write_compacted_summaries(sbi, start_blk);
1576 else
1577 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1580 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1582 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1585 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1586 unsigned int val, int alloc)
1588 int i;
1590 if (type == NAT_JOURNAL) {
1591 for (i = 0; i < nats_in_cursum(sum); i++) {
1592 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1593 return i;
1595 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1596 return update_nats_in_cursum(sum, 1);
1597 } else if (type == SIT_JOURNAL) {
1598 for (i = 0; i < sits_in_cursum(sum); i++)
1599 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1600 return i;
1601 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1602 return update_sits_in_cursum(sum, 1);
1604 return -1;
1607 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1608 unsigned int segno)
1610 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1613 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1614 unsigned int start)
1616 struct sit_info *sit_i = SIT_I(sbi);
1617 struct page *src_page, *dst_page;
1618 pgoff_t src_off, dst_off;
1619 void *src_addr, *dst_addr;
1621 src_off = current_sit_addr(sbi, start);
1622 dst_off = next_sit_addr(sbi, src_off);
1624 /* get current sit block page without lock */
1625 src_page = get_meta_page(sbi, src_off);
1626 dst_page = grab_meta_page(sbi, dst_off);
1627 f2fs_bug_on(sbi, PageDirty(src_page));
1629 src_addr = page_address(src_page);
1630 dst_addr = page_address(dst_page);
1631 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1633 set_page_dirty(dst_page);
1634 f2fs_put_page(src_page, 1);
1636 set_to_next_sit(sit_i, start);
1638 return dst_page;
1641 static struct sit_entry_set *grab_sit_entry_set(void)
1643 struct sit_entry_set *ses =
1644 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1646 ses->entry_cnt = 0;
1647 INIT_LIST_HEAD(&ses->set_list);
1648 return ses;
1651 static void release_sit_entry_set(struct sit_entry_set *ses)
1653 list_del(&ses->set_list);
1654 kmem_cache_free(sit_entry_set_slab, ses);
1657 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1658 struct list_head *head)
1660 struct sit_entry_set *next = ses;
1662 if (list_is_last(&ses->set_list, head))
1663 return;
1665 list_for_each_entry_continue(next, head, set_list)
1666 if (ses->entry_cnt <= next->entry_cnt)
1667 break;
1669 list_move_tail(&ses->set_list, &next->set_list);
1672 static void add_sit_entry(unsigned int segno, struct list_head *head)
1674 struct sit_entry_set *ses;
1675 unsigned int start_segno = START_SEGNO(segno);
1677 list_for_each_entry(ses, head, set_list) {
1678 if (ses->start_segno == start_segno) {
1679 ses->entry_cnt++;
1680 adjust_sit_entry_set(ses, head);
1681 return;
1685 ses = grab_sit_entry_set();
1687 ses->start_segno = start_segno;
1688 ses->entry_cnt++;
1689 list_add(&ses->set_list, head);
1692 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1694 struct f2fs_sm_info *sm_info = SM_I(sbi);
1695 struct list_head *set_list = &sm_info->sit_entry_set;
1696 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1697 unsigned int segno;
1699 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1700 add_sit_entry(segno, set_list);
1703 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1705 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1706 struct f2fs_summary_block *sum = curseg->sum_blk;
1707 int i;
1709 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1710 unsigned int segno;
1711 bool dirtied;
1713 segno = le32_to_cpu(segno_in_journal(sum, i));
1714 dirtied = __mark_sit_entry_dirty(sbi, segno);
1716 if (!dirtied)
1717 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1719 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1723 * CP calls this function, which flushes SIT entries including sit_journal,
1724 * and moves prefree segs to free segs.
1726 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1728 struct sit_info *sit_i = SIT_I(sbi);
1729 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1730 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1731 struct f2fs_summary_block *sum = curseg->sum_blk;
1732 struct sit_entry_set *ses, *tmp;
1733 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1734 bool to_journal = true;
1735 struct seg_entry *se;
1737 mutex_lock(&curseg->curseg_mutex);
1738 mutex_lock(&sit_i->sentry_lock);
1740 if (!sit_i->dirty_sentries)
1741 goto out;
1744 * add and account sit entries of dirty bitmap in sit entry
1745 * set temporarily
1747 add_sits_in_set(sbi);
1750 * if there are no enough space in journal to store dirty sit
1751 * entries, remove all entries from journal and add and account
1752 * them in sit entry set.
1754 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1755 remove_sits_in_journal(sbi);
1758 * there are two steps to flush sit entries:
1759 * #1, flush sit entries to journal in current cold data summary block.
1760 * #2, flush sit entries to sit page.
1762 list_for_each_entry_safe(ses, tmp, head, set_list) {
1763 struct page *page = NULL;
1764 struct f2fs_sit_block *raw_sit = NULL;
1765 unsigned int start_segno = ses->start_segno;
1766 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1767 (unsigned long)MAIN_SEGS(sbi));
1768 unsigned int segno = start_segno;
1770 if (to_journal &&
1771 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1772 to_journal = false;
1774 if (!to_journal) {
1775 page = get_next_sit_page(sbi, start_segno);
1776 raw_sit = page_address(page);
1779 /* flush dirty sit entries in region of current sit set */
1780 for_each_set_bit_from(segno, bitmap, end) {
1781 int offset, sit_offset;
1783 se = get_seg_entry(sbi, segno);
1785 /* add discard candidates */
1786 if (cpc->reason != CP_DISCARD) {
1787 cpc->trim_start = segno;
1788 add_discard_addrs(sbi, cpc);
1791 if (to_journal) {
1792 offset = lookup_journal_in_cursum(sum,
1793 SIT_JOURNAL, segno, 1);
1794 f2fs_bug_on(sbi, offset < 0);
1795 segno_in_journal(sum, offset) =
1796 cpu_to_le32(segno);
1797 seg_info_to_raw_sit(se,
1798 &sit_in_journal(sum, offset));
1799 } else {
1800 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1801 seg_info_to_raw_sit(se,
1802 &raw_sit->entries[sit_offset]);
1805 __clear_bit(segno, bitmap);
1806 sit_i->dirty_sentries--;
1807 ses->entry_cnt--;
1810 if (!to_journal)
1811 f2fs_put_page(page, 1);
1813 f2fs_bug_on(sbi, ses->entry_cnt);
1814 release_sit_entry_set(ses);
1817 f2fs_bug_on(sbi, !list_empty(head));
1818 f2fs_bug_on(sbi, sit_i->dirty_sentries);
1819 out:
1820 if (cpc->reason == CP_DISCARD) {
1821 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1822 add_discard_addrs(sbi, cpc);
1824 mutex_unlock(&sit_i->sentry_lock);
1825 mutex_unlock(&curseg->curseg_mutex);
1827 set_prefree_as_free_segments(sbi);
1830 static int build_sit_info(struct f2fs_sb_info *sbi)
1832 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1833 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1834 struct sit_info *sit_i;
1835 unsigned int sit_segs, start;
1836 char *src_bitmap, *dst_bitmap;
1837 unsigned int bitmap_size;
1839 /* allocate memory for SIT information */
1840 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1841 if (!sit_i)
1842 return -ENOMEM;
1844 SM_I(sbi)->sit_info = sit_i;
1846 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1847 if (!sit_i->sentries)
1848 return -ENOMEM;
1850 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1851 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1852 if (!sit_i->dirty_sentries_bitmap)
1853 return -ENOMEM;
1855 for (start = 0; start < MAIN_SEGS(sbi); start++) {
1856 sit_i->sentries[start].cur_valid_map
1857 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1858 sit_i->sentries[start].ckpt_valid_map
1859 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1860 if (!sit_i->sentries[start].cur_valid_map
1861 || !sit_i->sentries[start].ckpt_valid_map)
1862 return -ENOMEM;
1865 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1866 if (!sit_i->tmp_map)
1867 return -ENOMEM;
1869 if (sbi->segs_per_sec > 1) {
1870 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1871 sizeof(struct sec_entry));
1872 if (!sit_i->sec_entries)
1873 return -ENOMEM;
1876 /* get information related with SIT */
1877 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1879 /* setup SIT bitmap from ckeckpoint pack */
1880 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1881 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1883 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1884 if (!dst_bitmap)
1885 return -ENOMEM;
1887 /* init SIT information */
1888 sit_i->s_ops = &default_salloc_ops;
1890 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1891 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1892 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1893 sit_i->sit_bitmap = dst_bitmap;
1894 sit_i->bitmap_size = bitmap_size;
1895 sit_i->dirty_sentries = 0;
1896 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1897 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1898 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1899 mutex_init(&sit_i->sentry_lock);
1900 return 0;
1903 static int build_free_segmap(struct f2fs_sb_info *sbi)
1905 struct free_segmap_info *free_i;
1906 unsigned int bitmap_size, sec_bitmap_size;
1908 /* allocate memory for free segmap information */
1909 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1910 if (!free_i)
1911 return -ENOMEM;
1913 SM_I(sbi)->free_info = free_i;
1915 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1916 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1917 if (!free_i->free_segmap)
1918 return -ENOMEM;
1920 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1921 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1922 if (!free_i->free_secmap)
1923 return -ENOMEM;
1925 /* set all segments as dirty temporarily */
1926 memset(free_i->free_segmap, 0xff, bitmap_size);
1927 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1929 /* init free segmap information */
1930 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1931 free_i->free_segments = 0;
1932 free_i->free_sections = 0;
1933 spin_lock_init(&free_i->segmap_lock);
1934 return 0;
1937 static int build_curseg(struct f2fs_sb_info *sbi)
1939 struct curseg_info *array;
1940 int i;
1942 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1943 if (!array)
1944 return -ENOMEM;
1946 SM_I(sbi)->curseg_array = array;
1948 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1949 mutex_init(&array[i].curseg_mutex);
1950 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1951 if (!array[i].sum_blk)
1952 return -ENOMEM;
1953 array[i].segno = NULL_SEGNO;
1954 array[i].next_blkoff = 0;
1956 return restore_curseg_summaries(sbi);
1959 static void build_sit_entries(struct f2fs_sb_info *sbi)
1961 struct sit_info *sit_i = SIT_I(sbi);
1962 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1963 struct f2fs_summary_block *sum = curseg->sum_blk;
1964 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1965 unsigned int i, start, end;
1966 unsigned int readed, start_blk = 0;
1967 int nrpages = MAX_BIO_BLOCKS(sbi);
1969 do {
1970 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1972 start = start_blk * sit_i->sents_per_block;
1973 end = (start_blk + readed) * sit_i->sents_per_block;
1975 for (; start < end && start < MAIN_SEGS(sbi); start++) {
1976 struct seg_entry *se = &sit_i->sentries[start];
1977 struct f2fs_sit_block *sit_blk;
1978 struct f2fs_sit_entry sit;
1979 struct page *page;
1981 mutex_lock(&curseg->curseg_mutex);
1982 for (i = 0; i < sits_in_cursum(sum); i++) {
1983 if (le32_to_cpu(segno_in_journal(sum, i))
1984 == start) {
1985 sit = sit_in_journal(sum, i);
1986 mutex_unlock(&curseg->curseg_mutex);
1987 goto got_it;
1990 mutex_unlock(&curseg->curseg_mutex);
1992 page = get_current_sit_page(sbi, start);
1993 sit_blk = (struct f2fs_sit_block *)page_address(page);
1994 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1995 f2fs_put_page(page, 1);
1996 got_it:
1997 check_block_count(sbi, start, &sit);
1998 seg_info_from_raw_sit(se, &sit);
1999 if (sbi->segs_per_sec > 1) {
2000 struct sec_entry *e = get_sec_entry(sbi, start);
2001 e->valid_blocks += se->valid_blocks;
2004 start_blk += readed;
2005 } while (start_blk < sit_blk_cnt);
2008 static void init_free_segmap(struct f2fs_sb_info *sbi)
2010 unsigned int start;
2011 int type;
2013 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2014 struct seg_entry *sentry = get_seg_entry(sbi, start);
2015 if (!sentry->valid_blocks)
2016 __set_free(sbi, start);
2019 /* set use the current segments */
2020 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2021 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2022 __set_test_and_inuse(sbi, curseg_t->segno);
2026 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2028 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2029 struct free_segmap_info *free_i = FREE_I(sbi);
2030 unsigned int segno = 0, offset = 0;
2031 unsigned short valid_blocks;
2033 while (1) {
2034 /* find dirty segment based on free segmap */
2035 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2036 if (segno >= MAIN_SEGS(sbi))
2037 break;
2038 offset = segno + 1;
2039 valid_blocks = get_valid_blocks(sbi, segno, 0);
2040 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2041 continue;
2042 if (valid_blocks > sbi->blocks_per_seg) {
2043 f2fs_bug_on(sbi, 1);
2044 continue;
2046 mutex_lock(&dirty_i->seglist_lock);
2047 __locate_dirty_segment(sbi, segno, DIRTY);
2048 mutex_unlock(&dirty_i->seglist_lock);
2052 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2054 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2055 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2057 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2058 if (!dirty_i->victim_secmap)
2059 return -ENOMEM;
2060 return 0;
2063 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2065 struct dirty_seglist_info *dirty_i;
2066 unsigned int bitmap_size, i;
2068 /* allocate memory for dirty segments list information */
2069 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2070 if (!dirty_i)
2071 return -ENOMEM;
2073 SM_I(sbi)->dirty_info = dirty_i;
2074 mutex_init(&dirty_i->seglist_lock);
2076 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2078 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2079 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2080 if (!dirty_i->dirty_segmap[i])
2081 return -ENOMEM;
2084 init_dirty_segmap(sbi);
2085 return init_victim_secmap(sbi);
2089 * Update min, max modified time for cost-benefit GC algorithm
2091 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2093 struct sit_info *sit_i = SIT_I(sbi);
2094 unsigned int segno;
2096 mutex_lock(&sit_i->sentry_lock);
2098 sit_i->min_mtime = LLONG_MAX;
2100 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2101 unsigned int i;
2102 unsigned long long mtime = 0;
2104 for (i = 0; i < sbi->segs_per_sec; i++)
2105 mtime += get_seg_entry(sbi, segno + i)->mtime;
2107 mtime = div_u64(mtime, sbi->segs_per_sec);
2109 if (sit_i->min_mtime > mtime)
2110 sit_i->min_mtime = mtime;
2112 sit_i->max_mtime = get_mtime(sbi);
2113 mutex_unlock(&sit_i->sentry_lock);
2116 int build_segment_manager(struct f2fs_sb_info *sbi)
2118 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2119 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2120 struct f2fs_sm_info *sm_info;
2121 int err;
2123 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2124 if (!sm_info)
2125 return -ENOMEM;
2127 /* init sm info */
2128 sbi->sm_info = sm_info;
2129 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2130 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2131 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2132 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2133 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2134 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2135 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2136 sm_info->rec_prefree_segments = sm_info->main_segments *
2137 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2138 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2139 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2140 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2142 INIT_LIST_HEAD(&sm_info->discard_list);
2143 sm_info->nr_discards = 0;
2144 sm_info->max_discards = 0;
2146 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2148 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2150 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2151 err = create_flush_cmd_control(sbi);
2152 if (err)
2153 return err;
2156 err = build_sit_info(sbi);
2157 if (err)
2158 return err;
2159 err = build_free_segmap(sbi);
2160 if (err)
2161 return err;
2162 err = build_curseg(sbi);
2163 if (err)
2164 return err;
2166 /* reinit free segmap based on SIT */
2167 build_sit_entries(sbi);
2169 init_free_segmap(sbi);
2170 err = build_dirty_segmap(sbi);
2171 if (err)
2172 return err;
2174 init_min_max_mtime(sbi);
2175 return 0;
2178 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2179 enum dirty_type dirty_type)
2181 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2183 mutex_lock(&dirty_i->seglist_lock);
2184 kfree(dirty_i->dirty_segmap[dirty_type]);
2185 dirty_i->nr_dirty[dirty_type] = 0;
2186 mutex_unlock(&dirty_i->seglist_lock);
2189 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2191 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2192 kfree(dirty_i->victim_secmap);
2195 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2198 int i;
2200 if (!dirty_i)
2201 return;
2203 /* discard pre-free/dirty segments list */
2204 for (i = 0; i < NR_DIRTY_TYPE; i++)
2205 discard_dirty_segmap(sbi, i);
2207 destroy_victim_secmap(sbi);
2208 SM_I(sbi)->dirty_info = NULL;
2209 kfree(dirty_i);
2212 static void destroy_curseg(struct f2fs_sb_info *sbi)
2214 struct curseg_info *array = SM_I(sbi)->curseg_array;
2215 int i;
2217 if (!array)
2218 return;
2219 SM_I(sbi)->curseg_array = NULL;
2220 for (i = 0; i < NR_CURSEG_TYPE; i++)
2221 kfree(array[i].sum_blk);
2222 kfree(array);
2225 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2227 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2228 if (!free_i)
2229 return;
2230 SM_I(sbi)->free_info = NULL;
2231 kfree(free_i->free_segmap);
2232 kfree(free_i->free_secmap);
2233 kfree(free_i);
2236 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2238 struct sit_info *sit_i = SIT_I(sbi);
2239 unsigned int start;
2241 if (!sit_i)
2242 return;
2244 if (sit_i->sentries) {
2245 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2246 kfree(sit_i->sentries[start].cur_valid_map);
2247 kfree(sit_i->sentries[start].ckpt_valid_map);
2250 kfree(sit_i->tmp_map);
2252 vfree(sit_i->sentries);
2253 vfree(sit_i->sec_entries);
2254 kfree(sit_i->dirty_sentries_bitmap);
2256 SM_I(sbi)->sit_info = NULL;
2257 kfree(sit_i->sit_bitmap);
2258 kfree(sit_i);
2261 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2263 struct f2fs_sm_info *sm_info = SM_I(sbi);
2265 if (!sm_info)
2266 return;
2267 destroy_flush_cmd_control(sbi);
2268 destroy_dirty_segmap(sbi);
2269 destroy_curseg(sbi);
2270 destroy_free_segmap(sbi);
2271 destroy_sit_info(sbi);
2272 sbi->sm_info = NULL;
2273 kfree(sm_info);
2276 int __init create_segment_manager_caches(void)
2278 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2279 sizeof(struct discard_entry));
2280 if (!discard_entry_slab)
2281 goto fail;
2283 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2284 sizeof(struct sit_entry_set));
2285 if (!sit_entry_set_slab)
2286 goto destory_discard_entry;
2288 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2289 sizeof(struct inmem_pages));
2290 if (!inmem_entry_slab)
2291 goto destroy_sit_entry_set;
2292 return 0;
2294 destroy_sit_entry_set:
2295 kmem_cache_destroy(sit_entry_set_slab);
2296 destory_discard_entry:
2297 kmem_cache_destroy(discard_entry_slab);
2298 fail:
2299 return -ENOMEM;
2302 void destroy_segment_manager_caches(void)
2304 kmem_cache_destroy(sit_entry_set_slab);
2305 kmem_cache_destroy(discard_entry_slab);
2306 kmem_cache_destroy(inmem_entry_slab);