2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly
;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
57 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
58 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
61 EXPORT_SYMBOL(jbd2_journal_extend
);
62 EXPORT_SYMBOL(jbd2_journal_stop
);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
70 EXPORT_SYMBOL(jbd2_journal_forget
);
72 EXPORT_SYMBOL(journal_sync_buffer
);
74 EXPORT_SYMBOL(jbd2_journal_flush
);
75 EXPORT_SYMBOL(jbd2_journal_revoke
);
77 EXPORT_SYMBOL(jbd2_journal_init_dev
);
78 EXPORT_SYMBOL(jbd2_journal_init_inode
);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
81 EXPORT_SYMBOL(jbd2_journal_set_features
);
82 EXPORT_SYMBOL(jbd2_journal_load
);
83 EXPORT_SYMBOL(jbd2_journal_destroy
);
84 EXPORT_SYMBOL(jbd2_journal_abort
);
85 EXPORT_SYMBOL(jbd2_journal_errno
);
86 EXPORT_SYMBOL(jbd2_journal_ack_err
);
87 EXPORT_SYMBOL(jbd2_journal_clear_err
);
88 EXPORT_SYMBOL(jbd2_log_wait_commit
);
89 EXPORT_SYMBOL(jbd2_log_start_commit
);
90 EXPORT_SYMBOL(jbd2_journal_start_commit
);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
92 EXPORT_SYMBOL(jbd2_journal_wipe
);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
96 EXPORT_SYMBOL(jbd2_journal_force_commit
);
97 EXPORT_SYMBOL(jbd2_journal_file_inode
);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
101 EXPORT_SYMBOL(jbd2_inode_cache
);
103 static void __journal_abort_soft (journal_t
*journal
, int errno
);
104 static int jbd2_journal_create_slab(size_t slab_size
);
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level
, const char *file
, const char *func
,
108 unsigned int line
, const char *fmt
, ...)
110 struct va_format vaf
;
113 if (level
> jbd2_journal_enable_debug
)
118 printk(KERN_DEBUG
"%s: (%s, %u): %pV\n", file
, func
, line
, &vaf
);
121 EXPORT_SYMBOL(__jbd2_debug
);
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
127 if (!jbd2_journal_has_csum_v2or3(j
))
130 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
133 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
138 old_csum
= sb
->s_checksum
;
140 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
141 sb
->s_checksum
= old_csum
;
143 return cpu_to_be32(csum
);
146 static int jbd2_superblock_csum_verify(journal_t
*j
, journal_superblock_t
*sb
)
148 if (!jbd2_journal_has_csum_v2or3(j
))
151 return sb
->s_checksum
== jbd2_superblock_csum(j
, sb
);
154 static void jbd2_superblock_csum_set(journal_t
*j
, journal_superblock_t
*sb
)
156 if (!jbd2_journal_has_csum_v2or3(j
))
159 sb
->s_checksum
= jbd2_superblock_csum(j
, sb
);
163 * Helper function used to manage commit timeouts
166 static void commit_timeout(unsigned long __data
)
168 struct task_struct
* p
= (struct task_struct
*) __data
;
174 * kjournald2: The main thread function used to manage a logging device
177 * This kernel thread is responsible for two things:
179 * 1) COMMIT: Every so often we need to commit the current state of the
180 * filesystem to disk. The journal thread is responsible for writing
181 * all of the metadata buffers to disk.
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 * of the data in that part of the log has been rewritten elsewhere on
185 * the disk. Flushing these old buffers to reclaim space in the log is
186 * known as checkpointing, and this thread is responsible for that job.
189 static int kjournald2(void *arg
)
191 journal_t
*journal
= arg
;
192 transaction_t
*transaction
;
195 * Set up an interval timer which can be used to trigger a commit wakeup
196 * after the commit interval expires
198 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
199 (unsigned long)current
);
203 /* Record that the journal thread is running */
204 journal
->j_task
= current
;
205 wake_up(&journal
->j_wait_done_commit
);
208 * And now, wait forever for commit wakeup events.
210 write_lock(&journal
->j_state_lock
);
213 if (journal
->j_flags
& JBD2_UNMOUNT
)
216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 journal
->j_commit_sequence
, journal
->j_commit_request
);
219 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
220 jbd_debug(1, "OK, requests differ\n");
221 write_unlock(&journal
->j_state_lock
);
222 del_timer_sync(&journal
->j_commit_timer
);
223 jbd2_journal_commit_transaction(journal
);
224 write_lock(&journal
->j_state_lock
);
228 wake_up(&journal
->j_wait_done_commit
);
229 if (freezing(current
)) {
231 * The simpler the better. Flushing journal isn't a
232 * good idea, because that depends on threads that may
233 * be already stopped.
235 jbd_debug(1, "Now suspending kjournald2\n");
236 write_unlock(&journal
->j_state_lock
);
238 write_lock(&journal
->j_state_lock
);
241 * We assume on resume that commits are already there,
245 int should_sleep
= 1;
247 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
249 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
251 transaction
= journal
->j_running_transaction
;
252 if (transaction
&& time_after_eq(jiffies
,
253 transaction
->t_expires
))
255 if (journal
->j_flags
& JBD2_UNMOUNT
)
258 write_unlock(&journal
->j_state_lock
);
260 write_lock(&journal
->j_state_lock
);
262 finish_wait(&journal
->j_wait_commit
, &wait
);
265 jbd_debug(1, "kjournald2 wakes\n");
268 * Were we woken up by a commit wakeup event?
270 transaction
= journal
->j_running_transaction
;
271 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
272 journal
->j_commit_request
= transaction
->t_tid
;
273 jbd_debug(1, "woke because of timeout\n");
278 write_unlock(&journal
->j_state_lock
);
279 del_timer_sync(&journal
->j_commit_timer
);
280 journal
->j_task
= NULL
;
281 wake_up(&journal
->j_wait_done_commit
);
282 jbd_debug(1, "Journal thread exiting.\n");
286 static int jbd2_journal_start_thread(journal_t
*journal
)
288 struct task_struct
*t
;
290 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
295 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
299 static void journal_kill_thread(journal_t
*journal
)
301 write_lock(&journal
->j_state_lock
);
302 journal
->j_flags
|= JBD2_UNMOUNT
;
304 while (journal
->j_task
) {
305 write_unlock(&journal
->j_state_lock
);
306 wake_up(&journal
->j_wait_commit
);
307 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
308 write_lock(&journal
->j_state_lock
);
310 write_unlock(&journal
->j_state_lock
);
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 * Writes a metadata buffer to a given disk block. The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here. If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks. In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block. The missing word can then be restored when the block is read
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
336 * The function returns a pointer to the buffer_head to be used for IO.
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
348 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
349 struct journal_head
*jh_in
,
350 struct buffer_head
**bh_out
,
353 int need_copy_out
= 0;
354 int done_copy_out
= 0;
357 struct buffer_head
*new_bh
;
358 struct page
*new_page
;
359 unsigned int new_offset
;
360 struct buffer_head
*bh_in
= jh2bh(jh_in
);
361 journal_t
*journal
= transaction
->t_journal
;
364 * The buffer really shouldn't be locked: only the current committing
365 * transaction is allowed to write it, so nobody else is allowed
368 * akpm: except if we're journalling data, and write() output is
369 * also part of a shared mapping, and another thread has
370 * decided to launch a writepage() against this buffer.
372 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
375 new_bh
= alloc_buffer_head(GFP_NOFS
);
378 * Failure is not an option, but __GFP_NOFAIL is going
379 * away; so we retry ourselves here.
381 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh
->b_count
, 1);
388 jbd_lock_bh_state(bh_in
);
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
394 if (jh_in
->b_frozen_data
) {
396 new_page
= virt_to_page(jh_in
->b_frozen_data
);
397 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
399 new_page
= jh2bh(jh_in
)->b_page
;
400 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
403 mapped_data
= kmap_atomic(new_page
);
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
411 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
417 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
422 kunmap_atomic(mapped_data
);
425 * Do we need to do a data copy?
427 if (need_copy_out
&& !done_copy_out
) {
430 jbd_unlock_bh_state(bh_in
);
431 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
436 jbd_lock_bh_state(bh_in
);
437 if (jh_in
->b_frozen_data
) {
438 jbd2_free(tmp
, bh_in
->b_size
);
442 jh_in
->b_frozen_data
= tmp
;
443 mapped_data
= kmap_atomic(new_page
);
444 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
445 kunmap_atomic(mapped_data
);
447 new_page
= virt_to_page(tmp
);
448 new_offset
= offset_in_page(tmp
);
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
456 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
464 mapped_data
= kmap_atomic(new_page
);
465 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
466 kunmap_atomic(mapped_data
);
469 set_bh_page(new_bh
, new_page
, new_offset
);
470 new_bh
->b_size
= bh_in
->b_size
;
471 new_bh
->b_bdev
= journal
->j_dev
;
472 new_bh
->b_blocknr
= blocknr
;
473 new_bh
->b_private
= bh_in
;
474 set_buffer_mapped(new_bh
);
475 set_buffer_dirty(new_bh
);
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
484 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
485 spin_lock(&journal
->j_list_lock
);
486 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
487 spin_unlock(&journal
->j_list_lock
);
488 set_buffer_shadow(bh_in
);
489 jbd_unlock_bh_state(bh_in
);
491 return do_escape
| (done_copy_out
<< 1);
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
503 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
505 /* Return if the txn has already requested to be committed */
506 if (journal
->j_commit_request
== target
)
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
514 if (journal
->j_running_transaction
&&
515 journal
->j_running_transaction
->t_tid
== target
) {
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
521 journal
->j_commit_request
= target
;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal
->j_commit_request
,
524 journal
->j_commit_sequence
);
525 journal
->j_running_transaction
->t_requested
= jiffies
;
526 wake_up(&journal
->j_wait_commit
);
528 } else if (!tid_geq(journal
->j_commit_request
, target
))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal
->j_commit_request
,
534 journal
->j_commit_sequence
,
535 target
, journal
->j_running_transaction
?
536 journal
->j_running_transaction
->t_tid
: 0);
540 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
544 write_lock(&journal
->j_state_lock
);
545 ret
= __jbd2_log_start_commit(journal
, tid
);
546 write_unlock(&journal
->j_state_lock
);
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
557 static int __jbd2_journal_force_commit(journal_t
*journal
)
559 transaction_t
*transaction
= NULL
;
561 int need_to_start
= 0, ret
= 0;
563 read_lock(&journal
->j_state_lock
);
564 if (journal
->j_running_transaction
&& !current
->journal_info
) {
565 transaction
= journal
->j_running_transaction
;
566 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
568 } else if (journal
->j_committing_transaction
)
569 transaction
= journal
->j_committing_transaction
;
572 /* Nothing to commit */
573 read_unlock(&journal
->j_state_lock
);
576 tid
= transaction
->t_tid
;
577 read_unlock(&journal
->j_state_lock
);
579 jbd2_log_start_commit(journal
, tid
);
580 ret
= jbd2_log_wait_commit(journal
, tid
);
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
592 * @journal: journal to force
593 * Returns true if progress was made.
595 int jbd2_journal_force_commit_nested(journal_t
*journal
)
599 ret
= __jbd2_journal_force_commit(journal
);
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
610 int jbd2_journal_force_commit(journal_t
*journal
)
614 J_ASSERT(!current
->journal_info
);
615 ret
= __jbd2_journal_force_commit(journal
);
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
626 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
630 write_lock(&journal
->j_state_lock
);
631 if (journal
->j_running_transaction
) {
632 tid_t tid
= journal
->j_running_transaction
->t_tid
;
634 __jbd2_log_start_commit(journal
, tid
);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
640 } else if (journal
->j_committing_transaction
) {
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
646 *ptid
= journal
->j_committing_transaction
->t_tid
;
649 write_unlock(&journal
->j_state_lock
);
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
659 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
662 transaction_t
*commit_trans
;
664 if (!(journal
->j_flags
& JBD2_BARRIER
))
666 read_lock(&journal
->j_state_lock
);
667 /* Transaction already committed? */
668 if (tid_geq(journal
->j_commit_sequence
, tid
))
670 commit_trans
= journal
->j_committing_transaction
;
671 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
679 if (journal
->j_fs_dev
!= journal
->j_dev
) {
680 if (!commit_trans
->t_need_data_flush
||
681 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
684 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
689 read_unlock(&journal
->j_state_lock
);
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
698 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
702 read_lock(&journal
->j_state_lock
);
703 #ifdef CONFIG_JBD2_DEBUG
704 if (!tid_geq(journal
->j_commit_request
, tid
)) {
706 "%s: error: j_commit_request=%d, tid=%d\n",
707 __func__
, journal
->j_commit_request
, tid
);
710 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 tid
, journal
->j_commit_sequence
);
713 read_unlock(&journal
->j_state_lock
);
714 wake_up(&journal
->j_wait_commit
);
715 wait_event(journal
->j_wait_done_commit
,
716 !tid_gt(tid
, journal
->j_commit_sequence
));
717 read_lock(&journal
->j_state_lock
);
719 read_unlock(&journal
->j_state_lock
);
721 if (unlikely(is_journal_aborted(journal
)))
727 * When this function returns the transaction corresponding to tid
728 * will be completed. If the transaction has currently running, start
729 * committing that transaction before waiting for it to complete. If
730 * the transaction id is stale, it is by definition already completed,
731 * so just return SUCCESS.
733 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
735 int need_to_wait
= 1;
737 read_lock(&journal
->j_state_lock
);
738 if (journal
->j_running_transaction
&&
739 journal
->j_running_transaction
->t_tid
== tid
) {
740 if (journal
->j_commit_request
!= tid
) {
741 /* transaction not yet started, so request it */
742 read_unlock(&journal
->j_state_lock
);
743 jbd2_log_start_commit(journal
, tid
);
746 } else if (!(journal
->j_committing_transaction
&&
747 journal
->j_committing_transaction
->t_tid
== tid
))
749 read_unlock(&journal
->j_state_lock
);
753 return jbd2_log_wait_commit(journal
, tid
);
755 EXPORT_SYMBOL(jbd2_complete_transaction
);
758 * Log buffer allocation routines:
761 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
763 unsigned long blocknr
;
765 write_lock(&journal
->j_state_lock
);
766 J_ASSERT(journal
->j_free
> 1);
768 blocknr
= journal
->j_head
;
771 if (journal
->j_head
== journal
->j_last
)
772 journal
->j_head
= journal
->j_first
;
773 write_unlock(&journal
->j_state_lock
);
774 return jbd2_journal_bmap(journal
, blocknr
, retp
);
778 * Conversion of logical to physical block numbers for the journal
780 * On external journals the journal blocks are identity-mapped, so
781 * this is a no-op. If needed, we can use j_blk_offset - everything is
784 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
785 unsigned long long *retp
)
788 unsigned long long ret
;
790 if (journal
->j_inode
) {
791 ret
= bmap(journal
->j_inode
, blocknr
);
795 printk(KERN_ALERT
"%s: journal block not found "
796 "at offset %lu on %s\n",
797 __func__
, blocknr
, journal
->j_devname
);
799 __journal_abort_soft(journal
, err
);
802 *retp
= blocknr
; /* +journal->j_blk_offset */
808 * We play buffer_head aliasing tricks to write data/metadata blocks to
809 * the journal without copying their contents, but for journal
810 * descriptor blocks we do need to generate bona fide buffers.
812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814 * But we don't bother doing that, so there will be coherency problems with
815 * mmaps of blockdevs which hold live JBD-controlled filesystems.
817 struct buffer_head
*jbd2_journal_get_descriptor_buffer(journal_t
*journal
)
819 struct buffer_head
*bh
;
820 unsigned long long blocknr
;
823 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
828 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
832 memset(bh
->b_data
, 0, journal
->j_blocksize
);
833 set_buffer_uptodate(bh
);
835 BUFFER_TRACE(bh
, "return this buffer");
840 * Return tid of the oldest transaction in the journal and block in the journal
841 * where the transaction starts.
843 * If the journal is now empty, return which will be the next transaction ID
844 * we will write and where will that transaction start.
846 * The return value is 0 if journal tail cannot be pushed any further, 1 if
849 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
850 unsigned long *block
)
852 transaction_t
*transaction
;
855 read_lock(&journal
->j_state_lock
);
856 spin_lock(&journal
->j_list_lock
);
857 transaction
= journal
->j_checkpoint_transactions
;
859 *tid
= transaction
->t_tid
;
860 *block
= transaction
->t_log_start
;
861 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
862 *tid
= transaction
->t_tid
;
863 *block
= transaction
->t_log_start
;
864 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
865 *tid
= transaction
->t_tid
;
866 *block
= journal
->j_head
;
868 *tid
= journal
->j_transaction_sequence
;
869 *block
= journal
->j_head
;
871 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
872 spin_unlock(&journal
->j_list_lock
);
873 read_unlock(&journal
->j_state_lock
);
879 * Update information in journal structure and in on disk journal superblock
880 * about log tail. This function does not check whether information passed in
881 * really pushes log tail further. It's responsibility of the caller to make
882 * sure provided log tail information is valid (e.g. by holding
883 * j_checkpoint_mutex all the time between computing log tail and calling this
884 * function as is the case with jbd2_cleanup_journal_tail()).
886 * Requires j_checkpoint_mutex
888 int __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
893 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
896 * We cannot afford for write to remain in drive's caches since as
897 * soon as we update j_tail, next transaction can start reusing journal
898 * space and if we lose sb update during power failure we'd replay
899 * old transaction with possibly newly overwritten data.
901 ret
= jbd2_journal_update_sb_log_tail(journal
, tid
, block
, WRITE_FUA
);
905 write_lock(&journal
->j_state_lock
);
906 freed
= block
- journal
->j_tail
;
907 if (block
< journal
->j_tail
)
908 freed
+= journal
->j_last
- journal
->j_first
;
910 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
912 "Cleaning journal tail from %d to %d (offset %lu), "
914 journal
->j_tail_sequence
, tid
, block
, freed
);
916 journal
->j_free
+= freed
;
917 journal
->j_tail_sequence
= tid
;
918 journal
->j_tail
= block
;
919 write_unlock(&journal
->j_state_lock
);
926 * This is a variaon of __jbd2_update_log_tail which checks for validity of
927 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
928 * with other threads updating log tail.
930 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
932 mutex_lock(&journal
->j_checkpoint_mutex
);
933 if (tid_gt(tid
, journal
->j_tail_sequence
))
934 __jbd2_update_log_tail(journal
, tid
, block
);
935 mutex_unlock(&journal
->j_checkpoint_mutex
);
938 struct jbd2_stats_proc_session
{
940 struct transaction_stats_s
*stats
;
945 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
947 return *pos
? NULL
: SEQ_START_TOKEN
;
950 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
955 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
957 struct jbd2_stats_proc_session
*s
= seq
->private;
959 if (v
!= SEQ_START_TOKEN
)
961 seq_printf(seq
, "%lu transactions (%lu requested), "
962 "each up to %u blocks\n",
963 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
964 s
->journal
->j_max_transaction_buffers
);
965 if (s
->stats
->ts_tid
== 0)
967 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
968 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
969 seq_printf(seq
, " %ums request delay\n",
970 (s
->stats
->ts_requested
== 0) ? 0 :
971 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
972 s
->stats
->ts_requested
));
973 seq_printf(seq
, " %ums running transaction\n",
974 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
975 seq_printf(seq
, " %ums transaction was being locked\n",
976 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
977 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
978 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
979 seq_printf(seq
, " %ums logging transaction\n",
980 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
981 seq_printf(seq
, " %lluus average transaction commit time\n",
982 div_u64(s
->journal
->j_average_commit_time
, 1000));
983 seq_printf(seq
, " %lu handles per transaction\n",
984 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
985 seq_printf(seq
, " %lu blocks per transaction\n",
986 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
987 seq_printf(seq
, " %lu logged blocks per transaction\n",
988 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
992 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
996 static const struct seq_operations jbd2_seq_info_ops
= {
997 .start
= jbd2_seq_info_start
,
998 .next
= jbd2_seq_info_next
,
999 .stop
= jbd2_seq_info_stop
,
1000 .show
= jbd2_seq_info_show
,
1003 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
1005 journal_t
*journal
= PDE_DATA(inode
);
1006 struct jbd2_stats_proc_session
*s
;
1009 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1012 size
= sizeof(struct transaction_stats_s
);
1013 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1014 if (s
->stats
== NULL
) {
1018 spin_lock(&journal
->j_history_lock
);
1019 memcpy(s
->stats
, &journal
->j_stats
, size
);
1020 s
->journal
= journal
;
1021 spin_unlock(&journal
->j_history_lock
);
1023 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1025 struct seq_file
*m
= file
->private_data
;
1035 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1037 struct seq_file
*seq
= file
->private_data
;
1038 struct jbd2_stats_proc_session
*s
= seq
->private;
1041 return seq_release(inode
, file
);
1044 static const struct file_operations jbd2_seq_info_fops
= {
1045 .owner
= THIS_MODULE
,
1046 .open
= jbd2_seq_info_open
,
1048 .llseek
= seq_lseek
,
1049 .release
= jbd2_seq_info_release
,
1052 static struct proc_dir_entry
*proc_jbd2_stats
;
1054 static void jbd2_stats_proc_init(journal_t
*journal
)
1056 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1057 if (journal
->j_proc_entry
) {
1058 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1059 &jbd2_seq_info_fops
, journal
);
1063 static void jbd2_stats_proc_exit(journal_t
*journal
)
1065 remove_proc_entry("info", journal
->j_proc_entry
);
1066 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1070 * Management for journal control blocks: functions to create and
1071 * destroy journal_t structures, and to initialise and read existing
1072 * journal blocks from disk. */
1074 /* First: create and setup a journal_t object in memory. We initialise
1075 * very few fields yet: that has to wait until we have created the
1076 * journal structures from from scratch, or loaded them from disk. */
1078 static journal_t
* journal_init_common (void)
1083 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1087 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1088 init_waitqueue_head(&journal
->j_wait_done_commit
);
1089 init_waitqueue_head(&journal
->j_wait_commit
);
1090 init_waitqueue_head(&journal
->j_wait_updates
);
1091 init_waitqueue_head(&journal
->j_wait_reserved
);
1092 mutex_init(&journal
->j_barrier
);
1093 mutex_init(&journal
->j_checkpoint_mutex
);
1094 spin_lock_init(&journal
->j_revoke_lock
);
1095 spin_lock_init(&journal
->j_list_lock
);
1096 rwlock_init(&journal
->j_state_lock
);
1098 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1099 journal
->j_min_batch_time
= 0;
1100 journal
->j_max_batch_time
= 15000; /* 15ms */
1101 atomic_set(&journal
->j_reserved_credits
, 0);
1103 /* The journal is marked for error until we succeed with recovery! */
1104 journal
->j_flags
= JBD2_ABORT
;
1106 /* Set up a default-sized revoke table for the new mount. */
1107 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1113 spin_lock_init(&journal
->j_history_lock
);
1118 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1120 * Create a journal structure assigned some fixed set of disk blocks to
1121 * the journal. We don't actually touch those disk blocks yet, but we
1122 * need to set up all of the mapping information to tell the journaling
1123 * system where the journal blocks are.
1128 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1129 * @bdev: Block device on which to create the journal
1130 * @fs_dev: Device which hold journalled filesystem for this journal.
1131 * @start: Block nr Start of journal.
1132 * @len: Length of the journal in blocks.
1133 * @blocksize: blocksize of journalling device
1135 * Returns: a newly created journal_t *
1137 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1138 * range of blocks on an arbitrary block device.
1141 journal_t
* jbd2_journal_init_dev(struct block_device
*bdev
,
1142 struct block_device
*fs_dev
,
1143 unsigned long long start
, int len
, int blocksize
)
1145 journal_t
*journal
= journal_init_common();
1146 struct buffer_head
*bh
;
1153 /* journal descriptor can store up to n blocks -bzzz */
1154 journal
->j_blocksize
= blocksize
;
1155 journal
->j_dev
= bdev
;
1156 journal
->j_fs_dev
= fs_dev
;
1157 journal
->j_blk_offset
= start
;
1158 journal
->j_maxlen
= len
;
1159 bdevname(journal
->j_dev
, journal
->j_devname
);
1160 p
= journal
->j_devname
;
1161 while ((p
= strchr(p
, '/')))
1163 jbd2_stats_proc_init(journal
);
1164 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1165 journal
->j_wbufsize
= n
;
1166 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1167 if (!journal
->j_wbuf
) {
1168 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1173 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
1176 "%s: Cannot get buffer for journal superblock\n",
1180 journal
->j_sb_buffer
= bh
;
1181 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1185 kfree(journal
->j_wbuf
);
1186 jbd2_stats_proc_exit(journal
);
1192 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1193 * @inode: An inode to create the journal in
1195 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1196 * the journal. The inode must exist already, must support bmap() and
1197 * must have all data blocks preallocated.
1199 journal_t
* jbd2_journal_init_inode (struct inode
*inode
)
1201 struct buffer_head
*bh
;
1202 journal_t
*journal
= journal_init_common();
1206 unsigned long long blocknr
;
1211 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
1212 journal
->j_inode
= inode
;
1213 bdevname(journal
->j_dev
, journal
->j_devname
);
1214 p
= journal
->j_devname
;
1215 while ((p
= strchr(p
, '/')))
1217 p
= journal
->j_devname
+ strlen(journal
->j_devname
);
1218 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1220 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1221 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
1222 (long long) inode
->i_size
,
1223 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1225 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
1226 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
1227 jbd2_stats_proc_init(journal
);
1229 /* journal descriptor can store up to n blocks -bzzz */
1230 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1231 journal
->j_wbufsize
= n
;
1232 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1233 if (!journal
->j_wbuf
) {
1234 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1239 err
= jbd2_journal_bmap(journal
, 0, &blocknr
);
1240 /* If that failed, give up */
1242 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
1247 bh
= getblk_unmovable(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
1250 "%s: Cannot get buffer for journal superblock\n",
1254 journal
->j_sb_buffer
= bh
;
1255 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1259 kfree(journal
->j_wbuf
);
1260 jbd2_stats_proc_exit(journal
);
1266 * If the journal init or create aborts, we need to mark the journal
1267 * superblock as being NULL to prevent the journal destroy from writing
1268 * back a bogus superblock.
1270 static void journal_fail_superblock (journal_t
*journal
)
1272 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1274 journal
->j_sb_buffer
= NULL
;
1278 * Given a journal_t structure, initialise the various fields for
1279 * startup of a new journaling session. We use this both when creating
1280 * a journal, and after recovering an old journal to reset it for
1284 static int journal_reset(journal_t
*journal
)
1286 journal_superblock_t
*sb
= journal
->j_superblock
;
1287 unsigned long long first
, last
;
1289 first
= be32_to_cpu(sb
->s_first
);
1290 last
= be32_to_cpu(sb
->s_maxlen
);
1291 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1292 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1294 journal_fail_superblock(journal
);
1298 journal
->j_first
= first
;
1299 journal
->j_last
= last
;
1301 journal
->j_head
= first
;
1302 journal
->j_tail
= first
;
1303 journal
->j_free
= last
- first
;
1305 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1306 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1307 journal
->j_commit_request
= journal
->j_commit_sequence
;
1309 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1312 * As a special case, if the on-disk copy is already marked as needing
1313 * no recovery (s_start == 0), then we can safely defer the superblock
1314 * update until the next commit by setting JBD2_FLUSHED. This avoids
1315 * attempting a write to a potential-readonly device.
1317 if (sb
->s_start
== 0) {
1318 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1319 "(start %ld, seq %d, errno %d)\n",
1320 journal
->j_tail
, journal
->j_tail_sequence
,
1322 journal
->j_flags
|= JBD2_FLUSHED
;
1324 /* Lock here to make assertions happy... */
1325 mutex_lock(&journal
->j_checkpoint_mutex
);
1327 * Update log tail information. We use WRITE_FUA since new
1328 * transaction will start reusing journal space and so we
1329 * must make sure information about current log tail is on
1332 jbd2_journal_update_sb_log_tail(journal
,
1333 journal
->j_tail_sequence
,
1336 mutex_unlock(&journal
->j_checkpoint_mutex
);
1338 return jbd2_journal_start_thread(journal
);
1341 static int jbd2_write_superblock(journal_t
*journal
, int write_op
)
1343 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1344 journal_superblock_t
*sb
= journal
->j_superblock
;
1347 trace_jbd2_write_superblock(journal
, write_op
);
1348 if (!(journal
->j_flags
& JBD2_BARRIER
))
1349 write_op
&= ~(REQ_FUA
| REQ_FLUSH
);
1351 if (buffer_write_io_error(bh
)) {
1353 * Oh, dear. A previous attempt to write the journal
1354 * superblock failed. This could happen because the
1355 * USB device was yanked out. Or it could happen to
1356 * be a transient write error and maybe the block will
1357 * be remapped. Nothing we can do but to retry the
1358 * write and hope for the best.
1360 printk(KERN_ERR
"JBD2: previous I/O error detected "
1361 "for journal superblock update for %s.\n",
1362 journal
->j_devname
);
1363 clear_buffer_write_io_error(bh
);
1364 set_buffer_uptodate(bh
);
1366 jbd2_superblock_csum_set(journal
, sb
);
1368 bh
->b_end_io
= end_buffer_write_sync
;
1369 ret
= submit_bh(write_op
, bh
);
1371 if (buffer_write_io_error(bh
)) {
1372 clear_buffer_write_io_error(bh
);
1373 set_buffer_uptodate(bh
);
1377 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1378 "journal superblock for %s.\n", ret
,
1379 journal
->j_devname
);
1380 jbd2_journal_abort(journal
, ret
);
1387 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1388 * @journal: The journal to update.
1389 * @tail_tid: TID of the new transaction at the tail of the log
1390 * @tail_block: The first block of the transaction at the tail of the log
1391 * @write_op: With which operation should we write the journal sb
1393 * Update a journal's superblock information about log tail and write it to
1394 * disk, waiting for the IO to complete.
1396 int jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1397 unsigned long tail_block
, int write_op
)
1399 journal_superblock_t
*sb
= journal
->j_superblock
;
1402 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1403 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1404 tail_block
, tail_tid
);
1406 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1407 sb
->s_start
= cpu_to_be32(tail_block
);
1409 ret
= jbd2_write_superblock(journal
, write_op
);
1413 /* Log is no longer empty */
1414 write_lock(&journal
->j_state_lock
);
1415 WARN_ON(!sb
->s_sequence
);
1416 journal
->j_flags
&= ~JBD2_FLUSHED
;
1417 write_unlock(&journal
->j_state_lock
);
1424 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1425 * @journal: The journal to update.
1426 * @write_op: With which operation should we write the journal sb
1428 * Update a journal's dynamic superblock fields to show that journal is empty.
1429 * Write updated superblock to disk waiting for IO to complete.
1431 static void jbd2_mark_journal_empty(journal_t
*journal
, int write_op
)
1433 journal_superblock_t
*sb
= journal
->j_superblock
;
1435 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1436 read_lock(&journal
->j_state_lock
);
1437 /* Is it already empty? */
1438 if (sb
->s_start
== 0) {
1439 read_unlock(&journal
->j_state_lock
);
1442 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1443 journal
->j_tail_sequence
);
1445 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1446 sb
->s_start
= cpu_to_be32(0);
1447 read_unlock(&journal
->j_state_lock
);
1449 jbd2_write_superblock(journal
, write_op
);
1451 /* Log is no longer empty */
1452 write_lock(&journal
->j_state_lock
);
1453 journal
->j_flags
|= JBD2_FLUSHED
;
1454 write_unlock(&journal
->j_state_lock
);
1459 * jbd2_journal_update_sb_errno() - Update error in the journal.
1460 * @journal: The journal to update.
1462 * Update a journal's errno. Write updated superblock to disk waiting for IO
1465 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1467 journal_superblock_t
*sb
= journal
->j_superblock
;
1469 read_lock(&journal
->j_state_lock
);
1470 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1472 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1473 read_unlock(&journal
->j_state_lock
);
1475 jbd2_write_superblock(journal
, WRITE_SYNC
);
1477 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1480 * Read the superblock for a given journal, performing initial
1481 * validation of the format.
1483 static int journal_get_superblock(journal_t
*journal
)
1485 struct buffer_head
*bh
;
1486 journal_superblock_t
*sb
;
1489 bh
= journal
->j_sb_buffer
;
1491 J_ASSERT(bh
!= NULL
);
1492 if (!buffer_uptodate(bh
)) {
1493 ll_rw_block(READ
, 1, &bh
);
1495 if (!buffer_uptodate(bh
)) {
1497 "JBD2: IO error reading journal superblock\n");
1502 if (buffer_verified(bh
))
1505 sb
= journal
->j_superblock
;
1509 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1510 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1511 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1515 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1516 case JBD2_SUPERBLOCK_V1
:
1517 journal
->j_format_version
= 1;
1519 case JBD2_SUPERBLOCK_V2
:
1520 journal
->j_format_version
= 2;
1523 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1527 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1528 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1529 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1530 printk(KERN_WARNING
"JBD2: journal file too short\n");
1534 if (be32_to_cpu(sb
->s_first
) == 0 ||
1535 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1537 "JBD2: Invalid start block of journal: %u\n",
1538 be32_to_cpu(sb
->s_first
));
1542 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V2
) &&
1543 JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1544 /* Can't have checksum v2 and v3 at the same time! */
1545 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1546 "at the same time!\n");
1550 if (jbd2_journal_has_csum_v2or3(journal
) &&
1551 JBD2_HAS_COMPAT_FEATURE(journal
, JBD2_FEATURE_COMPAT_CHECKSUM
)) {
1552 /* Can't have checksum v1 and v2 on at the same time! */
1553 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1554 "at the same time!\n");
1558 if (!jbd2_verify_csum_type(journal
, sb
)) {
1559 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1563 /* Load the checksum driver */
1564 if (jbd2_journal_has_csum_v2or3(journal
)) {
1565 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1566 if (IS_ERR(journal
->j_chksum_driver
)) {
1567 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1568 err
= PTR_ERR(journal
->j_chksum_driver
);
1569 journal
->j_chksum_driver
= NULL
;
1574 /* Check superblock checksum */
1575 if (!jbd2_superblock_csum_verify(journal
, sb
)) {
1576 printk(KERN_ERR
"JBD2: journal checksum error\n");
1580 /* Precompute checksum seed for all metadata */
1581 if (jbd2_journal_has_csum_v2or3(journal
))
1582 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1583 sizeof(sb
->s_uuid
));
1585 set_buffer_verified(bh
);
1590 journal_fail_superblock(journal
);
1595 * Load the on-disk journal superblock and read the key fields into the
1599 static int load_superblock(journal_t
*journal
)
1602 journal_superblock_t
*sb
;
1604 err
= journal_get_superblock(journal
);
1608 sb
= journal
->j_superblock
;
1610 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1611 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1612 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1613 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1614 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1621 * int jbd2_journal_load() - Read journal from disk.
1622 * @journal: Journal to act on.
1624 * Given a journal_t structure which tells us which disk blocks contain
1625 * a journal, read the journal from disk to initialise the in-memory
1628 int jbd2_journal_load(journal_t
*journal
)
1631 journal_superblock_t
*sb
;
1633 err
= load_superblock(journal
);
1637 sb
= journal
->j_superblock
;
1638 /* If this is a V2 superblock, then we have to check the
1639 * features flags on it. */
1641 if (journal
->j_format_version
>= 2) {
1642 if ((sb
->s_feature_ro_compat
&
1643 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1644 (sb
->s_feature_incompat
&
1645 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1647 "JBD2: Unrecognised features on journal\n");
1653 * Create a slab for this blocksize
1655 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1659 /* Let the recovery code check whether it needs to recover any
1660 * data from the journal. */
1661 if (jbd2_journal_recover(journal
))
1662 goto recovery_error
;
1664 if (journal
->j_failed_commit
) {
1665 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1666 "is corrupt.\n", journal
->j_failed_commit
,
1667 journal
->j_devname
);
1671 /* OK, we've finished with the dynamic journal bits:
1672 * reinitialise the dynamic contents of the superblock in memory
1673 * and reset them on disk. */
1674 if (journal_reset(journal
))
1675 goto recovery_error
;
1677 journal
->j_flags
&= ~JBD2_ABORT
;
1678 journal
->j_flags
|= JBD2_LOADED
;
1682 printk(KERN_WARNING
"JBD2: recovery failed\n");
1687 * void jbd2_journal_destroy() - Release a journal_t structure.
1688 * @journal: Journal to act on.
1690 * Release a journal_t structure once it is no longer in use by the
1692 * Return <0 if we couldn't clean up the journal.
1694 int jbd2_journal_destroy(journal_t
*journal
)
1698 /* Wait for the commit thread to wake up and die. */
1699 journal_kill_thread(journal
);
1701 /* Force a final log commit */
1702 if (journal
->j_running_transaction
)
1703 jbd2_journal_commit_transaction(journal
);
1705 /* Force any old transactions to disk */
1707 /* Totally anal locking here... */
1708 spin_lock(&journal
->j_list_lock
);
1709 while (journal
->j_checkpoint_transactions
!= NULL
) {
1710 spin_unlock(&journal
->j_list_lock
);
1711 mutex_lock(&journal
->j_checkpoint_mutex
);
1712 err
= jbd2_log_do_checkpoint(journal
);
1713 mutex_unlock(&journal
->j_checkpoint_mutex
);
1715 * If checkpointing failed, just free the buffers to avoid
1719 jbd2_journal_destroy_checkpoint(journal
);
1720 spin_lock(&journal
->j_list_lock
);
1723 spin_lock(&journal
->j_list_lock
);
1726 J_ASSERT(journal
->j_running_transaction
== NULL
);
1727 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1728 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1729 spin_unlock(&journal
->j_list_lock
);
1731 if (journal
->j_sb_buffer
) {
1732 if (!is_journal_aborted(journal
)) {
1733 mutex_lock(&journal
->j_checkpoint_mutex
);
1735 write_lock(&journal
->j_state_lock
);
1736 journal
->j_tail_sequence
=
1737 ++journal
->j_transaction_sequence
;
1738 write_unlock(&journal
->j_state_lock
);
1740 jbd2_mark_journal_empty(journal
, WRITE_FLUSH_FUA
);
1741 mutex_unlock(&journal
->j_checkpoint_mutex
);
1744 brelse(journal
->j_sb_buffer
);
1747 if (journal
->j_proc_entry
)
1748 jbd2_stats_proc_exit(journal
);
1749 iput(journal
->j_inode
);
1750 if (journal
->j_revoke
)
1751 jbd2_journal_destroy_revoke(journal
);
1752 if (journal
->j_chksum_driver
)
1753 crypto_free_shash(journal
->j_chksum_driver
);
1754 kfree(journal
->j_wbuf
);
1762 *int jbd2_journal_check_used_features () - Check if features specified are used.
1763 * @journal: Journal to check.
1764 * @compat: bitmask of compatible features
1765 * @ro: bitmask of features that force read-only mount
1766 * @incompat: bitmask of incompatible features
1768 * Check whether the journal uses all of a given set of
1769 * features. Return true (non-zero) if it does.
1772 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1773 unsigned long ro
, unsigned long incompat
)
1775 journal_superblock_t
*sb
;
1777 if (!compat
&& !ro
&& !incompat
)
1779 /* Load journal superblock if it is not loaded yet. */
1780 if (journal
->j_format_version
== 0 &&
1781 journal_get_superblock(journal
) != 0)
1783 if (journal
->j_format_version
== 1)
1786 sb
= journal
->j_superblock
;
1788 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1789 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1790 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1797 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1798 * @journal: Journal to check.
1799 * @compat: bitmask of compatible features
1800 * @ro: bitmask of features that force read-only mount
1801 * @incompat: bitmask of incompatible features
1803 * Check whether the journaling code supports the use of
1804 * all of a given set of features on this journal. Return true
1805 * (non-zero) if it can. */
1807 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1808 unsigned long ro
, unsigned long incompat
)
1810 if (!compat
&& !ro
&& !incompat
)
1813 /* We can support any known requested features iff the
1814 * superblock is in version 2. Otherwise we fail to support any
1815 * extended sb features. */
1817 if (journal
->j_format_version
!= 2)
1820 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1821 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1822 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1829 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1830 * @journal: Journal to act on.
1831 * @compat: bitmask of compatible features
1832 * @ro: bitmask of features that force read-only mount
1833 * @incompat: bitmask of incompatible features
1835 * Mark a given journal feature as present on the
1836 * superblock. Returns true if the requested features could be set.
1840 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1841 unsigned long ro
, unsigned long incompat
)
1843 #define INCOMPAT_FEATURE_ON(f) \
1844 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1845 #define COMPAT_FEATURE_ON(f) \
1846 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1847 journal_superblock_t
*sb
;
1849 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1852 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1855 /* If enabling v2 checksums, turn on v3 instead */
1856 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1857 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1858 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1861 /* Asking for checksumming v3 and v1? Only give them v3. */
1862 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1863 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1864 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1866 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1867 compat
, ro
, incompat
);
1869 sb
= journal
->j_superblock
;
1871 /* If enabling v3 checksums, update superblock */
1872 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1873 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1874 sb
->s_feature_compat
&=
1875 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1877 /* Load the checksum driver */
1878 if (journal
->j_chksum_driver
== NULL
) {
1879 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c",
1881 if (IS_ERR(journal
->j_chksum_driver
)) {
1882 printk(KERN_ERR
"JBD2: Cannot load crc32c "
1884 journal
->j_chksum_driver
= NULL
;
1888 /* Precompute checksum seed for all metadata */
1889 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0,
1891 sizeof(sb
->s_uuid
));
1895 /* If enabling v1 checksums, downgrade superblock */
1896 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1897 sb
->s_feature_incompat
&=
1898 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1899 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1901 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1902 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1903 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1906 #undef COMPAT_FEATURE_ON
1907 #undef INCOMPAT_FEATURE_ON
1911 * jbd2_journal_clear_features () - Clear a given journal feature in the
1913 * @journal: Journal to act on.
1914 * @compat: bitmask of compatible features
1915 * @ro: bitmask of features that force read-only mount
1916 * @incompat: bitmask of incompatible features
1918 * Clear a given journal feature as present on the
1921 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1922 unsigned long ro
, unsigned long incompat
)
1924 journal_superblock_t
*sb
;
1926 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1927 compat
, ro
, incompat
);
1929 sb
= journal
->j_superblock
;
1931 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1932 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1933 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1935 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1938 * int jbd2_journal_flush () - Flush journal
1939 * @journal: Journal to act on.
1941 * Flush all data for a given journal to disk and empty the journal.
1942 * Filesystems can use this when remounting readonly to ensure that
1943 * recovery does not need to happen on remount.
1946 int jbd2_journal_flush(journal_t
*journal
)
1949 transaction_t
*transaction
= NULL
;
1951 write_lock(&journal
->j_state_lock
);
1953 /* Force everything buffered to the log... */
1954 if (journal
->j_running_transaction
) {
1955 transaction
= journal
->j_running_transaction
;
1956 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1957 } else if (journal
->j_committing_transaction
)
1958 transaction
= journal
->j_committing_transaction
;
1960 /* Wait for the log commit to complete... */
1962 tid_t tid
= transaction
->t_tid
;
1964 write_unlock(&journal
->j_state_lock
);
1965 jbd2_log_wait_commit(journal
, tid
);
1967 write_unlock(&journal
->j_state_lock
);
1970 /* ...and flush everything in the log out to disk. */
1971 spin_lock(&journal
->j_list_lock
);
1972 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1973 spin_unlock(&journal
->j_list_lock
);
1974 mutex_lock(&journal
->j_checkpoint_mutex
);
1975 err
= jbd2_log_do_checkpoint(journal
);
1976 mutex_unlock(&journal
->j_checkpoint_mutex
);
1977 spin_lock(&journal
->j_list_lock
);
1979 spin_unlock(&journal
->j_list_lock
);
1981 if (is_journal_aborted(journal
))
1984 mutex_lock(&journal
->j_checkpoint_mutex
);
1986 err
= jbd2_cleanup_journal_tail(journal
);
1988 mutex_unlock(&journal
->j_checkpoint_mutex
);
1994 /* Finally, mark the journal as really needing no recovery.
1995 * This sets s_start==0 in the underlying superblock, which is
1996 * the magic code for a fully-recovered superblock. Any future
1997 * commits of data to the journal will restore the current
1999 jbd2_mark_journal_empty(journal
, WRITE_FUA
);
2000 mutex_unlock(&journal
->j_checkpoint_mutex
);
2001 write_lock(&journal
->j_state_lock
);
2002 J_ASSERT(!journal
->j_running_transaction
);
2003 J_ASSERT(!journal
->j_committing_transaction
);
2004 J_ASSERT(!journal
->j_checkpoint_transactions
);
2005 J_ASSERT(journal
->j_head
== journal
->j_tail
);
2006 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
2007 write_unlock(&journal
->j_state_lock
);
2013 * int jbd2_journal_wipe() - Wipe journal contents
2014 * @journal: Journal to act on.
2015 * @write: flag (see below)
2017 * Wipe out all of the contents of a journal, safely. This will produce
2018 * a warning if the journal contains any valid recovery information.
2019 * Must be called between journal_init_*() and jbd2_journal_load().
2021 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2022 * we merely suppress recovery.
2025 int jbd2_journal_wipe(journal_t
*journal
, int write
)
2029 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
2031 err
= load_superblock(journal
);
2035 if (!journal
->j_tail
)
2038 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
2039 write
? "Clearing" : "Ignoring");
2041 err
= jbd2_journal_skip_recovery(journal
);
2043 /* Lock to make assertions happy... */
2044 mutex_lock(&journal
->j_checkpoint_mutex
);
2045 jbd2_mark_journal_empty(journal
, WRITE_FUA
);
2046 mutex_unlock(&journal
->j_checkpoint_mutex
);
2054 * Journal abort has very specific semantics, which we describe
2055 * for journal abort.
2057 * Two internal functions, which provide abort to the jbd layer
2062 * Quick version for internal journal use (doesn't lock the journal).
2063 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2064 * and don't attempt to make any other journal updates.
2066 void __jbd2_journal_abort_hard(journal_t
*journal
)
2068 transaction_t
*transaction
;
2070 if (journal
->j_flags
& JBD2_ABORT
)
2073 printk(KERN_ERR
"Aborting journal on device %s.\n",
2074 journal
->j_devname
);
2076 write_lock(&journal
->j_state_lock
);
2077 journal
->j_flags
|= JBD2_ABORT
;
2078 transaction
= journal
->j_running_transaction
;
2080 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2081 write_unlock(&journal
->j_state_lock
);
2084 /* Soft abort: record the abort error status in the journal superblock,
2085 * but don't do any other IO. */
2086 static void __journal_abort_soft (journal_t
*journal
, int errno
)
2088 if (journal
->j_flags
& JBD2_ABORT
)
2091 if (!journal
->j_errno
)
2092 journal
->j_errno
= errno
;
2094 __jbd2_journal_abort_hard(journal
);
2097 jbd2_journal_update_sb_errno(journal
);
2098 write_lock(&journal
->j_state_lock
);
2099 journal
->j_flags
|= JBD2_REC_ERR
;
2100 write_unlock(&journal
->j_state_lock
);
2105 * void jbd2_journal_abort () - Shutdown the journal immediately.
2106 * @journal: the journal to shutdown.
2107 * @errno: an error number to record in the journal indicating
2108 * the reason for the shutdown.
2110 * Perform a complete, immediate shutdown of the ENTIRE
2111 * journal (not of a single transaction). This operation cannot be
2112 * undone without closing and reopening the journal.
2114 * The jbd2_journal_abort function is intended to support higher level error
2115 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2118 * Journal abort has very specific semantics. Any existing dirty,
2119 * unjournaled buffers in the main filesystem will still be written to
2120 * disk by bdflush, but the journaling mechanism will be suspended
2121 * immediately and no further transaction commits will be honoured.
2123 * Any dirty, journaled buffers will be written back to disk without
2124 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2125 * filesystem, but we _do_ attempt to leave as much data as possible
2126 * behind for fsck to use for cleanup.
2128 * Any attempt to get a new transaction handle on a journal which is in
2129 * ABORT state will just result in an -EROFS error return. A
2130 * jbd2_journal_stop on an existing handle will return -EIO if we have
2131 * entered abort state during the update.
2133 * Recursive transactions are not disturbed by journal abort until the
2134 * final jbd2_journal_stop, which will receive the -EIO error.
2136 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2137 * which will be recorded (if possible) in the journal superblock. This
2138 * allows a client to record failure conditions in the middle of a
2139 * transaction without having to complete the transaction to record the
2140 * failure to disk. ext3_error, for example, now uses this
2143 * Errors which originate from within the journaling layer will NOT
2144 * supply an errno; a null errno implies that absolutely no further
2145 * writes are done to the journal (unless there are any already in
2150 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2152 __journal_abort_soft(journal
, errno
);
2156 * int jbd2_journal_errno () - returns the journal's error state.
2157 * @journal: journal to examine.
2159 * This is the errno number set with jbd2_journal_abort(), the last
2160 * time the journal was mounted - if the journal was stopped
2161 * without calling abort this will be 0.
2163 * If the journal has been aborted on this mount time -EROFS will
2166 int jbd2_journal_errno(journal_t
*journal
)
2170 read_lock(&journal
->j_state_lock
);
2171 if (journal
->j_flags
& JBD2_ABORT
)
2174 err
= journal
->j_errno
;
2175 read_unlock(&journal
->j_state_lock
);
2180 * int jbd2_journal_clear_err () - clears the journal's error state
2181 * @journal: journal to act on.
2183 * An error must be cleared or acked to take a FS out of readonly
2186 int jbd2_journal_clear_err(journal_t
*journal
)
2190 write_lock(&journal
->j_state_lock
);
2191 if (journal
->j_flags
& JBD2_ABORT
)
2194 journal
->j_errno
= 0;
2195 write_unlock(&journal
->j_state_lock
);
2200 * void jbd2_journal_ack_err() - Ack journal err.
2201 * @journal: journal to act on.
2203 * An error must be cleared or acked to take a FS out of readonly
2206 void jbd2_journal_ack_err(journal_t
*journal
)
2208 write_lock(&journal
->j_state_lock
);
2209 if (journal
->j_errno
)
2210 journal
->j_flags
|= JBD2_ACK_ERR
;
2211 write_unlock(&journal
->j_state_lock
);
2214 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2216 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2220 * helper functions to deal with 32 or 64bit block numbers.
2222 size_t journal_tag_bytes(journal_t
*journal
)
2226 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V3
))
2227 return sizeof(journal_block_tag3_t
);
2229 sz
= sizeof(journal_block_tag_t
);
2231 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V2
))
2232 sz
+= sizeof(__u16
);
2234 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_64BIT
))
2237 return sz
- sizeof(__u32
);
2241 * JBD memory management
2243 * These functions are used to allocate block-sized chunks of memory
2244 * used for making copies of buffer_head data. Very often it will be
2245 * page-sized chunks of data, but sometimes it will be in
2246 * sub-page-size chunks. (For example, 16k pages on Power systems
2247 * with a 4k block file system.) For blocks smaller than a page, we
2248 * use a SLAB allocator. There are slab caches for each block size,
2249 * which are allocated at mount time, if necessary, and we only free
2250 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2251 * this reason we don't need to a mutex to protect access to
2252 * jbd2_slab[] allocating or releasing memory; only in
2253 * jbd2_journal_create_slab().
2255 #define JBD2_MAX_SLABS 8
2256 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2258 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2259 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2260 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2264 static void jbd2_journal_destroy_slabs(void)
2268 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2270 kmem_cache_destroy(jbd2_slab
[i
]);
2271 jbd2_slab
[i
] = NULL
;
2275 static int jbd2_journal_create_slab(size_t size
)
2277 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2278 int i
= order_base_2(size
) - 10;
2281 if (size
== PAGE_SIZE
)
2284 if (i
>= JBD2_MAX_SLABS
)
2287 if (unlikely(i
< 0))
2289 mutex_lock(&jbd2_slab_create_mutex
);
2291 mutex_unlock(&jbd2_slab_create_mutex
);
2292 return 0; /* Already created */
2295 slab_size
= 1 << (i
+10);
2296 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2297 slab_size
, 0, NULL
);
2298 mutex_unlock(&jbd2_slab_create_mutex
);
2299 if (!jbd2_slab
[i
]) {
2300 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2306 static struct kmem_cache
*get_slab(size_t size
)
2308 int i
= order_base_2(size
) - 10;
2310 BUG_ON(i
>= JBD2_MAX_SLABS
);
2311 if (unlikely(i
< 0))
2313 BUG_ON(jbd2_slab
[i
] == NULL
);
2314 return jbd2_slab
[i
];
2317 void *jbd2_alloc(size_t size
, gfp_t flags
)
2321 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2323 flags
|= __GFP_REPEAT
;
2324 if (size
== PAGE_SIZE
)
2325 ptr
= (void *)__get_free_pages(flags
, 0);
2326 else if (size
> PAGE_SIZE
) {
2327 int order
= get_order(size
);
2330 ptr
= (void *)__get_free_pages(flags
, order
);
2332 ptr
= vmalloc(size
);
2334 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2336 /* Check alignment; SLUB has gotten this wrong in the past,
2337 * and this can lead to user data corruption! */
2338 BUG_ON(((unsigned long) ptr
) & (size
-1));
2343 void jbd2_free(void *ptr
, size_t size
)
2345 if (size
== PAGE_SIZE
) {
2346 free_pages((unsigned long)ptr
, 0);
2349 if (size
> PAGE_SIZE
) {
2350 int order
= get_order(size
);
2353 free_pages((unsigned long)ptr
, order
);
2358 kmem_cache_free(get_slab(size
), ptr
);
2362 * Journal_head storage management
2364 static struct kmem_cache
*jbd2_journal_head_cache
;
2365 #ifdef CONFIG_JBD2_DEBUG
2366 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2369 static int jbd2_journal_init_journal_head_cache(void)
2373 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2374 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2375 sizeof(struct journal_head
),
2377 SLAB_TEMPORARY
, /* flags */
2380 if (!jbd2_journal_head_cache
) {
2382 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2387 static void jbd2_journal_destroy_journal_head_cache(void)
2389 if (jbd2_journal_head_cache
) {
2390 kmem_cache_destroy(jbd2_journal_head_cache
);
2391 jbd2_journal_head_cache
= NULL
;
2396 * journal_head splicing and dicing
2398 static struct journal_head
*journal_alloc_journal_head(void)
2400 struct journal_head
*ret
;
2402 #ifdef CONFIG_JBD2_DEBUG
2403 atomic_inc(&nr_journal_heads
);
2405 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2407 jbd_debug(1, "out of memory for journal_head\n");
2408 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2411 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2417 static void journal_free_journal_head(struct journal_head
*jh
)
2419 #ifdef CONFIG_JBD2_DEBUG
2420 atomic_dec(&nr_journal_heads
);
2421 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2423 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2427 * A journal_head is attached to a buffer_head whenever JBD has an
2428 * interest in the buffer.
2430 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2431 * is set. This bit is tested in core kernel code where we need to take
2432 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2435 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437 * When a buffer has its BH_JBD bit set it is immune from being released by
2438 * core kernel code, mainly via ->b_count.
2440 * A journal_head is detached from its buffer_head when the journal_head's
2441 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2442 * transaction (b_cp_transaction) hold their references to b_jcount.
2444 * Various places in the kernel want to attach a journal_head to a buffer_head
2445 * _before_ attaching the journal_head to a transaction. To protect the
2446 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2447 * journal_head's b_jcount refcount by one. The caller must call
2448 * jbd2_journal_put_journal_head() to undo this.
2450 * So the typical usage would be:
2452 * (Attach a journal_head if needed. Increments b_jcount)
2453 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455 * (Get another reference for transaction)
2456 * jbd2_journal_grab_journal_head(bh);
2457 * jh->b_transaction = xxx;
2458 * (Put original reference)
2459 * jbd2_journal_put_journal_head(jh);
2463 * Give a buffer_head a journal_head.
2467 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2469 struct journal_head
*jh
;
2470 struct journal_head
*new_jh
= NULL
;
2473 if (!buffer_jbd(bh
))
2474 new_jh
= journal_alloc_journal_head();
2476 jbd_lock_bh_journal_head(bh
);
2477 if (buffer_jbd(bh
)) {
2481 (atomic_read(&bh
->b_count
) > 0) ||
2482 (bh
->b_page
&& bh
->b_page
->mapping
));
2485 jbd_unlock_bh_journal_head(bh
);
2490 new_jh
= NULL
; /* We consumed it */
2495 BUFFER_TRACE(bh
, "added journal_head");
2498 jbd_unlock_bh_journal_head(bh
);
2500 journal_free_journal_head(new_jh
);
2501 return bh
->b_private
;
2505 * Grab a ref against this buffer_head's journal_head. If it ended up not
2506 * having a journal_head, return NULL
2508 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2510 struct journal_head
*jh
= NULL
;
2512 jbd_lock_bh_journal_head(bh
);
2513 if (buffer_jbd(bh
)) {
2517 jbd_unlock_bh_journal_head(bh
);
2521 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2523 struct journal_head
*jh
= bh2jh(bh
);
2525 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2526 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2527 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2528 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2529 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2530 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2531 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2532 BUFFER_TRACE(bh
, "remove journal_head");
2533 if (jh
->b_frozen_data
) {
2534 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2535 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2537 if (jh
->b_committed_data
) {
2538 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2539 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2541 bh
->b_private
= NULL
;
2542 jh
->b_bh
= NULL
; /* debug, really */
2543 clear_buffer_jbd(bh
);
2544 journal_free_journal_head(jh
);
2548 * Drop a reference on the passed journal_head. If it fell to zero then
2549 * release the journal_head from the buffer_head.
2551 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2553 struct buffer_head
*bh
= jh2bh(jh
);
2555 jbd_lock_bh_journal_head(bh
);
2556 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2558 if (!jh
->b_jcount
) {
2559 __journal_remove_journal_head(bh
);
2560 jbd_unlock_bh_journal_head(bh
);
2563 jbd_unlock_bh_journal_head(bh
);
2567 * Initialize jbd inode head
2569 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2571 jinode
->i_transaction
= NULL
;
2572 jinode
->i_next_transaction
= NULL
;
2573 jinode
->i_vfs_inode
= inode
;
2574 jinode
->i_flags
= 0;
2575 INIT_LIST_HEAD(&jinode
->i_list
);
2579 * Function to be called before we start removing inode from memory (i.e.,
2580 * clear_inode() is a fine place to be called from). It removes inode from
2581 * transaction's lists.
2583 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2584 struct jbd2_inode
*jinode
)
2589 spin_lock(&journal
->j_list_lock
);
2590 /* Is commit writing out inode - we have to wait */
2591 if (test_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
)) {
2592 wait_queue_head_t
*wq
;
2593 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2594 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2595 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2596 spin_unlock(&journal
->j_list_lock
);
2598 finish_wait(wq
, &wait
.wait
);
2602 if (jinode
->i_transaction
) {
2603 list_del(&jinode
->i_list
);
2604 jinode
->i_transaction
= NULL
;
2606 spin_unlock(&journal
->j_list_lock
);
2610 #ifdef CONFIG_PROC_FS
2612 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2616 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2619 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2621 if (proc_jbd2_stats
)
2622 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2627 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2628 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2634 static int __init
jbd2_journal_init_handle_cache(void)
2636 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2637 if (jbd2_handle_cache
== NULL
) {
2638 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2641 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2642 if (jbd2_inode_cache
== NULL
) {
2643 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2644 kmem_cache_destroy(jbd2_handle_cache
);
2650 static void jbd2_journal_destroy_handle_cache(void)
2652 if (jbd2_handle_cache
)
2653 kmem_cache_destroy(jbd2_handle_cache
);
2654 if (jbd2_inode_cache
)
2655 kmem_cache_destroy(jbd2_inode_cache
);
2660 * Module startup and shutdown
2663 static int __init
journal_init_caches(void)
2667 ret
= jbd2_journal_init_revoke_caches();
2669 ret
= jbd2_journal_init_journal_head_cache();
2671 ret
= jbd2_journal_init_handle_cache();
2673 ret
= jbd2_journal_init_transaction_cache();
2677 static void jbd2_journal_destroy_caches(void)
2679 jbd2_journal_destroy_revoke_caches();
2680 jbd2_journal_destroy_journal_head_cache();
2681 jbd2_journal_destroy_handle_cache();
2682 jbd2_journal_destroy_transaction_cache();
2683 jbd2_journal_destroy_slabs();
2686 static int __init
journal_init(void)
2690 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2692 ret
= journal_init_caches();
2694 jbd2_create_jbd_stats_proc_entry();
2696 jbd2_journal_destroy_caches();
2701 static void __exit
journal_exit(void)
2703 #ifdef CONFIG_JBD2_DEBUG
2704 int n
= atomic_read(&nr_journal_heads
);
2706 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2708 jbd2_remove_jbd_stats_proc_entry();
2709 jbd2_journal_destroy_caches();
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init
);
2714 module_exit(journal_exit
);