gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / namei.c
blobc7a6eabc02a534c6df67dbe1674d6b42709aaa8f
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 #include "internal.h"
41 #include "mount.h"
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
91 * [10-Sep-98 Alan Modra] Another symlink change.
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
127 struct filename *result;
128 char *kname;
129 int len;
131 result = audit_reusename(filename);
132 if (result)
133 return result;
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
143 kname = (char *)result->iname;
144 result->name = kname;
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
203 struct filename *
204 getname(const char __user * filename)
206 return getname_flags(filename, 0, NULL);
209 struct filename *
210 getname_kernel(const char * filename)
212 struct filename *result;
213 int len = strlen(filename) + 1;
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
241 return result;
244 void putname(struct filename *name)
246 BUG_ON(name->refcnt <= 0);
248 if (--name->refcnt > 0)
249 return;
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
258 static int check_acl(struct inode *inode, int mask)
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
281 #endif
283 return -EAGAIN;
287 * This does the basic permission checking
289 static int acl_permission_check(struct inode *inode, int mask)
291 unsigned int mode = inode->i_mode;
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
307 * If the DACs are ok we don't need any capability check.
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
328 int generic_permission(struct inode *inode, int mask)
330 int ret;
333 * Do the basic permission checks.
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
359 * Searching includes executable on directories, else just read.
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
366 return -EACCES;
368 EXPORT_SYMBOL(generic_permission);
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
376 static inline int do_inode_permission(struct inode *inode, int mask)
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
387 return generic_permission(inode, mask);
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 * Check for read/write/execute permissions on an inode.
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
402 int __inode_permission(struct inode *inode, int mask)
404 int retval;
406 if (unlikely(mask & MAY_WRITE)) {
408 * Nobody gets write access to an immutable file.
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
422 return security_inode_permission(inode, mask);
424 EXPORT_SYMBOL(__inode_permission);
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 * Separate out file-system wide checks from inode-specific permission checks.
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
444 return 0;
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 int inode_permission(struct inode *inode, int mask)
460 int retval;
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
467 EXPORT_SYMBOL(inode_permission);
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
473 * Given a path increment the reference count to the dentry and the vfsmount.
475 void path_get(const struct path *path)
477 mntget(path->mnt);
478 dget(path->dentry);
480 EXPORT_SYMBOL(path_get);
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
486 * Given a path decrement the reference count to the dentry and the vfsmount.
488 void path_put(const struct path *path)
490 dput(path->dentry);
491 mntput(path->mnt);
493 EXPORT_SYMBOL(path_put);
495 struct nameidata {
496 struct path path;
497 struct qstr last;
498 struct path root;
499 struct inode *inode; /* path.dentry.d_inode */
500 unsigned int flags;
501 unsigned seq, m_seq;
502 int last_type;
503 unsigned depth;
504 struct file *base;
505 char *saved_names[MAX_NESTED_LINKS + 1];
509 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
510 * @path: nameidate to verify
512 * Rename can sometimes move a file or directory outside of a bind
513 * mount, path_connected allows those cases to be detected.
515 static bool path_connected(const struct path *path)
517 struct vfsmount *mnt = path->mnt;
519 /* Only bind mounts can have disconnected paths */
520 if (mnt->mnt_root == mnt->mnt_sb->s_root)
521 return true;
523 return is_subdir(path->dentry, mnt->mnt_root);
527 * Path walking has 2 modes, rcu-walk and ref-walk (see
528 * Documentation/filesystems/path-lookup.txt). In situations when we can't
529 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
530 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
531 * mode. Refcounts are grabbed at the last known good point before rcu-walk
532 * got stuck, so ref-walk may continue from there. If this is not successful
533 * (eg. a seqcount has changed), then failure is returned and it's up to caller
534 * to restart the path walk from the beginning in ref-walk mode.
538 * unlazy_walk - try to switch to ref-walk mode.
539 * @nd: nameidata pathwalk data
540 * @dentry: child of nd->path.dentry or NULL
541 * Returns: 0 on success, -ECHILD on failure
543 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
544 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
545 * @nd or NULL. Must be called from rcu-walk context.
547 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
549 struct fs_struct *fs = current->fs;
550 struct dentry *parent = nd->path.dentry;
552 BUG_ON(!(nd->flags & LOOKUP_RCU));
555 * After legitimizing the bastards, terminate_walk()
556 * will do the right thing for non-RCU mode, and all our
557 * subsequent exit cases should rcu_read_unlock()
558 * before returning. Do vfsmount first; if dentry
559 * can't be legitimized, just set nd->path.dentry to NULL
560 * and rely on dput(NULL) being a no-op.
562 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
563 return -ECHILD;
564 nd->flags &= ~LOOKUP_RCU;
566 if (!lockref_get_not_dead(&parent->d_lockref)) {
567 nd->path.dentry = NULL;
568 goto out;
572 * For a negative lookup, the lookup sequence point is the parents
573 * sequence point, and it only needs to revalidate the parent dentry.
575 * For a positive lookup, we need to move both the parent and the
576 * dentry from the RCU domain to be properly refcounted. And the
577 * sequence number in the dentry validates *both* dentry counters,
578 * since we checked the sequence number of the parent after we got
579 * the child sequence number. So we know the parent must still
580 * be valid if the child sequence number is still valid.
582 if (!dentry) {
583 if (read_seqcount_retry(&parent->d_seq, nd->seq))
584 goto out;
585 BUG_ON(nd->inode != parent->d_inode);
586 } else {
587 if (!lockref_get_not_dead(&dentry->d_lockref))
588 goto out;
589 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
590 goto drop_dentry;
594 * Sequence counts matched. Now make sure that the root is
595 * still valid and get it if required.
597 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
598 spin_lock(&fs->lock);
599 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
600 goto unlock_and_drop_dentry;
601 path_get(&nd->root);
602 spin_unlock(&fs->lock);
605 rcu_read_unlock();
606 return 0;
608 unlock_and_drop_dentry:
609 spin_unlock(&fs->lock);
610 drop_dentry:
611 rcu_read_unlock();
612 dput(dentry);
613 goto drop_root_mnt;
614 out:
615 rcu_read_unlock();
616 drop_root_mnt:
617 if (!(nd->flags & LOOKUP_ROOT))
618 nd->root.mnt = NULL;
619 return -ECHILD;
622 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
624 return dentry->d_op->d_revalidate(dentry, flags);
628 * complete_walk - successful completion of path walk
629 * @nd: pointer nameidata
631 * If we had been in RCU mode, drop out of it and legitimize nd->path.
632 * Revalidate the final result, unless we'd already done that during
633 * the path walk or the filesystem doesn't ask for it. Return 0 on
634 * success, -error on failure. In case of failure caller does not
635 * need to drop nd->path.
637 static int complete_walk(struct nameidata *nd)
639 struct dentry *dentry = nd->path.dentry;
640 int status;
642 if (nd->flags & LOOKUP_RCU) {
643 nd->flags &= ~LOOKUP_RCU;
644 if (!(nd->flags & LOOKUP_ROOT))
645 nd->root.mnt = NULL;
647 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
648 rcu_read_unlock();
649 return -ECHILD;
651 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
652 rcu_read_unlock();
653 mntput(nd->path.mnt);
654 return -ECHILD;
656 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
657 rcu_read_unlock();
658 dput(dentry);
659 mntput(nd->path.mnt);
660 return -ECHILD;
662 rcu_read_unlock();
665 if (likely(!(nd->flags & LOOKUP_JUMPED)))
666 return 0;
668 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
669 return 0;
671 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
672 if (status > 0)
673 return 0;
675 if (!status)
676 status = -ESTALE;
678 path_put(&nd->path);
679 return status;
682 static __always_inline void set_root(struct nameidata *nd)
684 get_fs_root(current->fs, &nd->root);
687 static int link_path_walk(const char *, struct nameidata *);
689 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
691 struct fs_struct *fs = current->fs;
692 unsigned seq, res;
694 do {
695 seq = read_seqcount_begin(&fs->seq);
696 nd->root = fs->root;
697 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
698 } while (read_seqcount_retry(&fs->seq, seq));
699 return res;
702 static void path_put_conditional(struct path *path, struct nameidata *nd)
704 dput(path->dentry);
705 if (path->mnt != nd->path.mnt)
706 mntput(path->mnt);
709 static inline void path_to_nameidata(const struct path *path,
710 struct nameidata *nd)
712 if (!(nd->flags & LOOKUP_RCU)) {
713 dput(nd->path.dentry);
714 if (nd->path.mnt != path->mnt)
715 mntput(nd->path.mnt);
717 nd->path.mnt = path->mnt;
718 nd->path.dentry = path->dentry;
722 * Helper to directly jump to a known parsed path from ->follow_link,
723 * caller must have taken a reference to path beforehand.
725 void nd_jump_link(struct nameidata *nd, struct path *path)
727 path_put(&nd->path);
729 nd->path = *path;
730 nd->inode = nd->path.dentry->d_inode;
731 nd->flags |= LOOKUP_JUMPED;
734 void nd_set_link(struct nameidata *nd, char *path)
736 nd->saved_names[nd->depth] = path;
738 EXPORT_SYMBOL(nd_set_link);
740 char *nd_get_link(struct nameidata *nd)
742 return nd->saved_names[nd->depth];
744 EXPORT_SYMBOL(nd_get_link);
746 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
748 struct inode *inode = link->dentry->d_inode;
749 if (inode->i_op->put_link)
750 inode->i_op->put_link(link->dentry, nd, cookie);
751 path_put(link);
754 int sysctl_protected_symlinks __read_mostly = 0;
755 int sysctl_protected_hardlinks __read_mostly = 0;
758 * may_follow_link - Check symlink following for unsafe situations
759 * @link: The path of the symlink
760 * @nd: nameidata pathwalk data
762 * In the case of the sysctl_protected_symlinks sysctl being enabled,
763 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
764 * in a sticky world-writable directory. This is to protect privileged
765 * processes from failing races against path names that may change out
766 * from under them by way of other users creating malicious symlinks.
767 * It will permit symlinks to be followed only when outside a sticky
768 * world-writable directory, or when the uid of the symlink and follower
769 * match, or when the directory owner matches the symlink's owner.
771 * Returns 0 if following the symlink is allowed, -ve on error.
773 static inline int may_follow_link(struct path *link, struct nameidata *nd)
775 const struct inode *inode;
776 const struct inode *parent;
778 if (!sysctl_protected_symlinks)
779 return 0;
781 /* Allowed if owner and follower match. */
782 inode = link->dentry->d_inode;
783 if (uid_eq(current_cred()->fsuid, inode->i_uid))
784 return 0;
786 /* Allowed if parent directory not sticky and world-writable. */
787 parent = nd->path.dentry->d_inode;
788 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
789 return 0;
791 /* Allowed if parent directory and link owner match. */
792 if (uid_eq(parent->i_uid, inode->i_uid))
793 return 0;
795 audit_log_link_denied("follow_link", link);
796 path_put_conditional(link, nd);
797 path_put(&nd->path);
798 return -EACCES;
802 * safe_hardlink_source - Check for safe hardlink conditions
803 * @inode: the source inode to hardlink from
805 * Return false if at least one of the following conditions:
806 * - inode is not a regular file
807 * - inode is setuid
808 * - inode is setgid and group-exec
809 * - access failure for read and write
811 * Otherwise returns true.
813 static bool safe_hardlink_source(struct inode *inode)
815 umode_t mode = inode->i_mode;
817 /* Special files should not get pinned to the filesystem. */
818 if (!S_ISREG(mode))
819 return false;
821 /* Setuid files should not get pinned to the filesystem. */
822 if (mode & S_ISUID)
823 return false;
825 /* Executable setgid files should not get pinned to the filesystem. */
826 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
827 return false;
829 /* Hardlinking to unreadable or unwritable sources is dangerous. */
830 if (inode_permission(inode, MAY_READ | MAY_WRITE))
831 return false;
833 return true;
837 * may_linkat - Check permissions for creating a hardlink
838 * @link: the source to hardlink from
840 * Block hardlink when all of:
841 * - sysctl_protected_hardlinks enabled
842 * - fsuid does not match inode
843 * - hardlink source is unsafe (see safe_hardlink_source() above)
844 * - not CAP_FOWNER
846 * Returns 0 if successful, -ve on error.
848 static int may_linkat(struct path *link)
850 const struct cred *cred;
851 struct inode *inode;
853 if (!sysctl_protected_hardlinks)
854 return 0;
856 cred = current_cred();
857 inode = link->dentry->d_inode;
859 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
860 * otherwise, it must be a safe source.
862 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
863 capable(CAP_FOWNER))
864 return 0;
866 audit_log_link_denied("linkat", link);
867 return -EPERM;
870 static __always_inline int
871 follow_link(struct path *link, struct nameidata *nd, void **p)
873 struct dentry *dentry = link->dentry;
874 int error;
875 char *s;
877 BUG_ON(nd->flags & LOOKUP_RCU);
879 if (link->mnt == nd->path.mnt)
880 mntget(link->mnt);
882 error = -ELOOP;
883 if (unlikely(current->total_link_count >= 40))
884 goto out_put_nd_path;
886 cond_resched();
887 current->total_link_count++;
889 touch_atime(link);
890 nd_set_link(nd, NULL);
892 error = security_inode_follow_link(link->dentry, nd);
893 if (error)
894 goto out_put_nd_path;
896 nd->last_type = LAST_BIND;
897 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
898 error = PTR_ERR(*p);
899 if (IS_ERR(*p))
900 goto out_put_nd_path;
902 error = 0;
903 s = nd_get_link(nd);
904 if (s) {
905 if (unlikely(IS_ERR(s))) {
906 path_put(&nd->path);
907 put_link(nd, link, *p);
908 return PTR_ERR(s);
910 if (*s == '/') {
911 if (!nd->root.mnt)
912 set_root(nd);
913 path_put(&nd->path);
914 nd->path = nd->root;
915 path_get(&nd->root);
916 nd->flags |= LOOKUP_JUMPED;
918 nd->inode = nd->path.dentry->d_inode;
919 error = link_path_walk(s, nd);
920 if (unlikely(error))
921 put_link(nd, link, *p);
924 return error;
926 out_put_nd_path:
927 *p = NULL;
928 path_put(&nd->path);
929 path_put(link);
930 return error;
933 static int follow_up_rcu(struct path *path)
935 struct mount *mnt = real_mount(path->mnt);
936 struct mount *parent;
937 struct dentry *mountpoint;
939 parent = mnt->mnt_parent;
940 if (&parent->mnt == path->mnt)
941 return 0;
942 mountpoint = mnt->mnt_mountpoint;
943 path->dentry = mountpoint;
944 path->mnt = &parent->mnt;
945 return 1;
949 * follow_up - Find the mountpoint of path's vfsmount
951 * Given a path, find the mountpoint of its source file system.
952 * Replace @path with the path of the mountpoint in the parent mount.
953 * Up is towards /.
955 * Return 1 if we went up a level and 0 if we were already at the
956 * root.
958 int follow_up(struct path *path)
960 struct mount *mnt = real_mount(path->mnt);
961 struct mount *parent;
962 struct dentry *mountpoint;
964 read_seqlock_excl(&mount_lock);
965 parent = mnt->mnt_parent;
966 if (parent == mnt) {
967 read_sequnlock_excl(&mount_lock);
968 return 0;
970 mntget(&parent->mnt);
971 mountpoint = dget(mnt->mnt_mountpoint);
972 read_sequnlock_excl(&mount_lock);
973 dput(path->dentry);
974 path->dentry = mountpoint;
975 mntput(path->mnt);
976 path->mnt = &parent->mnt;
977 return 1;
979 EXPORT_SYMBOL(follow_up);
982 * Perform an automount
983 * - return -EISDIR to tell follow_managed() to stop and return the path we
984 * were called with.
986 static int follow_automount(struct path *path, unsigned flags,
987 bool *need_mntput)
989 struct vfsmount *mnt;
990 int err;
992 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
993 return -EREMOTE;
995 /* We don't want to mount if someone's just doing a stat -
996 * unless they're stat'ing a directory and appended a '/' to
997 * the name.
999 * We do, however, want to mount if someone wants to open or
1000 * create a file of any type under the mountpoint, wants to
1001 * traverse through the mountpoint or wants to open the
1002 * mounted directory. Also, autofs may mark negative dentries
1003 * as being automount points. These will need the attentions
1004 * of the daemon to instantiate them before they can be used.
1006 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1007 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1008 path->dentry->d_inode)
1009 return -EISDIR;
1011 current->total_link_count++;
1012 if (current->total_link_count >= 40)
1013 return -ELOOP;
1015 mnt = path->dentry->d_op->d_automount(path);
1016 if (IS_ERR(mnt)) {
1018 * The filesystem is allowed to return -EISDIR here to indicate
1019 * it doesn't want to automount. For instance, autofs would do
1020 * this so that its userspace daemon can mount on this dentry.
1022 * However, we can only permit this if it's a terminal point in
1023 * the path being looked up; if it wasn't then the remainder of
1024 * the path is inaccessible and we should say so.
1026 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1027 return -EREMOTE;
1028 return PTR_ERR(mnt);
1031 if (!mnt) /* mount collision */
1032 return 0;
1034 if (!*need_mntput) {
1035 /* lock_mount() may release path->mnt on error */
1036 mntget(path->mnt);
1037 *need_mntput = true;
1039 err = finish_automount(mnt, path);
1041 switch (err) {
1042 case -EBUSY:
1043 /* Someone else made a mount here whilst we were busy */
1044 return 0;
1045 case 0:
1046 path_put(path);
1047 path->mnt = mnt;
1048 path->dentry = dget(mnt->mnt_root);
1049 return 0;
1050 default:
1051 return err;
1057 * Handle a dentry that is managed in some way.
1058 * - Flagged for transit management (autofs)
1059 * - Flagged as mountpoint
1060 * - Flagged as automount point
1062 * This may only be called in refwalk mode.
1064 * Serialization is taken care of in namespace.c
1066 static int follow_managed(struct path *path, unsigned flags)
1068 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1069 unsigned managed;
1070 bool need_mntput = false;
1071 int ret = 0;
1073 /* Given that we're not holding a lock here, we retain the value in a
1074 * local variable for each dentry as we look at it so that we don't see
1075 * the components of that value change under us */
1076 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1077 managed &= DCACHE_MANAGED_DENTRY,
1078 unlikely(managed != 0)) {
1079 /* Allow the filesystem to manage the transit without i_mutex
1080 * being held. */
1081 if (managed & DCACHE_MANAGE_TRANSIT) {
1082 BUG_ON(!path->dentry->d_op);
1083 BUG_ON(!path->dentry->d_op->d_manage);
1084 ret = path->dentry->d_op->d_manage(path->dentry, false);
1085 if (ret < 0)
1086 break;
1089 /* Transit to a mounted filesystem. */
1090 if (managed & DCACHE_MOUNTED) {
1091 struct vfsmount *mounted = lookup_mnt(path);
1092 if (mounted) {
1093 dput(path->dentry);
1094 if (need_mntput)
1095 mntput(path->mnt);
1096 path->mnt = mounted;
1097 path->dentry = dget(mounted->mnt_root);
1098 need_mntput = true;
1099 continue;
1102 /* Something is mounted on this dentry in another
1103 * namespace and/or whatever was mounted there in this
1104 * namespace got unmounted before lookup_mnt() could
1105 * get it */
1108 /* Handle an automount point */
1109 if (managed & DCACHE_NEED_AUTOMOUNT) {
1110 ret = follow_automount(path, flags, &need_mntput);
1111 if (ret < 0)
1112 break;
1113 continue;
1116 /* We didn't change the current path point */
1117 break;
1120 if (need_mntput && path->mnt == mnt)
1121 mntput(path->mnt);
1122 if (ret == -EISDIR)
1123 ret = 0;
1124 return ret < 0 ? ret : need_mntput;
1127 int follow_down_one(struct path *path)
1129 struct vfsmount *mounted;
1131 mounted = lookup_mnt(path);
1132 if (mounted) {
1133 dput(path->dentry);
1134 mntput(path->mnt);
1135 path->mnt = mounted;
1136 path->dentry = dget(mounted->mnt_root);
1137 return 1;
1139 return 0;
1141 EXPORT_SYMBOL(follow_down_one);
1143 static inline int managed_dentry_rcu(struct dentry *dentry)
1145 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1146 dentry->d_op->d_manage(dentry, true) : 0;
1150 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1151 * we meet a managed dentry that would need blocking.
1153 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1154 struct inode **inode)
1156 for (;;) {
1157 struct mount *mounted;
1159 * Don't forget we might have a non-mountpoint managed dentry
1160 * that wants to block transit.
1162 switch (managed_dentry_rcu(path->dentry)) {
1163 case -ECHILD:
1164 default:
1165 return false;
1166 case -EISDIR:
1167 return true;
1168 case 0:
1169 break;
1172 if (!d_mountpoint(path->dentry))
1173 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1175 mounted = __lookup_mnt(path->mnt, path->dentry);
1176 if (!mounted)
1177 break;
1178 path->mnt = &mounted->mnt;
1179 path->dentry = mounted->mnt.mnt_root;
1180 nd->flags |= LOOKUP_JUMPED;
1181 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1183 * Update the inode too. We don't need to re-check the
1184 * dentry sequence number here after this d_inode read,
1185 * because a mount-point is always pinned.
1187 *inode = path->dentry->d_inode;
1189 return !read_seqretry(&mount_lock, nd->m_seq) &&
1190 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1193 static int follow_dotdot_rcu(struct nameidata *nd)
1195 struct inode *inode = nd->inode;
1196 if (!nd->root.mnt)
1197 set_root_rcu(nd);
1199 while (1) {
1200 if (nd->path.dentry == nd->root.dentry &&
1201 nd->path.mnt == nd->root.mnt) {
1202 break;
1204 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1205 struct dentry *old = nd->path.dentry;
1206 struct dentry *parent = old->d_parent;
1207 unsigned seq;
1209 inode = parent->d_inode;
1210 seq = read_seqcount_begin(&parent->d_seq);
1211 if (read_seqcount_retry(&old->d_seq, nd->seq))
1212 goto failed;
1213 nd->path.dentry = parent;
1214 nd->seq = seq;
1215 if (unlikely(!path_connected(&nd->path)))
1216 goto failed;
1217 break;
1219 if (!follow_up_rcu(&nd->path))
1220 break;
1221 inode = nd->path.dentry->d_inode;
1222 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1224 while (d_mountpoint(nd->path.dentry)) {
1225 struct mount *mounted;
1226 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1227 if (!mounted)
1228 break;
1229 nd->path.mnt = &mounted->mnt;
1230 nd->path.dentry = mounted->mnt.mnt_root;
1231 inode = nd->path.dentry->d_inode;
1232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1233 if (read_seqretry(&mount_lock, nd->m_seq))
1234 goto failed;
1236 nd->inode = inode;
1237 return 0;
1239 failed:
1240 nd->flags &= ~LOOKUP_RCU;
1241 if (!(nd->flags & LOOKUP_ROOT))
1242 nd->root.mnt = NULL;
1243 rcu_read_unlock();
1244 return -ECHILD;
1248 * Follow down to the covering mount currently visible to userspace. At each
1249 * point, the filesystem owning that dentry may be queried as to whether the
1250 * caller is permitted to proceed or not.
1252 int follow_down(struct path *path)
1254 unsigned managed;
1255 int ret;
1257 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1258 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1259 /* Allow the filesystem to manage the transit without i_mutex
1260 * being held.
1262 * We indicate to the filesystem if someone is trying to mount
1263 * something here. This gives autofs the chance to deny anyone
1264 * other than its daemon the right to mount on its
1265 * superstructure.
1267 * The filesystem may sleep at this point.
1269 if (managed & DCACHE_MANAGE_TRANSIT) {
1270 BUG_ON(!path->dentry->d_op);
1271 BUG_ON(!path->dentry->d_op->d_manage);
1272 ret = path->dentry->d_op->d_manage(
1273 path->dentry, false);
1274 if (ret < 0)
1275 return ret == -EISDIR ? 0 : ret;
1278 /* Transit to a mounted filesystem. */
1279 if (managed & DCACHE_MOUNTED) {
1280 struct vfsmount *mounted = lookup_mnt(path);
1281 if (!mounted)
1282 break;
1283 dput(path->dentry);
1284 mntput(path->mnt);
1285 path->mnt = mounted;
1286 path->dentry = dget(mounted->mnt_root);
1287 continue;
1290 /* Don't handle automount points here */
1291 break;
1293 return 0;
1295 EXPORT_SYMBOL(follow_down);
1298 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1300 static void follow_mount(struct path *path)
1302 while (d_mountpoint(path->dentry)) {
1303 struct vfsmount *mounted = lookup_mnt(path);
1304 if (!mounted)
1305 break;
1306 dput(path->dentry);
1307 mntput(path->mnt);
1308 path->mnt = mounted;
1309 path->dentry = dget(mounted->mnt_root);
1313 static int follow_dotdot(struct nameidata *nd)
1315 if (!nd->root.mnt)
1316 set_root(nd);
1318 while(1) {
1319 struct dentry *old = nd->path.dentry;
1321 if (nd->path.dentry == nd->root.dentry &&
1322 nd->path.mnt == nd->root.mnt) {
1323 break;
1325 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1326 /* rare case of legitimate dget_parent()... */
1327 nd->path.dentry = dget_parent(nd->path.dentry);
1328 dput(old);
1329 if (unlikely(!path_connected(&nd->path))) {
1330 path_put(&nd->path);
1331 return -ENOENT;
1333 break;
1335 if (!follow_up(&nd->path))
1336 break;
1338 follow_mount(&nd->path);
1339 nd->inode = nd->path.dentry->d_inode;
1340 return 0;
1344 * This looks up the name in dcache, possibly revalidates the old dentry and
1345 * allocates a new one if not found or not valid. In the need_lookup argument
1346 * returns whether i_op->lookup is necessary.
1348 * dir->d_inode->i_mutex must be held
1350 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1351 unsigned int flags, bool *need_lookup)
1353 struct dentry *dentry;
1354 int error;
1356 *need_lookup = false;
1357 dentry = d_lookup(dir, name);
1358 if (dentry) {
1359 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1360 error = d_revalidate(dentry, flags);
1361 if (unlikely(error <= 0)) {
1362 if (error < 0) {
1363 dput(dentry);
1364 return ERR_PTR(error);
1365 } else {
1366 d_invalidate(dentry);
1367 dput(dentry);
1368 dentry = NULL;
1374 if (!dentry) {
1375 dentry = d_alloc(dir, name);
1376 if (unlikely(!dentry))
1377 return ERR_PTR(-ENOMEM);
1379 *need_lookup = true;
1381 return dentry;
1385 * Call i_op->lookup on the dentry. The dentry must be negative and
1386 * unhashed.
1388 * dir->d_inode->i_mutex must be held
1390 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1391 unsigned int flags)
1393 struct dentry *old;
1395 /* Don't create child dentry for a dead directory. */
1396 if (unlikely(IS_DEADDIR(dir))) {
1397 dput(dentry);
1398 return ERR_PTR(-ENOENT);
1401 old = dir->i_op->lookup(dir, dentry, flags);
1402 if (unlikely(old)) {
1403 dput(dentry);
1404 dentry = old;
1406 return dentry;
1409 static struct dentry *__lookup_hash(struct qstr *name,
1410 struct dentry *base, unsigned int flags)
1412 bool need_lookup;
1413 struct dentry *dentry;
1415 dentry = lookup_dcache(name, base, flags, &need_lookup);
1416 if (!need_lookup)
1417 return dentry;
1419 return lookup_real(base->d_inode, dentry, flags);
1423 * It's more convoluted than I'd like it to be, but... it's still fairly
1424 * small and for now I'd prefer to have fast path as straight as possible.
1425 * It _is_ time-critical.
1427 static int lookup_fast(struct nameidata *nd,
1428 struct path *path, struct inode **inode)
1430 struct vfsmount *mnt = nd->path.mnt;
1431 struct dentry *dentry, *parent = nd->path.dentry;
1432 int need_reval = 1;
1433 int status = 1;
1434 int err;
1437 * Rename seqlock is not required here because in the off chance
1438 * of a false negative due to a concurrent rename, we're going to
1439 * do the non-racy lookup, below.
1441 if (nd->flags & LOOKUP_RCU) {
1442 unsigned seq;
1443 bool negative;
1444 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1445 if (!dentry)
1446 goto unlazy;
1449 * This sequence count validates that the inode matches
1450 * the dentry name information from lookup.
1452 *inode = dentry->d_inode;
1453 negative = d_is_negative(dentry);
1454 if (read_seqcount_retry(&dentry->d_seq, seq))
1455 return -ECHILD;
1458 * This sequence count validates that the parent had no
1459 * changes while we did the lookup of the dentry above.
1461 * The memory barrier in read_seqcount_begin of child is
1462 * enough, we can use __read_seqcount_retry here.
1464 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1465 return -ECHILD;
1466 nd->seq = seq;
1468 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1469 status = d_revalidate(dentry, nd->flags);
1470 if (unlikely(status <= 0)) {
1471 if (status != -ECHILD)
1472 need_reval = 0;
1473 goto unlazy;
1477 * Note: do negative dentry check after revalidation in
1478 * case that drops it.
1480 if (negative)
1481 return -ENOENT;
1482 path->mnt = mnt;
1483 path->dentry = dentry;
1484 if (likely(__follow_mount_rcu(nd, path, inode)))
1485 return 0;
1486 unlazy:
1487 if (unlazy_walk(nd, dentry))
1488 return -ECHILD;
1489 } else {
1490 dentry = __d_lookup(parent, &nd->last);
1493 if (unlikely(!dentry))
1494 goto need_lookup;
1496 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1497 status = d_revalidate(dentry, nd->flags);
1498 if (unlikely(status <= 0)) {
1499 if (status < 0) {
1500 dput(dentry);
1501 return status;
1503 d_invalidate(dentry);
1504 dput(dentry);
1505 goto need_lookup;
1508 if (unlikely(d_is_negative(dentry))) {
1509 dput(dentry);
1510 return -ENOENT;
1512 path->mnt = mnt;
1513 path->dentry = dentry;
1514 err = follow_managed(path, nd->flags);
1515 if (unlikely(err < 0)) {
1516 path_put_conditional(path, nd);
1517 return err;
1519 if (err)
1520 nd->flags |= LOOKUP_JUMPED;
1521 *inode = path->dentry->d_inode;
1522 return 0;
1524 need_lookup:
1525 return 1;
1528 /* Fast lookup failed, do it the slow way */
1529 static int lookup_slow(struct nameidata *nd, struct path *path)
1531 struct dentry *dentry, *parent;
1532 int err;
1534 parent = nd->path.dentry;
1535 BUG_ON(nd->inode != parent->d_inode);
1537 mutex_lock(&parent->d_inode->i_mutex);
1538 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1539 mutex_unlock(&parent->d_inode->i_mutex);
1540 if (IS_ERR(dentry))
1541 return PTR_ERR(dentry);
1542 path->mnt = nd->path.mnt;
1543 path->dentry = dentry;
1544 err = follow_managed(path, nd->flags);
1545 if (unlikely(err < 0)) {
1546 path_put_conditional(path, nd);
1547 return err;
1549 if (err)
1550 nd->flags |= LOOKUP_JUMPED;
1551 return 0;
1554 static inline int may_lookup(struct nameidata *nd)
1556 if (nd->flags & LOOKUP_RCU) {
1557 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1558 if (err != -ECHILD)
1559 return err;
1560 if (unlazy_walk(nd, NULL))
1561 return -ECHILD;
1563 return inode_permission(nd->inode, MAY_EXEC);
1566 static inline int handle_dots(struct nameidata *nd, int type)
1568 if (type == LAST_DOTDOT) {
1569 if (nd->flags & LOOKUP_RCU) {
1570 if (follow_dotdot_rcu(nd))
1571 return -ECHILD;
1572 } else
1573 return follow_dotdot(nd);
1575 return 0;
1578 static void terminate_walk(struct nameidata *nd)
1580 if (!(nd->flags & LOOKUP_RCU)) {
1581 path_put(&nd->path);
1582 } else {
1583 nd->flags &= ~LOOKUP_RCU;
1584 if (!(nd->flags & LOOKUP_ROOT))
1585 nd->root.mnt = NULL;
1586 rcu_read_unlock();
1591 * Do we need to follow links? We _really_ want to be able
1592 * to do this check without having to look at inode->i_op,
1593 * so we keep a cache of "no, this doesn't need follow_link"
1594 * for the common case.
1596 static inline int should_follow_link(struct dentry *dentry, int follow)
1598 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1601 static inline int walk_component(struct nameidata *nd, struct path *path,
1602 int follow)
1604 struct inode *inode;
1605 int err;
1607 * "." and ".." are special - ".." especially so because it has
1608 * to be able to know about the current root directory and
1609 * parent relationships.
1611 if (unlikely(nd->last_type != LAST_NORM))
1612 return handle_dots(nd, nd->last_type);
1613 err = lookup_fast(nd, path, &inode);
1614 if (unlikely(err)) {
1615 if (err < 0)
1616 goto out_err;
1618 err = lookup_slow(nd, path);
1619 if (err < 0)
1620 goto out_err;
1622 err = -ENOENT;
1623 if (d_is_negative(path->dentry))
1624 goto out_path_put;
1625 inode = path->dentry->d_inode;
1628 if (should_follow_link(path->dentry, follow)) {
1629 if (nd->flags & LOOKUP_RCU) {
1630 if (unlikely(nd->path.mnt != path->mnt ||
1631 unlazy_walk(nd, path->dentry))) {
1632 err = -ECHILD;
1633 goto out_err;
1636 BUG_ON(inode != path->dentry->d_inode);
1637 return 1;
1639 path_to_nameidata(path, nd);
1640 nd->inode = inode;
1641 return 0;
1643 out_path_put:
1644 path_to_nameidata(path, nd);
1645 out_err:
1646 terminate_walk(nd);
1647 return err;
1651 * This limits recursive symlink follows to 8, while
1652 * limiting consecutive symlinks to 40.
1654 * Without that kind of total limit, nasty chains of consecutive
1655 * symlinks can cause almost arbitrarily long lookups.
1657 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1659 int res;
1661 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1662 path_put_conditional(path, nd);
1663 path_put(&nd->path);
1664 return -ELOOP;
1666 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1668 nd->depth++;
1669 current->link_count++;
1671 do {
1672 struct path link = *path;
1673 void *cookie;
1675 res = follow_link(&link, nd, &cookie);
1676 if (res)
1677 break;
1678 res = walk_component(nd, path, LOOKUP_FOLLOW);
1679 put_link(nd, &link, cookie);
1680 } while (res > 0);
1682 current->link_count--;
1683 nd->depth--;
1684 return res;
1688 * We can do the critical dentry name comparison and hashing
1689 * operations one word at a time, but we are limited to:
1691 * - Architectures with fast unaligned word accesses. We could
1692 * do a "get_unaligned()" if this helps and is sufficiently
1693 * fast.
1695 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1696 * do not trap on the (extremely unlikely) case of a page
1697 * crossing operation.
1699 * - Furthermore, we need an efficient 64-bit compile for the
1700 * 64-bit case in order to generate the "number of bytes in
1701 * the final mask". Again, that could be replaced with a
1702 * efficient population count instruction or similar.
1704 #ifdef CONFIG_DCACHE_WORD_ACCESS
1706 #include <asm/word-at-a-time.h>
1708 #ifdef CONFIG_64BIT
1710 static inline unsigned int fold_hash(unsigned long hash)
1712 return hash_64(hash, 32);
1715 #else /* 32-bit case */
1717 #define fold_hash(x) (x)
1719 #endif
1721 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1723 unsigned long a, mask;
1724 unsigned long hash = 0;
1726 for (;;) {
1727 a = load_unaligned_zeropad(name);
1728 if (len < sizeof(unsigned long))
1729 break;
1730 hash += a;
1731 hash *= 9;
1732 name += sizeof(unsigned long);
1733 len -= sizeof(unsigned long);
1734 if (!len)
1735 goto done;
1737 mask = bytemask_from_count(len);
1738 hash += mask & a;
1739 done:
1740 return fold_hash(hash);
1742 EXPORT_SYMBOL(full_name_hash);
1745 * Calculate the length and hash of the path component, and
1746 * return the "hash_len" as the result.
1748 static inline u64 hash_name(const char *name)
1750 unsigned long a, b, adata, bdata, mask, hash, len;
1751 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1753 hash = a = 0;
1754 len = -sizeof(unsigned long);
1755 do {
1756 hash = (hash + a) * 9;
1757 len += sizeof(unsigned long);
1758 a = load_unaligned_zeropad(name+len);
1759 b = a ^ REPEAT_BYTE('/');
1760 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1762 adata = prep_zero_mask(a, adata, &constants);
1763 bdata = prep_zero_mask(b, bdata, &constants);
1765 mask = create_zero_mask(adata | bdata);
1767 hash += a & zero_bytemask(mask);
1768 len += find_zero(mask);
1769 return hashlen_create(fold_hash(hash), len);
1772 #else
1774 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1776 unsigned long hash = init_name_hash();
1777 while (len--)
1778 hash = partial_name_hash(*name++, hash);
1779 return end_name_hash(hash);
1781 EXPORT_SYMBOL(full_name_hash);
1784 * We know there's a real path component here of at least
1785 * one character.
1787 static inline u64 hash_name(const char *name)
1789 unsigned long hash = init_name_hash();
1790 unsigned long len = 0, c;
1792 c = (unsigned char)*name;
1793 do {
1794 len++;
1795 hash = partial_name_hash(c, hash);
1796 c = (unsigned char)name[len];
1797 } while (c && c != '/');
1798 return hashlen_create(end_name_hash(hash), len);
1801 #endif
1804 * Name resolution.
1805 * This is the basic name resolution function, turning a pathname into
1806 * the final dentry. We expect 'base' to be positive and a directory.
1808 * Returns 0 and nd will have valid dentry and mnt on success.
1809 * Returns error and drops reference to input namei data on failure.
1811 static int link_path_walk(const char *name, struct nameidata *nd)
1813 struct path next;
1814 int err;
1816 while (*name=='/')
1817 name++;
1818 if (!*name)
1819 return 0;
1821 /* At this point we know we have a real path component. */
1822 for(;;) {
1823 u64 hash_len;
1824 int type;
1826 err = may_lookup(nd);
1827 if (err)
1828 break;
1830 hash_len = hash_name(name);
1832 type = LAST_NORM;
1833 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1834 case 2:
1835 if (name[1] == '.') {
1836 type = LAST_DOTDOT;
1837 nd->flags |= LOOKUP_JUMPED;
1839 break;
1840 case 1:
1841 type = LAST_DOT;
1843 if (likely(type == LAST_NORM)) {
1844 struct dentry *parent = nd->path.dentry;
1845 nd->flags &= ~LOOKUP_JUMPED;
1846 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1847 struct qstr this = { { .hash_len = hash_len }, .name = name };
1848 err = parent->d_op->d_hash(parent, &this);
1849 if (err < 0)
1850 break;
1851 hash_len = this.hash_len;
1852 name = this.name;
1856 nd->last.hash_len = hash_len;
1857 nd->last.name = name;
1858 nd->last_type = type;
1860 name += hashlen_len(hash_len);
1861 if (!*name)
1862 return 0;
1864 * If it wasn't NUL, we know it was '/'. Skip that
1865 * slash, and continue until no more slashes.
1867 do {
1868 name++;
1869 } while (unlikely(*name == '/'));
1870 if (!*name)
1871 return 0;
1873 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1874 if (err < 0)
1875 return err;
1877 if (err) {
1878 err = nested_symlink(&next, nd);
1879 if (err)
1880 return err;
1882 if (!d_can_lookup(nd->path.dentry)) {
1883 err = -ENOTDIR;
1884 break;
1887 terminate_walk(nd);
1888 return err;
1891 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1892 struct nameidata *nd)
1894 int retval = 0;
1895 const char *s = name->name;
1897 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1898 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1899 nd->depth = 0;
1900 nd->base = NULL;
1901 if (flags & LOOKUP_ROOT) {
1902 struct dentry *root = nd->root.dentry;
1903 struct inode *inode = root->d_inode;
1904 if (*s) {
1905 if (!d_can_lookup(root))
1906 return -ENOTDIR;
1907 retval = inode_permission(inode, MAY_EXEC);
1908 if (retval)
1909 return retval;
1911 nd->path = nd->root;
1912 nd->inode = inode;
1913 if (flags & LOOKUP_RCU) {
1914 rcu_read_lock();
1915 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1916 nd->m_seq = read_seqbegin(&mount_lock);
1917 } else {
1918 path_get(&nd->path);
1920 goto done;
1923 nd->root.mnt = NULL;
1925 nd->m_seq = read_seqbegin(&mount_lock);
1926 if (*s == '/') {
1927 if (flags & LOOKUP_RCU) {
1928 rcu_read_lock();
1929 nd->seq = set_root_rcu(nd);
1930 } else {
1931 set_root(nd);
1932 path_get(&nd->root);
1934 nd->path = nd->root;
1935 } else if (dfd == AT_FDCWD) {
1936 if (flags & LOOKUP_RCU) {
1937 struct fs_struct *fs = current->fs;
1938 unsigned seq;
1940 rcu_read_lock();
1942 do {
1943 seq = read_seqcount_begin(&fs->seq);
1944 nd->path = fs->pwd;
1945 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1946 } while (read_seqcount_retry(&fs->seq, seq));
1947 } else {
1948 get_fs_pwd(current->fs, &nd->path);
1950 } else {
1951 /* Caller must check execute permissions on the starting path component */
1952 struct fd f = fdget_raw(dfd);
1953 struct dentry *dentry;
1955 if (!f.file)
1956 return -EBADF;
1958 dentry = f.file->f_path.dentry;
1960 if (*s) {
1961 if (!d_can_lookup(dentry)) {
1962 fdput(f);
1963 return -ENOTDIR;
1967 nd->path = f.file->f_path;
1968 if (flags & LOOKUP_RCU) {
1969 if (f.flags & FDPUT_FPUT)
1970 nd->base = f.file;
1971 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1972 rcu_read_lock();
1973 } else {
1974 path_get(&nd->path);
1975 fdput(f);
1979 nd->inode = nd->path.dentry->d_inode;
1980 if (!(flags & LOOKUP_RCU))
1981 goto done;
1982 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1983 goto done;
1984 if (!(nd->flags & LOOKUP_ROOT))
1985 nd->root.mnt = NULL;
1986 rcu_read_unlock();
1987 return -ECHILD;
1988 done:
1989 current->total_link_count = 0;
1990 return link_path_walk(s, nd);
1993 static void path_cleanup(struct nameidata *nd)
1995 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1996 path_put(&nd->root);
1997 nd->root.mnt = NULL;
1999 if (unlikely(nd->base))
2000 fput(nd->base);
2003 static inline int lookup_last(struct nameidata *nd, struct path *path)
2005 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2006 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2008 nd->flags &= ~LOOKUP_PARENT;
2009 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
2012 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2013 static int path_lookupat(int dfd, const struct filename *name,
2014 unsigned int flags, struct nameidata *nd)
2016 struct path path;
2017 int err;
2020 * Path walking is largely split up into 2 different synchronisation
2021 * schemes, rcu-walk and ref-walk (explained in
2022 * Documentation/filesystems/path-lookup.txt). These share much of the
2023 * path walk code, but some things particularly setup, cleanup, and
2024 * following mounts are sufficiently divergent that functions are
2025 * duplicated. Typically there is a function foo(), and its RCU
2026 * analogue, foo_rcu().
2028 * -ECHILD is the error number of choice (just to avoid clashes) that
2029 * is returned if some aspect of an rcu-walk fails. Such an error must
2030 * be handled by restarting a traditional ref-walk (which will always
2031 * be able to complete).
2033 err = path_init(dfd, name, flags, nd);
2034 if (!err && !(flags & LOOKUP_PARENT)) {
2035 err = lookup_last(nd, &path);
2036 while (err > 0) {
2037 void *cookie;
2038 struct path link = path;
2039 err = may_follow_link(&link, nd);
2040 if (unlikely(err))
2041 break;
2042 nd->flags |= LOOKUP_PARENT;
2043 err = follow_link(&link, nd, &cookie);
2044 if (err)
2045 break;
2046 err = lookup_last(nd, &path);
2047 put_link(nd, &link, cookie);
2051 if (!err)
2052 err = complete_walk(nd);
2054 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2055 if (!d_can_lookup(nd->path.dentry)) {
2056 path_put(&nd->path);
2057 err = -ENOTDIR;
2061 path_cleanup(nd);
2062 return err;
2065 static int filename_lookup(int dfd, struct filename *name,
2066 unsigned int flags, struct nameidata *nd)
2068 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2069 if (unlikely(retval == -ECHILD))
2070 retval = path_lookupat(dfd, name, flags, nd);
2071 if (unlikely(retval == -ESTALE))
2072 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2074 if (likely(!retval))
2075 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2076 return retval;
2079 /* does lookup, returns the object with parent locked */
2080 struct dentry *kern_path_locked(const char *name, struct path *path)
2082 struct filename *filename = getname_kernel(name);
2083 struct nameidata nd;
2084 struct dentry *d;
2085 int err;
2087 if (IS_ERR(filename))
2088 return ERR_CAST(filename);
2090 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2091 if (err) {
2092 d = ERR_PTR(err);
2093 goto out;
2095 if (nd.last_type != LAST_NORM) {
2096 path_put(&nd.path);
2097 d = ERR_PTR(-EINVAL);
2098 goto out;
2100 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2101 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2102 if (IS_ERR(d)) {
2103 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2104 path_put(&nd.path);
2105 goto out;
2107 *path = nd.path;
2108 out:
2109 putname(filename);
2110 return d;
2113 int kern_path(const char *name, unsigned int flags, struct path *path)
2115 struct nameidata nd;
2116 struct filename *filename = getname_kernel(name);
2117 int res = PTR_ERR(filename);
2119 if (!IS_ERR(filename)) {
2120 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2121 putname(filename);
2122 if (!res)
2123 *path = nd.path;
2125 return res;
2127 EXPORT_SYMBOL(kern_path);
2130 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2131 * @dentry: pointer to dentry of the base directory
2132 * @mnt: pointer to vfs mount of the base directory
2133 * @name: pointer to file name
2134 * @flags: lookup flags
2135 * @path: pointer to struct path to fill
2137 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2138 const char *name, unsigned int flags,
2139 struct path *path)
2141 struct filename *filename = getname_kernel(name);
2142 int err = PTR_ERR(filename);
2144 BUG_ON(flags & LOOKUP_PARENT);
2146 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2147 if (!IS_ERR(filename)) {
2148 struct nameidata nd;
2149 nd.root.dentry = dentry;
2150 nd.root.mnt = mnt;
2151 err = filename_lookup(AT_FDCWD, filename,
2152 flags | LOOKUP_ROOT, &nd);
2153 if (!err)
2154 *path = nd.path;
2155 putname(filename);
2157 return err;
2159 EXPORT_SYMBOL(vfs_path_lookup);
2162 * Restricted form of lookup. Doesn't follow links, single-component only,
2163 * needs parent already locked. Doesn't follow mounts.
2164 * SMP-safe.
2166 static struct dentry *lookup_hash(struct nameidata *nd)
2168 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2172 * lookup_one_len - filesystem helper to lookup single pathname component
2173 * @name: pathname component to lookup
2174 * @base: base directory to lookup from
2175 * @len: maximum length @len should be interpreted to
2177 * Note that this routine is purely a helper for filesystem usage and should
2178 * not be called by generic code.
2180 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2182 struct qstr this;
2183 unsigned int c;
2184 int err;
2186 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2188 this.name = name;
2189 this.len = len;
2190 this.hash = full_name_hash(name, len);
2191 if (!len)
2192 return ERR_PTR(-EACCES);
2194 if (unlikely(name[0] == '.')) {
2195 if (len < 2 || (len == 2 && name[1] == '.'))
2196 return ERR_PTR(-EACCES);
2199 while (len--) {
2200 c = *(const unsigned char *)name++;
2201 if (c == '/' || c == '\0')
2202 return ERR_PTR(-EACCES);
2205 * See if the low-level filesystem might want
2206 * to use its own hash..
2208 if (base->d_flags & DCACHE_OP_HASH) {
2209 int err = base->d_op->d_hash(base, &this);
2210 if (err < 0)
2211 return ERR_PTR(err);
2214 err = inode_permission(base->d_inode, MAY_EXEC);
2215 if (err)
2216 return ERR_PTR(err);
2218 return __lookup_hash(&this, base, 0);
2220 EXPORT_SYMBOL(lookup_one_len);
2222 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2223 struct path *path, int *empty)
2225 struct nameidata nd;
2226 struct filename *tmp = getname_flags(name, flags, empty);
2227 int err = PTR_ERR(tmp);
2228 if (!IS_ERR(tmp)) {
2230 BUG_ON(flags & LOOKUP_PARENT);
2232 err = filename_lookup(dfd, tmp, flags, &nd);
2233 putname(tmp);
2234 if (!err)
2235 *path = nd.path;
2237 return err;
2240 int user_path_at(int dfd, const char __user *name, unsigned flags,
2241 struct path *path)
2243 return user_path_at_empty(dfd, name, flags, path, NULL);
2245 EXPORT_SYMBOL(user_path_at);
2248 * NB: most callers don't do anything directly with the reference to the
2249 * to struct filename, but the nd->last pointer points into the name string
2250 * allocated by getname. So we must hold the reference to it until all
2251 * path-walking is complete.
2253 static struct filename *
2254 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2255 unsigned int flags)
2257 struct filename *s = getname(path);
2258 int error;
2260 /* only LOOKUP_REVAL is allowed in extra flags */
2261 flags &= LOOKUP_REVAL;
2263 if (IS_ERR(s))
2264 return s;
2266 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2267 if (error) {
2268 putname(s);
2269 return ERR_PTR(error);
2272 return s;
2276 * mountpoint_last - look up last component for umount
2277 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2278 * @path: pointer to container for result
2280 * This is a special lookup_last function just for umount. In this case, we
2281 * need to resolve the path without doing any revalidation.
2283 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2284 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2285 * in almost all cases, this lookup will be served out of the dcache. The only
2286 * cases where it won't are if nd->last refers to a symlink or the path is
2287 * bogus and it doesn't exist.
2289 * Returns:
2290 * -error: if there was an error during lookup. This includes -ENOENT if the
2291 * lookup found a negative dentry. The nd->path reference will also be
2292 * put in this case.
2294 * 0: if we successfully resolved nd->path and found it to not to be a
2295 * symlink that needs to be followed. "path" will also be populated.
2296 * The nd->path reference will also be put.
2298 * 1: if we successfully resolved nd->last and found it to be a symlink
2299 * that needs to be followed. "path" will be populated with the path
2300 * to the link, and nd->path will *not* be put.
2302 static int
2303 mountpoint_last(struct nameidata *nd, struct path *path)
2305 int error = 0;
2306 struct dentry *dentry;
2307 struct dentry *dir = nd->path.dentry;
2309 /* If we're in rcuwalk, drop out of it to handle last component */
2310 if (nd->flags & LOOKUP_RCU) {
2311 if (unlazy_walk(nd, NULL)) {
2312 error = -ECHILD;
2313 goto out;
2317 nd->flags &= ~LOOKUP_PARENT;
2319 if (unlikely(nd->last_type != LAST_NORM)) {
2320 error = handle_dots(nd, nd->last_type);
2321 if (error)
2322 return error;
2323 dentry = dget(nd->path.dentry);
2324 goto done;
2327 mutex_lock(&dir->d_inode->i_mutex);
2328 dentry = d_lookup(dir, &nd->last);
2329 if (!dentry) {
2331 * No cached dentry. Mounted dentries are pinned in the cache,
2332 * so that means that this dentry is probably a symlink or the
2333 * path doesn't actually point to a mounted dentry.
2335 dentry = d_alloc(dir, &nd->last);
2336 if (!dentry) {
2337 error = -ENOMEM;
2338 mutex_unlock(&dir->d_inode->i_mutex);
2339 goto out;
2341 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2342 error = PTR_ERR(dentry);
2343 if (IS_ERR(dentry)) {
2344 mutex_unlock(&dir->d_inode->i_mutex);
2345 goto out;
2348 mutex_unlock(&dir->d_inode->i_mutex);
2350 done:
2351 if (d_is_negative(dentry)) {
2352 error = -ENOENT;
2353 dput(dentry);
2354 goto out;
2356 path->dentry = dentry;
2357 path->mnt = nd->path.mnt;
2358 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2359 return 1;
2360 mntget(path->mnt);
2361 follow_mount(path);
2362 error = 0;
2363 out:
2364 terminate_walk(nd);
2365 return error;
2369 * path_mountpoint - look up a path to be umounted
2370 * @dfd: directory file descriptor to start walk from
2371 * @name: full pathname to walk
2372 * @path: pointer to container for result
2373 * @flags: lookup flags
2375 * Look up the given name, but don't attempt to revalidate the last component.
2376 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2378 static int
2379 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2380 unsigned int flags)
2382 struct nameidata nd;
2383 int err;
2385 err = path_init(dfd, name, flags, &nd);
2386 if (unlikely(err))
2387 goto out;
2389 err = mountpoint_last(&nd, path);
2390 while (err > 0) {
2391 void *cookie;
2392 struct path link = *path;
2393 err = may_follow_link(&link, &nd);
2394 if (unlikely(err))
2395 break;
2396 nd.flags |= LOOKUP_PARENT;
2397 err = follow_link(&link, &nd, &cookie);
2398 if (err)
2399 break;
2400 err = mountpoint_last(&nd, path);
2401 put_link(&nd, &link, cookie);
2403 out:
2404 path_cleanup(&nd);
2405 return err;
2408 static int
2409 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2410 unsigned int flags)
2412 int error;
2413 if (IS_ERR(name))
2414 return PTR_ERR(name);
2415 error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2416 if (unlikely(error == -ECHILD))
2417 error = path_mountpoint(dfd, name, path, flags);
2418 if (unlikely(error == -ESTALE))
2419 error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2420 if (likely(!error))
2421 audit_inode(name, path->dentry, 0);
2422 putname(name);
2423 return error;
2427 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2428 * @dfd: directory file descriptor
2429 * @name: pathname from userland
2430 * @flags: lookup flags
2431 * @path: pointer to container to hold result
2433 * A umount is a special case for path walking. We're not actually interested
2434 * in the inode in this situation, and ESTALE errors can be a problem. We
2435 * simply want track down the dentry and vfsmount attached at the mountpoint
2436 * and avoid revalidating the last component.
2438 * Returns 0 and populates "path" on success.
2441 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2442 struct path *path)
2444 return filename_mountpoint(dfd, getname(name), path, flags);
2448 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2449 unsigned int flags)
2451 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2453 EXPORT_SYMBOL(kern_path_mountpoint);
2455 int __check_sticky(struct inode *dir, struct inode *inode)
2457 kuid_t fsuid = current_fsuid();
2459 if (uid_eq(inode->i_uid, fsuid))
2460 return 0;
2461 if (uid_eq(dir->i_uid, fsuid))
2462 return 0;
2463 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2465 EXPORT_SYMBOL(__check_sticky);
2468 * Check whether we can remove a link victim from directory dir, check
2469 * whether the type of victim is right.
2470 * 1. We can't do it if dir is read-only (done in permission())
2471 * 2. We should have write and exec permissions on dir
2472 * 3. We can't remove anything from append-only dir
2473 * 4. We can't do anything with immutable dir (done in permission())
2474 * 5. If the sticky bit on dir is set we should either
2475 * a. be owner of dir, or
2476 * b. be owner of victim, or
2477 * c. have CAP_FOWNER capability
2478 * 6. If the victim is append-only or immutable we can't do antyhing with
2479 * links pointing to it.
2480 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2481 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2482 * 9. We can't remove a root or mountpoint.
2483 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2484 * nfs_async_unlink().
2486 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2488 struct inode *inode = victim->d_inode;
2489 int error;
2491 if (d_is_negative(victim))
2492 return -ENOENT;
2493 BUG_ON(!inode);
2495 BUG_ON(victim->d_parent->d_inode != dir);
2496 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2498 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2499 if (error)
2500 return error;
2501 if (IS_APPEND(dir))
2502 return -EPERM;
2504 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2505 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2506 return -EPERM;
2507 if (isdir) {
2508 if (!d_is_dir(victim))
2509 return -ENOTDIR;
2510 if (IS_ROOT(victim))
2511 return -EBUSY;
2512 } else if (d_is_dir(victim))
2513 return -EISDIR;
2514 if (IS_DEADDIR(dir))
2515 return -ENOENT;
2516 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2517 return -EBUSY;
2518 return 0;
2521 /* Check whether we can create an object with dentry child in directory
2522 * dir.
2523 * 1. We can't do it if child already exists (open has special treatment for
2524 * this case, but since we are inlined it's OK)
2525 * 2. We can't do it if dir is read-only (done in permission())
2526 * 3. We should have write and exec permissions on dir
2527 * 4. We can't do it if dir is immutable (done in permission())
2529 static inline int may_create(struct inode *dir, struct dentry *child)
2531 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2532 if (child->d_inode)
2533 return -EEXIST;
2534 if (IS_DEADDIR(dir))
2535 return -ENOENT;
2536 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2540 * p1 and p2 should be directories on the same fs.
2542 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2544 struct dentry *p;
2546 if (p1 == p2) {
2547 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2548 return NULL;
2551 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2553 p = d_ancestor(p2, p1);
2554 if (p) {
2555 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2556 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2557 return p;
2560 p = d_ancestor(p1, p2);
2561 if (p) {
2562 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2563 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2564 return p;
2567 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2568 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2569 return NULL;
2571 EXPORT_SYMBOL(lock_rename);
2573 void unlock_rename(struct dentry *p1, struct dentry *p2)
2575 mutex_unlock(&p1->d_inode->i_mutex);
2576 if (p1 != p2) {
2577 mutex_unlock(&p2->d_inode->i_mutex);
2578 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2581 EXPORT_SYMBOL(unlock_rename);
2583 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2584 bool want_excl)
2586 int error = may_create(dir, dentry);
2587 if (error)
2588 return error;
2590 if (!dir->i_op->create)
2591 return -EACCES; /* shouldn't it be ENOSYS? */
2592 mode &= S_IALLUGO;
2593 mode |= S_IFREG;
2594 error = security_inode_create(dir, dentry, mode);
2595 if (error)
2596 return error;
2597 error = dir->i_op->create(dir, dentry, mode, want_excl);
2598 if (!error)
2599 fsnotify_create(dir, dentry);
2600 return error;
2602 EXPORT_SYMBOL(vfs_create);
2604 static int may_open(struct path *path, int acc_mode, int flag)
2606 struct dentry *dentry = path->dentry;
2607 struct inode *inode = dentry->d_inode;
2608 int error;
2610 /* O_PATH? */
2611 if (!acc_mode)
2612 return 0;
2614 if (!inode)
2615 return -ENOENT;
2617 switch (inode->i_mode & S_IFMT) {
2618 case S_IFLNK:
2619 return -ELOOP;
2620 case S_IFDIR:
2621 if (acc_mode & MAY_WRITE)
2622 return -EISDIR;
2623 break;
2624 case S_IFBLK:
2625 case S_IFCHR:
2626 if (path->mnt->mnt_flags & MNT_NODEV)
2627 return -EACCES;
2628 /*FALLTHRU*/
2629 case S_IFIFO:
2630 case S_IFSOCK:
2631 flag &= ~O_TRUNC;
2632 break;
2635 error = inode_permission(inode, acc_mode);
2636 if (error)
2637 return error;
2640 * An append-only file must be opened in append mode for writing.
2642 if (IS_APPEND(inode)) {
2643 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2644 return -EPERM;
2645 if (flag & O_TRUNC)
2646 return -EPERM;
2649 /* O_NOATIME can only be set by the owner or superuser */
2650 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2651 return -EPERM;
2653 return 0;
2656 static int handle_truncate(struct file *filp)
2658 struct path *path = &filp->f_path;
2659 struct inode *inode = path->dentry->d_inode;
2660 int error = get_write_access(inode);
2661 if (error)
2662 return error;
2664 * Refuse to truncate files with mandatory locks held on them.
2666 error = locks_verify_locked(filp);
2667 if (!error)
2668 error = security_path_truncate(path);
2669 if (!error) {
2670 error = do_truncate(path->dentry, 0,
2671 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2672 filp);
2674 put_write_access(inode);
2675 return error;
2678 static inline int open_to_namei_flags(int flag)
2680 if ((flag & O_ACCMODE) == 3)
2681 flag--;
2682 return flag;
2685 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2687 int error = security_path_mknod(dir, dentry, mode, 0);
2688 if (error)
2689 return error;
2691 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2692 if (error)
2693 return error;
2695 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2699 * Attempt to atomically look up, create and open a file from a negative
2700 * dentry.
2702 * Returns 0 if successful. The file will have been created and attached to
2703 * @file by the filesystem calling finish_open().
2705 * Returns 1 if the file was looked up only or didn't need creating. The
2706 * caller will need to perform the open themselves. @path will have been
2707 * updated to point to the new dentry. This may be negative.
2709 * Returns an error code otherwise.
2711 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2712 struct path *path, struct file *file,
2713 const struct open_flags *op,
2714 bool got_write, bool need_lookup,
2715 int *opened)
2717 struct inode *dir = nd->path.dentry->d_inode;
2718 unsigned open_flag = open_to_namei_flags(op->open_flag);
2719 umode_t mode;
2720 int error;
2721 int acc_mode;
2722 int create_error = 0;
2723 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2724 bool excl;
2726 BUG_ON(dentry->d_inode);
2728 /* Don't create child dentry for a dead directory. */
2729 if (unlikely(IS_DEADDIR(dir))) {
2730 error = -ENOENT;
2731 goto out;
2734 mode = op->mode;
2735 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2736 mode &= ~current_umask();
2738 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2739 if (excl)
2740 open_flag &= ~O_TRUNC;
2743 * Checking write permission is tricky, bacuse we don't know if we are
2744 * going to actually need it: O_CREAT opens should work as long as the
2745 * file exists. But checking existence breaks atomicity. The trick is
2746 * to check access and if not granted clear O_CREAT from the flags.
2748 * Another problem is returing the "right" error value (e.g. for an
2749 * O_EXCL open we want to return EEXIST not EROFS).
2751 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2752 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2753 if (!(open_flag & O_CREAT)) {
2755 * No O_CREATE -> atomicity not a requirement -> fall
2756 * back to lookup + open
2758 goto no_open;
2759 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2760 /* Fall back and fail with the right error */
2761 create_error = -EROFS;
2762 goto no_open;
2763 } else {
2764 /* No side effects, safe to clear O_CREAT */
2765 create_error = -EROFS;
2766 open_flag &= ~O_CREAT;
2770 if (open_flag & O_CREAT) {
2771 error = may_o_create(&nd->path, dentry, mode);
2772 if (error) {
2773 create_error = error;
2774 if (open_flag & O_EXCL)
2775 goto no_open;
2776 open_flag &= ~O_CREAT;
2780 if (nd->flags & LOOKUP_DIRECTORY)
2781 open_flag |= O_DIRECTORY;
2783 file->f_path.dentry = DENTRY_NOT_SET;
2784 file->f_path.mnt = nd->path.mnt;
2785 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2786 opened);
2787 if (error < 0) {
2788 if (create_error && error == -ENOENT)
2789 error = create_error;
2790 goto out;
2793 if (error) { /* returned 1, that is */
2794 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2795 error = -EIO;
2796 goto out;
2798 if (file->f_path.dentry) {
2799 dput(dentry);
2800 dentry = file->f_path.dentry;
2802 if (*opened & FILE_CREATED)
2803 fsnotify_create(dir, dentry);
2804 if (!dentry->d_inode) {
2805 WARN_ON(*opened & FILE_CREATED);
2806 if (create_error) {
2807 error = create_error;
2808 goto out;
2810 } else {
2811 if (excl && !(*opened & FILE_CREATED)) {
2812 error = -EEXIST;
2813 goto out;
2816 goto looked_up;
2820 * We didn't have the inode before the open, so check open permission
2821 * here.
2823 acc_mode = op->acc_mode;
2824 if (*opened & FILE_CREATED) {
2825 WARN_ON(!(open_flag & O_CREAT));
2826 fsnotify_create(dir, dentry);
2827 acc_mode = MAY_OPEN;
2829 error = may_open(&file->f_path, acc_mode, open_flag);
2830 if (error)
2831 fput(file);
2833 out:
2834 dput(dentry);
2835 return error;
2837 no_open:
2838 if (need_lookup) {
2839 dentry = lookup_real(dir, dentry, nd->flags);
2840 if (IS_ERR(dentry))
2841 return PTR_ERR(dentry);
2843 if (create_error && !dentry->d_inode) {
2844 error = create_error;
2845 goto out;
2847 looked_up:
2848 path->dentry = dentry;
2849 path->mnt = nd->path.mnt;
2850 return 1;
2854 * Look up and maybe create and open the last component.
2856 * Must be called with i_mutex held on parent.
2858 * Returns 0 if the file was successfully atomically created (if necessary) and
2859 * opened. In this case the file will be returned attached to @file.
2861 * Returns 1 if the file was not completely opened at this time, though lookups
2862 * and creations will have been performed and the dentry returned in @path will
2863 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2864 * specified then a negative dentry may be returned.
2866 * An error code is returned otherwise.
2868 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2869 * cleared otherwise prior to returning.
2871 static int lookup_open(struct nameidata *nd, struct path *path,
2872 struct file *file,
2873 const struct open_flags *op,
2874 bool got_write, int *opened)
2876 struct dentry *dir = nd->path.dentry;
2877 struct inode *dir_inode = dir->d_inode;
2878 struct dentry *dentry;
2879 int error;
2880 bool need_lookup;
2882 *opened &= ~FILE_CREATED;
2883 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2884 if (IS_ERR(dentry))
2885 return PTR_ERR(dentry);
2887 /* Cached positive dentry: will open in f_op->open */
2888 if (!need_lookup && dentry->d_inode)
2889 goto out_no_open;
2891 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2892 return atomic_open(nd, dentry, path, file, op, got_write,
2893 need_lookup, opened);
2896 if (need_lookup) {
2897 BUG_ON(dentry->d_inode);
2899 dentry = lookup_real(dir_inode, dentry, nd->flags);
2900 if (IS_ERR(dentry))
2901 return PTR_ERR(dentry);
2904 /* Negative dentry, just create the file */
2905 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2906 umode_t mode = op->mode;
2907 if (!IS_POSIXACL(dir->d_inode))
2908 mode &= ~current_umask();
2910 * This write is needed to ensure that a
2911 * rw->ro transition does not occur between
2912 * the time when the file is created and when
2913 * a permanent write count is taken through
2914 * the 'struct file' in finish_open().
2916 if (!got_write) {
2917 error = -EROFS;
2918 goto out_dput;
2920 *opened |= FILE_CREATED;
2921 error = security_path_mknod(&nd->path, dentry, mode, 0);
2922 if (error)
2923 goto out_dput;
2924 error = vfs_create(dir->d_inode, dentry, mode,
2925 nd->flags & LOOKUP_EXCL);
2926 if (error)
2927 goto out_dput;
2929 out_no_open:
2930 path->dentry = dentry;
2931 path->mnt = nd->path.mnt;
2932 return 1;
2934 out_dput:
2935 dput(dentry);
2936 return error;
2940 * Handle the last step of open()
2942 static int do_last(struct nameidata *nd, struct path *path,
2943 struct file *file, const struct open_flags *op,
2944 int *opened, struct filename *name)
2946 struct dentry *dir = nd->path.dentry;
2947 int open_flag = op->open_flag;
2948 bool will_truncate = (open_flag & O_TRUNC) != 0;
2949 bool got_write = false;
2950 int acc_mode = op->acc_mode;
2951 struct inode *inode;
2952 bool symlink_ok = false;
2953 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2954 bool retried = false;
2955 int error;
2957 nd->flags &= ~LOOKUP_PARENT;
2958 nd->flags |= op->intent;
2960 if (nd->last_type != LAST_NORM) {
2961 error = handle_dots(nd, nd->last_type);
2962 if (error)
2963 return error;
2964 goto finish_open;
2967 if (!(open_flag & O_CREAT)) {
2968 if (nd->last.name[nd->last.len])
2969 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2970 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2971 symlink_ok = true;
2972 /* we _can_ be in RCU mode here */
2973 error = lookup_fast(nd, path, &inode);
2974 if (likely(!error))
2975 goto finish_lookup;
2977 if (error < 0)
2978 goto out;
2980 BUG_ON(nd->inode != dir->d_inode);
2981 } else {
2982 /* create side of things */
2984 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2985 * has been cleared when we got to the last component we are
2986 * about to look up
2988 error = complete_walk(nd);
2989 if (error)
2990 return error;
2992 audit_inode(name, dir, LOOKUP_PARENT);
2993 error = -EISDIR;
2994 /* trailing slashes? */
2995 if (nd->last.name[nd->last.len])
2996 goto out;
2999 retry_lookup:
3000 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3001 error = mnt_want_write(nd->path.mnt);
3002 if (!error)
3003 got_write = true;
3005 * do _not_ fail yet - we might not need that or fail with
3006 * a different error; let lookup_open() decide; we'll be
3007 * dropping this one anyway.
3010 mutex_lock(&dir->d_inode->i_mutex);
3011 error = lookup_open(nd, path, file, op, got_write, opened);
3012 mutex_unlock(&dir->d_inode->i_mutex);
3014 if (error <= 0) {
3015 if (error)
3016 goto out;
3018 if ((*opened & FILE_CREATED) ||
3019 !S_ISREG(file_inode(file)->i_mode))
3020 will_truncate = false;
3022 audit_inode(name, file->f_path.dentry, 0);
3023 goto opened;
3026 if (*opened & FILE_CREATED) {
3027 /* Don't check for write permission, don't truncate */
3028 open_flag &= ~O_TRUNC;
3029 will_truncate = false;
3030 acc_mode = MAY_OPEN;
3031 path_to_nameidata(path, nd);
3032 goto finish_open_created;
3036 * create/update audit record if it already exists.
3038 if (d_is_positive(path->dentry))
3039 audit_inode(name, path->dentry, 0);
3042 * If atomic_open() acquired write access it is dropped now due to
3043 * possible mount and symlink following (this might be optimized away if
3044 * necessary...)
3046 if (got_write) {
3047 mnt_drop_write(nd->path.mnt);
3048 got_write = false;
3051 error = -EEXIST;
3052 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3053 goto exit_dput;
3055 error = follow_managed(path, nd->flags);
3056 if (error < 0)
3057 goto exit_dput;
3059 if (error)
3060 nd->flags |= LOOKUP_JUMPED;
3062 BUG_ON(nd->flags & LOOKUP_RCU);
3063 inode = path->dentry->d_inode;
3064 error = -ENOENT;
3065 if (d_is_negative(path->dentry)) {
3066 path_to_nameidata(path, nd);
3067 goto out;
3069 inode = path->dentry->d_inode;
3070 finish_lookup:
3071 /* we _can_ be in RCU mode here */
3072 if (should_follow_link(path->dentry, !symlink_ok)) {
3073 if (nd->flags & LOOKUP_RCU) {
3074 if (unlikely(nd->path.mnt != path->mnt ||
3075 unlazy_walk(nd, path->dentry))) {
3076 error = -ECHILD;
3077 goto out;
3080 BUG_ON(inode != path->dentry->d_inode);
3081 return 1;
3084 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3085 path_to_nameidata(path, nd);
3086 } else {
3087 save_parent.dentry = nd->path.dentry;
3088 save_parent.mnt = mntget(path->mnt);
3089 nd->path.dentry = path->dentry;
3092 nd->inode = inode;
3093 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3094 finish_open:
3095 error = complete_walk(nd);
3096 if (error) {
3097 path_put(&save_parent);
3098 return error;
3100 audit_inode(name, nd->path.dentry, 0);
3101 error = -EISDIR;
3102 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3103 goto out;
3104 error = -ENOTDIR;
3105 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3106 goto out;
3107 if (!d_is_reg(nd->path.dentry))
3108 will_truncate = false;
3110 if (will_truncate) {
3111 error = mnt_want_write(nd->path.mnt);
3112 if (error)
3113 goto out;
3114 got_write = true;
3116 finish_open_created:
3117 error = may_open(&nd->path, acc_mode, open_flag);
3118 if (error)
3119 goto out;
3121 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3122 error = vfs_open(&nd->path, file, current_cred());
3123 if (!error) {
3124 *opened |= FILE_OPENED;
3125 } else {
3126 if (error == -EOPENSTALE)
3127 goto stale_open;
3128 goto out;
3130 opened:
3131 error = open_check_o_direct(file);
3132 if (error)
3133 goto exit_fput;
3134 error = ima_file_check(file, op->acc_mode, *opened);
3135 if (error)
3136 goto exit_fput;
3138 if (will_truncate) {
3139 error = handle_truncate(file);
3140 if (error)
3141 goto exit_fput;
3143 out:
3144 if (unlikely(error > 0)) {
3145 WARN_ON(1);
3146 error = -EINVAL;
3148 if (got_write)
3149 mnt_drop_write(nd->path.mnt);
3150 path_put(&save_parent);
3151 terminate_walk(nd);
3152 return error;
3154 exit_dput:
3155 path_put_conditional(path, nd);
3156 goto out;
3157 exit_fput:
3158 fput(file);
3159 goto out;
3161 stale_open:
3162 /* If no saved parent or already retried then can't retry */
3163 if (!save_parent.dentry || retried)
3164 goto out;
3166 BUG_ON(save_parent.dentry != dir);
3167 path_put(&nd->path);
3168 nd->path = save_parent;
3169 nd->inode = dir->d_inode;
3170 save_parent.mnt = NULL;
3171 save_parent.dentry = NULL;
3172 if (got_write) {
3173 mnt_drop_write(nd->path.mnt);
3174 got_write = false;
3176 retried = true;
3177 goto retry_lookup;
3180 static int do_tmpfile(int dfd, struct filename *pathname,
3181 struct nameidata *nd, int flags,
3182 const struct open_flags *op,
3183 struct file *file, int *opened)
3185 static const struct qstr name = QSTR_INIT("/", 1);
3186 struct dentry *dentry, *child;
3187 struct inode *dir;
3188 int error = path_lookupat(dfd, pathname,
3189 flags | LOOKUP_DIRECTORY, nd);
3190 if (unlikely(error))
3191 return error;
3192 error = mnt_want_write(nd->path.mnt);
3193 if (unlikely(error))
3194 goto out;
3195 /* we want directory to be writable */
3196 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3197 if (error)
3198 goto out2;
3199 dentry = nd->path.dentry;
3200 dir = dentry->d_inode;
3201 if (!dir->i_op->tmpfile) {
3202 error = -EOPNOTSUPP;
3203 goto out2;
3205 child = d_alloc(dentry, &name);
3206 if (unlikely(!child)) {
3207 error = -ENOMEM;
3208 goto out2;
3210 nd->flags &= ~LOOKUP_DIRECTORY;
3211 nd->flags |= op->intent;
3212 dput(nd->path.dentry);
3213 nd->path.dentry = child;
3214 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3215 if (error)
3216 goto out2;
3217 audit_inode(pathname, nd->path.dentry, 0);
3218 /* Don't check for other permissions, the inode was just created */
3219 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3220 if (error)
3221 goto out2;
3222 file->f_path.mnt = nd->path.mnt;
3223 error = finish_open(file, nd->path.dentry, NULL, opened);
3224 if (error)
3225 goto out2;
3226 error = open_check_o_direct(file);
3227 if (error) {
3228 fput(file);
3229 } else if (!(op->open_flag & O_EXCL)) {
3230 struct inode *inode = file_inode(file);
3231 spin_lock(&inode->i_lock);
3232 inode->i_state |= I_LINKABLE;
3233 spin_unlock(&inode->i_lock);
3235 out2:
3236 mnt_drop_write(nd->path.mnt);
3237 out:
3238 path_put(&nd->path);
3239 return error;
3242 static struct file *path_openat(int dfd, struct filename *pathname,
3243 struct nameidata *nd, const struct open_flags *op, int flags)
3245 struct file *file;
3246 struct path path;
3247 int opened = 0;
3248 int error;
3250 file = get_empty_filp();
3251 if (IS_ERR(file))
3252 return file;
3254 file->f_flags = op->open_flag;
3256 if (unlikely(file->f_flags & __O_TMPFILE)) {
3257 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3258 goto out2;
3261 error = path_init(dfd, pathname, flags, nd);
3262 if (unlikely(error))
3263 goto out;
3265 error = do_last(nd, &path, file, op, &opened, pathname);
3266 while (unlikely(error > 0)) { /* trailing symlink */
3267 struct path link = path;
3268 void *cookie;
3269 if (!(nd->flags & LOOKUP_FOLLOW)) {
3270 path_put_conditional(&path, nd);
3271 path_put(&nd->path);
3272 error = -ELOOP;
3273 break;
3275 error = may_follow_link(&link, nd);
3276 if (unlikely(error))
3277 break;
3278 nd->flags |= LOOKUP_PARENT;
3279 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3280 error = follow_link(&link, nd, &cookie);
3281 if (unlikely(error))
3282 break;
3283 error = do_last(nd, &path, file, op, &opened, pathname);
3284 put_link(nd, &link, cookie);
3286 out:
3287 path_cleanup(nd);
3288 out2:
3289 if (!(opened & FILE_OPENED)) {
3290 BUG_ON(!error);
3291 put_filp(file);
3293 if (unlikely(error)) {
3294 if (error == -EOPENSTALE) {
3295 if (flags & LOOKUP_RCU)
3296 error = -ECHILD;
3297 else
3298 error = -ESTALE;
3300 file = ERR_PTR(error);
3302 return file;
3305 struct file *do_filp_open(int dfd, struct filename *pathname,
3306 const struct open_flags *op)
3308 struct nameidata nd;
3309 int flags = op->lookup_flags;
3310 struct file *filp;
3312 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3313 if (unlikely(filp == ERR_PTR(-ECHILD)))
3314 filp = path_openat(dfd, pathname, &nd, op, flags);
3315 if (unlikely(filp == ERR_PTR(-ESTALE)))
3316 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3317 return filp;
3320 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3321 const char *name, const struct open_flags *op)
3323 struct nameidata nd;
3324 struct file *file;
3325 struct filename *filename;
3326 int flags = op->lookup_flags | LOOKUP_ROOT;
3328 nd.root.mnt = mnt;
3329 nd.root.dentry = dentry;
3331 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3332 return ERR_PTR(-ELOOP);
3334 filename = getname_kernel(name);
3335 if (unlikely(IS_ERR(filename)))
3336 return ERR_CAST(filename);
3338 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3339 if (unlikely(file == ERR_PTR(-ECHILD)))
3340 file = path_openat(-1, filename, &nd, op, flags);
3341 if (unlikely(file == ERR_PTR(-ESTALE)))
3342 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3343 putname(filename);
3344 return file;
3347 static struct dentry *filename_create(int dfd, struct filename *name,
3348 struct path *path, unsigned int lookup_flags)
3350 struct dentry *dentry = ERR_PTR(-EEXIST);
3351 struct nameidata nd;
3352 int err2;
3353 int error;
3354 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3357 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3358 * other flags passed in are ignored!
3360 lookup_flags &= LOOKUP_REVAL;
3362 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3363 if (error)
3364 return ERR_PTR(error);
3367 * Yucky last component or no last component at all?
3368 * (foo/., foo/.., /////)
3370 if (nd.last_type != LAST_NORM)
3371 goto out;
3372 nd.flags &= ~LOOKUP_PARENT;
3373 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3375 /* don't fail immediately if it's r/o, at least try to report other errors */
3376 err2 = mnt_want_write(nd.path.mnt);
3378 * Do the final lookup.
3380 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3381 dentry = lookup_hash(&nd);
3382 if (IS_ERR(dentry))
3383 goto unlock;
3385 error = -EEXIST;
3386 if (d_is_positive(dentry))
3387 goto fail;
3390 * Special case - lookup gave negative, but... we had foo/bar/
3391 * From the vfs_mknod() POV we just have a negative dentry -
3392 * all is fine. Let's be bastards - you had / on the end, you've
3393 * been asking for (non-existent) directory. -ENOENT for you.
3395 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3396 error = -ENOENT;
3397 goto fail;
3399 if (unlikely(err2)) {
3400 error = err2;
3401 goto fail;
3403 *path = nd.path;
3404 return dentry;
3405 fail:
3406 dput(dentry);
3407 dentry = ERR_PTR(error);
3408 unlock:
3409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3410 if (!err2)
3411 mnt_drop_write(nd.path.mnt);
3412 out:
3413 path_put(&nd.path);
3414 return dentry;
3417 struct dentry *kern_path_create(int dfd, const char *pathname,
3418 struct path *path, unsigned int lookup_flags)
3420 struct filename *filename = getname_kernel(pathname);
3421 struct dentry *res;
3423 if (IS_ERR(filename))
3424 return ERR_CAST(filename);
3425 res = filename_create(dfd, filename, path, lookup_flags);
3426 putname(filename);
3427 return res;
3429 EXPORT_SYMBOL(kern_path_create);
3431 void done_path_create(struct path *path, struct dentry *dentry)
3433 dput(dentry);
3434 mutex_unlock(&path->dentry->d_inode->i_mutex);
3435 mnt_drop_write(path->mnt);
3436 path_put(path);
3438 EXPORT_SYMBOL(done_path_create);
3440 struct dentry *user_path_create(int dfd, const char __user *pathname,
3441 struct path *path, unsigned int lookup_flags)
3443 struct filename *tmp = getname(pathname);
3444 struct dentry *res;
3445 if (IS_ERR(tmp))
3446 return ERR_CAST(tmp);
3447 res = filename_create(dfd, tmp, path, lookup_flags);
3448 putname(tmp);
3449 return res;
3451 EXPORT_SYMBOL(user_path_create);
3453 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3455 int error = may_create(dir, dentry);
3457 if (error)
3458 return error;
3460 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3461 return -EPERM;
3463 if (!dir->i_op->mknod)
3464 return -EPERM;
3466 error = devcgroup_inode_mknod(mode, dev);
3467 if (error)
3468 return error;
3470 error = security_inode_mknod(dir, dentry, mode, dev);
3471 if (error)
3472 return error;
3474 error = dir->i_op->mknod(dir, dentry, mode, dev);
3475 if (!error)
3476 fsnotify_create(dir, dentry);
3477 return error;
3479 EXPORT_SYMBOL(vfs_mknod);
3481 static int may_mknod(umode_t mode)
3483 switch (mode & S_IFMT) {
3484 case S_IFREG:
3485 case S_IFCHR:
3486 case S_IFBLK:
3487 case S_IFIFO:
3488 case S_IFSOCK:
3489 case 0: /* zero mode translates to S_IFREG */
3490 return 0;
3491 case S_IFDIR:
3492 return -EPERM;
3493 default:
3494 return -EINVAL;
3498 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3499 unsigned, dev)
3501 struct dentry *dentry;
3502 struct path path;
3503 int error;
3504 unsigned int lookup_flags = 0;
3506 error = may_mknod(mode);
3507 if (error)
3508 return error;
3509 retry:
3510 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3511 if (IS_ERR(dentry))
3512 return PTR_ERR(dentry);
3514 if (!IS_POSIXACL(path.dentry->d_inode))
3515 mode &= ~current_umask();
3516 error = security_path_mknod(&path, dentry, mode, dev);
3517 if (error)
3518 goto out;
3519 switch (mode & S_IFMT) {
3520 case 0: case S_IFREG:
3521 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3522 break;
3523 case S_IFCHR: case S_IFBLK:
3524 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3525 new_decode_dev(dev));
3526 break;
3527 case S_IFIFO: case S_IFSOCK:
3528 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3529 break;
3531 out:
3532 done_path_create(&path, dentry);
3533 if (retry_estale(error, lookup_flags)) {
3534 lookup_flags |= LOOKUP_REVAL;
3535 goto retry;
3537 return error;
3540 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3542 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3545 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3547 int error = may_create(dir, dentry);
3548 unsigned max_links = dir->i_sb->s_max_links;
3550 if (error)
3551 return error;
3553 if (!dir->i_op->mkdir)
3554 return -EPERM;
3556 mode &= (S_IRWXUGO|S_ISVTX);
3557 error = security_inode_mkdir(dir, dentry, mode);
3558 if (error)
3559 return error;
3561 if (max_links && dir->i_nlink >= max_links)
3562 return -EMLINK;
3564 error = dir->i_op->mkdir(dir, dentry, mode);
3565 if (!error)
3566 fsnotify_mkdir(dir, dentry);
3567 return error;
3569 EXPORT_SYMBOL(vfs_mkdir);
3571 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3573 struct dentry *dentry;
3574 struct path path;
3575 int error;
3576 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3578 retry:
3579 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3580 if (IS_ERR(dentry))
3581 return PTR_ERR(dentry);
3583 if (!IS_POSIXACL(path.dentry->d_inode))
3584 mode &= ~current_umask();
3585 error = security_path_mkdir(&path, dentry, mode);
3586 if (!error)
3587 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3588 done_path_create(&path, dentry);
3589 if (retry_estale(error, lookup_flags)) {
3590 lookup_flags |= LOOKUP_REVAL;
3591 goto retry;
3593 return error;
3596 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3598 return sys_mkdirat(AT_FDCWD, pathname, mode);
3602 * The dentry_unhash() helper will try to drop the dentry early: we
3603 * should have a usage count of 1 if we're the only user of this
3604 * dentry, and if that is true (possibly after pruning the dcache),
3605 * then we drop the dentry now.
3607 * A low-level filesystem can, if it choses, legally
3608 * do a
3610 * if (!d_unhashed(dentry))
3611 * return -EBUSY;
3613 * if it cannot handle the case of removing a directory
3614 * that is still in use by something else..
3616 void dentry_unhash(struct dentry *dentry)
3618 shrink_dcache_parent(dentry);
3619 spin_lock(&dentry->d_lock);
3620 if (dentry->d_lockref.count == 1)
3621 __d_drop(dentry);
3622 spin_unlock(&dentry->d_lock);
3624 EXPORT_SYMBOL(dentry_unhash);
3626 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3628 int error = may_delete(dir, dentry, 1);
3630 if (error)
3631 return error;
3633 if (!dir->i_op->rmdir)
3634 return -EPERM;
3636 dget(dentry);
3637 mutex_lock(&dentry->d_inode->i_mutex);
3639 error = -EBUSY;
3640 if (is_local_mountpoint(dentry))
3641 goto out;
3643 error = security_inode_rmdir(dir, dentry);
3644 if (error)
3645 goto out;
3647 shrink_dcache_parent(dentry);
3648 error = dir->i_op->rmdir(dir, dentry);
3649 if (error)
3650 goto out;
3652 dentry->d_inode->i_flags |= S_DEAD;
3653 dont_mount(dentry);
3654 detach_mounts(dentry);
3656 out:
3657 mutex_unlock(&dentry->d_inode->i_mutex);
3658 dput(dentry);
3659 if (!error)
3660 d_delete(dentry);
3661 return error;
3663 EXPORT_SYMBOL(vfs_rmdir);
3665 static long do_rmdir(int dfd, const char __user *pathname)
3667 int error = 0;
3668 struct filename *name;
3669 struct dentry *dentry;
3670 struct nameidata nd;
3671 unsigned int lookup_flags = 0;
3672 retry:
3673 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3674 if (IS_ERR(name))
3675 return PTR_ERR(name);
3677 switch(nd.last_type) {
3678 case LAST_DOTDOT:
3679 error = -ENOTEMPTY;
3680 goto exit1;
3681 case LAST_DOT:
3682 error = -EINVAL;
3683 goto exit1;
3684 case LAST_ROOT:
3685 error = -EBUSY;
3686 goto exit1;
3689 nd.flags &= ~LOOKUP_PARENT;
3690 error = mnt_want_write(nd.path.mnt);
3691 if (error)
3692 goto exit1;
3694 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3695 dentry = lookup_hash(&nd);
3696 error = PTR_ERR(dentry);
3697 if (IS_ERR(dentry))
3698 goto exit2;
3699 if (!dentry->d_inode) {
3700 error = -ENOENT;
3701 goto exit3;
3703 error = security_path_rmdir(&nd.path, dentry);
3704 if (error)
3705 goto exit3;
3706 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3707 exit3:
3708 dput(dentry);
3709 exit2:
3710 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3711 mnt_drop_write(nd.path.mnt);
3712 exit1:
3713 path_put(&nd.path);
3714 putname(name);
3715 if (retry_estale(error, lookup_flags)) {
3716 lookup_flags |= LOOKUP_REVAL;
3717 goto retry;
3719 return error;
3722 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3724 return do_rmdir(AT_FDCWD, pathname);
3728 * vfs_unlink - unlink a filesystem object
3729 * @dir: parent directory
3730 * @dentry: victim
3731 * @delegated_inode: returns victim inode, if the inode is delegated.
3733 * The caller must hold dir->i_mutex.
3735 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3736 * return a reference to the inode in delegated_inode. The caller
3737 * should then break the delegation on that inode and retry. Because
3738 * breaking a delegation may take a long time, the caller should drop
3739 * dir->i_mutex before doing so.
3741 * Alternatively, a caller may pass NULL for delegated_inode. This may
3742 * be appropriate for callers that expect the underlying filesystem not
3743 * to be NFS exported.
3745 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3747 struct inode *target = dentry->d_inode;
3748 int error = may_delete(dir, dentry, 0);
3750 if (error)
3751 return error;
3753 if (!dir->i_op->unlink)
3754 return -EPERM;
3756 mutex_lock(&target->i_mutex);
3757 if (is_local_mountpoint(dentry))
3758 error = -EBUSY;
3759 else {
3760 error = security_inode_unlink(dir, dentry);
3761 if (!error) {
3762 error = try_break_deleg(target, delegated_inode);
3763 if (error)
3764 goto out;
3765 error = dir->i_op->unlink(dir, dentry);
3766 if (!error) {
3767 dont_mount(dentry);
3768 detach_mounts(dentry);
3772 out:
3773 mutex_unlock(&target->i_mutex);
3775 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3776 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3777 fsnotify_link_count(target);
3778 d_delete(dentry);
3781 return error;
3783 EXPORT_SYMBOL(vfs_unlink);
3786 * Make sure that the actual truncation of the file will occur outside its
3787 * directory's i_mutex. Truncate can take a long time if there is a lot of
3788 * writeout happening, and we don't want to prevent access to the directory
3789 * while waiting on the I/O.
3791 static long do_unlinkat(int dfd, const char __user *pathname)
3793 int error;
3794 struct filename *name;
3795 struct dentry *dentry;
3796 struct nameidata nd;
3797 struct inode *inode = NULL;
3798 struct inode *delegated_inode = NULL;
3799 unsigned int lookup_flags = 0;
3800 retry:
3801 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3802 if (IS_ERR(name))
3803 return PTR_ERR(name);
3805 error = -EISDIR;
3806 if (nd.last_type != LAST_NORM)
3807 goto exit1;
3809 nd.flags &= ~LOOKUP_PARENT;
3810 error = mnt_want_write(nd.path.mnt);
3811 if (error)
3812 goto exit1;
3813 retry_deleg:
3814 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3815 dentry = lookup_hash(&nd);
3816 error = PTR_ERR(dentry);
3817 if (!IS_ERR(dentry)) {
3818 /* Why not before? Because we want correct error value */
3819 if (nd.last.name[nd.last.len])
3820 goto slashes;
3821 inode = dentry->d_inode;
3822 if (d_is_negative(dentry))
3823 goto slashes;
3824 ihold(inode);
3825 error = security_path_unlink(&nd.path, dentry);
3826 if (error)
3827 goto exit2;
3828 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3829 exit2:
3830 dput(dentry);
3832 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3833 if (inode)
3834 iput(inode); /* truncate the inode here */
3835 inode = NULL;
3836 if (delegated_inode) {
3837 error = break_deleg_wait(&delegated_inode);
3838 if (!error)
3839 goto retry_deleg;
3841 mnt_drop_write(nd.path.mnt);
3842 exit1:
3843 path_put(&nd.path);
3844 putname(name);
3845 if (retry_estale(error, lookup_flags)) {
3846 lookup_flags |= LOOKUP_REVAL;
3847 inode = NULL;
3848 goto retry;
3850 return error;
3852 slashes:
3853 if (d_is_negative(dentry))
3854 error = -ENOENT;
3855 else if (d_is_dir(dentry))
3856 error = -EISDIR;
3857 else
3858 error = -ENOTDIR;
3859 goto exit2;
3862 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3864 if ((flag & ~AT_REMOVEDIR) != 0)
3865 return -EINVAL;
3867 if (flag & AT_REMOVEDIR)
3868 return do_rmdir(dfd, pathname);
3870 return do_unlinkat(dfd, pathname);
3873 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3875 return do_unlinkat(AT_FDCWD, pathname);
3878 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3880 int error = may_create(dir, dentry);
3882 if (error)
3883 return error;
3885 if (!dir->i_op->symlink)
3886 return -EPERM;
3888 error = security_inode_symlink(dir, dentry, oldname);
3889 if (error)
3890 return error;
3892 error = dir->i_op->symlink(dir, dentry, oldname);
3893 if (!error)
3894 fsnotify_create(dir, dentry);
3895 return error;
3897 EXPORT_SYMBOL(vfs_symlink);
3899 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3900 int, newdfd, const char __user *, newname)
3902 int error;
3903 struct filename *from;
3904 struct dentry *dentry;
3905 struct path path;
3906 unsigned int lookup_flags = 0;
3908 from = getname(oldname);
3909 if (IS_ERR(from))
3910 return PTR_ERR(from);
3911 retry:
3912 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3913 error = PTR_ERR(dentry);
3914 if (IS_ERR(dentry))
3915 goto out_putname;
3917 error = security_path_symlink(&path, dentry, from->name);
3918 if (!error)
3919 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3920 done_path_create(&path, dentry);
3921 if (retry_estale(error, lookup_flags)) {
3922 lookup_flags |= LOOKUP_REVAL;
3923 goto retry;
3925 out_putname:
3926 putname(from);
3927 return error;
3930 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3932 return sys_symlinkat(oldname, AT_FDCWD, newname);
3936 * vfs_link - create a new link
3937 * @old_dentry: object to be linked
3938 * @dir: new parent
3939 * @new_dentry: where to create the new link
3940 * @delegated_inode: returns inode needing a delegation break
3942 * The caller must hold dir->i_mutex
3944 * If vfs_link discovers a delegation on the to-be-linked file in need
3945 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3946 * inode in delegated_inode. The caller should then break the delegation
3947 * and retry. Because breaking a delegation may take a long time, the
3948 * caller should drop the i_mutex before doing so.
3950 * Alternatively, a caller may pass NULL for delegated_inode. This may
3951 * be appropriate for callers that expect the underlying filesystem not
3952 * to be NFS exported.
3954 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3956 struct inode *inode = old_dentry->d_inode;
3957 unsigned max_links = dir->i_sb->s_max_links;
3958 int error;
3960 if (!inode)
3961 return -ENOENT;
3963 error = may_create(dir, new_dentry);
3964 if (error)
3965 return error;
3967 if (dir->i_sb != inode->i_sb)
3968 return -EXDEV;
3971 * A link to an append-only or immutable file cannot be created.
3973 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3974 return -EPERM;
3975 if (!dir->i_op->link)
3976 return -EPERM;
3977 if (S_ISDIR(inode->i_mode))
3978 return -EPERM;
3980 error = security_inode_link(old_dentry, dir, new_dentry);
3981 if (error)
3982 return error;
3984 mutex_lock(&inode->i_mutex);
3985 /* Make sure we don't allow creating hardlink to an unlinked file */
3986 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3987 error = -ENOENT;
3988 else if (max_links && inode->i_nlink >= max_links)
3989 error = -EMLINK;
3990 else {
3991 error = try_break_deleg(inode, delegated_inode);
3992 if (!error)
3993 error = dir->i_op->link(old_dentry, dir, new_dentry);
3996 if (!error && (inode->i_state & I_LINKABLE)) {
3997 spin_lock(&inode->i_lock);
3998 inode->i_state &= ~I_LINKABLE;
3999 spin_unlock(&inode->i_lock);
4001 mutex_unlock(&inode->i_mutex);
4002 if (!error)
4003 fsnotify_link(dir, inode, new_dentry);
4004 return error;
4006 EXPORT_SYMBOL(vfs_link);
4009 * Hardlinks are often used in delicate situations. We avoid
4010 * security-related surprises by not following symlinks on the
4011 * newname. --KAB
4013 * We don't follow them on the oldname either to be compatible
4014 * with linux 2.0, and to avoid hard-linking to directories
4015 * and other special files. --ADM
4017 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4018 int, newdfd, const char __user *, newname, int, flags)
4020 struct dentry *new_dentry;
4021 struct path old_path, new_path;
4022 struct inode *delegated_inode = NULL;
4023 int how = 0;
4024 int error;
4026 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4027 return -EINVAL;
4029 * To use null names we require CAP_DAC_READ_SEARCH
4030 * This ensures that not everyone will be able to create
4031 * handlink using the passed filedescriptor.
4033 if (flags & AT_EMPTY_PATH) {
4034 if (!capable(CAP_DAC_READ_SEARCH))
4035 return -ENOENT;
4036 how = LOOKUP_EMPTY;
4039 if (flags & AT_SYMLINK_FOLLOW)
4040 how |= LOOKUP_FOLLOW;
4041 retry:
4042 error = user_path_at(olddfd, oldname, how, &old_path);
4043 if (error)
4044 return error;
4046 new_dentry = user_path_create(newdfd, newname, &new_path,
4047 (how & LOOKUP_REVAL));
4048 error = PTR_ERR(new_dentry);
4049 if (IS_ERR(new_dentry))
4050 goto out;
4052 error = -EXDEV;
4053 if (old_path.mnt != new_path.mnt)
4054 goto out_dput;
4055 error = may_linkat(&old_path);
4056 if (unlikely(error))
4057 goto out_dput;
4058 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4059 if (error)
4060 goto out_dput;
4061 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4062 out_dput:
4063 done_path_create(&new_path, new_dentry);
4064 if (delegated_inode) {
4065 error = break_deleg_wait(&delegated_inode);
4066 if (!error) {
4067 path_put(&old_path);
4068 goto retry;
4071 if (retry_estale(error, how)) {
4072 path_put(&old_path);
4073 how |= LOOKUP_REVAL;
4074 goto retry;
4076 out:
4077 path_put(&old_path);
4079 return error;
4082 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4084 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4088 * vfs_rename - rename a filesystem object
4089 * @old_dir: parent of source
4090 * @old_dentry: source
4091 * @new_dir: parent of destination
4092 * @new_dentry: destination
4093 * @delegated_inode: returns an inode needing a delegation break
4094 * @flags: rename flags
4096 * The caller must hold multiple mutexes--see lock_rename()).
4098 * If vfs_rename discovers a delegation in need of breaking at either
4099 * the source or destination, it will return -EWOULDBLOCK and return a
4100 * reference to the inode in delegated_inode. The caller should then
4101 * break the delegation and retry. Because breaking a delegation may
4102 * take a long time, the caller should drop all locks before doing
4103 * so.
4105 * Alternatively, a caller may pass NULL for delegated_inode. This may
4106 * be appropriate for callers that expect the underlying filesystem not
4107 * to be NFS exported.
4109 * The worst of all namespace operations - renaming directory. "Perverted"
4110 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4111 * Problems:
4112 * a) we can get into loop creation.
4113 * b) race potential - two innocent renames can create a loop together.
4114 * That's where 4.4 screws up. Current fix: serialization on
4115 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4116 * story.
4117 * c) we have to lock _four_ objects - parents and victim (if it exists),
4118 * and source (if it is not a directory).
4119 * And that - after we got ->i_mutex on parents (until then we don't know
4120 * whether the target exists). Solution: try to be smart with locking
4121 * order for inodes. We rely on the fact that tree topology may change
4122 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4123 * move will be locked. Thus we can rank directories by the tree
4124 * (ancestors first) and rank all non-directories after them.
4125 * That works since everybody except rename does "lock parent, lookup,
4126 * lock child" and rename is under ->s_vfs_rename_mutex.
4127 * HOWEVER, it relies on the assumption that any object with ->lookup()
4128 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4129 * we'd better make sure that there's no link(2) for them.
4130 * d) conversion from fhandle to dentry may come in the wrong moment - when
4131 * we are removing the target. Solution: we will have to grab ->i_mutex
4132 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4133 * ->i_mutex on parents, which works but leads to some truly excessive
4134 * locking].
4136 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4137 struct inode *new_dir, struct dentry *new_dentry,
4138 struct inode **delegated_inode, unsigned int flags)
4140 int error;
4141 bool is_dir = d_is_dir(old_dentry);
4142 const unsigned char *old_name;
4143 struct inode *source = old_dentry->d_inode;
4144 struct inode *target = new_dentry->d_inode;
4145 bool new_is_dir = false;
4146 unsigned max_links = new_dir->i_sb->s_max_links;
4148 if (source == target)
4149 return 0;
4151 error = may_delete(old_dir, old_dentry, is_dir);
4152 if (error)
4153 return error;
4155 if (!target) {
4156 error = may_create(new_dir, new_dentry);
4157 } else {
4158 new_is_dir = d_is_dir(new_dentry);
4160 if (!(flags & RENAME_EXCHANGE))
4161 error = may_delete(new_dir, new_dentry, is_dir);
4162 else
4163 error = may_delete(new_dir, new_dentry, new_is_dir);
4165 if (error)
4166 return error;
4168 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4169 return -EPERM;
4171 if (flags && !old_dir->i_op->rename2)
4172 return -EINVAL;
4175 * If we are going to change the parent - check write permissions,
4176 * we'll need to flip '..'.
4178 if (new_dir != old_dir) {
4179 if (is_dir) {
4180 error = inode_permission(source, MAY_WRITE);
4181 if (error)
4182 return error;
4184 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4185 error = inode_permission(target, MAY_WRITE);
4186 if (error)
4187 return error;
4191 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4192 flags);
4193 if (error)
4194 return error;
4196 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4197 dget(new_dentry);
4198 if (!is_dir || (flags & RENAME_EXCHANGE))
4199 lock_two_nondirectories(source, target);
4200 else if (target)
4201 mutex_lock(&target->i_mutex);
4203 error = -EBUSY;
4204 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4205 goto out;
4207 if (max_links && new_dir != old_dir) {
4208 error = -EMLINK;
4209 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4210 goto out;
4211 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4212 old_dir->i_nlink >= max_links)
4213 goto out;
4215 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4216 shrink_dcache_parent(new_dentry);
4217 if (!is_dir) {
4218 error = try_break_deleg(source, delegated_inode);
4219 if (error)
4220 goto out;
4222 if (target && !new_is_dir) {
4223 error = try_break_deleg(target, delegated_inode);
4224 if (error)
4225 goto out;
4227 if (!old_dir->i_op->rename2) {
4228 error = old_dir->i_op->rename(old_dir, old_dentry,
4229 new_dir, new_dentry);
4230 } else {
4231 WARN_ON(old_dir->i_op->rename != NULL);
4232 error = old_dir->i_op->rename2(old_dir, old_dentry,
4233 new_dir, new_dentry, flags);
4235 if (error)
4236 goto out;
4238 if (!(flags & RENAME_EXCHANGE) && target) {
4239 if (is_dir)
4240 target->i_flags |= S_DEAD;
4241 dont_mount(new_dentry);
4242 detach_mounts(new_dentry);
4244 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4245 if (!(flags & RENAME_EXCHANGE))
4246 d_move(old_dentry, new_dentry);
4247 else
4248 d_exchange(old_dentry, new_dentry);
4250 out:
4251 if (!is_dir || (flags & RENAME_EXCHANGE))
4252 unlock_two_nondirectories(source, target);
4253 else if (target)
4254 mutex_unlock(&target->i_mutex);
4255 dput(new_dentry);
4256 if (!error) {
4257 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4258 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4259 if (flags & RENAME_EXCHANGE) {
4260 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4261 new_is_dir, NULL, new_dentry);
4264 fsnotify_oldname_free(old_name);
4266 return error;
4268 EXPORT_SYMBOL(vfs_rename);
4270 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4271 int, newdfd, const char __user *, newname, unsigned int, flags)
4273 struct dentry *old_dir, *new_dir;
4274 struct dentry *old_dentry, *new_dentry;
4275 struct dentry *trap;
4276 struct nameidata oldnd, newnd;
4277 struct inode *delegated_inode = NULL;
4278 struct filename *from;
4279 struct filename *to;
4280 unsigned int lookup_flags = 0;
4281 bool should_retry = false;
4282 int error;
4284 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4285 return -EINVAL;
4287 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4288 (flags & RENAME_EXCHANGE))
4289 return -EINVAL;
4291 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4292 return -EPERM;
4294 retry:
4295 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4296 if (IS_ERR(from)) {
4297 error = PTR_ERR(from);
4298 goto exit;
4301 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4302 if (IS_ERR(to)) {
4303 error = PTR_ERR(to);
4304 goto exit1;
4307 error = -EXDEV;
4308 if (oldnd.path.mnt != newnd.path.mnt)
4309 goto exit2;
4311 old_dir = oldnd.path.dentry;
4312 error = -EBUSY;
4313 if (oldnd.last_type != LAST_NORM)
4314 goto exit2;
4316 new_dir = newnd.path.dentry;
4317 if (flags & RENAME_NOREPLACE)
4318 error = -EEXIST;
4319 if (newnd.last_type != LAST_NORM)
4320 goto exit2;
4322 error = mnt_want_write(oldnd.path.mnt);
4323 if (error)
4324 goto exit2;
4326 oldnd.flags &= ~LOOKUP_PARENT;
4327 newnd.flags &= ~LOOKUP_PARENT;
4328 if (!(flags & RENAME_EXCHANGE))
4329 newnd.flags |= LOOKUP_RENAME_TARGET;
4331 retry_deleg:
4332 trap = lock_rename(new_dir, old_dir);
4334 old_dentry = lookup_hash(&oldnd);
4335 error = PTR_ERR(old_dentry);
4336 if (IS_ERR(old_dentry))
4337 goto exit3;
4338 /* source must exist */
4339 error = -ENOENT;
4340 if (d_is_negative(old_dentry))
4341 goto exit4;
4342 new_dentry = lookup_hash(&newnd);
4343 error = PTR_ERR(new_dentry);
4344 if (IS_ERR(new_dentry))
4345 goto exit4;
4346 error = -EEXIST;
4347 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4348 goto exit5;
4349 if (flags & RENAME_EXCHANGE) {
4350 error = -ENOENT;
4351 if (d_is_negative(new_dentry))
4352 goto exit5;
4354 if (!d_is_dir(new_dentry)) {
4355 error = -ENOTDIR;
4356 if (newnd.last.name[newnd.last.len])
4357 goto exit5;
4360 /* unless the source is a directory trailing slashes give -ENOTDIR */
4361 if (!d_is_dir(old_dentry)) {
4362 error = -ENOTDIR;
4363 if (oldnd.last.name[oldnd.last.len])
4364 goto exit5;
4365 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4366 goto exit5;
4368 /* source should not be ancestor of target */
4369 error = -EINVAL;
4370 if (old_dentry == trap)
4371 goto exit5;
4372 /* target should not be an ancestor of source */
4373 if (!(flags & RENAME_EXCHANGE))
4374 error = -ENOTEMPTY;
4375 if (new_dentry == trap)
4376 goto exit5;
4378 error = security_path_rename(&oldnd.path, old_dentry,
4379 &newnd.path, new_dentry, flags);
4380 if (error)
4381 goto exit5;
4382 error = vfs_rename(old_dir->d_inode, old_dentry,
4383 new_dir->d_inode, new_dentry,
4384 &delegated_inode, flags);
4385 exit5:
4386 dput(new_dentry);
4387 exit4:
4388 dput(old_dentry);
4389 exit3:
4390 unlock_rename(new_dir, old_dir);
4391 if (delegated_inode) {
4392 error = break_deleg_wait(&delegated_inode);
4393 if (!error)
4394 goto retry_deleg;
4396 mnt_drop_write(oldnd.path.mnt);
4397 exit2:
4398 if (retry_estale(error, lookup_flags))
4399 should_retry = true;
4400 path_put(&newnd.path);
4401 putname(to);
4402 exit1:
4403 path_put(&oldnd.path);
4404 putname(from);
4405 if (should_retry) {
4406 should_retry = false;
4407 lookup_flags |= LOOKUP_REVAL;
4408 goto retry;
4410 exit:
4411 return error;
4414 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4415 int, newdfd, const char __user *, newname)
4417 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4420 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4422 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4425 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4427 int error = may_create(dir, dentry);
4428 if (error)
4429 return error;
4431 if (!dir->i_op->mknod)
4432 return -EPERM;
4434 return dir->i_op->mknod(dir, dentry,
4435 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4437 EXPORT_SYMBOL(vfs_whiteout);
4439 int readlink_copy(char __user *buffer, int buflen, const char *link)
4441 int len = PTR_ERR(link);
4442 if (IS_ERR(link))
4443 goto out;
4445 len = strlen(link);
4446 if (len > (unsigned) buflen)
4447 len = buflen;
4448 if (copy_to_user(buffer, link, len))
4449 len = -EFAULT;
4450 out:
4451 return len;
4453 EXPORT_SYMBOL(readlink_copy);
4456 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4457 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4458 * using) it for any given inode is up to filesystem.
4460 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4462 struct nameidata nd;
4463 void *cookie;
4464 int res;
4466 nd.depth = 0;
4467 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4468 if (IS_ERR(cookie))
4469 return PTR_ERR(cookie);
4471 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4472 if (dentry->d_inode->i_op->put_link)
4473 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4474 return res;
4476 EXPORT_SYMBOL(generic_readlink);
4478 /* get the link contents into pagecache */
4479 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4481 char *kaddr;
4482 struct page *page;
4483 struct address_space *mapping = dentry->d_inode->i_mapping;
4484 page = read_mapping_page(mapping, 0, NULL);
4485 if (IS_ERR(page))
4486 return (char*)page;
4487 *ppage = page;
4488 kaddr = kmap(page);
4489 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4490 return kaddr;
4493 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4495 struct page *page = NULL;
4496 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4497 if (page) {
4498 kunmap(page);
4499 page_cache_release(page);
4501 return res;
4503 EXPORT_SYMBOL(page_readlink);
4505 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4507 struct page *page = NULL;
4508 nd_set_link(nd, page_getlink(dentry, &page));
4509 return page;
4511 EXPORT_SYMBOL(page_follow_link_light);
4513 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4515 struct page *page = cookie;
4517 if (page) {
4518 kunmap(page);
4519 page_cache_release(page);
4522 EXPORT_SYMBOL(page_put_link);
4525 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4527 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4529 struct address_space *mapping = inode->i_mapping;
4530 struct page *page;
4531 void *fsdata;
4532 int err;
4533 char *kaddr;
4534 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4535 if (nofs)
4536 flags |= AOP_FLAG_NOFS;
4538 retry:
4539 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4540 flags, &page, &fsdata);
4541 if (err)
4542 goto fail;
4544 kaddr = kmap_atomic(page);
4545 memcpy(kaddr, symname, len-1);
4546 kunmap_atomic(kaddr);
4548 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4549 page, fsdata);
4550 if (err < 0)
4551 goto fail;
4552 if (err < len-1)
4553 goto retry;
4555 mark_inode_dirty(inode);
4556 return 0;
4557 fail:
4558 return err;
4560 EXPORT_SYMBOL(__page_symlink);
4562 int page_symlink(struct inode *inode, const char *symname, int len)
4564 return __page_symlink(inode, symname, len,
4565 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4567 EXPORT_SYMBOL(page_symlink);
4569 const struct inode_operations page_symlink_inode_operations = {
4570 .readlink = generic_readlink,
4571 .follow_link = page_follow_link_light,
4572 .put_link = page_put_link,
4574 EXPORT_SYMBOL(page_symlink_inode_operations);