gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / namespace.c
blobf853aaf92ec95d1200f0d421e9b1a80de242147c
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
245 return mnt;
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 mnt_free_id(mnt);
253 out_free_cache:
254 kmem_cache_free(mnt_cache, mnt);
255 return NULL;
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
264 * a filesystem.
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
275 * r/w.
277 int __mnt_is_readonly(struct vfsmount *mnt)
279 if (mnt->mnt_flags & MNT_READONLY)
280 return 1;
281 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 return 1;
283 return 0;
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
287 static inline void mnt_inc_writers(struct mount *mnt)
289 #ifdef CONFIG_SMP
290 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 mnt->mnt_writers++;
293 #endif
296 static inline void mnt_dec_writers(struct mount *mnt)
298 #ifdef CONFIG_SMP
299 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 mnt->mnt_writers--;
302 #endif
305 static unsigned int mnt_get_writers(struct mount *mnt)
307 #ifdef CONFIG_SMP
308 unsigned int count = 0;
309 int cpu;
311 for_each_possible_cpu(cpu) {
312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 return count;
316 #else
317 return mnt->mnt_writers;
318 #endif
321 static int mnt_is_readonly(struct vfsmount *mnt)
323 if (mnt->mnt_sb->s_readonly_remount)
324 return 1;
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 smp_rmb();
327 return __mnt_is_readonly(mnt);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount *m)
348 struct mount *mnt = real_mount(m);
349 int ret = 0;
351 preempt_disable();
352 mnt_inc_writers(mnt);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
358 smp_mb();
359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 cpu_relax();
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
366 smp_rmb();
367 if (mnt_is_readonly(m)) {
368 mnt_dec_writers(mnt);
369 ret = -EROFS;
371 preempt_enable();
373 return ret;
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount *m)
387 int ret;
389 sb_start_write(m->mnt_sb);
390 ret = __mnt_want_write(m);
391 if (ret)
392 sb_end_write(m->mnt_sb);
393 return ret;
395 EXPORT_SYMBOL_GPL(mnt_want_write);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount *mnt)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt))
413 return -EROFS;
414 preempt_disable();
415 mnt_inc_writers(real_mount(mnt));
416 preempt_enable();
417 return 0;
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file *file)
430 if (!(file->f_mode & FMODE_WRITER))
431 return __mnt_want_write(file->f_path.mnt);
432 else
433 return mnt_clone_write(file->f_path.mnt);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file *file)
445 int ret;
447 sb_start_write(file->f_path.mnt->mnt_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file->f_path.mnt->mnt_sb);
451 return ret;
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount *mnt)
465 preempt_disable();
466 mnt_dec_writers(real_mount(mnt));
467 preempt_enable();
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount *mnt)
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
485 void __mnt_drop_write_file(struct file *file)
487 __mnt_drop_write(file->f_path.mnt);
490 void mnt_drop_write_file(struct file *file)
492 mnt_drop_write(file->f_path.mnt);
494 EXPORT_SYMBOL(mnt_drop_write_file);
496 static int mnt_make_readonly(struct mount *mnt)
498 int ret = 0;
500 lock_mount_hash();
501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
506 smp_mb();
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt) > 0)
525 ret = -EBUSY;
526 else
527 mnt->mnt.mnt_flags |= MNT_READONLY;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
532 smp_wmb();
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 unlock_mount_hash();
535 return ret;
538 static void __mnt_unmake_readonly(struct mount *mnt)
540 lock_mount_hash();
541 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 unlock_mount_hash();
545 int sb_prepare_remount_readonly(struct super_block *sb)
547 struct mount *mnt;
548 int err = 0;
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb->s_remove_count))
552 return -EBUSY;
554 lock_mount_hash();
555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 smp_mb();
559 if (mnt_get_writers(mnt) > 0) {
560 err = -EBUSY;
561 break;
565 if (!err && atomic_long_read(&sb->s_remove_count))
566 err = -EBUSY;
568 if (!err) {
569 sb->s_readonly_remount = 1;
570 smp_wmb();
572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
576 unlock_mount_hash();
578 return err;
581 static void free_vfsmnt(struct mount *mnt)
583 kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 free_percpu(mnt->mnt_pcp);
586 #endif
587 kmem_cache_free(mnt_cache, mnt);
590 static void delayed_free_vfsmnt(struct rcu_head *head)
592 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598 struct mount *mnt;
599 if (read_seqretry(&mount_lock, seq))
600 return false;
601 if (bastard == NULL)
602 return true;
603 mnt = real_mount(bastard);
604 mnt_add_count(mnt, 1);
605 if (likely(!read_seqretry(&mount_lock, seq)))
606 return true;
607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 mnt_add_count(mnt, -1);
609 return false;
611 rcu_read_unlock();
612 mntput(bastard);
613 rcu_read_lock();
614 return false;
618 * find the first mount at @dentry on vfsmount @mnt.
619 * call under rcu_read_lock()
621 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
623 struct hlist_head *head = m_hash(mnt, dentry);
624 struct mount *p;
626 hlist_for_each_entry_rcu(p, head, mnt_hash)
627 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
628 return p;
629 return NULL;
633 * find the last mount at @dentry on vfsmount @mnt.
634 * mount_lock must be held.
636 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
638 struct mount *p, *res = NULL;
639 p = __lookup_mnt(mnt, dentry);
640 if (!p)
641 goto out;
642 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
643 res = p;
644 hlist_for_each_entry_continue(p, mnt_hash) {
645 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
646 break;
647 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
648 res = p;
650 out:
651 return res;
655 * lookup_mnt - Return the first child mount mounted at path
657 * "First" means first mounted chronologically. If you create the
658 * following mounts:
660 * mount /dev/sda1 /mnt
661 * mount /dev/sda2 /mnt
662 * mount /dev/sda3 /mnt
664 * Then lookup_mnt() on the base /mnt dentry in the root mount will
665 * return successively the root dentry and vfsmount of /dev/sda1, then
666 * /dev/sda2, then /dev/sda3, then NULL.
668 * lookup_mnt takes a reference to the found vfsmount.
670 struct vfsmount *lookup_mnt(struct path *path)
672 struct mount *child_mnt;
673 struct vfsmount *m;
674 unsigned seq;
676 rcu_read_lock();
677 do {
678 seq = read_seqbegin(&mount_lock);
679 child_mnt = __lookup_mnt(path->mnt, path->dentry);
680 m = child_mnt ? &child_mnt->mnt : NULL;
681 } while (!legitimize_mnt(m, seq));
682 rcu_read_unlock();
683 return m;
687 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
688 * current mount namespace.
690 * The common case is dentries are not mountpoints at all and that
691 * test is handled inline. For the slow case when we are actually
692 * dealing with a mountpoint of some kind, walk through all of the
693 * mounts in the current mount namespace and test to see if the dentry
694 * is a mountpoint.
696 * The mount_hashtable is not usable in the context because we
697 * need to identify all mounts that may be in the current mount
698 * namespace not just a mount that happens to have some specified
699 * parent mount.
701 bool __is_local_mountpoint(struct dentry *dentry)
703 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
704 struct mount *mnt;
705 bool is_covered = false;
707 if (!d_mountpoint(dentry))
708 goto out;
710 down_read(&namespace_sem);
711 list_for_each_entry(mnt, &ns->list, mnt_list) {
712 is_covered = (mnt->mnt_mountpoint == dentry);
713 if (is_covered)
714 break;
716 up_read(&namespace_sem);
717 out:
718 return is_covered;
721 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
723 struct hlist_head *chain = mp_hash(dentry);
724 struct mountpoint *mp;
726 hlist_for_each_entry(mp, chain, m_hash) {
727 if (mp->m_dentry == dentry) {
728 /* might be worth a WARN_ON() */
729 if (d_unlinked(dentry))
730 return ERR_PTR(-ENOENT);
731 mp->m_count++;
732 return mp;
735 return NULL;
738 static struct mountpoint *new_mountpoint(struct dentry *dentry)
740 struct hlist_head *chain = mp_hash(dentry);
741 struct mountpoint *mp;
742 int ret;
744 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
745 if (!mp)
746 return ERR_PTR(-ENOMEM);
748 ret = d_set_mounted(dentry);
749 if (ret) {
750 kfree(mp);
751 return ERR_PTR(ret);
754 mp->m_dentry = dentry;
755 mp->m_count = 1;
756 hlist_add_head(&mp->m_hash, chain);
757 INIT_HLIST_HEAD(&mp->m_list);
758 return mp;
761 static void put_mountpoint(struct mountpoint *mp)
763 if (!--mp->m_count) {
764 struct dentry *dentry = mp->m_dentry;
765 BUG_ON(!hlist_empty(&mp->m_list));
766 spin_lock(&dentry->d_lock);
767 dentry->d_flags &= ~DCACHE_MOUNTED;
768 spin_unlock(&dentry->d_lock);
769 hlist_del(&mp->m_hash);
770 kfree(mp);
774 static inline int check_mnt(struct mount *mnt)
776 return mnt->mnt_ns == current->nsproxy->mnt_ns;
780 * vfsmount lock must be held for write
782 static void touch_mnt_namespace(struct mnt_namespace *ns)
784 if (ns) {
785 ns->event = ++event;
786 wake_up_interruptible(&ns->poll);
791 * vfsmount lock must be held for write
793 static void __touch_mnt_namespace(struct mnt_namespace *ns)
795 if (ns && ns->event != event) {
796 ns->event = event;
797 wake_up_interruptible(&ns->poll);
802 * vfsmount lock must be held for write
804 static void unhash_mnt(struct mount *mnt)
806 mnt->mnt_parent = mnt;
807 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
808 list_del_init(&mnt->mnt_child);
809 hlist_del_init_rcu(&mnt->mnt_hash);
810 hlist_del_init(&mnt->mnt_mp_list);
811 put_mountpoint(mnt->mnt_mp);
812 mnt->mnt_mp = NULL;
816 * vfsmount lock must be held for write
818 static void detach_mnt(struct mount *mnt, struct path *old_path)
820 old_path->dentry = mnt->mnt_mountpoint;
821 old_path->mnt = &mnt->mnt_parent->mnt;
822 unhash_mnt(mnt);
826 * vfsmount lock must be held for write
828 static void umount_mnt(struct mount *mnt)
830 /* old mountpoint will be dropped when we can do that */
831 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
832 unhash_mnt(mnt);
836 * vfsmount lock must be held for write
838 void mnt_set_mountpoint(struct mount *mnt,
839 struct mountpoint *mp,
840 struct mount *child_mnt)
842 mp->m_count++;
843 mnt_add_count(mnt, 1); /* essentially, that's mntget */
844 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
845 child_mnt->mnt_parent = mnt;
846 child_mnt->mnt_mp = mp;
847 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
851 * vfsmount lock must be held for write
853 static void attach_mnt(struct mount *mnt,
854 struct mount *parent,
855 struct mountpoint *mp)
857 mnt_set_mountpoint(parent, mp, mnt);
858 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
859 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
862 static void attach_shadowed(struct mount *mnt,
863 struct mount *parent,
864 struct mount *shadows)
866 if (shadows) {
867 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
868 list_add(&mnt->mnt_child, &shadows->mnt_child);
869 } else {
870 hlist_add_head_rcu(&mnt->mnt_hash,
871 m_hash(&parent->mnt, mnt->mnt_mountpoint));
872 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
877 * vfsmount lock must be held for write
879 static void commit_tree(struct mount *mnt, struct mount *shadows)
881 struct mount *parent = mnt->mnt_parent;
882 struct mount *m;
883 LIST_HEAD(head);
884 struct mnt_namespace *n = parent->mnt_ns;
886 BUG_ON(parent == mnt);
888 list_add_tail(&head, &mnt->mnt_list);
889 list_for_each_entry(m, &head, mnt_list)
890 m->mnt_ns = n;
892 list_splice(&head, n->list.prev);
894 n->mounts += n->pending_mounts;
895 n->pending_mounts = 0;
897 attach_shadowed(mnt, parent, shadows);
898 touch_mnt_namespace(n);
901 static struct mount *next_mnt(struct mount *p, struct mount *root)
903 struct list_head *next = p->mnt_mounts.next;
904 if (next == &p->mnt_mounts) {
905 while (1) {
906 if (p == root)
907 return NULL;
908 next = p->mnt_child.next;
909 if (next != &p->mnt_parent->mnt_mounts)
910 break;
911 p = p->mnt_parent;
914 return list_entry(next, struct mount, mnt_child);
917 static struct mount *skip_mnt_tree(struct mount *p)
919 struct list_head *prev = p->mnt_mounts.prev;
920 while (prev != &p->mnt_mounts) {
921 p = list_entry(prev, struct mount, mnt_child);
922 prev = p->mnt_mounts.prev;
924 return p;
927 struct vfsmount *
928 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
930 struct mount *mnt;
931 struct dentry *root;
933 if (!type)
934 return ERR_PTR(-ENODEV);
936 mnt = alloc_vfsmnt(name);
937 if (!mnt)
938 return ERR_PTR(-ENOMEM);
940 if (flags & MS_KERNMOUNT)
941 mnt->mnt.mnt_flags = MNT_INTERNAL;
943 root = mount_fs(type, flags, name, data);
944 if (IS_ERR(root)) {
945 mnt_free_id(mnt);
946 free_vfsmnt(mnt);
947 return ERR_CAST(root);
950 mnt->mnt.mnt_root = root;
951 mnt->mnt.mnt_sb = root->d_sb;
952 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
953 mnt->mnt_parent = mnt;
954 lock_mount_hash();
955 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
956 unlock_mount_hash();
957 return &mnt->mnt;
959 EXPORT_SYMBOL_GPL(vfs_kern_mount);
961 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
962 int flag)
964 struct super_block *sb = old->mnt.mnt_sb;
965 struct mount *mnt;
966 int err;
968 mnt = alloc_vfsmnt(old->mnt_devname);
969 if (!mnt)
970 return ERR_PTR(-ENOMEM);
972 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
973 mnt->mnt_group_id = 0; /* not a peer of original */
974 else
975 mnt->mnt_group_id = old->mnt_group_id;
977 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
978 err = mnt_alloc_group_id(mnt);
979 if (err)
980 goto out_free;
983 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
984 /* Don't allow unprivileged users to change mount flags */
985 if (flag & CL_UNPRIVILEGED) {
986 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
988 if (mnt->mnt.mnt_flags & MNT_READONLY)
989 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
991 if (mnt->mnt.mnt_flags & MNT_NODEV)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
994 if (mnt->mnt.mnt_flags & MNT_NOSUID)
995 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
997 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
998 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1001 /* Don't allow unprivileged users to reveal what is under a mount */
1002 if ((flag & CL_UNPRIVILEGED) &&
1003 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1004 mnt->mnt.mnt_flags |= MNT_LOCKED;
1006 atomic_inc(&sb->s_active);
1007 mnt->mnt.mnt_sb = sb;
1008 mnt->mnt.mnt_root = dget(root);
1009 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1010 mnt->mnt_parent = mnt;
1011 lock_mount_hash();
1012 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1013 unlock_mount_hash();
1015 if ((flag & CL_SLAVE) ||
1016 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1017 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1018 mnt->mnt_master = old;
1019 CLEAR_MNT_SHARED(mnt);
1020 } else if (!(flag & CL_PRIVATE)) {
1021 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1022 list_add(&mnt->mnt_share, &old->mnt_share);
1023 if (IS_MNT_SLAVE(old))
1024 list_add(&mnt->mnt_slave, &old->mnt_slave);
1025 mnt->mnt_master = old->mnt_master;
1027 if (flag & CL_MAKE_SHARED)
1028 set_mnt_shared(mnt);
1030 /* stick the duplicate mount on the same expiry list
1031 * as the original if that was on one */
1032 if (flag & CL_EXPIRE) {
1033 if (!list_empty(&old->mnt_expire))
1034 list_add(&mnt->mnt_expire, &old->mnt_expire);
1037 return mnt;
1039 out_free:
1040 mnt_free_id(mnt);
1041 free_vfsmnt(mnt);
1042 return ERR_PTR(err);
1045 static void cleanup_mnt(struct mount *mnt)
1048 * This probably indicates that somebody messed
1049 * up a mnt_want/drop_write() pair. If this
1050 * happens, the filesystem was probably unable
1051 * to make r/w->r/o transitions.
1054 * The locking used to deal with mnt_count decrement provides barriers,
1055 * so mnt_get_writers() below is safe.
1057 WARN_ON(mnt_get_writers(mnt));
1058 if (unlikely(mnt->mnt_pins.first))
1059 mnt_pin_kill(mnt);
1060 fsnotify_vfsmount_delete(&mnt->mnt);
1061 dput(mnt->mnt.mnt_root);
1062 deactivate_super(mnt->mnt.mnt_sb);
1063 mnt_free_id(mnt);
1064 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1067 static void __cleanup_mnt(struct rcu_head *head)
1069 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1072 static LLIST_HEAD(delayed_mntput_list);
1073 static void delayed_mntput(struct work_struct *unused)
1075 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1076 struct llist_node *next;
1078 for (; node; node = next) {
1079 next = llist_next(node);
1080 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1083 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1085 static void mntput_no_expire(struct mount *mnt)
1087 rcu_read_lock();
1088 mnt_add_count(mnt, -1);
1089 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1090 rcu_read_unlock();
1091 return;
1093 lock_mount_hash();
1094 if (mnt_get_count(mnt)) {
1095 rcu_read_unlock();
1096 unlock_mount_hash();
1097 return;
1099 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1100 rcu_read_unlock();
1101 unlock_mount_hash();
1102 return;
1104 mnt->mnt.mnt_flags |= MNT_DOOMED;
1105 rcu_read_unlock();
1107 list_del(&mnt->mnt_instance);
1109 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1110 struct mount *p, *tmp;
1111 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1112 umount_mnt(p);
1115 unlock_mount_hash();
1117 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1118 struct task_struct *task = current;
1119 if (likely(!(task->flags & PF_KTHREAD))) {
1120 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1121 if (!task_work_add(task, &mnt->mnt_rcu, true))
1122 return;
1124 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1125 schedule_delayed_work(&delayed_mntput_work, 1);
1126 return;
1128 cleanup_mnt(mnt);
1131 void mntput(struct vfsmount *mnt)
1133 if (mnt) {
1134 struct mount *m = real_mount(mnt);
1135 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1136 if (unlikely(m->mnt_expiry_mark))
1137 m->mnt_expiry_mark = 0;
1138 mntput_no_expire(m);
1141 EXPORT_SYMBOL(mntput);
1143 struct vfsmount *mntget(struct vfsmount *mnt)
1145 if (mnt)
1146 mnt_add_count(real_mount(mnt), 1);
1147 return mnt;
1149 EXPORT_SYMBOL(mntget);
1151 struct vfsmount *mnt_clone_internal(struct path *path)
1153 struct mount *p;
1154 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1155 if (IS_ERR(p))
1156 return ERR_CAST(p);
1157 p->mnt.mnt_flags |= MNT_INTERNAL;
1158 return &p->mnt;
1161 static inline void mangle(struct seq_file *m, const char *s)
1163 seq_escape(m, s, " \t\n\\");
1167 * Simple .show_options callback for filesystems which don't want to
1168 * implement more complex mount option showing.
1170 * See also save_mount_options().
1172 int generic_show_options(struct seq_file *m, struct dentry *root)
1174 const char *options;
1176 rcu_read_lock();
1177 options = rcu_dereference(root->d_sb->s_options);
1179 if (options != NULL && options[0]) {
1180 seq_putc(m, ',');
1181 mangle(m, options);
1183 rcu_read_unlock();
1185 return 0;
1187 EXPORT_SYMBOL(generic_show_options);
1190 * If filesystem uses generic_show_options(), this function should be
1191 * called from the fill_super() callback.
1193 * The .remount_fs callback usually needs to be handled in a special
1194 * way, to make sure, that previous options are not overwritten if the
1195 * remount fails.
1197 * Also note, that if the filesystem's .remount_fs function doesn't
1198 * reset all options to their default value, but changes only newly
1199 * given options, then the displayed options will not reflect reality
1200 * any more.
1202 void save_mount_options(struct super_block *sb, char *options)
1204 BUG_ON(sb->s_options);
1205 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1207 EXPORT_SYMBOL(save_mount_options);
1209 void replace_mount_options(struct super_block *sb, char *options)
1211 char *old = sb->s_options;
1212 rcu_assign_pointer(sb->s_options, options);
1213 if (old) {
1214 synchronize_rcu();
1215 kfree(old);
1218 EXPORT_SYMBOL(replace_mount_options);
1220 #ifdef CONFIG_PROC_FS
1221 /* iterator; we want it to have access to namespace_sem, thus here... */
1222 static void *m_start(struct seq_file *m, loff_t *pos)
1224 struct proc_mounts *p = proc_mounts(m);
1226 down_read(&namespace_sem);
1227 if (p->cached_event == p->ns->event) {
1228 void *v = p->cached_mount;
1229 if (*pos == p->cached_index)
1230 return v;
1231 if (*pos == p->cached_index + 1) {
1232 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1233 return p->cached_mount = v;
1237 p->cached_event = p->ns->event;
1238 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1239 p->cached_index = *pos;
1240 return p->cached_mount;
1243 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1245 struct proc_mounts *p = proc_mounts(m);
1247 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1248 p->cached_index = *pos;
1249 return p->cached_mount;
1252 static void m_stop(struct seq_file *m, void *v)
1254 up_read(&namespace_sem);
1257 static int m_show(struct seq_file *m, void *v)
1259 struct proc_mounts *p = proc_mounts(m);
1260 struct mount *r = list_entry(v, struct mount, mnt_list);
1261 return p->show(m, &r->mnt);
1264 const struct seq_operations mounts_op = {
1265 .start = m_start,
1266 .next = m_next,
1267 .stop = m_stop,
1268 .show = m_show,
1270 #endif /* CONFIG_PROC_FS */
1273 * may_umount_tree - check if a mount tree is busy
1274 * @mnt: root of mount tree
1276 * This is called to check if a tree of mounts has any
1277 * open files, pwds, chroots or sub mounts that are
1278 * busy.
1280 int may_umount_tree(struct vfsmount *m)
1282 struct mount *mnt = real_mount(m);
1283 int actual_refs = 0;
1284 int minimum_refs = 0;
1285 struct mount *p;
1286 BUG_ON(!m);
1288 /* write lock needed for mnt_get_count */
1289 lock_mount_hash();
1290 for (p = mnt; p; p = next_mnt(p, mnt)) {
1291 actual_refs += mnt_get_count(p);
1292 minimum_refs += 2;
1294 unlock_mount_hash();
1296 if (actual_refs > minimum_refs)
1297 return 0;
1299 return 1;
1302 EXPORT_SYMBOL(may_umount_tree);
1305 * may_umount - check if a mount point is busy
1306 * @mnt: root of mount
1308 * This is called to check if a mount point has any
1309 * open files, pwds, chroots or sub mounts. If the
1310 * mount has sub mounts this will return busy
1311 * regardless of whether the sub mounts are busy.
1313 * Doesn't take quota and stuff into account. IOW, in some cases it will
1314 * give false negatives. The main reason why it's here is that we need
1315 * a non-destructive way to look for easily umountable filesystems.
1317 int may_umount(struct vfsmount *mnt)
1319 int ret = 1;
1320 down_read(&namespace_sem);
1321 lock_mount_hash();
1322 if (propagate_mount_busy(real_mount(mnt), 2))
1323 ret = 0;
1324 unlock_mount_hash();
1325 up_read(&namespace_sem);
1326 return ret;
1329 EXPORT_SYMBOL(may_umount);
1331 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1333 static void namespace_unlock(void)
1335 struct hlist_head head;
1337 hlist_move_list(&unmounted, &head);
1339 up_write(&namespace_sem);
1341 if (likely(hlist_empty(&head)))
1342 return;
1344 synchronize_rcu();
1346 group_pin_kill(&head);
1349 static inline void namespace_lock(void)
1351 down_write(&namespace_sem);
1354 enum umount_tree_flags {
1355 UMOUNT_SYNC = 1,
1356 UMOUNT_PROPAGATE = 2,
1357 UMOUNT_CONNECTED = 4,
1360 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1362 /* Leaving mounts connected is only valid for lazy umounts */
1363 if (how & UMOUNT_SYNC)
1364 return true;
1366 /* A mount without a parent has nothing to be connected to */
1367 if (!mnt_has_parent(mnt))
1368 return true;
1370 /* Because the reference counting rules change when mounts are
1371 * unmounted and connected, umounted mounts may not be
1372 * connected to mounted mounts.
1374 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1375 return true;
1377 /* Has it been requested that the mount remain connected? */
1378 if (how & UMOUNT_CONNECTED)
1379 return false;
1381 /* Is the mount locked such that it needs to remain connected? */
1382 if (IS_MNT_LOCKED(mnt))
1383 return false;
1385 /* By default disconnect the mount */
1386 return true;
1390 * mount_lock must be held
1391 * namespace_sem must be held for write
1393 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1395 LIST_HEAD(tmp_list);
1396 struct mount *p;
1398 if (how & UMOUNT_PROPAGATE)
1399 propagate_mount_unlock(mnt);
1401 /* Gather the mounts to umount */
1402 for (p = mnt; p; p = next_mnt(p, mnt)) {
1403 p->mnt.mnt_flags |= MNT_UMOUNT;
1404 list_move(&p->mnt_list, &tmp_list);
1407 /* Hide the mounts from mnt_mounts */
1408 list_for_each_entry(p, &tmp_list, mnt_list) {
1409 list_del_init(&p->mnt_child);
1412 /* Add propogated mounts to the tmp_list */
1413 if (how & UMOUNT_PROPAGATE)
1414 propagate_umount(&tmp_list);
1416 while (!list_empty(&tmp_list)) {
1417 struct mnt_namespace *ns;
1418 bool disconnect;
1419 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1420 list_del_init(&p->mnt_expire);
1421 list_del_init(&p->mnt_list);
1422 ns = p->mnt_ns;
1423 if (ns) {
1424 ns->mounts--;
1425 __touch_mnt_namespace(ns);
1427 p->mnt_ns = NULL;
1428 if (how & UMOUNT_SYNC)
1429 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1431 disconnect = disconnect_mount(p, how);
1433 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1434 disconnect ? &unmounted : NULL);
1435 if (mnt_has_parent(p)) {
1436 mnt_add_count(p->mnt_parent, -1);
1437 if (!disconnect) {
1438 /* Don't forget about p */
1439 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1440 } else {
1441 umount_mnt(p);
1444 change_mnt_propagation(p, MS_PRIVATE);
1448 static void shrink_submounts(struct mount *mnt);
1450 static int do_umount(struct mount *mnt, int flags)
1452 struct super_block *sb = mnt->mnt.mnt_sb;
1453 int retval;
1455 retval = security_sb_umount(&mnt->mnt, flags);
1456 if (retval)
1457 return retval;
1460 * Allow userspace to request a mountpoint be expired rather than
1461 * unmounting unconditionally. Unmount only happens if:
1462 * (1) the mark is already set (the mark is cleared by mntput())
1463 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1465 if (flags & MNT_EXPIRE) {
1466 if (&mnt->mnt == current->fs->root.mnt ||
1467 flags & (MNT_FORCE | MNT_DETACH))
1468 return -EINVAL;
1471 * probably don't strictly need the lock here if we examined
1472 * all race cases, but it's a slowpath.
1474 lock_mount_hash();
1475 if (mnt_get_count(mnt) != 2) {
1476 unlock_mount_hash();
1477 return -EBUSY;
1479 unlock_mount_hash();
1481 if (!xchg(&mnt->mnt_expiry_mark, 1))
1482 return -EAGAIN;
1486 * If we may have to abort operations to get out of this
1487 * mount, and they will themselves hold resources we must
1488 * allow the fs to do things. In the Unix tradition of
1489 * 'Gee thats tricky lets do it in userspace' the umount_begin
1490 * might fail to complete on the first run through as other tasks
1491 * must return, and the like. Thats for the mount program to worry
1492 * about for the moment.
1495 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1496 sb->s_op->umount_begin(sb);
1500 * No sense to grab the lock for this test, but test itself looks
1501 * somewhat bogus. Suggestions for better replacement?
1502 * Ho-hum... In principle, we might treat that as umount + switch
1503 * to rootfs. GC would eventually take care of the old vfsmount.
1504 * Actually it makes sense, especially if rootfs would contain a
1505 * /reboot - static binary that would close all descriptors and
1506 * call reboot(9). Then init(8) could umount root and exec /reboot.
1508 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1510 * Special case for "unmounting" root ...
1511 * we just try to remount it readonly.
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1515 down_write(&sb->s_umount);
1516 if (!(sb->s_flags & MS_RDONLY))
1517 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1518 up_write(&sb->s_umount);
1519 return retval;
1522 namespace_lock();
1523 lock_mount_hash();
1524 event++;
1526 if (flags & MNT_DETACH) {
1527 if (!list_empty(&mnt->mnt_list))
1528 umount_tree(mnt, UMOUNT_PROPAGATE);
1529 retval = 0;
1530 } else {
1531 shrink_submounts(mnt);
1532 retval = -EBUSY;
1533 if (!propagate_mount_busy(mnt, 2)) {
1534 if (!list_empty(&mnt->mnt_list))
1535 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1536 retval = 0;
1539 unlock_mount_hash();
1540 namespace_unlock();
1541 return retval;
1545 * __detach_mounts - lazily unmount all mounts on the specified dentry
1547 * During unlink, rmdir, and d_drop it is possible to loose the path
1548 * to an existing mountpoint, and wind up leaking the mount.
1549 * detach_mounts allows lazily unmounting those mounts instead of
1550 * leaking them.
1552 * The caller may hold dentry->d_inode->i_mutex.
1554 void __detach_mounts(struct dentry *dentry)
1556 struct mountpoint *mp;
1557 struct mount *mnt;
1559 namespace_lock();
1560 mp = lookup_mountpoint(dentry);
1561 if (IS_ERR_OR_NULL(mp))
1562 goto out_unlock;
1564 lock_mount_hash();
1565 event++;
1566 while (!hlist_empty(&mp->m_list)) {
1567 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1568 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1569 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1570 umount_mnt(mnt);
1572 else umount_tree(mnt, UMOUNT_CONNECTED);
1574 unlock_mount_hash();
1575 put_mountpoint(mp);
1576 out_unlock:
1577 namespace_unlock();
1581 * Is the caller allowed to modify his namespace?
1583 static inline bool may_mount(void)
1585 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1589 * Now umount can handle mount points as well as block devices.
1590 * This is important for filesystems which use unnamed block devices.
1592 * We now support a flag for forced unmount like the other 'big iron'
1593 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1596 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1598 struct path path;
1599 struct mount *mnt;
1600 int retval;
1601 int lookup_flags = 0;
1603 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1604 return -EINVAL;
1606 if (!may_mount())
1607 return -EPERM;
1609 if (!(flags & UMOUNT_NOFOLLOW))
1610 lookup_flags |= LOOKUP_FOLLOW;
1612 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1613 if (retval)
1614 goto out;
1615 mnt = real_mount(path.mnt);
1616 retval = -EINVAL;
1617 if (path.dentry != path.mnt->mnt_root)
1618 goto dput_and_out;
1619 if (!check_mnt(mnt))
1620 goto dput_and_out;
1621 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1622 goto dput_and_out;
1623 retval = -EPERM;
1624 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1625 goto dput_and_out;
1627 retval = do_umount(mnt, flags);
1628 dput_and_out:
1629 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1630 dput(path.dentry);
1631 mntput_no_expire(mnt);
1632 out:
1633 return retval;
1636 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1639 * The 2.0 compatible umount. No flags.
1641 SYSCALL_DEFINE1(oldumount, char __user *, name)
1643 return sys_umount(name, 0);
1646 #endif
1648 static bool is_mnt_ns_file(struct dentry *dentry)
1650 /* Is this a proxy for a mount namespace? */
1651 return dentry->d_op == &ns_dentry_operations &&
1652 dentry->d_fsdata == &mntns_operations;
1655 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1657 return container_of(ns, struct mnt_namespace, ns);
1660 static bool mnt_ns_loop(struct dentry *dentry)
1662 /* Could bind mounting the mount namespace inode cause a
1663 * mount namespace loop?
1665 struct mnt_namespace *mnt_ns;
1666 if (!is_mnt_ns_file(dentry))
1667 return false;
1669 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1670 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1673 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1674 int flag)
1676 struct mount *res, *p, *q, *r, *parent;
1678 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1679 return ERR_PTR(-EINVAL);
1681 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1682 return ERR_PTR(-EINVAL);
1684 res = q = clone_mnt(mnt, dentry, flag);
1685 if (IS_ERR(q))
1686 return q;
1688 q->mnt_mountpoint = mnt->mnt_mountpoint;
1690 p = mnt;
1691 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1692 struct mount *s;
1693 if (!is_subdir(r->mnt_mountpoint, dentry))
1694 continue;
1696 for (s = r; s; s = next_mnt(s, r)) {
1697 struct mount *t = NULL;
1698 if (!(flag & CL_COPY_UNBINDABLE) &&
1699 IS_MNT_UNBINDABLE(s)) {
1700 s = skip_mnt_tree(s);
1701 continue;
1703 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1704 is_mnt_ns_file(s->mnt.mnt_root)) {
1705 s = skip_mnt_tree(s);
1706 continue;
1708 while (p != s->mnt_parent) {
1709 p = p->mnt_parent;
1710 q = q->mnt_parent;
1712 p = s;
1713 parent = q;
1714 q = clone_mnt(p, p->mnt.mnt_root, flag);
1715 if (IS_ERR(q))
1716 goto out;
1717 lock_mount_hash();
1718 list_add_tail(&q->mnt_list, &res->mnt_list);
1719 mnt_set_mountpoint(parent, p->mnt_mp, q);
1720 if (!list_empty(&parent->mnt_mounts)) {
1721 t = list_last_entry(&parent->mnt_mounts,
1722 struct mount, mnt_child);
1723 if (t->mnt_mp != p->mnt_mp)
1724 t = NULL;
1726 attach_shadowed(q, parent, t);
1727 unlock_mount_hash();
1730 return res;
1731 out:
1732 if (res) {
1733 lock_mount_hash();
1734 umount_tree(res, UMOUNT_SYNC);
1735 unlock_mount_hash();
1737 return q;
1740 /* Caller should check returned pointer for errors */
1742 struct vfsmount *collect_mounts(struct path *path)
1744 struct mount *tree;
1745 namespace_lock();
1746 if (!check_mnt(real_mount(path->mnt)))
1747 tree = ERR_PTR(-EINVAL);
1748 else
1749 tree = copy_tree(real_mount(path->mnt), path->dentry,
1750 CL_COPY_ALL | CL_PRIVATE);
1751 namespace_unlock();
1752 if (IS_ERR(tree))
1753 return ERR_CAST(tree);
1754 return &tree->mnt;
1757 void drop_collected_mounts(struct vfsmount *mnt)
1759 namespace_lock();
1760 lock_mount_hash();
1761 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1762 unlock_mount_hash();
1763 namespace_unlock();
1767 * clone_private_mount - create a private clone of a path
1769 * This creates a new vfsmount, which will be the clone of @path. The new will
1770 * not be attached anywhere in the namespace and will be private (i.e. changes
1771 * to the originating mount won't be propagated into this).
1773 * Release with mntput().
1775 struct vfsmount *clone_private_mount(struct path *path)
1777 struct mount *old_mnt = real_mount(path->mnt);
1778 struct mount *new_mnt;
1780 if (IS_MNT_UNBINDABLE(old_mnt))
1781 return ERR_PTR(-EINVAL);
1783 down_read(&namespace_sem);
1784 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1785 up_read(&namespace_sem);
1786 if (IS_ERR(new_mnt))
1787 return ERR_CAST(new_mnt);
1789 return &new_mnt->mnt;
1791 EXPORT_SYMBOL_GPL(clone_private_mount);
1793 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1794 struct vfsmount *root)
1796 struct mount *mnt;
1797 int res = f(root, arg);
1798 if (res)
1799 return res;
1800 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1801 res = f(&mnt->mnt, arg);
1802 if (res)
1803 return res;
1805 return 0;
1808 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1810 struct mount *p;
1812 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1813 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1814 mnt_release_group_id(p);
1818 static int invent_group_ids(struct mount *mnt, bool recurse)
1820 struct mount *p;
1822 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1823 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1824 int err = mnt_alloc_group_id(p);
1825 if (err) {
1826 cleanup_group_ids(mnt, p);
1827 return err;
1832 return 0;
1835 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1837 unsigned int max = READ_ONCE(sysctl_mount_max);
1838 unsigned int mounts = 0, old, pending, sum;
1839 struct mount *p;
1841 for (p = mnt; p; p = next_mnt(p, mnt))
1842 mounts++;
1844 old = ns->mounts;
1845 pending = ns->pending_mounts;
1846 sum = old + pending;
1847 if ((old > sum) ||
1848 (pending > sum) ||
1849 (max < sum) ||
1850 (mounts > (max - sum)))
1851 return -ENOSPC;
1853 ns->pending_mounts = pending + mounts;
1854 return 0;
1858 * @source_mnt : mount tree to be attached
1859 * @nd : place the mount tree @source_mnt is attached
1860 * @parent_nd : if non-null, detach the source_mnt from its parent and
1861 * store the parent mount and mountpoint dentry.
1862 * (done when source_mnt is moved)
1864 * NOTE: in the table below explains the semantics when a source mount
1865 * of a given type is attached to a destination mount of a given type.
1866 * ---------------------------------------------------------------------------
1867 * | BIND MOUNT OPERATION |
1868 * |**************************************************************************
1869 * | source-->| shared | private | slave | unbindable |
1870 * | dest | | | | |
1871 * | | | | | | |
1872 * | v | | | | |
1873 * |**************************************************************************
1874 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1875 * | | | | | |
1876 * |non-shared| shared (+) | private | slave (*) | invalid |
1877 * ***************************************************************************
1878 * A bind operation clones the source mount and mounts the clone on the
1879 * destination mount.
1881 * (++) the cloned mount is propagated to all the mounts in the propagation
1882 * tree of the destination mount and the cloned mount is added to
1883 * the peer group of the source mount.
1884 * (+) the cloned mount is created under the destination mount and is marked
1885 * as shared. The cloned mount is added to the peer group of the source
1886 * mount.
1887 * (+++) the mount is propagated to all the mounts in the propagation tree
1888 * of the destination mount and the cloned mount is made slave
1889 * of the same master as that of the source mount. The cloned mount
1890 * is marked as 'shared and slave'.
1891 * (*) the cloned mount is made a slave of the same master as that of the
1892 * source mount.
1894 * ---------------------------------------------------------------------------
1895 * | MOVE MOUNT OPERATION |
1896 * |**************************************************************************
1897 * | source-->| shared | private | slave | unbindable |
1898 * | dest | | | | |
1899 * | | | | | | |
1900 * | v | | | | |
1901 * |**************************************************************************
1902 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1903 * | | | | | |
1904 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1905 * ***************************************************************************
1907 * (+) the mount is moved to the destination. And is then propagated to
1908 * all the mounts in the propagation tree of the destination mount.
1909 * (+*) the mount is moved to the destination.
1910 * (+++) the mount is moved to the destination and is then propagated to
1911 * all the mounts belonging to the destination mount's propagation tree.
1912 * the mount is marked as 'shared and slave'.
1913 * (*) the mount continues to be a slave at the new location.
1915 * if the source mount is a tree, the operations explained above is
1916 * applied to each mount in the tree.
1917 * Must be called without spinlocks held, since this function can sleep
1918 * in allocations.
1920 static int attach_recursive_mnt(struct mount *source_mnt,
1921 struct mount *dest_mnt,
1922 struct mountpoint *dest_mp,
1923 struct path *parent_path)
1925 HLIST_HEAD(tree_list);
1926 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1927 struct mount *child, *p;
1928 struct hlist_node *n;
1929 int err;
1931 /* Is there space to add these mounts to the mount namespace? */
1932 if (!parent_path) {
1933 err = count_mounts(ns, source_mnt);
1934 if (err)
1935 goto out;
1938 if (IS_MNT_SHARED(dest_mnt)) {
1939 err = invent_group_ids(source_mnt, true);
1940 if (err)
1941 goto out;
1942 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1943 lock_mount_hash();
1944 if (err)
1945 goto out_cleanup_ids;
1946 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1947 set_mnt_shared(p);
1948 } else {
1949 lock_mount_hash();
1951 if (parent_path) {
1952 detach_mnt(source_mnt, parent_path);
1953 attach_mnt(source_mnt, dest_mnt, dest_mp);
1954 touch_mnt_namespace(source_mnt->mnt_ns);
1955 } else {
1956 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1957 commit_tree(source_mnt, NULL);
1960 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1961 struct mount *q;
1962 hlist_del_init(&child->mnt_hash);
1963 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1964 child->mnt_mountpoint);
1965 commit_tree(child, q);
1967 unlock_mount_hash();
1969 return 0;
1971 out_cleanup_ids:
1972 while (!hlist_empty(&tree_list)) {
1973 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1974 child->mnt_parent->mnt_ns->pending_mounts = 0;
1975 umount_tree(child, UMOUNT_SYNC);
1977 unlock_mount_hash();
1978 cleanup_group_ids(source_mnt, NULL);
1979 out:
1980 ns->pending_mounts = 0;
1981 return err;
1984 static struct mountpoint *lock_mount(struct path *path)
1986 struct vfsmount *mnt;
1987 struct dentry *dentry = path->dentry;
1988 retry:
1989 mutex_lock(&dentry->d_inode->i_mutex);
1990 if (unlikely(cant_mount(dentry))) {
1991 mutex_unlock(&dentry->d_inode->i_mutex);
1992 return ERR_PTR(-ENOENT);
1994 namespace_lock();
1995 mnt = lookup_mnt(path);
1996 if (likely(!mnt)) {
1997 struct mountpoint *mp = lookup_mountpoint(dentry);
1998 if (!mp)
1999 mp = new_mountpoint(dentry);
2000 if (IS_ERR(mp)) {
2001 namespace_unlock();
2002 mutex_unlock(&dentry->d_inode->i_mutex);
2003 return mp;
2005 return mp;
2007 namespace_unlock();
2008 mutex_unlock(&path->dentry->d_inode->i_mutex);
2009 path_put(path);
2010 path->mnt = mnt;
2011 dentry = path->dentry = dget(mnt->mnt_root);
2012 goto retry;
2015 static void unlock_mount(struct mountpoint *where)
2017 struct dentry *dentry = where->m_dentry;
2018 put_mountpoint(where);
2019 namespace_unlock();
2020 mutex_unlock(&dentry->d_inode->i_mutex);
2023 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2025 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2026 return -EINVAL;
2028 if (d_is_dir(mp->m_dentry) !=
2029 d_is_dir(mnt->mnt.mnt_root))
2030 return -ENOTDIR;
2032 return attach_recursive_mnt(mnt, p, mp, NULL);
2036 * Sanity check the flags to change_mnt_propagation.
2039 static int flags_to_propagation_type(int flags)
2041 int type = flags & ~(MS_REC | MS_SILENT);
2043 /* Fail if any non-propagation flags are set */
2044 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2045 return 0;
2046 /* Only one propagation flag should be set */
2047 if (!is_power_of_2(type))
2048 return 0;
2049 return type;
2053 * recursively change the type of the mountpoint.
2055 static int do_change_type(struct path *path, int flag)
2057 struct mount *m;
2058 struct mount *mnt = real_mount(path->mnt);
2059 int recurse = flag & MS_REC;
2060 int type;
2061 int err = 0;
2063 if (path->dentry != path->mnt->mnt_root)
2064 return -EINVAL;
2066 type = flags_to_propagation_type(flag);
2067 if (!type)
2068 return -EINVAL;
2070 namespace_lock();
2071 if (type == MS_SHARED) {
2072 err = invent_group_ids(mnt, recurse);
2073 if (err)
2074 goto out_unlock;
2077 lock_mount_hash();
2078 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2079 change_mnt_propagation(m, type);
2080 unlock_mount_hash();
2082 out_unlock:
2083 namespace_unlock();
2084 return err;
2087 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2089 struct mount *child;
2090 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2091 if (!is_subdir(child->mnt_mountpoint, dentry))
2092 continue;
2094 if (child->mnt.mnt_flags & MNT_LOCKED)
2095 return true;
2097 return false;
2101 * do loopback mount.
2103 static int do_loopback(struct path *path, const char *old_name,
2104 int recurse)
2106 struct path old_path;
2107 struct mount *mnt = NULL, *old, *parent;
2108 struct mountpoint *mp;
2109 int err;
2110 if (!old_name || !*old_name)
2111 return -EINVAL;
2112 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2113 if (err)
2114 return err;
2116 err = -EINVAL;
2117 if (mnt_ns_loop(old_path.dentry))
2118 goto out;
2120 mp = lock_mount(path);
2121 err = PTR_ERR(mp);
2122 if (IS_ERR(mp))
2123 goto out;
2125 old = real_mount(old_path.mnt);
2126 parent = real_mount(path->mnt);
2128 err = -EINVAL;
2129 if (IS_MNT_UNBINDABLE(old))
2130 goto out2;
2132 if (!check_mnt(parent))
2133 goto out2;
2135 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2136 goto out2;
2138 if (!recurse && has_locked_children(old, old_path.dentry))
2139 goto out2;
2141 if (recurse)
2142 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2143 else
2144 mnt = clone_mnt(old, old_path.dentry, 0);
2146 if (IS_ERR(mnt)) {
2147 err = PTR_ERR(mnt);
2148 goto out2;
2151 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2153 err = graft_tree(mnt, parent, mp);
2154 if (err) {
2155 lock_mount_hash();
2156 umount_tree(mnt, UMOUNT_SYNC);
2157 unlock_mount_hash();
2159 out2:
2160 unlock_mount(mp);
2161 out:
2162 path_put(&old_path);
2163 return err;
2166 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2168 int error = 0;
2169 int readonly_request = 0;
2171 if (ms_flags & MS_RDONLY)
2172 readonly_request = 1;
2173 if (readonly_request == __mnt_is_readonly(mnt))
2174 return 0;
2176 if (readonly_request)
2177 error = mnt_make_readonly(real_mount(mnt));
2178 else
2179 __mnt_unmake_readonly(real_mount(mnt));
2180 return error;
2184 * change filesystem flags. dir should be a physical root of filesystem.
2185 * If you've mounted a non-root directory somewhere and want to do remount
2186 * on it - tough luck.
2188 static int do_remount(struct path *path, int flags, int mnt_flags,
2189 void *data)
2191 int err;
2192 struct super_block *sb = path->mnt->mnt_sb;
2193 struct mount *mnt = real_mount(path->mnt);
2195 if (!check_mnt(mnt))
2196 return -EINVAL;
2198 if (path->dentry != path->mnt->mnt_root)
2199 return -EINVAL;
2201 /* Don't allow changing of locked mnt flags.
2203 * No locks need to be held here while testing the various
2204 * MNT_LOCK flags because those flags can never be cleared
2205 * once they are set.
2207 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2208 !(mnt_flags & MNT_READONLY)) {
2209 return -EPERM;
2211 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2212 !(mnt_flags & MNT_NODEV)) {
2213 /* Was the nodev implicitly added in mount? */
2214 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2215 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2216 mnt_flags |= MNT_NODEV;
2217 } else {
2218 return -EPERM;
2221 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2222 !(mnt_flags & MNT_NOSUID)) {
2223 return -EPERM;
2225 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2226 !(mnt_flags & MNT_NOEXEC)) {
2227 return -EPERM;
2229 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2230 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2231 return -EPERM;
2234 err = security_sb_remount(sb, data);
2235 if (err)
2236 return err;
2238 down_write(&sb->s_umount);
2239 if (flags & MS_BIND)
2240 err = change_mount_flags(path->mnt, flags);
2241 else if (!capable(CAP_SYS_ADMIN))
2242 err = -EPERM;
2243 else
2244 err = do_remount_sb(sb, flags, data, 0);
2245 if (!err) {
2246 lock_mount_hash();
2247 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2248 mnt->mnt.mnt_flags = mnt_flags;
2249 touch_mnt_namespace(mnt->mnt_ns);
2250 unlock_mount_hash();
2252 up_write(&sb->s_umount);
2253 return err;
2256 static inline int tree_contains_unbindable(struct mount *mnt)
2258 struct mount *p;
2259 for (p = mnt; p; p = next_mnt(p, mnt)) {
2260 if (IS_MNT_UNBINDABLE(p))
2261 return 1;
2263 return 0;
2266 static int do_move_mount(struct path *path, const char *old_name)
2268 struct path old_path, parent_path;
2269 struct mount *p;
2270 struct mount *old;
2271 struct mountpoint *mp;
2272 int err;
2273 if (!old_name || !*old_name)
2274 return -EINVAL;
2275 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2276 if (err)
2277 return err;
2279 mp = lock_mount(path);
2280 err = PTR_ERR(mp);
2281 if (IS_ERR(mp))
2282 goto out;
2284 old = real_mount(old_path.mnt);
2285 p = real_mount(path->mnt);
2287 err = -EINVAL;
2288 if (!check_mnt(p) || !check_mnt(old))
2289 goto out1;
2291 if (old->mnt.mnt_flags & MNT_LOCKED)
2292 goto out1;
2294 err = -EINVAL;
2295 if (old_path.dentry != old_path.mnt->mnt_root)
2296 goto out1;
2298 if (!mnt_has_parent(old))
2299 goto out1;
2301 if (d_is_dir(path->dentry) !=
2302 d_is_dir(old_path.dentry))
2303 goto out1;
2305 * Don't move a mount residing in a shared parent.
2307 if (IS_MNT_SHARED(old->mnt_parent))
2308 goto out1;
2310 * Don't move a mount tree containing unbindable mounts to a destination
2311 * mount which is shared.
2313 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2314 goto out1;
2315 err = -ELOOP;
2316 for (; mnt_has_parent(p); p = p->mnt_parent)
2317 if (p == old)
2318 goto out1;
2320 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2321 if (err)
2322 goto out1;
2324 /* if the mount is moved, it should no longer be expire
2325 * automatically */
2326 list_del_init(&old->mnt_expire);
2327 out1:
2328 unlock_mount(mp);
2329 out:
2330 if (!err)
2331 path_put(&parent_path);
2332 path_put(&old_path);
2333 return err;
2336 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2338 int err;
2339 const char *subtype = strchr(fstype, '.');
2340 if (subtype) {
2341 subtype++;
2342 err = -EINVAL;
2343 if (!subtype[0])
2344 goto err;
2345 } else
2346 subtype = "";
2348 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2349 err = -ENOMEM;
2350 if (!mnt->mnt_sb->s_subtype)
2351 goto err;
2352 return mnt;
2354 err:
2355 mntput(mnt);
2356 return ERR_PTR(err);
2360 * add a mount into a namespace's mount tree
2362 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2364 struct mountpoint *mp;
2365 struct mount *parent;
2366 int err;
2368 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2370 mp = lock_mount(path);
2371 if (IS_ERR(mp))
2372 return PTR_ERR(mp);
2374 parent = real_mount(path->mnt);
2375 err = -EINVAL;
2376 if (unlikely(!check_mnt(parent))) {
2377 /* that's acceptable only for automounts done in private ns */
2378 if (!(mnt_flags & MNT_SHRINKABLE))
2379 goto unlock;
2380 /* ... and for those we'd better have mountpoint still alive */
2381 if (!parent->mnt_ns)
2382 goto unlock;
2385 /* Refuse the same filesystem on the same mount point */
2386 err = -EBUSY;
2387 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2388 path->mnt->mnt_root == path->dentry)
2389 goto unlock;
2391 err = -EINVAL;
2392 if (d_is_symlink(newmnt->mnt.mnt_root))
2393 goto unlock;
2395 newmnt->mnt.mnt_flags = mnt_flags;
2396 err = graft_tree(newmnt, parent, mp);
2398 unlock:
2399 unlock_mount(mp);
2400 return err;
2403 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2406 * create a new mount for userspace and request it to be added into the
2407 * namespace's tree
2409 static int do_new_mount(struct path *path, const char *fstype, int flags,
2410 int mnt_flags, const char *name, void *data)
2412 struct file_system_type *type;
2413 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2414 struct vfsmount *mnt;
2415 int err;
2417 if (!fstype)
2418 return -EINVAL;
2420 type = get_fs_type(fstype);
2421 if (!type)
2422 return -ENODEV;
2424 if (user_ns != &init_user_ns) {
2425 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2426 put_filesystem(type);
2427 return -EPERM;
2429 /* Only in special cases allow devices from mounts
2430 * created outside the initial user namespace.
2432 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2433 flags |= MS_NODEV;
2434 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2436 if (type->fs_flags & FS_USERNS_VISIBLE) {
2437 if (!fs_fully_visible(type, &mnt_flags)) {
2438 put_filesystem(type);
2439 return -EPERM;
2444 mnt = vfs_kern_mount(type, flags, name, data);
2445 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2446 !mnt->mnt_sb->s_subtype)
2447 mnt = fs_set_subtype(mnt, fstype);
2449 put_filesystem(type);
2450 if (IS_ERR(mnt))
2451 return PTR_ERR(mnt);
2453 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2454 if (err)
2455 mntput(mnt);
2456 return err;
2459 int finish_automount(struct vfsmount *m, struct path *path)
2461 struct mount *mnt = real_mount(m);
2462 int err;
2463 /* The new mount record should have at least 2 refs to prevent it being
2464 * expired before we get a chance to add it
2466 BUG_ON(mnt_get_count(mnt) < 2);
2468 if (m->mnt_sb == path->mnt->mnt_sb &&
2469 m->mnt_root == path->dentry) {
2470 err = -ELOOP;
2471 goto fail;
2474 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2475 if (!err)
2476 return 0;
2477 fail:
2478 /* remove m from any expiration list it may be on */
2479 if (!list_empty(&mnt->mnt_expire)) {
2480 namespace_lock();
2481 list_del_init(&mnt->mnt_expire);
2482 namespace_unlock();
2484 mntput(m);
2485 mntput(m);
2486 return err;
2490 * mnt_set_expiry - Put a mount on an expiration list
2491 * @mnt: The mount to list.
2492 * @expiry_list: The list to add the mount to.
2494 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2496 namespace_lock();
2498 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2500 namespace_unlock();
2502 EXPORT_SYMBOL(mnt_set_expiry);
2505 * process a list of expirable mountpoints with the intent of discarding any
2506 * mountpoints that aren't in use and haven't been touched since last we came
2507 * here
2509 void mark_mounts_for_expiry(struct list_head *mounts)
2511 struct mount *mnt, *next;
2512 LIST_HEAD(graveyard);
2514 if (list_empty(mounts))
2515 return;
2517 namespace_lock();
2518 lock_mount_hash();
2520 /* extract from the expiration list every vfsmount that matches the
2521 * following criteria:
2522 * - only referenced by its parent vfsmount
2523 * - still marked for expiry (marked on the last call here; marks are
2524 * cleared by mntput())
2526 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2527 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2528 propagate_mount_busy(mnt, 1))
2529 continue;
2530 list_move(&mnt->mnt_expire, &graveyard);
2532 while (!list_empty(&graveyard)) {
2533 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2534 touch_mnt_namespace(mnt->mnt_ns);
2535 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2537 unlock_mount_hash();
2538 namespace_unlock();
2541 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2544 * Ripoff of 'select_parent()'
2546 * search the list of submounts for a given mountpoint, and move any
2547 * shrinkable submounts to the 'graveyard' list.
2549 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2551 struct mount *this_parent = parent;
2552 struct list_head *next;
2553 int found = 0;
2555 repeat:
2556 next = this_parent->mnt_mounts.next;
2557 resume:
2558 while (next != &this_parent->mnt_mounts) {
2559 struct list_head *tmp = next;
2560 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2562 next = tmp->next;
2563 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2564 continue;
2566 * Descend a level if the d_mounts list is non-empty.
2568 if (!list_empty(&mnt->mnt_mounts)) {
2569 this_parent = mnt;
2570 goto repeat;
2573 if (!propagate_mount_busy(mnt, 1)) {
2574 list_move_tail(&mnt->mnt_expire, graveyard);
2575 found++;
2579 * All done at this level ... ascend and resume the search
2581 if (this_parent != parent) {
2582 next = this_parent->mnt_child.next;
2583 this_parent = this_parent->mnt_parent;
2584 goto resume;
2586 return found;
2590 * process a list of expirable mountpoints with the intent of discarding any
2591 * submounts of a specific parent mountpoint
2593 * mount_lock must be held for write
2595 static void shrink_submounts(struct mount *mnt)
2597 LIST_HEAD(graveyard);
2598 struct mount *m;
2600 /* extract submounts of 'mountpoint' from the expiration list */
2601 while (select_submounts(mnt, &graveyard)) {
2602 while (!list_empty(&graveyard)) {
2603 m = list_first_entry(&graveyard, struct mount,
2604 mnt_expire);
2605 touch_mnt_namespace(m->mnt_ns);
2606 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2612 * Some copy_from_user() implementations do not return the exact number of
2613 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2614 * Note that this function differs from copy_from_user() in that it will oops
2615 * on bad values of `to', rather than returning a short copy.
2617 static long exact_copy_from_user(void *to, const void __user * from,
2618 unsigned long n)
2620 char *t = to;
2621 const char __user *f = from;
2622 char c;
2624 if (!access_ok(VERIFY_READ, from, n))
2625 return n;
2627 while (n) {
2628 if (__get_user(c, f)) {
2629 memset(t, 0, n);
2630 break;
2632 *t++ = c;
2633 f++;
2634 n--;
2636 return n;
2639 int copy_mount_options(const void __user * data, unsigned long *where)
2641 int i;
2642 unsigned long page;
2643 unsigned long size;
2645 *where = 0;
2646 if (!data)
2647 return 0;
2649 if (!(page = __get_free_page(GFP_KERNEL)))
2650 return -ENOMEM;
2652 /* We only care that *some* data at the address the user
2653 * gave us is valid. Just in case, we'll zero
2654 * the remainder of the page.
2656 /* copy_from_user cannot cross TASK_SIZE ! */
2657 size = TASK_SIZE - (unsigned long)data;
2658 if (size > PAGE_SIZE)
2659 size = PAGE_SIZE;
2661 i = size - exact_copy_from_user((void *)page, data, size);
2662 if (!i) {
2663 free_page(page);
2664 return -EFAULT;
2666 if (i != PAGE_SIZE)
2667 memset((char *)page + i, 0, PAGE_SIZE - i);
2668 *where = page;
2669 return 0;
2672 char *copy_mount_string(const void __user *data)
2674 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2678 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2679 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2681 * data is a (void *) that can point to any structure up to
2682 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2683 * information (or be NULL).
2685 * Pre-0.97 versions of mount() didn't have a flags word.
2686 * When the flags word was introduced its top half was required
2687 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2688 * Therefore, if this magic number is present, it carries no information
2689 * and must be discarded.
2691 long do_mount(const char *dev_name, const char __user *dir_name,
2692 const char *type_page, unsigned long flags, void *data_page)
2694 struct path path;
2695 int retval = 0;
2696 int mnt_flags = 0;
2698 /* Discard magic */
2699 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2700 flags &= ~MS_MGC_MSK;
2702 /* Basic sanity checks */
2703 if (data_page)
2704 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2706 /* ... and get the mountpoint */
2707 retval = user_path(dir_name, &path);
2708 if (retval)
2709 return retval;
2711 retval = security_sb_mount(dev_name, &path,
2712 type_page, flags, data_page);
2713 if (!retval && !may_mount())
2714 retval = -EPERM;
2715 if (retval)
2716 goto dput_out;
2718 /* Default to relatime unless overriden */
2719 if (!(flags & MS_NOATIME))
2720 mnt_flags |= MNT_RELATIME;
2722 /* Separate the per-mountpoint flags */
2723 if (flags & MS_NOSUID)
2724 mnt_flags |= MNT_NOSUID;
2725 if (flags & MS_NODEV)
2726 mnt_flags |= MNT_NODEV;
2727 if (flags & MS_NOEXEC)
2728 mnt_flags |= MNT_NOEXEC;
2729 if (flags & MS_NOATIME)
2730 mnt_flags |= MNT_NOATIME;
2731 if (flags & MS_NODIRATIME)
2732 mnt_flags |= MNT_NODIRATIME;
2733 if (flags & MS_STRICTATIME)
2734 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2735 if (flags & MS_RDONLY)
2736 mnt_flags |= MNT_READONLY;
2738 /* The default atime for remount is preservation */
2739 if ((flags & MS_REMOUNT) &&
2740 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2741 MS_STRICTATIME)) == 0)) {
2742 mnt_flags &= ~MNT_ATIME_MASK;
2743 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2746 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2747 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2748 MS_STRICTATIME);
2750 if (flags & MS_REMOUNT)
2751 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2752 data_page);
2753 else if (flags & MS_BIND)
2754 retval = do_loopback(&path, dev_name, flags & MS_REC);
2755 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2756 retval = do_change_type(&path, flags);
2757 else if (flags & MS_MOVE)
2758 retval = do_move_mount(&path, dev_name);
2759 else
2760 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2761 dev_name, data_page);
2762 dput_out:
2763 path_put(&path);
2764 return retval;
2767 static void free_mnt_ns(struct mnt_namespace *ns)
2769 ns_free_inum(&ns->ns);
2770 put_user_ns(ns->user_ns);
2771 kfree(ns);
2775 * Assign a sequence number so we can detect when we attempt to bind
2776 * mount a reference to an older mount namespace into the current
2777 * mount namespace, preventing reference counting loops. A 64bit
2778 * number incrementing at 10Ghz will take 12,427 years to wrap which
2779 * is effectively never, so we can ignore the possibility.
2781 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2783 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2785 struct mnt_namespace *new_ns;
2786 int ret;
2788 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2789 if (!new_ns)
2790 return ERR_PTR(-ENOMEM);
2791 ret = ns_alloc_inum(&new_ns->ns);
2792 if (ret) {
2793 kfree(new_ns);
2794 return ERR_PTR(ret);
2796 new_ns->ns.ops = &mntns_operations;
2797 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2798 atomic_set(&new_ns->count, 1);
2799 new_ns->root = NULL;
2800 INIT_LIST_HEAD(&new_ns->list);
2801 init_waitqueue_head(&new_ns->poll);
2802 new_ns->event = 0;
2803 new_ns->user_ns = get_user_ns(user_ns);
2804 new_ns->mounts = 0;
2805 new_ns->pending_mounts = 0;
2806 return new_ns;
2809 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2810 struct user_namespace *user_ns, struct fs_struct *new_fs)
2812 struct mnt_namespace *new_ns;
2813 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2814 struct mount *p, *q;
2815 struct mount *old;
2816 struct mount *new;
2817 int copy_flags;
2819 BUG_ON(!ns);
2821 if (likely(!(flags & CLONE_NEWNS))) {
2822 get_mnt_ns(ns);
2823 return ns;
2826 old = ns->root;
2828 new_ns = alloc_mnt_ns(user_ns);
2829 if (IS_ERR(new_ns))
2830 return new_ns;
2832 namespace_lock();
2833 /* First pass: copy the tree topology */
2834 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2835 if (user_ns != ns->user_ns)
2836 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2837 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2838 if (IS_ERR(new)) {
2839 namespace_unlock();
2840 free_mnt_ns(new_ns);
2841 return ERR_CAST(new);
2843 new_ns->root = new;
2844 list_add_tail(&new_ns->list, &new->mnt_list);
2847 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2848 * as belonging to new namespace. We have already acquired a private
2849 * fs_struct, so tsk->fs->lock is not needed.
2851 p = old;
2852 q = new;
2853 while (p) {
2854 q->mnt_ns = new_ns;
2855 new_ns->mounts++;
2856 if (new_fs) {
2857 if (&p->mnt == new_fs->root.mnt) {
2858 new_fs->root.mnt = mntget(&q->mnt);
2859 rootmnt = &p->mnt;
2861 if (&p->mnt == new_fs->pwd.mnt) {
2862 new_fs->pwd.mnt = mntget(&q->mnt);
2863 pwdmnt = &p->mnt;
2866 p = next_mnt(p, old);
2867 q = next_mnt(q, new);
2868 if (!q)
2869 break;
2870 while (p->mnt.mnt_root != q->mnt.mnt_root)
2871 p = next_mnt(p, old);
2873 namespace_unlock();
2875 if (rootmnt)
2876 mntput(rootmnt);
2877 if (pwdmnt)
2878 mntput(pwdmnt);
2880 return new_ns;
2884 * create_mnt_ns - creates a private namespace and adds a root filesystem
2885 * @mnt: pointer to the new root filesystem mountpoint
2887 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2889 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2890 if (!IS_ERR(new_ns)) {
2891 struct mount *mnt = real_mount(m);
2892 mnt->mnt_ns = new_ns;
2893 new_ns->root = mnt;
2894 new_ns->mounts++;
2895 list_add(&mnt->mnt_list, &new_ns->list);
2896 } else {
2897 mntput(m);
2899 return new_ns;
2902 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2904 struct mnt_namespace *ns;
2905 struct super_block *s;
2906 struct path path;
2907 int err;
2909 ns = create_mnt_ns(mnt);
2910 if (IS_ERR(ns))
2911 return ERR_CAST(ns);
2913 err = vfs_path_lookup(mnt->mnt_root, mnt,
2914 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2916 put_mnt_ns(ns);
2918 if (err)
2919 return ERR_PTR(err);
2921 /* trade a vfsmount reference for active sb one */
2922 s = path.mnt->mnt_sb;
2923 atomic_inc(&s->s_active);
2924 mntput(path.mnt);
2925 /* lock the sucker */
2926 down_write(&s->s_umount);
2927 /* ... and return the root of (sub)tree on it */
2928 return path.dentry;
2930 EXPORT_SYMBOL(mount_subtree);
2932 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2933 char __user *, type, unsigned long, flags, void __user *, data)
2935 int ret;
2936 char *kernel_type;
2937 char *kernel_dev;
2938 unsigned long data_page;
2940 kernel_type = copy_mount_string(type);
2941 ret = PTR_ERR(kernel_type);
2942 if (IS_ERR(kernel_type))
2943 goto out_type;
2945 kernel_dev = copy_mount_string(dev_name);
2946 ret = PTR_ERR(kernel_dev);
2947 if (IS_ERR(kernel_dev))
2948 goto out_dev;
2950 ret = copy_mount_options(data, &data_page);
2951 if (ret < 0)
2952 goto out_data;
2954 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2955 (void *) data_page);
2957 free_page(data_page);
2958 out_data:
2959 kfree(kernel_dev);
2960 out_dev:
2961 kfree(kernel_type);
2962 out_type:
2963 return ret;
2967 * Return true if path is reachable from root
2969 * namespace_sem or mount_lock is held
2971 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2972 const struct path *root)
2974 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2975 dentry = mnt->mnt_mountpoint;
2976 mnt = mnt->mnt_parent;
2978 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2981 int path_is_under(struct path *path1, struct path *path2)
2983 int res;
2984 read_seqlock_excl(&mount_lock);
2985 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2986 read_sequnlock_excl(&mount_lock);
2987 return res;
2989 EXPORT_SYMBOL(path_is_under);
2992 * pivot_root Semantics:
2993 * Moves the root file system of the current process to the directory put_old,
2994 * makes new_root as the new root file system of the current process, and sets
2995 * root/cwd of all processes which had them on the current root to new_root.
2997 * Restrictions:
2998 * The new_root and put_old must be directories, and must not be on the
2999 * same file system as the current process root. The put_old must be
3000 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3001 * pointed to by put_old must yield the same directory as new_root. No other
3002 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3004 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3005 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3006 * in this situation.
3008 * Notes:
3009 * - we don't move root/cwd if they are not at the root (reason: if something
3010 * cared enough to change them, it's probably wrong to force them elsewhere)
3011 * - it's okay to pick a root that isn't the root of a file system, e.g.
3012 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3013 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3014 * first.
3016 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3017 const char __user *, put_old)
3019 struct path new, old, parent_path, root_parent, root;
3020 struct mount *new_mnt, *root_mnt, *old_mnt;
3021 struct mountpoint *old_mp, *root_mp;
3022 int error;
3024 if (!may_mount())
3025 return -EPERM;
3027 error = user_path_dir(new_root, &new);
3028 if (error)
3029 goto out0;
3031 error = user_path_dir(put_old, &old);
3032 if (error)
3033 goto out1;
3035 error = security_sb_pivotroot(&old, &new);
3036 if (error)
3037 goto out2;
3039 get_fs_root(current->fs, &root);
3040 old_mp = lock_mount(&old);
3041 error = PTR_ERR(old_mp);
3042 if (IS_ERR(old_mp))
3043 goto out3;
3045 error = -EINVAL;
3046 new_mnt = real_mount(new.mnt);
3047 root_mnt = real_mount(root.mnt);
3048 old_mnt = real_mount(old.mnt);
3049 if (IS_MNT_SHARED(old_mnt) ||
3050 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3051 IS_MNT_SHARED(root_mnt->mnt_parent))
3052 goto out4;
3053 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3054 goto out4;
3055 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3056 goto out4;
3057 error = -ENOENT;
3058 if (d_unlinked(new.dentry))
3059 goto out4;
3060 error = -EBUSY;
3061 if (new_mnt == root_mnt || old_mnt == root_mnt)
3062 goto out4; /* loop, on the same file system */
3063 error = -EINVAL;
3064 if (root.mnt->mnt_root != root.dentry)
3065 goto out4; /* not a mountpoint */
3066 if (!mnt_has_parent(root_mnt))
3067 goto out4; /* not attached */
3068 root_mp = root_mnt->mnt_mp;
3069 if (new.mnt->mnt_root != new.dentry)
3070 goto out4; /* not a mountpoint */
3071 if (!mnt_has_parent(new_mnt))
3072 goto out4; /* not attached */
3073 /* make sure we can reach put_old from new_root */
3074 if (!is_path_reachable(old_mnt, old.dentry, &new))
3075 goto out4;
3076 /* make certain new is below the root */
3077 if (!is_path_reachable(new_mnt, new.dentry, &root))
3078 goto out4;
3079 root_mp->m_count++; /* pin it so it won't go away */
3080 lock_mount_hash();
3081 detach_mnt(new_mnt, &parent_path);
3082 detach_mnt(root_mnt, &root_parent);
3083 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3084 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3085 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3087 /* mount old root on put_old */
3088 attach_mnt(root_mnt, old_mnt, old_mp);
3089 /* mount new_root on / */
3090 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3091 touch_mnt_namespace(current->nsproxy->mnt_ns);
3092 /* A moved mount should not expire automatically */
3093 list_del_init(&new_mnt->mnt_expire);
3094 unlock_mount_hash();
3095 chroot_fs_refs(&root, &new);
3096 put_mountpoint(root_mp);
3097 error = 0;
3098 out4:
3099 unlock_mount(old_mp);
3100 if (!error) {
3101 path_put(&root_parent);
3102 path_put(&parent_path);
3104 out3:
3105 path_put(&root);
3106 out2:
3107 path_put(&old);
3108 out1:
3109 path_put(&new);
3110 out0:
3111 return error;
3114 static void __init init_mount_tree(void)
3116 struct vfsmount *mnt;
3117 struct mnt_namespace *ns;
3118 struct path root;
3119 struct file_system_type *type;
3121 type = get_fs_type("rootfs");
3122 if (!type)
3123 panic("Can't find rootfs type");
3124 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3125 put_filesystem(type);
3126 if (IS_ERR(mnt))
3127 panic("Can't create rootfs");
3129 ns = create_mnt_ns(mnt);
3130 if (IS_ERR(ns))
3131 panic("Can't allocate initial namespace");
3133 init_task.nsproxy->mnt_ns = ns;
3134 get_mnt_ns(ns);
3136 root.mnt = mnt;
3137 root.dentry = mnt->mnt_root;
3138 mnt->mnt_flags |= MNT_LOCKED;
3140 set_fs_pwd(current->fs, &root);
3141 set_fs_root(current->fs, &root);
3144 void __init mnt_init(void)
3146 unsigned u;
3147 int err;
3149 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3150 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3152 mount_hashtable = alloc_large_system_hash("Mount-cache",
3153 sizeof(struct hlist_head),
3154 mhash_entries, 19,
3156 &m_hash_shift, &m_hash_mask, 0, 0);
3157 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3158 sizeof(struct hlist_head),
3159 mphash_entries, 19,
3161 &mp_hash_shift, &mp_hash_mask, 0, 0);
3163 if (!mount_hashtable || !mountpoint_hashtable)
3164 panic("Failed to allocate mount hash table\n");
3166 for (u = 0; u <= m_hash_mask; u++)
3167 INIT_HLIST_HEAD(&mount_hashtable[u]);
3168 for (u = 0; u <= mp_hash_mask; u++)
3169 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3171 kernfs_init();
3173 err = sysfs_init();
3174 if (err)
3175 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3176 __func__, err);
3177 fs_kobj = kobject_create_and_add("fs", NULL);
3178 if (!fs_kobj)
3179 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3180 init_rootfs();
3181 init_mount_tree();
3184 void put_mnt_ns(struct mnt_namespace *ns)
3186 if (!atomic_dec_and_test(&ns->count))
3187 return;
3188 drop_collected_mounts(&ns->root->mnt);
3189 free_mnt_ns(ns);
3192 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3194 struct vfsmount *mnt;
3195 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3196 if (!IS_ERR(mnt)) {
3198 * it is a longterm mount, don't release mnt until
3199 * we unmount before file sys is unregistered
3201 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3203 return mnt;
3205 EXPORT_SYMBOL_GPL(kern_mount_data);
3207 void kern_unmount(struct vfsmount *mnt)
3209 /* release long term mount so mount point can be released */
3210 if (!IS_ERR_OR_NULL(mnt)) {
3211 real_mount(mnt)->mnt_ns = NULL;
3212 synchronize_rcu(); /* yecchhh... */
3213 mntput(mnt);
3216 EXPORT_SYMBOL(kern_unmount);
3218 bool our_mnt(struct vfsmount *mnt)
3220 return check_mnt(real_mount(mnt));
3223 bool current_chrooted(void)
3225 /* Does the current process have a non-standard root */
3226 struct path ns_root;
3227 struct path fs_root;
3228 bool chrooted;
3230 /* Find the namespace root */
3231 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3232 ns_root.dentry = ns_root.mnt->mnt_root;
3233 path_get(&ns_root);
3234 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3237 get_fs_root(current->fs, &fs_root);
3239 chrooted = !path_equal(&fs_root, &ns_root);
3241 path_put(&fs_root);
3242 path_put(&ns_root);
3244 return chrooted;
3247 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3249 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3250 int new_flags = *new_mnt_flags;
3251 struct mount *mnt;
3252 bool visible = false;
3254 if (unlikely(!ns))
3255 return false;
3257 down_read(&namespace_sem);
3258 list_for_each_entry(mnt, &ns->list, mnt_list) {
3259 struct mount *child;
3260 if (mnt->mnt.mnt_sb->s_type != type)
3261 continue;
3263 /* This mount is not fully visible if it's root directory
3264 * is not the root directory of the filesystem.
3266 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3267 continue;
3269 /* Verify the mount flags are equal to or more permissive
3270 * than the proposed new mount.
3272 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
3273 !(new_flags & MNT_READONLY))
3274 continue;
3275 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
3276 !(new_flags & MNT_NODEV))
3277 continue;
3278 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
3279 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3280 continue;
3282 /* This mount is not fully visible if there are any
3283 * locked child mounts that cover anything except for
3284 * empty directories.
3286 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3287 struct inode *inode = child->mnt_mountpoint->d_inode;
3288 /* Only worry about locked mounts */
3289 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3290 continue;
3291 /* Is the directory permanetly empty? */
3292 if (!is_empty_dir_inode(inode))
3293 goto next;
3295 /* Preserve the locked attributes */
3296 *new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \
3297 MNT_LOCK_NODEV | \
3298 MNT_LOCK_ATIME);
3299 visible = true;
3300 goto found;
3301 next: ;
3303 found:
3304 up_read(&namespace_sem);
3305 return visible;
3308 static struct ns_common *mntns_get(struct task_struct *task)
3310 struct ns_common *ns = NULL;
3311 struct nsproxy *nsproxy;
3313 task_lock(task);
3314 nsproxy = task->nsproxy;
3315 if (nsproxy) {
3316 ns = &nsproxy->mnt_ns->ns;
3317 get_mnt_ns(to_mnt_ns(ns));
3319 task_unlock(task);
3321 return ns;
3324 static void mntns_put(struct ns_common *ns)
3326 put_mnt_ns(to_mnt_ns(ns));
3329 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3331 struct fs_struct *fs = current->fs;
3332 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3333 struct path root;
3335 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3336 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3337 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3338 return -EPERM;
3340 if (fs->users != 1)
3341 return -EINVAL;
3343 get_mnt_ns(mnt_ns);
3344 put_mnt_ns(nsproxy->mnt_ns);
3345 nsproxy->mnt_ns = mnt_ns;
3347 /* Find the root */
3348 root.mnt = &mnt_ns->root->mnt;
3349 root.dentry = mnt_ns->root->mnt.mnt_root;
3350 path_get(&root);
3351 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3354 /* Update the pwd and root */
3355 set_fs_pwd(fs, &root);
3356 set_fs_root(fs, &root);
3358 path_put(&root);
3359 return 0;
3362 const struct proc_ns_operations mntns_operations = {
3363 .name = "mnt",
3364 .type = CLONE_NEWNS,
3365 .get = mntns_get,
3366 .put = mntns_put,
3367 .install = mntns_install,