4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly
= 100000;
33 static unsigned int m_hash_mask __read_mostly
;
34 static unsigned int m_hash_shift __read_mostly
;
35 static unsigned int mp_hash_mask __read_mostly
;
36 static unsigned int mp_hash_shift __read_mostly
;
38 static __initdata
unsigned long mhash_entries
;
39 static int __init
set_mhash_entries(char *str
)
43 mhash_entries
= simple_strtoul(str
, &str
, 0);
46 __setup("mhash_entries=", set_mhash_entries
);
48 static __initdata
unsigned long mphash_entries
;
49 static int __init
set_mphash_entries(char *str
)
53 mphash_entries
= simple_strtoul(str
, &str
, 0);
56 __setup("mphash_entries=", set_mphash_entries
);
59 static DEFINE_IDA(mnt_id_ida
);
60 static DEFINE_IDA(mnt_group_ida
);
61 static DEFINE_SPINLOCK(mnt_id_lock
);
62 static int mnt_id_start
= 0;
63 static int mnt_group_start
= 1;
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount
*mnt
)
108 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
109 spin_lock(&mnt_id_lock
);
110 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
112 mnt_id_start
= mnt
->mnt_id
+ 1;
113 spin_unlock(&mnt_id_lock
);
120 static void mnt_free_id(struct mount
*mnt
)
122 int id
= mnt
->mnt_id
;
123 spin_lock(&mnt_id_lock
);
124 ida_remove(&mnt_id_ida
, id
);
125 if (mnt_id_start
> id
)
127 spin_unlock(&mnt_id_lock
);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount
*mnt
)
139 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
142 res
= ida_get_new_above(&mnt_group_ida
,
146 mnt_group_start
= mnt
->mnt_group_id
+ 1;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount
*mnt
)
156 int id
= mnt
->mnt_group_id
;
157 ida_remove(&mnt_group_ida
, id
);
158 if (mnt_group_start
> id
)
159 mnt_group_start
= id
;
160 mnt
->mnt_group_id
= 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount
*mnt
, int n
)
169 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount
*mnt
)
183 unsigned int count
= 0;
186 for_each_possible_cpu(cpu
) {
187 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
192 return mnt
->mnt_count
;
196 static void drop_mountpoint(struct fs_pin
*p
)
198 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
199 dput(m
->mnt_ex_mountpoint
);
204 static struct mount
*alloc_vfsmnt(const char *name
)
206 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
210 err
= mnt_alloc_id(mnt
);
215 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
216 if (!mnt
->mnt_devname
)
221 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
223 goto out_free_devname
;
225 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
228 mnt
->mnt_writers
= 0;
231 INIT_HLIST_NODE(&mnt
->mnt_hash
);
232 INIT_LIST_HEAD(&mnt
->mnt_child
);
233 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
234 INIT_LIST_HEAD(&mnt
->mnt_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_expire
);
236 INIT_LIST_HEAD(&mnt
->mnt_share
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
238 INIT_LIST_HEAD(&mnt
->mnt_slave
);
239 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
243 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
249 kfree_const(mnt
->mnt_devname
);
254 kmem_cache_free(mnt_cache
, mnt
);
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
277 int __mnt_is_readonly(struct vfsmount
*mnt
)
279 if (mnt
->mnt_flags
& MNT_READONLY
)
281 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
287 static inline void mnt_inc_writers(struct mount
*mnt
)
290 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
296 static inline void mnt_dec_writers(struct mount
*mnt
)
299 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
305 static unsigned int mnt_get_writers(struct mount
*mnt
)
308 unsigned int count
= 0;
311 for_each_possible_cpu(cpu
) {
312 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
317 return mnt
->mnt_writers
;
321 static int mnt_is_readonly(struct vfsmount
*mnt
)
323 if (mnt
->mnt_sb
->s_readonly_remount
)
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 return __mnt_is_readonly(mnt
);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount
*m
)
348 struct mount
*mnt
= real_mount(m
);
352 mnt_inc_writers(mnt
);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
359 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
367 if (mnt_is_readonly(m
)) {
368 mnt_dec_writers(mnt
);
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount
*m
)
389 sb_start_write(m
->mnt_sb
);
390 ret
= __mnt_want_write(m
);
392 sb_end_write(m
->mnt_sb
);
395 EXPORT_SYMBOL_GPL(mnt_want_write
);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount
*mnt
)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt
))
415 mnt_inc_writers(real_mount(mnt
));
419 EXPORT_SYMBOL_GPL(mnt_clone_write
);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file
*file
)
430 if (!(file
->f_mode
& FMODE_WRITER
))
431 return __mnt_want_write(file
->f_path
.mnt
);
433 return mnt_clone_write(file
->f_path
.mnt
);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file
*file
)
447 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
448 ret
= __mnt_want_write_file(file
);
450 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
453 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount
*mnt
)
466 mnt_dec_writers(real_mount(mnt
));
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount
*mnt
)
480 __mnt_drop_write(mnt
);
481 sb_end_write(mnt
->mnt_sb
);
483 EXPORT_SYMBOL_GPL(mnt_drop_write
);
485 void __mnt_drop_write_file(struct file
*file
)
487 __mnt_drop_write(file
->f_path
.mnt
);
490 void mnt_drop_write_file(struct file
*file
)
492 mnt_drop_write(file
->f_path
.mnt
);
494 EXPORT_SYMBOL(mnt_drop_write_file
);
496 static int mnt_make_readonly(struct mount
*mnt
)
501 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt
) > 0)
527 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
533 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
538 static void __mnt_unmake_readonly(struct mount
*mnt
)
541 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
545 int sb_prepare_remount_readonly(struct super_block
*sb
)
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb
->s_remove_count
))
555 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
556 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
557 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
559 if (mnt_get_writers(mnt
) > 0) {
565 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
569 sb
->s_readonly_remount
= 1;
572 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
573 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
574 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
581 static void free_vfsmnt(struct mount
*mnt
)
583 kfree_const(mnt
->mnt_devname
);
585 free_percpu(mnt
->mnt_pcp
);
587 kmem_cache_free(mnt_cache
, mnt
);
590 static void delayed_free_vfsmnt(struct rcu_head
*head
)
592 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
599 if (read_seqretry(&mount_lock
, seq
))
603 mnt
= real_mount(bastard
);
604 mnt_add_count(mnt
, 1);
605 if (likely(!read_seqretry(&mount_lock
, seq
)))
607 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
608 mnt_add_count(mnt
, -1);
618 * find the first mount at @dentry on vfsmount @mnt.
619 * call under rcu_read_lock()
621 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
623 struct hlist_head
*head
= m_hash(mnt
, dentry
);
626 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
627 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
633 * find the last mount at @dentry on vfsmount @mnt.
634 * mount_lock must be held.
636 struct mount
*__lookup_mnt_last(struct vfsmount
*mnt
, struct dentry
*dentry
)
638 struct mount
*p
, *res
= NULL
;
639 p
= __lookup_mnt(mnt
, dentry
);
642 if (!(p
->mnt
.mnt_flags
& MNT_UMOUNT
))
644 hlist_for_each_entry_continue(p
, mnt_hash
) {
645 if (&p
->mnt_parent
->mnt
!= mnt
|| p
->mnt_mountpoint
!= dentry
)
647 if (!(p
->mnt
.mnt_flags
& MNT_UMOUNT
))
655 * lookup_mnt - Return the first child mount mounted at path
657 * "First" means first mounted chronologically. If you create the
660 * mount /dev/sda1 /mnt
661 * mount /dev/sda2 /mnt
662 * mount /dev/sda3 /mnt
664 * Then lookup_mnt() on the base /mnt dentry in the root mount will
665 * return successively the root dentry and vfsmount of /dev/sda1, then
666 * /dev/sda2, then /dev/sda3, then NULL.
668 * lookup_mnt takes a reference to the found vfsmount.
670 struct vfsmount
*lookup_mnt(struct path
*path
)
672 struct mount
*child_mnt
;
678 seq
= read_seqbegin(&mount_lock
);
679 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
680 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
681 } while (!legitimize_mnt(m
, seq
));
687 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
688 * current mount namespace.
690 * The common case is dentries are not mountpoints at all and that
691 * test is handled inline. For the slow case when we are actually
692 * dealing with a mountpoint of some kind, walk through all of the
693 * mounts in the current mount namespace and test to see if the dentry
696 * The mount_hashtable is not usable in the context because we
697 * need to identify all mounts that may be in the current mount
698 * namespace not just a mount that happens to have some specified
701 bool __is_local_mountpoint(struct dentry
*dentry
)
703 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
705 bool is_covered
= false;
707 if (!d_mountpoint(dentry
))
710 down_read(&namespace_sem
);
711 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
712 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
716 up_read(&namespace_sem
);
721 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
723 struct hlist_head
*chain
= mp_hash(dentry
);
724 struct mountpoint
*mp
;
726 hlist_for_each_entry(mp
, chain
, m_hash
) {
727 if (mp
->m_dentry
== dentry
) {
728 /* might be worth a WARN_ON() */
729 if (d_unlinked(dentry
))
730 return ERR_PTR(-ENOENT
);
738 static struct mountpoint
*new_mountpoint(struct dentry
*dentry
)
740 struct hlist_head
*chain
= mp_hash(dentry
);
741 struct mountpoint
*mp
;
744 mp
= kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
746 return ERR_PTR(-ENOMEM
);
748 ret
= d_set_mounted(dentry
);
754 mp
->m_dentry
= dentry
;
756 hlist_add_head(&mp
->m_hash
, chain
);
757 INIT_HLIST_HEAD(&mp
->m_list
);
761 static void put_mountpoint(struct mountpoint
*mp
)
763 if (!--mp
->m_count
) {
764 struct dentry
*dentry
= mp
->m_dentry
;
765 BUG_ON(!hlist_empty(&mp
->m_list
));
766 spin_lock(&dentry
->d_lock
);
767 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
768 spin_unlock(&dentry
->d_lock
);
769 hlist_del(&mp
->m_hash
);
774 static inline int check_mnt(struct mount
*mnt
)
776 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
780 * vfsmount lock must be held for write
782 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
786 wake_up_interruptible(&ns
->poll
);
791 * vfsmount lock must be held for write
793 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
795 if (ns
&& ns
->event
!= event
) {
797 wake_up_interruptible(&ns
->poll
);
802 * vfsmount lock must be held for write
804 static void unhash_mnt(struct mount
*mnt
)
806 mnt
->mnt_parent
= mnt
;
807 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
808 list_del_init(&mnt
->mnt_child
);
809 hlist_del_init_rcu(&mnt
->mnt_hash
);
810 hlist_del_init(&mnt
->mnt_mp_list
);
811 put_mountpoint(mnt
->mnt_mp
);
816 * vfsmount lock must be held for write
818 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
820 old_path
->dentry
= mnt
->mnt_mountpoint
;
821 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
826 * vfsmount lock must be held for write
828 static void umount_mnt(struct mount
*mnt
)
830 /* old mountpoint will be dropped when we can do that */
831 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
836 * vfsmount lock must be held for write
838 void mnt_set_mountpoint(struct mount
*mnt
,
839 struct mountpoint
*mp
,
840 struct mount
*child_mnt
)
843 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
844 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
845 child_mnt
->mnt_parent
= mnt
;
846 child_mnt
->mnt_mp
= mp
;
847 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
851 * vfsmount lock must be held for write
853 static void attach_mnt(struct mount
*mnt
,
854 struct mount
*parent
,
855 struct mountpoint
*mp
)
857 mnt_set_mountpoint(parent
, mp
, mnt
);
858 hlist_add_head_rcu(&mnt
->mnt_hash
, m_hash(&parent
->mnt
, mp
->m_dentry
));
859 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
862 static void attach_shadowed(struct mount
*mnt
,
863 struct mount
*parent
,
864 struct mount
*shadows
)
867 hlist_add_behind_rcu(&mnt
->mnt_hash
, &shadows
->mnt_hash
);
868 list_add(&mnt
->mnt_child
, &shadows
->mnt_child
);
870 hlist_add_head_rcu(&mnt
->mnt_hash
,
871 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
872 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
877 * vfsmount lock must be held for write
879 static void commit_tree(struct mount
*mnt
, struct mount
*shadows
)
881 struct mount
*parent
= mnt
->mnt_parent
;
884 struct mnt_namespace
*n
= parent
->mnt_ns
;
886 BUG_ON(parent
== mnt
);
888 list_add_tail(&head
, &mnt
->mnt_list
);
889 list_for_each_entry(m
, &head
, mnt_list
)
892 list_splice(&head
, n
->list
.prev
);
894 n
->mounts
+= n
->pending_mounts
;
895 n
->pending_mounts
= 0;
897 attach_shadowed(mnt
, parent
, shadows
);
898 touch_mnt_namespace(n
);
901 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
903 struct list_head
*next
= p
->mnt_mounts
.next
;
904 if (next
== &p
->mnt_mounts
) {
908 next
= p
->mnt_child
.next
;
909 if (next
!= &p
->mnt_parent
->mnt_mounts
)
914 return list_entry(next
, struct mount
, mnt_child
);
917 static struct mount
*skip_mnt_tree(struct mount
*p
)
919 struct list_head
*prev
= p
->mnt_mounts
.prev
;
920 while (prev
!= &p
->mnt_mounts
) {
921 p
= list_entry(prev
, struct mount
, mnt_child
);
922 prev
= p
->mnt_mounts
.prev
;
928 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
934 return ERR_PTR(-ENODEV
);
936 mnt
= alloc_vfsmnt(name
);
938 return ERR_PTR(-ENOMEM
);
940 if (flags
& MS_KERNMOUNT
)
941 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
943 root
= mount_fs(type
, flags
, name
, data
);
947 return ERR_CAST(root
);
950 mnt
->mnt
.mnt_root
= root
;
951 mnt
->mnt
.mnt_sb
= root
->d_sb
;
952 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
953 mnt
->mnt_parent
= mnt
;
955 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
959 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
961 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
964 struct super_block
*sb
= old
->mnt
.mnt_sb
;
968 mnt
= alloc_vfsmnt(old
->mnt_devname
);
970 return ERR_PTR(-ENOMEM
);
972 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
973 mnt
->mnt_group_id
= 0; /* not a peer of original */
975 mnt
->mnt_group_id
= old
->mnt_group_id
;
977 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
978 err
= mnt_alloc_group_id(mnt
);
983 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
984 /* Don't allow unprivileged users to change mount flags */
985 if (flag
& CL_UNPRIVILEGED
) {
986 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
988 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
989 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
991 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
992 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
994 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
995 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
997 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
998 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1001 /* Don't allow unprivileged users to reveal what is under a mount */
1002 if ((flag
& CL_UNPRIVILEGED
) &&
1003 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1004 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1006 atomic_inc(&sb
->s_active
);
1007 mnt
->mnt
.mnt_sb
= sb
;
1008 mnt
->mnt
.mnt_root
= dget(root
);
1009 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1010 mnt
->mnt_parent
= mnt
;
1012 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1013 unlock_mount_hash();
1015 if ((flag
& CL_SLAVE
) ||
1016 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1017 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1018 mnt
->mnt_master
= old
;
1019 CLEAR_MNT_SHARED(mnt
);
1020 } else if (!(flag
& CL_PRIVATE
)) {
1021 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1022 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1023 if (IS_MNT_SLAVE(old
))
1024 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1025 mnt
->mnt_master
= old
->mnt_master
;
1027 if (flag
& CL_MAKE_SHARED
)
1028 set_mnt_shared(mnt
);
1030 /* stick the duplicate mount on the same expiry list
1031 * as the original if that was on one */
1032 if (flag
& CL_EXPIRE
) {
1033 if (!list_empty(&old
->mnt_expire
))
1034 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1042 return ERR_PTR(err
);
1045 static void cleanup_mnt(struct mount
*mnt
)
1048 * This probably indicates that somebody messed
1049 * up a mnt_want/drop_write() pair. If this
1050 * happens, the filesystem was probably unable
1051 * to make r/w->r/o transitions.
1054 * The locking used to deal with mnt_count decrement provides barriers,
1055 * so mnt_get_writers() below is safe.
1057 WARN_ON(mnt_get_writers(mnt
));
1058 if (unlikely(mnt
->mnt_pins
.first
))
1060 fsnotify_vfsmount_delete(&mnt
->mnt
);
1061 dput(mnt
->mnt
.mnt_root
);
1062 deactivate_super(mnt
->mnt
.mnt_sb
);
1064 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1067 static void __cleanup_mnt(struct rcu_head
*head
)
1069 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1072 static LLIST_HEAD(delayed_mntput_list
);
1073 static void delayed_mntput(struct work_struct
*unused
)
1075 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1076 struct llist_node
*next
;
1078 for (; node
; node
= next
) {
1079 next
= llist_next(node
);
1080 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1083 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1085 static void mntput_no_expire(struct mount
*mnt
)
1088 mnt_add_count(mnt
, -1);
1089 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1094 if (mnt_get_count(mnt
)) {
1096 unlock_mount_hash();
1099 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1101 unlock_mount_hash();
1104 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1107 list_del(&mnt
->mnt_instance
);
1109 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1110 struct mount
*p
, *tmp
;
1111 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1115 unlock_mount_hash();
1117 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1118 struct task_struct
*task
= current
;
1119 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1120 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1121 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1124 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1125 schedule_delayed_work(&delayed_mntput_work
, 1);
1131 void mntput(struct vfsmount
*mnt
)
1134 struct mount
*m
= real_mount(mnt
);
1135 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1136 if (unlikely(m
->mnt_expiry_mark
))
1137 m
->mnt_expiry_mark
= 0;
1138 mntput_no_expire(m
);
1141 EXPORT_SYMBOL(mntput
);
1143 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1146 mnt_add_count(real_mount(mnt
), 1);
1149 EXPORT_SYMBOL(mntget
);
1151 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1154 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1157 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1161 static inline void mangle(struct seq_file
*m
, const char *s
)
1163 seq_escape(m
, s
, " \t\n\\");
1167 * Simple .show_options callback for filesystems which don't want to
1168 * implement more complex mount option showing.
1170 * See also save_mount_options().
1172 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1174 const char *options
;
1177 options
= rcu_dereference(root
->d_sb
->s_options
);
1179 if (options
!= NULL
&& options
[0]) {
1187 EXPORT_SYMBOL(generic_show_options
);
1190 * If filesystem uses generic_show_options(), this function should be
1191 * called from the fill_super() callback.
1193 * The .remount_fs callback usually needs to be handled in a special
1194 * way, to make sure, that previous options are not overwritten if the
1197 * Also note, that if the filesystem's .remount_fs function doesn't
1198 * reset all options to their default value, but changes only newly
1199 * given options, then the displayed options will not reflect reality
1202 void save_mount_options(struct super_block
*sb
, char *options
)
1204 BUG_ON(sb
->s_options
);
1205 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1207 EXPORT_SYMBOL(save_mount_options
);
1209 void replace_mount_options(struct super_block
*sb
, char *options
)
1211 char *old
= sb
->s_options
;
1212 rcu_assign_pointer(sb
->s_options
, options
);
1218 EXPORT_SYMBOL(replace_mount_options
);
1220 #ifdef CONFIG_PROC_FS
1221 /* iterator; we want it to have access to namespace_sem, thus here... */
1222 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1224 struct proc_mounts
*p
= proc_mounts(m
);
1226 down_read(&namespace_sem
);
1227 if (p
->cached_event
== p
->ns
->event
) {
1228 void *v
= p
->cached_mount
;
1229 if (*pos
== p
->cached_index
)
1231 if (*pos
== p
->cached_index
+ 1) {
1232 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1233 return p
->cached_mount
= v
;
1237 p
->cached_event
= p
->ns
->event
;
1238 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1239 p
->cached_index
= *pos
;
1240 return p
->cached_mount
;
1243 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1245 struct proc_mounts
*p
= proc_mounts(m
);
1247 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1248 p
->cached_index
= *pos
;
1249 return p
->cached_mount
;
1252 static void m_stop(struct seq_file
*m
, void *v
)
1254 up_read(&namespace_sem
);
1257 static int m_show(struct seq_file
*m
, void *v
)
1259 struct proc_mounts
*p
= proc_mounts(m
);
1260 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1261 return p
->show(m
, &r
->mnt
);
1264 const struct seq_operations mounts_op
= {
1270 #endif /* CONFIG_PROC_FS */
1273 * may_umount_tree - check if a mount tree is busy
1274 * @mnt: root of mount tree
1276 * This is called to check if a tree of mounts has any
1277 * open files, pwds, chroots or sub mounts that are
1280 int may_umount_tree(struct vfsmount
*m
)
1282 struct mount
*mnt
= real_mount(m
);
1283 int actual_refs
= 0;
1284 int minimum_refs
= 0;
1288 /* write lock needed for mnt_get_count */
1290 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1291 actual_refs
+= mnt_get_count(p
);
1294 unlock_mount_hash();
1296 if (actual_refs
> minimum_refs
)
1302 EXPORT_SYMBOL(may_umount_tree
);
1305 * may_umount - check if a mount point is busy
1306 * @mnt: root of mount
1308 * This is called to check if a mount point has any
1309 * open files, pwds, chroots or sub mounts. If the
1310 * mount has sub mounts this will return busy
1311 * regardless of whether the sub mounts are busy.
1313 * Doesn't take quota and stuff into account. IOW, in some cases it will
1314 * give false negatives. The main reason why it's here is that we need
1315 * a non-destructive way to look for easily umountable filesystems.
1317 int may_umount(struct vfsmount
*mnt
)
1320 down_read(&namespace_sem
);
1322 if (propagate_mount_busy(real_mount(mnt
), 2))
1324 unlock_mount_hash();
1325 up_read(&namespace_sem
);
1329 EXPORT_SYMBOL(may_umount
);
1331 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1333 static void namespace_unlock(void)
1335 struct hlist_head head
;
1337 hlist_move_list(&unmounted
, &head
);
1339 up_write(&namespace_sem
);
1341 if (likely(hlist_empty(&head
)))
1346 group_pin_kill(&head
);
1349 static inline void namespace_lock(void)
1351 down_write(&namespace_sem
);
1354 enum umount_tree_flags
{
1356 UMOUNT_PROPAGATE
= 2,
1357 UMOUNT_CONNECTED
= 4,
1360 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1362 /* Leaving mounts connected is only valid for lazy umounts */
1363 if (how
& UMOUNT_SYNC
)
1366 /* A mount without a parent has nothing to be connected to */
1367 if (!mnt_has_parent(mnt
))
1370 /* Because the reference counting rules change when mounts are
1371 * unmounted and connected, umounted mounts may not be
1372 * connected to mounted mounts.
1374 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1377 /* Has it been requested that the mount remain connected? */
1378 if (how
& UMOUNT_CONNECTED
)
1381 /* Is the mount locked such that it needs to remain connected? */
1382 if (IS_MNT_LOCKED(mnt
))
1385 /* By default disconnect the mount */
1390 * mount_lock must be held
1391 * namespace_sem must be held for write
1393 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1395 LIST_HEAD(tmp_list
);
1398 if (how
& UMOUNT_PROPAGATE
)
1399 propagate_mount_unlock(mnt
);
1401 /* Gather the mounts to umount */
1402 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1403 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1404 list_move(&p
->mnt_list
, &tmp_list
);
1407 /* Hide the mounts from mnt_mounts */
1408 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1409 list_del_init(&p
->mnt_child
);
1412 /* Add propogated mounts to the tmp_list */
1413 if (how
& UMOUNT_PROPAGATE
)
1414 propagate_umount(&tmp_list
);
1416 while (!list_empty(&tmp_list
)) {
1417 struct mnt_namespace
*ns
;
1419 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1420 list_del_init(&p
->mnt_expire
);
1421 list_del_init(&p
->mnt_list
);
1425 __touch_mnt_namespace(ns
);
1428 if (how
& UMOUNT_SYNC
)
1429 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1431 disconnect
= disconnect_mount(p
, how
);
1433 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1434 disconnect
? &unmounted
: NULL
);
1435 if (mnt_has_parent(p
)) {
1436 mnt_add_count(p
->mnt_parent
, -1);
1438 /* Don't forget about p */
1439 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1444 change_mnt_propagation(p
, MS_PRIVATE
);
1448 static void shrink_submounts(struct mount
*mnt
);
1450 static int do_umount(struct mount
*mnt
, int flags
)
1452 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1455 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1460 * Allow userspace to request a mountpoint be expired rather than
1461 * unmounting unconditionally. Unmount only happens if:
1462 * (1) the mark is already set (the mark is cleared by mntput())
1463 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1465 if (flags
& MNT_EXPIRE
) {
1466 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1467 flags
& (MNT_FORCE
| MNT_DETACH
))
1471 * probably don't strictly need the lock here if we examined
1472 * all race cases, but it's a slowpath.
1475 if (mnt_get_count(mnt
) != 2) {
1476 unlock_mount_hash();
1479 unlock_mount_hash();
1481 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1486 * If we may have to abort operations to get out of this
1487 * mount, and they will themselves hold resources we must
1488 * allow the fs to do things. In the Unix tradition of
1489 * 'Gee thats tricky lets do it in userspace' the umount_begin
1490 * might fail to complete on the first run through as other tasks
1491 * must return, and the like. Thats for the mount program to worry
1492 * about for the moment.
1495 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1496 sb
->s_op
->umount_begin(sb
);
1500 * No sense to grab the lock for this test, but test itself looks
1501 * somewhat bogus. Suggestions for better replacement?
1502 * Ho-hum... In principle, we might treat that as umount + switch
1503 * to rootfs. GC would eventually take care of the old vfsmount.
1504 * Actually it makes sense, especially if rootfs would contain a
1505 * /reboot - static binary that would close all descriptors and
1506 * call reboot(9). Then init(8) could umount root and exec /reboot.
1508 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1510 * Special case for "unmounting" root ...
1511 * we just try to remount it readonly.
1513 if (!capable(CAP_SYS_ADMIN
))
1515 down_write(&sb
->s_umount
);
1516 if (!(sb
->s_flags
& MS_RDONLY
))
1517 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1518 up_write(&sb
->s_umount
);
1526 if (flags
& MNT_DETACH
) {
1527 if (!list_empty(&mnt
->mnt_list
))
1528 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1531 shrink_submounts(mnt
);
1533 if (!propagate_mount_busy(mnt
, 2)) {
1534 if (!list_empty(&mnt
->mnt_list
))
1535 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1539 unlock_mount_hash();
1545 * __detach_mounts - lazily unmount all mounts on the specified dentry
1547 * During unlink, rmdir, and d_drop it is possible to loose the path
1548 * to an existing mountpoint, and wind up leaking the mount.
1549 * detach_mounts allows lazily unmounting those mounts instead of
1552 * The caller may hold dentry->d_inode->i_mutex.
1554 void __detach_mounts(struct dentry
*dentry
)
1556 struct mountpoint
*mp
;
1560 mp
= lookup_mountpoint(dentry
);
1561 if (IS_ERR_OR_NULL(mp
))
1566 while (!hlist_empty(&mp
->m_list
)) {
1567 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1568 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1569 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1572 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1574 unlock_mount_hash();
1581 * Is the caller allowed to modify his namespace?
1583 static inline bool may_mount(void)
1585 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1589 * Now umount can handle mount points as well as block devices.
1590 * This is important for filesystems which use unnamed block devices.
1592 * We now support a flag for forced unmount like the other 'big iron'
1593 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1596 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1601 int lookup_flags
= 0;
1603 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1609 if (!(flags
& UMOUNT_NOFOLLOW
))
1610 lookup_flags
|= LOOKUP_FOLLOW
;
1612 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1615 mnt
= real_mount(path
.mnt
);
1617 if (path
.dentry
!= path
.mnt
->mnt_root
)
1619 if (!check_mnt(mnt
))
1621 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1624 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1627 retval
= do_umount(mnt
, flags
);
1629 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1631 mntput_no_expire(mnt
);
1636 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1639 * The 2.0 compatible umount. No flags.
1641 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1643 return sys_umount(name
, 0);
1648 static bool is_mnt_ns_file(struct dentry
*dentry
)
1650 /* Is this a proxy for a mount namespace? */
1651 return dentry
->d_op
== &ns_dentry_operations
&&
1652 dentry
->d_fsdata
== &mntns_operations
;
1655 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1657 return container_of(ns
, struct mnt_namespace
, ns
);
1660 static bool mnt_ns_loop(struct dentry
*dentry
)
1662 /* Could bind mounting the mount namespace inode cause a
1663 * mount namespace loop?
1665 struct mnt_namespace
*mnt_ns
;
1666 if (!is_mnt_ns_file(dentry
))
1669 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1670 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1673 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1676 struct mount
*res
, *p
, *q
, *r
, *parent
;
1678 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1679 return ERR_PTR(-EINVAL
);
1681 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1682 return ERR_PTR(-EINVAL
);
1684 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1688 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1691 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1693 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1696 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1697 struct mount
*t
= NULL
;
1698 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1699 IS_MNT_UNBINDABLE(s
)) {
1700 s
= skip_mnt_tree(s
);
1703 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1704 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1705 s
= skip_mnt_tree(s
);
1708 while (p
!= s
->mnt_parent
) {
1714 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1718 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1719 mnt_set_mountpoint(parent
, p
->mnt_mp
, q
);
1720 if (!list_empty(&parent
->mnt_mounts
)) {
1721 t
= list_last_entry(&parent
->mnt_mounts
,
1722 struct mount
, mnt_child
);
1723 if (t
->mnt_mp
!= p
->mnt_mp
)
1726 attach_shadowed(q
, parent
, t
);
1727 unlock_mount_hash();
1734 umount_tree(res
, UMOUNT_SYNC
);
1735 unlock_mount_hash();
1740 /* Caller should check returned pointer for errors */
1742 struct vfsmount
*collect_mounts(struct path
*path
)
1746 if (!check_mnt(real_mount(path
->mnt
)))
1747 tree
= ERR_PTR(-EINVAL
);
1749 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1750 CL_COPY_ALL
| CL_PRIVATE
);
1753 return ERR_CAST(tree
);
1757 void drop_collected_mounts(struct vfsmount
*mnt
)
1761 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1762 unlock_mount_hash();
1767 * clone_private_mount - create a private clone of a path
1769 * This creates a new vfsmount, which will be the clone of @path. The new will
1770 * not be attached anywhere in the namespace and will be private (i.e. changes
1771 * to the originating mount won't be propagated into this).
1773 * Release with mntput().
1775 struct vfsmount
*clone_private_mount(struct path
*path
)
1777 struct mount
*old_mnt
= real_mount(path
->mnt
);
1778 struct mount
*new_mnt
;
1780 if (IS_MNT_UNBINDABLE(old_mnt
))
1781 return ERR_PTR(-EINVAL
);
1783 down_read(&namespace_sem
);
1784 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1785 up_read(&namespace_sem
);
1786 if (IS_ERR(new_mnt
))
1787 return ERR_CAST(new_mnt
);
1789 return &new_mnt
->mnt
;
1791 EXPORT_SYMBOL_GPL(clone_private_mount
);
1793 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1794 struct vfsmount
*root
)
1797 int res
= f(root
, arg
);
1800 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1801 res
= f(&mnt
->mnt
, arg
);
1808 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1812 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1813 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1814 mnt_release_group_id(p
);
1818 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1822 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1823 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1824 int err
= mnt_alloc_group_id(p
);
1826 cleanup_group_ids(mnt
, p
);
1835 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1837 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1838 unsigned int mounts
= 0, old
, pending
, sum
;
1841 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1845 pending
= ns
->pending_mounts
;
1846 sum
= old
+ pending
;
1850 (mounts
> (max
- sum
)))
1853 ns
->pending_mounts
= pending
+ mounts
;
1858 * @source_mnt : mount tree to be attached
1859 * @nd : place the mount tree @source_mnt is attached
1860 * @parent_nd : if non-null, detach the source_mnt from its parent and
1861 * store the parent mount and mountpoint dentry.
1862 * (done when source_mnt is moved)
1864 * NOTE: in the table below explains the semantics when a source mount
1865 * of a given type is attached to a destination mount of a given type.
1866 * ---------------------------------------------------------------------------
1867 * | BIND MOUNT OPERATION |
1868 * |**************************************************************************
1869 * | source-->| shared | private | slave | unbindable |
1873 * |**************************************************************************
1874 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1876 * |non-shared| shared (+) | private | slave (*) | invalid |
1877 * ***************************************************************************
1878 * A bind operation clones the source mount and mounts the clone on the
1879 * destination mount.
1881 * (++) the cloned mount is propagated to all the mounts in the propagation
1882 * tree of the destination mount and the cloned mount is added to
1883 * the peer group of the source mount.
1884 * (+) the cloned mount is created under the destination mount and is marked
1885 * as shared. The cloned mount is added to the peer group of the source
1887 * (+++) the mount is propagated to all the mounts in the propagation tree
1888 * of the destination mount and the cloned mount is made slave
1889 * of the same master as that of the source mount. The cloned mount
1890 * is marked as 'shared and slave'.
1891 * (*) the cloned mount is made a slave of the same master as that of the
1894 * ---------------------------------------------------------------------------
1895 * | MOVE MOUNT OPERATION |
1896 * |**************************************************************************
1897 * | source-->| shared | private | slave | unbindable |
1901 * |**************************************************************************
1902 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1904 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1905 * ***************************************************************************
1907 * (+) the mount is moved to the destination. And is then propagated to
1908 * all the mounts in the propagation tree of the destination mount.
1909 * (+*) the mount is moved to the destination.
1910 * (+++) the mount is moved to the destination and is then propagated to
1911 * all the mounts belonging to the destination mount's propagation tree.
1912 * the mount is marked as 'shared and slave'.
1913 * (*) the mount continues to be a slave at the new location.
1915 * if the source mount is a tree, the operations explained above is
1916 * applied to each mount in the tree.
1917 * Must be called without spinlocks held, since this function can sleep
1920 static int attach_recursive_mnt(struct mount
*source_mnt
,
1921 struct mount
*dest_mnt
,
1922 struct mountpoint
*dest_mp
,
1923 struct path
*parent_path
)
1925 HLIST_HEAD(tree_list
);
1926 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1927 struct mount
*child
, *p
;
1928 struct hlist_node
*n
;
1931 /* Is there space to add these mounts to the mount namespace? */
1933 err
= count_mounts(ns
, source_mnt
);
1938 if (IS_MNT_SHARED(dest_mnt
)) {
1939 err
= invent_group_ids(source_mnt
, true);
1942 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1945 goto out_cleanup_ids
;
1946 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1952 detach_mnt(source_mnt
, parent_path
);
1953 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1954 touch_mnt_namespace(source_mnt
->mnt_ns
);
1956 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1957 commit_tree(source_mnt
, NULL
);
1960 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
1962 hlist_del_init(&child
->mnt_hash
);
1963 q
= __lookup_mnt_last(&child
->mnt_parent
->mnt
,
1964 child
->mnt_mountpoint
);
1965 commit_tree(child
, q
);
1967 unlock_mount_hash();
1972 while (!hlist_empty(&tree_list
)) {
1973 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
1974 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
1975 umount_tree(child
, UMOUNT_SYNC
);
1977 unlock_mount_hash();
1978 cleanup_group_ids(source_mnt
, NULL
);
1980 ns
->pending_mounts
= 0;
1984 static struct mountpoint
*lock_mount(struct path
*path
)
1986 struct vfsmount
*mnt
;
1987 struct dentry
*dentry
= path
->dentry
;
1989 mutex_lock(&dentry
->d_inode
->i_mutex
);
1990 if (unlikely(cant_mount(dentry
))) {
1991 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1992 return ERR_PTR(-ENOENT
);
1995 mnt
= lookup_mnt(path
);
1997 struct mountpoint
*mp
= lookup_mountpoint(dentry
);
1999 mp
= new_mountpoint(dentry
);
2002 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2008 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
2011 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2015 static void unlock_mount(struct mountpoint
*where
)
2017 struct dentry
*dentry
= where
->m_dentry
;
2018 put_mountpoint(where
);
2020 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2023 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2025 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2028 if (d_is_dir(mp
->m_dentry
) !=
2029 d_is_dir(mnt
->mnt
.mnt_root
))
2032 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2036 * Sanity check the flags to change_mnt_propagation.
2039 static int flags_to_propagation_type(int flags
)
2041 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2043 /* Fail if any non-propagation flags are set */
2044 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2046 /* Only one propagation flag should be set */
2047 if (!is_power_of_2(type
))
2053 * recursively change the type of the mountpoint.
2055 static int do_change_type(struct path
*path
, int flag
)
2058 struct mount
*mnt
= real_mount(path
->mnt
);
2059 int recurse
= flag
& MS_REC
;
2063 if (path
->dentry
!= path
->mnt
->mnt_root
)
2066 type
= flags_to_propagation_type(flag
);
2071 if (type
== MS_SHARED
) {
2072 err
= invent_group_ids(mnt
, recurse
);
2078 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2079 change_mnt_propagation(m
, type
);
2080 unlock_mount_hash();
2087 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2089 struct mount
*child
;
2090 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2091 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2094 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2101 * do loopback mount.
2103 static int do_loopback(struct path
*path
, const char *old_name
,
2106 struct path old_path
;
2107 struct mount
*mnt
= NULL
, *old
, *parent
;
2108 struct mountpoint
*mp
;
2110 if (!old_name
|| !*old_name
)
2112 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2117 if (mnt_ns_loop(old_path
.dentry
))
2120 mp
= lock_mount(path
);
2125 old
= real_mount(old_path
.mnt
);
2126 parent
= real_mount(path
->mnt
);
2129 if (IS_MNT_UNBINDABLE(old
))
2132 if (!check_mnt(parent
))
2135 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2138 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2142 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2144 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2151 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2153 err
= graft_tree(mnt
, parent
, mp
);
2156 umount_tree(mnt
, UMOUNT_SYNC
);
2157 unlock_mount_hash();
2162 path_put(&old_path
);
2166 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2169 int readonly_request
= 0;
2171 if (ms_flags
& MS_RDONLY
)
2172 readonly_request
= 1;
2173 if (readonly_request
== __mnt_is_readonly(mnt
))
2176 if (readonly_request
)
2177 error
= mnt_make_readonly(real_mount(mnt
));
2179 __mnt_unmake_readonly(real_mount(mnt
));
2184 * change filesystem flags. dir should be a physical root of filesystem.
2185 * If you've mounted a non-root directory somewhere and want to do remount
2186 * on it - tough luck.
2188 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2192 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2193 struct mount
*mnt
= real_mount(path
->mnt
);
2195 if (!check_mnt(mnt
))
2198 if (path
->dentry
!= path
->mnt
->mnt_root
)
2201 /* Don't allow changing of locked mnt flags.
2203 * No locks need to be held here while testing the various
2204 * MNT_LOCK flags because those flags can never be cleared
2205 * once they are set.
2207 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2208 !(mnt_flags
& MNT_READONLY
)) {
2211 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2212 !(mnt_flags
& MNT_NODEV
)) {
2213 /* Was the nodev implicitly added in mount? */
2214 if ((mnt
->mnt_ns
->user_ns
!= &init_user_ns
) &&
2215 !(sb
->s_type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2216 mnt_flags
|= MNT_NODEV
;
2221 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2222 !(mnt_flags
& MNT_NOSUID
)) {
2225 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2226 !(mnt_flags
& MNT_NOEXEC
)) {
2229 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2230 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2234 err
= security_sb_remount(sb
, data
);
2238 down_write(&sb
->s_umount
);
2239 if (flags
& MS_BIND
)
2240 err
= change_mount_flags(path
->mnt
, flags
);
2241 else if (!capable(CAP_SYS_ADMIN
))
2244 err
= do_remount_sb(sb
, flags
, data
, 0);
2247 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2248 mnt
->mnt
.mnt_flags
= mnt_flags
;
2249 touch_mnt_namespace(mnt
->mnt_ns
);
2250 unlock_mount_hash();
2252 up_write(&sb
->s_umount
);
2256 static inline int tree_contains_unbindable(struct mount
*mnt
)
2259 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2260 if (IS_MNT_UNBINDABLE(p
))
2266 static int do_move_mount(struct path
*path
, const char *old_name
)
2268 struct path old_path
, parent_path
;
2271 struct mountpoint
*mp
;
2273 if (!old_name
|| !*old_name
)
2275 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2279 mp
= lock_mount(path
);
2284 old
= real_mount(old_path
.mnt
);
2285 p
= real_mount(path
->mnt
);
2288 if (!check_mnt(p
) || !check_mnt(old
))
2291 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2295 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2298 if (!mnt_has_parent(old
))
2301 if (d_is_dir(path
->dentry
) !=
2302 d_is_dir(old_path
.dentry
))
2305 * Don't move a mount residing in a shared parent.
2307 if (IS_MNT_SHARED(old
->mnt_parent
))
2310 * Don't move a mount tree containing unbindable mounts to a destination
2311 * mount which is shared.
2313 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2316 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2320 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2324 /* if the mount is moved, it should no longer be expire
2326 list_del_init(&old
->mnt_expire
);
2331 path_put(&parent_path
);
2332 path_put(&old_path
);
2336 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2339 const char *subtype
= strchr(fstype
, '.');
2348 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2350 if (!mnt
->mnt_sb
->s_subtype
)
2356 return ERR_PTR(err
);
2360 * add a mount into a namespace's mount tree
2362 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2364 struct mountpoint
*mp
;
2365 struct mount
*parent
;
2368 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2370 mp
= lock_mount(path
);
2374 parent
= real_mount(path
->mnt
);
2376 if (unlikely(!check_mnt(parent
))) {
2377 /* that's acceptable only for automounts done in private ns */
2378 if (!(mnt_flags
& MNT_SHRINKABLE
))
2380 /* ... and for those we'd better have mountpoint still alive */
2381 if (!parent
->mnt_ns
)
2385 /* Refuse the same filesystem on the same mount point */
2387 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2388 path
->mnt
->mnt_root
== path
->dentry
)
2392 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2395 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2396 err
= graft_tree(newmnt
, parent
, mp
);
2403 static bool fs_fully_visible(struct file_system_type
*fs_type
, int *new_mnt_flags
);
2406 * create a new mount for userspace and request it to be added into the
2409 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2410 int mnt_flags
, const char *name
, void *data
)
2412 struct file_system_type
*type
;
2413 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2414 struct vfsmount
*mnt
;
2420 type
= get_fs_type(fstype
);
2424 if (user_ns
!= &init_user_ns
) {
2425 if (!(type
->fs_flags
& FS_USERNS_MOUNT
)) {
2426 put_filesystem(type
);
2429 /* Only in special cases allow devices from mounts
2430 * created outside the initial user namespace.
2432 if (!(type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2434 mnt_flags
|= MNT_NODEV
| MNT_LOCK_NODEV
;
2436 if (type
->fs_flags
& FS_USERNS_VISIBLE
) {
2437 if (!fs_fully_visible(type
, &mnt_flags
)) {
2438 put_filesystem(type
);
2444 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2445 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2446 !mnt
->mnt_sb
->s_subtype
)
2447 mnt
= fs_set_subtype(mnt
, fstype
);
2449 put_filesystem(type
);
2451 return PTR_ERR(mnt
);
2453 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2459 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2461 struct mount
*mnt
= real_mount(m
);
2463 /* The new mount record should have at least 2 refs to prevent it being
2464 * expired before we get a chance to add it
2466 BUG_ON(mnt_get_count(mnt
) < 2);
2468 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2469 m
->mnt_root
== path
->dentry
) {
2474 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2478 /* remove m from any expiration list it may be on */
2479 if (!list_empty(&mnt
->mnt_expire
)) {
2481 list_del_init(&mnt
->mnt_expire
);
2490 * mnt_set_expiry - Put a mount on an expiration list
2491 * @mnt: The mount to list.
2492 * @expiry_list: The list to add the mount to.
2494 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2498 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2502 EXPORT_SYMBOL(mnt_set_expiry
);
2505 * process a list of expirable mountpoints with the intent of discarding any
2506 * mountpoints that aren't in use and haven't been touched since last we came
2509 void mark_mounts_for_expiry(struct list_head
*mounts
)
2511 struct mount
*mnt
, *next
;
2512 LIST_HEAD(graveyard
);
2514 if (list_empty(mounts
))
2520 /* extract from the expiration list every vfsmount that matches the
2521 * following criteria:
2522 * - only referenced by its parent vfsmount
2523 * - still marked for expiry (marked on the last call here; marks are
2524 * cleared by mntput())
2526 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2527 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2528 propagate_mount_busy(mnt
, 1))
2530 list_move(&mnt
->mnt_expire
, &graveyard
);
2532 while (!list_empty(&graveyard
)) {
2533 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2534 touch_mnt_namespace(mnt
->mnt_ns
);
2535 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2537 unlock_mount_hash();
2541 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2544 * Ripoff of 'select_parent()'
2546 * search the list of submounts for a given mountpoint, and move any
2547 * shrinkable submounts to the 'graveyard' list.
2549 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2551 struct mount
*this_parent
= parent
;
2552 struct list_head
*next
;
2556 next
= this_parent
->mnt_mounts
.next
;
2558 while (next
!= &this_parent
->mnt_mounts
) {
2559 struct list_head
*tmp
= next
;
2560 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2563 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2566 * Descend a level if the d_mounts list is non-empty.
2568 if (!list_empty(&mnt
->mnt_mounts
)) {
2573 if (!propagate_mount_busy(mnt
, 1)) {
2574 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2579 * All done at this level ... ascend and resume the search
2581 if (this_parent
!= parent
) {
2582 next
= this_parent
->mnt_child
.next
;
2583 this_parent
= this_parent
->mnt_parent
;
2590 * process a list of expirable mountpoints with the intent of discarding any
2591 * submounts of a specific parent mountpoint
2593 * mount_lock must be held for write
2595 static void shrink_submounts(struct mount
*mnt
)
2597 LIST_HEAD(graveyard
);
2600 /* extract submounts of 'mountpoint' from the expiration list */
2601 while (select_submounts(mnt
, &graveyard
)) {
2602 while (!list_empty(&graveyard
)) {
2603 m
= list_first_entry(&graveyard
, struct mount
,
2605 touch_mnt_namespace(m
->mnt_ns
);
2606 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2612 * Some copy_from_user() implementations do not return the exact number of
2613 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2614 * Note that this function differs from copy_from_user() in that it will oops
2615 * on bad values of `to', rather than returning a short copy.
2617 static long exact_copy_from_user(void *to
, const void __user
* from
,
2621 const char __user
*f
= from
;
2624 if (!access_ok(VERIFY_READ
, from
, n
))
2628 if (__get_user(c
, f
)) {
2639 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2649 if (!(page
= __get_free_page(GFP_KERNEL
)))
2652 /* We only care that *some* data at the address the user
2653 * gave us is valid. Just in case, we'll zero
2654 * the remainder of the page.
2656 /* copy_from_user cannot cross TASK_SIZE ! */
2657 size
= TASK_SIZE
- (unsigned long)data
;
2658 if (size
> PAGE_SIZE
)
2661 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2667 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2672 char *copy_mount_string(const void __user
*data
)
2674 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2678 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2679 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2681 * data is a (void *) that can point to any structure up to
2682 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2683 * information (or be NULL).
2685 * Pre-0.97 versions of mount() didn't have a flags word.
2686 * When the flags word was introduced its top half was required
2687 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2688 * Therefore, if this magic number is present, it carries no information
2689 * and must be discarded.
2691 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2692 const char *type_page
, unsigned long flags
, void *data_page
)
2699 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2700 flags
&= ~MS_MGC_MSK
;
2702 /* Basic sanity checks */
2704 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2706 /* ... and get the mountpoint */
2707 retval
= user_path(dir_name
, &path
);
2711 retval
= security_sb_mount(dev_name
, &path
,
2712 type_page
, flags
, data_page
);
2713 if (!retval
&& !may_mount())
2718 /* Default to relatime unless overriden */
2719 if (!(flags
& MS_NOATIME
))
2720 mnt_flags
|= MNT_RELATIME
;
2722 /* Separate the per-mountpoint flags */
2723 if (flags
& MS_NOSUID
)
2724 mnt_flags
|= MNT_NOSUID
;
2725 if (flags
& MS_NODEV
)
2726 mnt_flags
|= MNT_NODEV
;
2727 if (flags
& MS_NOEXEC
)
2728 mnt_flags
|= MNT_NOEXEC
;
2729 if (flags
& MS_NOATIME
)
2730 mnt_flags
|= MNT_NOATIME
;
2731 if (flags
& MS_NODIRATIME
)
2732 mnt_flags
|= MNT_NODIRATIME
;
2733 if (flags
& MS_STRICTATIME
)
2734 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2735 if (flags
& MS_RDONLY
)
2736 mnt_flags
|= MNT_READONLY
;
2738 /* The default atime for remount is preservation */
2739 if ((flags
& MS_REMOUNT
) &&
2740 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2741 MS_STRICTATIME
)) == 0)) {
2742 mnt_flags
&= ~MNT_ATIME_MASK
;
2743 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2746 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2747 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2750 if (flags
& MS_REMOUNT
)
2751 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2753 else if (flags
& MS_BIND
)
2754 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2755 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2756 retval
= do_change_type(&path
, flags
);
2757 else if (flags
& MS_MOVE
)
2758 retval
= do_move_mount(&path
, dev_name
);
2760 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2761 dev_name
, data_page
);
2767 static void free_mnt_ns(struct mnt_namespace
*ns
)
2769 ns_free_inum(&ns
->ns
);
2770 put_user_ns(ns
->user_ns
);
2775 * Assign a sequence number so we can detect when we attempt to bind
2776 * mount a reference to an older mount namespace into the current
2777 * mount namespace, preventing reference counting loops. A 64bit
2778 * number incrementing at 10Ghz will take 12,427 years to wrap which
2779 * is effectively never, so we can ignore the possibility.
2781 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2783 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2785 struct mnt_namespace
*new_ns
;
2788 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2790 return ERR_PTR(-ENOMEM
);
2791 ret
= ns_alloc_inum(&new_ns
->ns
);
2794 return ERR_PTR(ret
);
2796 new_ns
->ns
.ops
= &mntns_operations
;
2797 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2798 atomic_set(&new_ns
->count
, 1);
2799 new_ns
->root
= NULL
;
2800 INIT_LIST_HEAD(&new_ns
->list
);
2801 init_waitqueue_head(&new_ns
->poll
);
2803 new_ns
->user_ns
= get_user_ns(user_ns
);
2805 new_ns
->pending_mounts
= 0;
2809 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2810 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2812 struct mnt_namespace
*new_ns
;
2813 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2814 struct mount
*p
, *q
;
2821 if (likely(!(flags
& CLONE_NEWNS
))) {
2828 new_ns
= alloc_mnt_ns(user_ns
);
2833 /* First pass: copy the tree topology */
2834 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2835 if (user_ns
!= ns
->user_ns
)
2836 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2837 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2840 free_mnt_ns(new_ns
);
2841 return ERR_CAST(new);
2844 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2847 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2848 * as belonging to new namespace. We have already acquired a private
2849 * fs_struct, so tsk->fs->lock is not needed.
2857 if (&p
->mnt
== new_fs
->root
.mnt
) {
2858 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2861 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2862 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2866 p
= next_mnt(p
, old
);
2867 q
= next_mnt(q
, new);
2870 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2871 p
= next_mnt(p
, old
);
2884 * create_mnt_ns - creates a private namespace and adds a root filesystem
2885 * @mnt: pointer to the new root filesystem mountpoint
2887 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2889 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2890 if (!IS_ERR(new_ns
)) {
2891 struct mount
*mnt
= real_mount(m
);
2892 mnt
->mnt_ns
= new_ns
;
2895 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2902 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2904 struct mnt_namespace
*ns
;
2905 struct super_block
*s
;
2909 ns
= create_mnt_ns(mnt
);
2911 return ERR_CAST(ns
);
2913 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2914 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2919 return ERR_PTR(err
);
2921 /* trade a vfsmount reference for active sb one */
2922 s
= path
.mnt
->mnt_sb
;
2923 atomic_inc(&s
->s_active
);
2925 /* lock the sucker */
2926 down_write(&s
->s_umount
);
2927 /* ... and return the root of (sub)tree on it */
2930 EXPORT_SYMBOL(mount_subtree
);
2932 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2933 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2938 unsigned long data_page
;
2940 kernel_type
= copy_mount_string(type
);
2941 ret
= PTR_ERR(kernel_type
);
2942 if (IS_ERR(kernel_type
))
2945 kernel_dev
= copy_mount_string(dev_name
);
2946 ret
= PTR_ERR(kernel_dev
);
2947 if (IS_ERR(kernel_dev
))
2950 ret
= copy_mount_options(data
, &data_page
);
2954 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
,
2955 (void *) data_page
);
2957 free_page(data_page
);
2967 * Return true if path is reachable from root
2969 * namespace_sem or mount_lock is held
2971 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2972 const struct path
*root
)
2974 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2975 dentry
= mnt
->mnt_mountpoint
;
2976 mnt
= mnt
->mnt_parent
;
2978 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2981 int path_is_under(struct path
*path1
, struct path
*path2
)
2984 read_seqlock_excl(&mount_lock
);
2985 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2986 read_sequnlock_excl(&mount_lock
);
2989 EXPORT_SYMBOL(path_is_under
);
2992 * pivot_root Semantics:
2993 * Moves the root file system of the current process to the directory put_old,
2994 * makes new_root as the new root file system of the current process, and sets
2995 * root/cwd of all processes which had them on the current root to new_root.
2998 * The new_root and put_old must be directories, and must not be on the
2999 * same file system as the current process root. The put_old must be
3000 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3001 * pointed to by put_old must yield the same directory as new_root. No other
3002 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3004 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3005 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3006 * in this situation.
3009 * - we don't move root/cwd if they are not at the root (reason: if something
3010 * cared enough to change them, it's probably wrong to force them elsewhere)
3011 * - it's okay to pick a root that isn't the root of a file system, e.g.
3012 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3013 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3016 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3017 const char __user
*, put_old
)
3019 struct path
new, old
, parent_path
, root_parent
, root
;
3020 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3021 struct mountpoint
*old_mp
, *root_mp
;
3027 error
= user_path_dir(new_root
, &new);
3031 error
= user_path_dir(put_old
, &old
);
3035 error
= security_sb_pivotroot(&old
, &new);
3039 get_fs_root(current
->fs
, &root
);
3040 old_mp
= lock_mount(&old
);
3041 error
= PTR_ERR(old_mp
);
3046 new_mnt
= real_mount(new.mnt
);
3047 root_mnt
= real_mount(root
.mnt
);
3048 old_mnt
= real_mount(old
.mnt
);
3049 if (IS_MNT_SHARED(old_mnt
) ||
3050 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3051 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3053 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3055 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3058 if (d_unlinked(new.dentry
))
3061 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3062 goto out4
; /* loop, on the same file system */
3064 if (root
.mnt
->mnt_root
!= root
.dentry
)
3065 goto out4
; /* not a mountpoint */
3066 if (!mnt_has_parent(root_mnt
))
3067 goto out4
; /* not attached */
3068 root_mp
= root_mnt
->mnt_mp
;
3069 if (new.mnt
->mnt_root
!= new.dentry
)
3070 goto out4
; /* not a mountpoint */
3071 if (!mnt_has_parent(new_mnt
))
3072 goto out4
; /* not attached */
3073 /* make sure we can reach put_old from new_root */
3074 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3076 /* make certain new is below the root */
3077 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3079 root_mp
->m_count
++; /* pin it so it won't go away */
3081 detach_mnt(new_mnt
, &parent_path
);
3082 detach_mnt(root_mnt
, &root_parent
);
3083 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3084 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3085 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3087 /* mount old root on put_old */
3088 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3089 /* mount new_root on / */
3090 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3091 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3092 /* A moved mount should not expire automatically */
3093 list_del_init(&new_mnt
->mnt_expire
);
3094 unlock_mount_hash();
3095 chroot_fs_refs(&root
, &new);
3096 put_mountpoint(root_mp
);
3099 unlock_mount(old_mp
);
3101 path_put(&root_parent
);
3102 path_put(&parent_path
);
3114 static void __init
init_mount_tree(void)
3116 struct vfsmount
*mnt
;
3117 struct mnt_namespace
*ns
;
3119 struct file_system_type
*type
;
3121 type
= get_fs_type("rootfs");
3123 panic("Can't find rootfs type");
3124 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3125 put_filesystem(type
);
3127 panic("Can't create rootfs");
3129 ns
= create_mnt_ns(mnt
);
3131 panic("Can't allocate initial namespace");
3133 init_task
.nsproxy
->mnt_ns
= ns
;
3137 root
.dentry
= mnt
->mnt_root
;
3138 mnt
->mnt_flags
|= MNT_LOCKED
;
3140 set_fs_pwd(current
->fs
, &root
);
3141 set_fs_root(current
->fs
, &root
);
3144 void __init
mnt_init(void)
3149 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3150 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3152 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3153 sizeof(struct hlist_head
),
3156 &m_hash_shift
, &m_hash_mask
, 0, 0);
3157 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3158 sizeof(struct hlist_head
),
3161 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3163 if (!mount_hashtable
|| !mountpoint_hashtable
)
3164 panic("Failed to allocate mount hash table\n");
3166 for (u
= 0; u
<= m_hash_mask
; u
++)
3167 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3168 for (u
= 0; u
<= mp_hash_mask
; u
++)
3169 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3175 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3177 fs_kobj
= kobject_create_and_add("fs", NULL
);
3179 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3184 void put_mnt_ns(struct mnt_namespace
*ns
)
3186 if (!atomic_dec_and_test(&ns
->count
))
3188 drop_collected_mounts(&ns
->root
->mnt
);
3192 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3194 struct vfsmount
*mnt
;
3195 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3198 * it is a longterm mount, don't release mnt until
3199 * we unmount before file sys is unregistered
3201 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3205 EXPORT_SYMBOL_GPL(kern_mount_data
);
3207 void kern_unmount(struct vfsmount
*mnt
)
3209 /* release long term mount so mount point can be released */
3210 if (!IS_ERR_OR_NULL(mnt
)) {
3211 real_mount(mnt
)->mnt_ns
= NULL
;
3212 synchronize_rcu(); /* yecchhh... */
3216 EXPORT_SYMBOL(kern_unmount
);
3218 bool our_mnt(struct vfsmount
*mnt
)
3220 return check_mnt(real_mount(mnt
));
3223 bool current_chrooted(void)
3225 /* Does the current process have a non-standard root */
3226 struct path ns_root
;
3227 struct path fs_root
;
3230 /* Find the namespace root */
3231 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3232 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3234 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3237 get_fs_root(current
->fs
, &fs_root
);
3239 chrooted
= !path_equal(&fs_root
, &ns_root
);
3247 static bool fs_fully_visible(struct file_system_type
*type
, int *new_mnt_flags
)
3249 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3250 int new_flags
= *new_mnt_flags
;
3252 bool visible
= false;
3257 down_read(&namespace_sem
);
3258 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3259 struct mount
*child
;
3260 if (mnt
->mnt
.mnt_sb
->s_type
!= type
)
3263 /* This mount is not fully visible if it's root directory
3264 * is not the root directory of the filesystem.
3266 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3269 /* Verify the mount flags are equal to or more permissive
3270 * than the proposed new mount.
3272 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
3273 !(new_flags
& MNT_READONLY
))
3275 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
3276 !(new_flags
& MNT_NODEV
))
3278 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
3279 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3282 /* This mount is not fully visible if there are any
3283 * locked child mounts that cover anything except for
3284 * empty directories.
3286 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3287 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3288 /* Only worry about locked mounts */
3289 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3291 /* Is the directory permanetly empty? */
3292 if (!is_empty_dir_inode(inode
))
3295 /* Preserve the locked attributes */
3296 *new_mnt_flags
|= mnt
->mnt
.mnt_flags
& (MNT_LOCK_READONLY
| \
3304 up_read(&namespace_sem
);
3308 static struct ns_common
*mntns_get(struct task_struct
*task
)
3310 struct ns_common
*ns
= NULL
;
3311 struct nsproxy
*nsproxy
;
3314 nsproxy
= task
->nsproxy
;
3316 ns
= &nsproxy
->mnt_ns
->ns
;
3317 get_mnt_ns(to_mnt_ns(ns
));
3324 static void mntns_put(struct ns_common
*ns
)
3326 put_mnt_ns(to_mnt_ns(ns
));
3329 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3331 struct fs_struct
*fs
= current
->fs
;
3332 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3335 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3336 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3337 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3344 put_mnt_ns(nsproxy
->mnt_ns
);
3345 nsproxy
->mnt_ns
= mnt_ns
;
3348 root
.mnt
= &mnt_ns
->root
->mnt
;
3349 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3351 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3354 /* Update the pwd and root */
3355 set_fs_pwd(fs
, &root
);
3356 set_fs_root(fs
, &root
);
3362 const struct proc_ns_operations mntns_operations
= {
3364 .type
= CLONE_NEWNS
,
3367 .install
= mntns_install
,