gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / splice.c
blobe7522c48606812a36be7a701465a796a2b710a6a
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 if (!spd_pages)
189 return 0;
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
195 pipe_lock(pipe);
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
221 if (pipe->files)
222 do_wakeup = 1;
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
229 break;
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
257 pipe_unlock(pipe);
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
265 return ret;
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 page_cache_release(spd->pages[i]);
274 * Check if we need to grow the arrays holding pages and partial page
275 * descriptions.
277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281 spd->nr_pages_max = buffers;
282 if (buffers <= PIPE_DEF_BUFFERS)
283 return 0;
285 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288 if (spd->pages && spd->partial)
289 return 0;
291 kfree(spd->pages);
292 kfree(spd->partial);
293 return -ENOMEM;
296 void splice_shrink_spd(struct splice_pipe_desc *spd)
298 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299 return;
301 kfree(spd->pages);
302 kfree(spd->partial);
305 static int
306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307 struct pipe_inode_info *pipe, size_t len,
308 unsigned int flags)
310 struct address_space *mapping = in->f_mapping;
311 unsigned int loff, nr_pages, req_pages;
312 struct page *pages[PIPE_DEF_BUFFERS];
313 struct partial_page partial[PIPE_DEF_BUFFERS];
314 struct page *page;
315 pgoff_t index, end_index;
316 loff_t isize;
317 int error, page_nr;
318 struct splice_pipe_desc spd = {
319 .pages = pages,
320 .partial = partial,
321 .nr_pages_max = PIPE_DEF_BUFFERS,
322 .flags = flags,
323 .ops = &page_cache_pipe_buf_ops,
324 .spd_release = spd_release_page,
327 if (splice_grow_spd(pipe, &spd))
328 return -ENOMEM;
330 index = *ppos >> PAGE_CACHE_SHIFT;
331 loff = *ppos & ~PAGE_CACHE_MASK;
332 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333 nr_pages = min(req_pages, spd.nr_pages_max);
336 * Lookup the (hopefully) full range of pages we need.
338 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339 index += spd.nr_pages;
342 * If find_get_pages_contig() returned fewer pages than we needed,
343 * readahead/allocate the rest and fill in the holes.
345 if (spd.nr_pages < nr_pages)
346 page_cache_sync_readahead(mapping, &in->f_ra, in,
347 index, req_pages - spd.nr_pages);
349 error = 0;
350 while (spd.nr_pages < nr_pages) {
352 * Page could be there, find_get_pages_contig() breaks on
353 * the first hole.
355 page = find_get_page(mapping, index);
356 if (!page) {
358 * page didn't exist, allocate one.
360 page = page_cache_alloc_cold(mapping);
361 if (!page)
362 break;
364 error = add_to_page_cache_lru(page, mapping, index,
365 GFP_KERNEL);
366 if (unlikely(error)) {
367 page_cache_release(page);
368 if (error == -EEXIST)
369 continue;
370 break;
373 * add_to_page_cache() locks the page, unlock it
374 * to avoid convoluting the logic below even more.
376 unlock_page(page);
379 spd.pages[spd.nr_pages++] = page;
380 index++;
384 * Now loop over the map and see if we need to start IO on any
385 * pages, fill in the partial map, etc.
387 index = *ppos >> PAGE_CACHE_SHIFT;
388 nr_pages = spd.nr_pages;
389 spd.nr_pages = 0;
390 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391 unsigned int this_len;
393 if (!len)
394 break;
397 * this_len is the max we'll use from this page
399 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400 page = spd.pages[page_nr];
402 if (PageReadahead(page))
403 page_cache_async_readahead(mapping, &in->f_ra, in,
404 page, index, req_pages - page_nr);
407 * If the page isn't uptodate, we may need to start io on it
409 if (!PageUptodate(page)) {
410 lock_page(page);
413 * Page was truncated, or invalidated by the
414 * filesystem. Redo the find/create, but this time the
415 * page is kept locked, so there's no chance of another
416 * race with truncate/invalidate.
418 if (!page->mapping) {
419 unlock_page(page);
420 page = find_or_create_page(mapping, index,
421 mapping_gfp_mask(mapping));
423 if (!page) {
424 error = -ENOMEM;
425 break;
427 page_cache_release(spd.pages[page_nr]);
428 spd.pages[page_nr] = page;
431 * page was already under io and is now done, great
433 if (PageUptodate(page)) {
434 unlock_page(page);
435 goto fill_it;
439 * need to read in the page
441 error = mapping->a_ops->readpage(in, page);
442 if (unlikely(error)) {
444 * We really should re-lookup the page here,
445 * but it complicates things a lot. Instead
446 * lets just do what we already stored, and
447 * we'll get it the next time we are called.
449 if (error == AOP_TRUNCATED_PAGE)
450 error = 0;
452 break;
455 fill_it:
457 * i_size must be checked after PageUptodate.
459 isize = i_size_read(mapping->host);
460 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461 if (unlikely(!isize || index > end_index))
462 break;
465 * if this is the last page, see if we need to shrink
466 * the length and stop
468 if (end_index == index) {
469 unsigned int plen;
472 * max good bytes in this page
474 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475 if (plen <= loff)
476 break;
479 * force quit after adding this page
481 this_len = min(this_len, plen - loff);
482 len = this_len;
485 spd.partial[page_nr].offset = loff;
486 spd.partial[page_nr].len = this_len;
487 len -= this_len;
488 loff = 0;
489 spd.nr_pages++;
490 index++;
494 * Release any pages at the end, if we quit early. 'page_nr' is how far
495 * we got, 'nr_pages' is how many pages are in the map.
497 while (page_nr < nr_pages)
498 page_cache_release(spd.pages[page_nr++]);
499 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
501 if (spd.nr_pages)
502 error = splice_to_pipe(pipe, &spd);
504 splice_shrink_spd(&spd);
505 return error;
509 * generic_file_splice_read - splice data from file to a pipe
510 * @in: file to splice from
511 * @ppos: position in @in
512 * @pipe: pipe to splice to
513 * @len: number of bytes to splice
514 * @flags: splice modifier flags
516 * Description:
517 * Will read pages from given file and fill them into a pipe. Can be
518 * used as long as the address_space operations for the source implements
519 * a readpage() hook.
522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523 struct pipe_inode_info *pipe, size_t len,
524 unsigned int flags)
526 loff_t isize, left;
527 int ret;
529 if (IS_DAX(in->f_mapping->host))
530 return default_file_splice_read(in, ppos, pipe, len, flags);
532 isize = i_size_read(in->f_mapping->host);
533 if (unlikely(*ppos >= isize))
534 return 0;
536 left = isize - *ppos;
537 if (unlikely(left < len))
538 len = left;
540 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
541 if (ret > 0) {
542 *ppos += ret;
543 file_accessed(in);
546 return ret;
548 EXPORT_SYMBOL(generic_file_splice_read);
550 static const struct pipe_buf_operations default_pipe_buf_ops = {
551 .can_merge = 0,
552 .confirm = generic_pipe_buf_confirm,
553 .release = generic_pipe_buf_release,
554 .steal = generic_pipe_buf_steal,
555 .get = generic_pipe_buf_get,
558 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
559 struct pipe_buffer *buf)
561 return 1;
564 /* Pipe buffer operations for a socket and similar. */
565 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
566 .can_merge = 0,
567 .confirm = generic_pipe_buf_confirm,
568 .release = generic_pipe_buf_release,
569 .steal = generic_pipe_buf_nosteal,
570 .get = generic_pipe_buf_get,
572 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
574 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
575 unsigned long vlen, loff_t offset)
577 mm_segment_t old_fs;
578 loff_t pos = offset;
579 ssize_t res;
581 old_fs = get_fs();
582 set_fs(get_ds());
583 /* The cast to a user pointer is valid due to the set_fs() */
584 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
585 set_fs(old_fs);
587 return res;
590 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
591 loff_t pos)
593 mm_segment_t old_fs;
594 ssize_t res;
596 old_fs = get_fs();
597 set_fs(get_ds());
598 /* The cast to a user pointer is valid due to the set_fs() */
599 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
600 set_fs(old_fs);
602 return res;
604 EXPORT_SYMBOL(kernel_write);
606 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
607 struct pipe_inode_info *pipe, size_t len,
608 unsigned int flags)
610 unsigned int nr_pages;
611 unsigned int nr_freed;
612 size_t offset;
613 struct page *pages[PIPE_DEF_BUFFERS];
614 struct partial_page partial[PIPE_DEF_BUFFERS];
615 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
616 ssize_t res;
617 size_t this_len;
618 int error;
619 int i;
620 struct splice_pipe_desc spd = {
621 .pages = pages,
622 .partial = partial,
623 .nr_pages_max = PIPE_DEF_BUFFERS,
624 .flags = flags,
625 .ops = &default_pipe_buf_ops,
626 .spd_release = spd_release_page,
629 if (splice_grow_spd(pipe, &spd))
630 return -ENOMEM;
632 res = -ENOMEM;
633 vec = __vec;
634 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
635 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
636 if (!vec)
637 goto shrink_ret;
640 offset = *ppos & ~PAGE_CACHE_MASK;
641 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
643 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
644 struct page *page;
646 page = alloc_page(GFP_USER);
647 error = -ENOMEM;
648 if (!page)
649 goto err;
651 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
652 vec[i].iov_base = (void __user *) page_address(page);
653 vec[i].iov_len = this_len;
654 spd.pages[i] = page;
655 spd.nr_pages++;
656 len -= this_len;
657 offset = 0;
660 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
661 if (res < 0) {
662 error = res;
663 goto err;
666 error = 0;
667 if (!res)
668 goto err;
670 nr_freed = 0;
671 for (i = 0; i < spd.nr_pages; i++) {
672 this_len = min_t(size_t, vec[i].iov_len, res);
673 spd.partial[i].offset = 0;
674 spd.partial[i].len = this_len;
675 if (!this_len) {
676 __free_page(spd.pages[i]);
677 spd.pages[i] = NULL;
678 nr_freed++;
680 res -= this_len;
682 spd.nr_pages -= nr_freed;
684 res = splice_to_pipe(pipe, &spd);
685 if (res > 0)
686 *ppos += res;
688 shrink_ret:
689 if (vec != __vec)
690 kfree(vec);
691 splice_shrink_spd(&spd);
692 return res;
694 err:
695 for (i = 0; i < spd.nr_pages; i++)
696 __free_page(spd.pages[i]);
698 res = error;
699 goto shrink_ret;
701 EXPORT_SYMBOL(default_file_splice_read);
704 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
705 * using sendpage(). Return the number of bytes sent.
707 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
708 struct pipe_buffer *buf, struct splice_desc *sd)
710 struct file *file = sd->u.file;
711 loff_t pos = sd->pos;
712 int more;
714 if (!likely(file->f_op->sendpage))
715 return -EINVAL;
717 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
719 if (sd->len < sd->total_len && pipe->nrbufs > 1)
720 more |= MSG_SENDPAGE_NOTLAST;
722 return file->f_op->sendpage(file, buf->page, buf->offset,
723 sd->len, &pos, more);
726 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
728 smp_mb();
729 if (waitqueue_active(&pipe->wait))
730 wake_up_interruptible(&pipe->wait);
731 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
735 * splice_from_pipe_feed - feed available data from a pipe to a file
736 * @pipe: pipe to splice from
737 * @sd: information to @actor
738 * @actor: handler that splices the data
740 * Description:
741 * This function loops over the pipe and calls @actor to do the
742 * actual moving of a single struct pipe_buffer to the desired
743 * destination. It returns when there's no more buffers left in
744 * the pipe or if the requested number of bytes (@sd->total_len)
745 * have been copied. It returns a positive number (one) if the
746 * pipe needs to be filled with more data, zero if the required
747 * number of bytes have been copied and -errno on error.
749 * This, together with splice_from_pipe_{begin,end,next}, may be
750 * used to implement the functionality of __splice_from_pipe() when
751 * locking is required around copying the pipe buffers to the
752 * destination.
754 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
755 splice_actor *actor)
757 int ret;
759 while (pipe->nrbufs) {
760 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
761 const struct pipe_buf_operations *ops = buf->ops;
763 sd->len = buf->len;
764 if (sd->len > sd->total_len)
765 sd->len = sd->total_len;
767 ret = buf->ops->confirm(pipe, buf);
768 if (unlikely(ret)) {
769 if (ret == -ENODATA)
770 ret = 0;
771 return ret;
774 ret = actor(pipe, buf, sd);
775 if (ret <= 0)
776 return ret;
778 buf->offset += ret;
779 buf->len -= ret;
781 sd->num_spliced += ret;
782 sd->len -= ret;
783 sd->pos += ret;
784 sd->total_len -= ret;
786 if (!buf->len) {
787 buf->ops = NULL;
788 ops->release(pipe, buf);
789 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
790 pipe->nrbufs--;
791 if (pipe->files)
792 sd->need_wakeup = true;
795 if (!sd->total_len)
796 return 0;
799 return 1;
803 * splice_from_pipe_next - wait for some data to splice from
804 * @pipe: pipe to splice from
805 * @sd: information about the splice operation
807 * Description:
808 * This function will wait for some data and return a positive
809 * value (one) if pipe buffers are available. It will return zero
810 * or -errno if no more data needs to be spliced.
812 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
814 while (!pipe->nrbufs) {
815 if (!pipe->writers)
816 return 0;
818 if (!pipe->waiting_writers && sd->num_spliced)
819 return 0;
821 if (sd->flags & SPLICE_F_NONBLOCK)
822 return -EAGAIN;
824 if (signal_pending(current))
825 return -ERESTARTSYS;
827 if (sd->need_wakeup) {
828 wakeup_pipe_writers(pipe);
829 sd->need_wakeup = false;
832 pipe_wait(pipe);
835 return 1;
839 * splice_from_pipe_begin - start splicing from pipe
840 * @sd: information about the splice operation
842 * Description:
843 * This function should be called before a loop containing
844 * splice_from_pipe_next() and splice_from_pipe_feed() to
845 * initialize the necessary fields of @sd.
847 static void splice_from_pipe_begin(struct splice_desc *sd)
849 sd->num_spliced = 0;
850 sd->need_wakeup = false;
854 * splice_from_pipe_end - finish splicing from pipe
855 * @pipe: pipe to splice from
856 * @sd: information about the splice operation
858 * Description:
859 * This function will wake up pipe writers if necessary. It should
860 * be called after a loop containing splice_from_pipe_next() and
861 * splice_from_pipe_feed().
863 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
865 if (sd->need_wakeup)
866 wakeup_pipe_writers(pipe);
870 * __splice_from_pipe - splice data from a pipe to given actor
871 * @pipe: pipe to splice from
872 * @sd: information to @actor
873 * @actor: handler that splices the data
875 * Description:
876 * This function does little more than loop over the pipe and call
877 * @actor to do the actual moving of a single struct pipe_buffer to
878 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
879 * pipe_to_user.
882 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
883 splice_actor *actor)
885 int ret;
887 splice_from_pipe_begin(sd);
888 do {
889 ret = splice_from_pipe_next(pipe, sd);
890 if (ret > 0)
891 ret = splice_from_pipe_feed(pipe, sd, actor);
892 } while (ret > 0);
893 splice_from_pipe_end(pipe, sd);
895 return sd->num_spliced ? sd->num_spliced : ret;
897 EXPORT_SYMBOL(__splice_from_pipe);
900 * splice_from_pipe - splice data from a pipe to a file
901 * @pipe: pipe to splice from
902 * @out: file to splice to
903 * @ppos: position in @out
904 * @len: how many bytes to splice
905 * @flags: splice modifier flags
906 * @actor: handler that splices the data
908 * Description:
909 * See __splice_from_pipe. This function locks the pipe inode,
910 * otherwise it's identical to __splice_from_pipe().
913 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
914 loff_t *ppos, size_t len, unsigned int flags,
915 splice_actor *actor)
917 ssize_t ret;
918 struct splice_desc sd = {
919 .total_len = len,
920 .flags = flags,
921 .pos = *ppos,
922 .u.file = out,
925 pipe_lock(pipe);
926 ret = __splice_from_pipe(pipe, &sd, actor);
927 pipe_unlock(pipe);
929 return ret;
933 * iter_file_splice_write - splice data from a pipe to a file
934 * @pipe: pipe info
935 * @out: file to write to
936 * @ppos: position in @out
937 * @len: number of bytes to splice
938 * @flags: splice modifier flags
940 * Description:
941 * Will either move or copy pages (determined by @flags options) from
942 * the given pipe inode to the given file.
943 * This one is ->write_iter-based.
946 ssize_t
947 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
948 loff_t *ppos, size_t len, unsigned int flags)
950 struct splice_desc sd = {
951 .total_len = len,
952 .flags = flags,
953 .pos = *ppos,
954 .u.file = out,
956 int nbufs = pipe->buffers;
957 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
958 GFP_KERNEL);
959 ssize_t ret;
961 if (unlikely(!array))
962 return -ENOMEM;
964 pipe_lock(pipe);
966 splice_from_pipe_begin(&sd);
967 while (sd.total_len) {
968 struct iov_iter from;
969 size_t left;
970 int n, idx;
972 ret = splice_from_pipe_next(pipe, &sd);
973 if (ret <= 0)
974 break;
976 if (unlikely(nbufs < pipe->buffers)) {
977 kfree(array);
978 nbufs = pipe->buffers;
979 array = kcalloc(nbufs, sizeof(struct bio_vec),
980 GFP_KERNEL);
981 if (!array) {
982 ret = -ENOMEM;
983 break;
987 /* build the vector */
988 left = sd.total_len;
989 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
990 struct pipe_buffer *buf = pipe->bufs + idx;
991 size_t this_len = buf->len;
993 if (this_len > left)
994 this_len = left;
996 if (idx == pipe->buffers - 1)
997 idx = -1;
999 ret = buf->ops->confirm(pipe, buf);
1000 if (unlikely(ret)) {
1001 if (ret == -ENODATA)
1002 ret = 0;
1003 goto done;
1006 array[n].bv_page = buf->page;
1007 array[n].bv_len = this_len;
1008 array[n].bv_offset = buf->offset;
1009 left -= this_len;
1012 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1013 sd.total_len - left);
1014 ret = vfs_iter_write(out, &from, &sd.pos);
1015 if (ret <= 0)
1016 break;
1018 sd.num_spliced += ret;
1019 sd.total_len -= ret;
1020 *ppos = sd.pos;
1022 /* dismiss the fully eaten buffers, adjust the partial one */
1023 while (ret) {
1024 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1025 if (ret >= buf->len) {
1026 const struct pipe_buf_operations *ops = buf->ops;
1027 ret -= buf->len;
1028 buf->len = 0;
1029 buf->ops = NULL;
1030 ops->release(pipe, buf);
1031 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1032 pipe->nrbufs--;
1033 if (pipe->files)
1034 sd.need_wakeup = true;
1035 } else {
1036 buf->offset += ret;
1037 buf->len -= ret;
1038 ret = 0;
1042 done:
1043 kfree(array);
1044 splice_from_pipe_end(pipe, &sd);
1046 pipe_unlock(pipe);
1048 if (sd.num_spliced)
1049 ret = sd.num_spliced;
1051 return ret;
1054 EXPORT_SYMBOL(iter_file_splice_write);
1056 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1057 struct splice_desc *sd)
1059 int ret;
1060 void *data;
1061 loff_t tmp = sd->pos;
1063 data = kmap(buf->page);
1064 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1065 kunmap(buf->page);
1067 return ret;
1070 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1071 struct file *out, loff_t *ppos,
1072 size_t len, unsigned int flags)
1074 ssize_t ret;
1076 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1077 if (ret > 0)
1078 *ppos += ret;
1080 return ret;
1084 * generic_splice_sendpage - splice data from a pipe to a socket
1085 * @pipe: pipe to splice from
1086 * @out: socket to write to
1087 * @ppos: position in @out
1088 * @len: number of bytes to splice
1089 * @flags: splice modifier flags
1091 * Description:
1092 * Will send @len bytes from the pipe to a network socket. No data copying
1093 * is involved.
1096 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1097 loff_t *ppos, size_t len, unsigned int flags)
1099 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1102 EXPORT_SYMBOL(generic_splice_sendpage);
1105 * Attempt to initiate a splice from pipe to file.
1107 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1108 loff_t *ppos, size_t len, unsigned int flags)
1110 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1111 loff_t *, size_t, unsigned int);
1113 if (out->f_op->splice_write)
1114 splice_write = out->f_op->splice_write;
1115 else
1116 splice_write = default_file_splice_write;
1118 return splice_write(pipe, out, ppos, len, flags);
1122 * Attempt to initiate a splice from a file to a pipe.
1124 static long do_splice_to(struct file *in, loff_t *ppos,
1125 struct pipe_inode_info *pipe, size_t len,
1126 unsigned int flags)
1128 ssize_t (*splice_read)(struct file *, loff_t *,
1129 struct pipe_inode_info *, size_t, unsigned int);
1130 int ret;
1132 if (unlikely(!(in->f_mode & FMODE_READ)))
1133 return -EBADF;
1135 ret = rw_verify_area(READ, in, ppos, len);
1136 if (unlikely(ret < 0))
1137 return ret;
1139 if (in->f_op->splice_read)
1140 splice_read = in->f_op->splice_read;
1141 else
1142 splice_read = default_file_splice_read;
1144 return splice_read(in, ppos, pipe, len, flags);
1148 * splice_direct_to_actor - splices data directly between two non-pipes
1149 * @in: file to splice from
1150 * @sd: actor information on where to splice to
1151 * @actor: handles the data splicing
1153 * Description:
1154 * This is a special case helper to splice directly between two
1155 * points, without requiring an explicit pipe. Internally an allocated
1156 * pipe is cached in the process, and reused during the lifetime of
1157 * that process.
1160 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1161 splice_direct_actor *actor)
1163 struct pipe_inode_info *pipe;
1164 long ret, bytes;
1165 umode_t i_mode;
1166 size_t len;
1167 int i, flags, more;
1170 * We require the input being a regular file, as we don't want to
1171 * randomly drop data for eg socket -> socket splicing. Use the
1172 * piped splicing for that!
1174 i_mode = file_inode(in)->i_mode;
1175 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1176 return -EINVAL;
1179 * neither in nor out is a pipe, setup an internal pipe attached to
1180 * 'out' and transfer the wanted data from 'in' to 'out' through that
1182 pipe = current->splice_pipe;
1183 if (unlikely(!pipe)) {
1184 pipe = alloc_pipe_info();
1185 if (!pipe)
1186 return -ENOMEM;
1189 * We don't have an immediate reader, but we'll read the stuff
1190 * out of the pipe right after the splice_to_pipe(). So set
1191 * PIPE_READERS appropriately.
1193 pipe->readers = 1;
1195 current->splice_pipe = pipe;
1199 * Do the splice.
1201 ret = 0;
1202 bytes = 0;
1203 len = sd->total_len;
1204 flags = sd->flags;
1207 * Don't block on output, we have to drain the direct pipe.
1209 sd->flags &= ~SPLICE_F_NONBLOCK;
1210 more = sd->flags & SPLICE_F_MORE;
1212 while (len) {
1213 size_t read_len;
1214 loff_t pos = sd->pos, prev_pos = pos;
1216 ret = do_splice_to(in, &pos, pipe, len, flags);
1217 if (unlikely(ret <= 0))
1218 goto out_release;
1220 read_len = ret;
1221 sd->total_len = read_len;
1224 * If more data is pending, set SPLICE_F_MORE
1225 * If this is the last data and SPLICE_F_MORE was not set
1226 * initially, clears it.
1228 if (read_len < len)
1229 sd->flags |= SPLICE_F_MORE;
1230 else if (!more)
1231 sd->flags &= ~SPLICE_F_MORE;
1233 * NOTE: nonblocking mode only applies to the input. We
1234 * must not do the output in nonblocking mode as then we
1235 * could get stuck data in the internal pipe:
1237 ret = actor(pipe, sd);
1238 if (unlikely(ret <= 0)) {
1239 sd->pos = prev_pos;
1240 goto out_release;
1243 bytes += ret;
1244 len -= ret;
1245 sd->pos = pos;
1247 if (ret < read_len) {
1248 sd->pos = prev_pos + ret;
1249 goto out_release;
1253 done:
1254 pipe->nrbufs = pipe->curbuf = 0;
1255 file_accessed(in);
1256 return bytes;
1258 out_release:
1260 * If we did an incomplete transfer we must release
1261 * the pipe buffers in question:
1263 for (i = 0; i < pipe->buffers; i++) {
1264 struct pipe_buffer *buf = pipe->bufs + i;
1266 if (buf->ops) {
1267 buf->ops->release(pipe, buf);
1268 buf->ops = NULL;
1272 if (!bytes)
1273 bytes = ret;
1275 goto done;
1277 EXPORT_SYMBOL(splice_direct_to_actor);
1279 static int direct_splice_actor(struct pipe_inode_info *pipe,
1280 struct splice_desc *sd)
1282 struct file *file = sd->u.file;
1284 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1285 sd->flags);
1289 * do_splice_direct - splices data directly between two files
1290 * @in: file to splice from
1291 * @ppos: input file offset
1292 * @out: file to splice to
1293 * @opos: output file offset
1294 * @len: number of bytes to splice
1295 * @flags: splice modifier flags
1297 * Description:
1298 * For use by do_sendfile(). splice can easily emulate sendfile, but
1299 * doing it in the application would incur an extra system call
1300 * (splice in + splice out, as compared to just sendfile()). So this helper
1301 * can splice directly through a process-private pipe.
1304 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1305 loff_t *opos, size_t len, unsigned int flags)
1307 struct splice_desc sd = {
1308 .len = len,
1309 .total_len = len,
1310 .flags = flags,
1311 .pos = *ppos,
1312 .u.file = out,
1313 .opos = opos,
1315 long ret;
1317 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1318 return -EBADF;
1320 if (unlikely(out->f_flags & O_APPEND))
1321 return -EINVAL;
1323 ret = rw_verify_area(WRITE, out, opos, len);
1324 if (unlikely(ret < 0))
1325 return ret;
1327 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1328 if (ret > 0)
1329 *ppos = sd.pos;
1331 return ret;
1333 EXPORT_SYMBOL(do_splice_direct);
1335 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1336 struct pipe_inode_info *opipe,
1337 size_t len, unsigned int flags);
1340 * Determine where to splice to/from.
1342 static long do_splice(struct file *in, loff_t __user *off_in,
1343 struct file *out, loff_t __user *off_out,
1344 size_t len, unsigned int flags)
1346 struct pipe_inode_info *ipipe;
1347 struct pipe_inode_info *opipe;
1348 loff_t offset;
1349 long ret;
1351 ipipe = get_pipe_info(in);
1352 opipe = get_pipe_info(out);
1354 if (ipipe && opipe) {
1355 if (off_in || off_out)
1356 return -ESPIPE;
1358 if (!(in->f_mode & FMODE_READ))
1359 return -EBADF;
1361 if (!(out->f_mode & FMODE_WRITE))
1362 return -EBADF;
1364 /* Splicing to self would be fun, but... */
1365 if (ipipe == opipe)
1366 return -EINVAL;
1368 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1371 if (ipipe) {
1372 if (off_in)
1373 return -ESPIPE;
1374 if (off_out) {
1375 if (!(out->f_mode & FMODE_PWRITE))
1376 return -EINVAL;
1377 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1378 return -EFAULT;
1379 } else {
1380 offset = out->f_pos;
1383 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1384 return -EBADF;
1386 if (unlikely(out->f_flags & O_APPEND))
1387 return -EINVAL;
1389 ret = rw_verify_area(WRITE, out, &offset, len);
1390 if (unlikely(ret < 0))
1391 return ret;
1393 file_start_write(out);
1394 ret = do_splice_from(ipipe, out, &offset, len, flags);
1395 file_end_write(out);
1397 if (!off_out)
1398 out->f_pos = offset;
1399 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1400 ret = -EFAULT;
1402 return ret;
1405 if (opipe) {
1406 if (off_out)
1407 return -ESPIPE;
1408 if (off_in) {
1409 if (!(in->f_mode & FMODE_PREAD))
1410 return -EINVAL;
1411 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1412 return -EFAULT;
1413 } else {
1414 offset = in->f_pos;
1417 ret = do_splice_to(in, &offset, opipe, len, flags);
1419 if (!off_in)
1420 in->f_pos = offset;
1421 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1422 ret = -EFAULT;
1424 return ret;
1427 return -EINVAL;
1431 * Map an iov into an array of pages and offset/length tupples. With the
1432 * partial_page structure, we can map several non-contiguous ranges into
1433 * our ones pages[] map instead of splitting that operation into pieces.
1434 * Could easily be exported as a generic helper for other users, in which
1435 * case one would probably want to add a 'max_nr_pages' parameter as well.
1437 static int get_iovec_page_array(const struct iovec __user *iov,
1438 unsigned int nr_vecs, struct page **pages,
1439 struct partial_page *partial, bool aligned,
1440 unsigned int pipe_buffers)
1442 int buffers = 0, error = 0;
1444 while (nr_vecs) {
1445 unsigned long off, npages;
1446 struct iovec entry;
1447 void __user *base;
1448 size_t len;
1449 int i;
1451 error = -EFAULT;
1452 if (copy_from_user(&entry, iov, sizeof(entry)))
1453 break;
1455 base = entry.iov_base;
1456 len = entry.iov_len;
1459 * Sanity check this iovec. 0 read succeeds.
1461 error = 0;
1462 if (unlikely(!len))
1463 break;
1464 error = -EFAULT;
1465 if (!access_ok(VERIFY_READ, base, len))
1466 break;
1469 * Get this base offset and number of pages, then map
1470 * in the user pages.
1472 off = (unsigned long) base & ~PAGE_MASK;
1475 * If asked for alignment, the offset must be zero and the
1476 * length a multiple of the PAGE_SIZE.
1478 error = -EINVAL;
1479 if (aligned && (off || len & ~PAGE_MASK))
1480 break;
1482 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1483 if (npages > pipe_buffers - buffers)
1484 npages = pipe_buffers - buffers;
1486 error = get_user_pages_fast((unsigned long)base, npages,
1487 0, &pages[buffers]);
1489 if (unlikely(error <= 0))
1490 break;
1493 * Fill this contiguous range into the partial page map.
1495 for (i = 0; i < error; i++) {
1496 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1498 partial[buffers].offset = off;
1499 partial[buffers].len = plen;
1501 off = 0;
1502 len -= plen;
1503 buffers++;
1507 * We didn't complete this iov, stop here since it probably
1508 * means we have to move some of this into a pipe to
1509 * be able to continue.
1511 if (len)
1512 break;
1515 * Don't continue if we mapped fewer pages than we asked for,
1516 * or if we mapped the max number of pages that we have
1517 * room for.
1519 if (error < npages || buffers == pipe_buffers)
1520 break;
1522 nr_vecs--;
1523 iov++;
1526 if (buffers)
1527 return buffers;
1529 return error;
1532 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1533 struct splice_desc *sd)
1535 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1536 return n == sd->len ? n : -EFAULT;
1540 * For lack of a better implementation, implement vmsplice() to userspace
1541 * as a simple copy of the pipes pages to the user iov.
1543 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1544 unsigned long nr_segs, unsigned int flags)
1546 struct pipe_inode_info *pipe;
1547 struct splice_desc sd;
1548 long ret;
1549 struct iovec iovstack[UIO_FASTIOV];
1550 struct iovec *iov = iovstack;
1551 struct iov_iter iter;
1553 pipe = get_pipe_info(file);
1554 if (!pipe)
1555 return -EBADF;
1557 ret = import_iovec(READ, uiov, nr_segs,
1558 ARRAY_SIZE(iovstack), &iov, &iter);
1559 if (ret < 0)
1560 return ret;
1562 sd.total_len = iov_iter_count(&iter);
1563 sd.len = 0;
1564 sd.flags = flags;
1565 sd.u.data = &iter;
1566 sd.pos = 0;
1568 if (sd.total_len) {
1569 pipe_lock(pipe);
1570 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1571 pipe_unlock(pipe);
1574 kfree(iov);
1575 return ret;
1579 * vmsplice splices a user address range into a pipe. It can be thought of
1580 * as splice-from-memory, where the regular splice is splice-from-file (or
1581 * to file). In both cases the output is a pipe, naturally.
1583 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1584 unsigned long nr_segs, unsigned int flags)
1586 struct pipe_inode_info *pipe;
1587 struct page *pages[PIPE_DEF_BUFFERS];
1588 struct partial_page partial[PIPE_DEF_BUFFERS];
1589 struct splice_pipe_desc spd = {
1590 .pages = pages,
1591 .partial = partial,
1592 .nr_pages_max = PIPE_DEF_BUFFERS,
1593 .flags = flags,
1594 .ops = &user_page_pipe_buf_ops,
1595 .spd_release = spd_release_page,
1597 long ret;
1599 pipe = get_pipe_info(file);
1600 if (!pipe)
1601 return -EBADF;
1603 if (splice_grow_spd(pipe, &spd))
1604 return -ENOMEM;
1606 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1607 spd.partial, false,
1608 spd.nr_pages_max);
1609 if (spd.nr_pages <= 0)
1610 ret = spd.nr_pages;
1611 else
1612 ret = splice_to_pipe(pipe, &spd);
1614 splice_shrink_spd(&spd);
1615 return ret;
1619 * Note that vmsplice only really supports true splicing _from_ user memory
1620 * to a pipe, not the other way around. Splicing from user memory is a simple
1621 * operation that can be supported without any funky alignment restrictions
1622 * or nasty vm tricks. We simply map in the user memory and fill them into
1623 * a pipe. The reverse isn't quite as easy, though. There are two possible
1624 * solutions for that:
1626 * - memcpy() the data internally, at which point we might as well just
1627 * do a regular read() on the buffer anyway.
1628 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1629 * has restriction limitations on both ends of the pipe).
1631 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1634 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1635 unsigned long, nr_segs, unsigned int, flags)
1637 struct fd f;
1638 long error;
1640 if (unlikely(nr_segs > UIO_MAXIOV))
1641 return -EINVAL;
1642 else if (unlikely(!nr_segs))
1643 return 0;
1645 error = -EBADF;
1646 f = fdget(fd);
1647 if (f.file) {
1648 if (f.file->f_mode & FMODE_WRITE)
1649 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1650 else if (f.file->f_mode & FMODE_READ)
1651 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1653 fdput(f);
1656 return error;
1659 #ifdef CONFIG_COMPAT
1660 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1661 unsigned int, nr_segs, unsigned int, flags)
1663 unsigned i;
1664 struct iovec __user *iov;
1665 if (nr_segs > UIO_MAXIOV)
1666 return -EINVAL;
1667 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1668 for (i = 0; i < nr_segs; i++) {
1669 struct compat_iovec v;
1670 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1671 get_user(v.iov_len, &iov32[i].iov_len) ||
1672 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1673 put_user(v.iov_len, &iov[i].iov_len))
1674 return -EFAULT;
1676 return sys_vmsplice(fd, iov, nr_segs, flags);
1678 #endif
1680 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1681 int, fd_out, loff_t __user *, off_out,
1682 size_t, len, unsigned int, flags)
1684 struct fd in, out;
1685 long error;
1687 if (unlikely(!len))
1688 return 0;
1690 error = -EBADF;
1691 in = fdget(fd_in);
1692 if (in.file) {
1693 if (in.file->f_mode & FMODE_READ) {
1694 out = fdget(fd_out);
1695 if (out.file) {
1696 if (out.file->f_mode & FMODE_WRITE)
1697 error = do_splice(in.file, off_in,
1698 out.file, off_out,
1699 len, flags);
1700 fdput(out);
1703 fdput(in);
1705 return error;
1709 * Make sure there's data to read. Wait for input if we can, otherwise
1710 * return an appropriate error.
1712 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1714 int ret;
1717 * Check ->nrbufs without the inode lock first. This function
1718 * is speculative anyways, so missing one is ok.
1720 if (pipe->nrbufs)
1721 return 0;
1723 ret = 0;
1724 pipe_lock(pipe);
1726 while (!pipe->nrbufs) {
1727 if (signal_pending(current)) {
1728 ret = -ERESTARTSYS;
1729 break;
1731 if (!pipe->writers)
1732 break;
1733 if (!pipe->waiting_writers) {
1734 if (flags & SPLICE_F_NONBLOCK) {
1735 ret = -EAGAIN;
1736 break;
1739 pipe_wait(pipe);
1742 pipe_unlock(pipe);
1743 return ret;
1747 * Make sure there's writeable room. Wait for room if we can, otherwise
1748 * return an appropriate error.
1750 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1752 int ret;
1755 * Check ->nrbufs without the inode lock first. This function
1756 * is speculative anyways, so missing one is ok.
1758 if (pipe->nrbufs < pipe->buffers)
1759 return 0;
1761 ret = 0;
1762 pipe_lock(pipe);
1764 while (pipe->nrbufs >= pipe->buffers) {
1765 if (!pipe->readers) {
1766 send_sig(SIGPIPE, current, 0);
1767 ret = -EPIPE;
1768 break;
1770 if (flags & SPLICE_F_NONBLOCK) {
1771 ret = -EAGAIN;
1772 break;
1774 if (signal_pending(current)) {
1775 ret = -ERESTARTSYS;
1776 break;
1778 pipe->waiting_writers++;
1779 pipe_wait(pipe);
1780 pipe->waiting_writers--;
1783 pipe_unlock(pipe);
1784 return ret;
1788 * Splice contents of ipipe to opipe.
1790 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1791 struct pipe_inode_info *opipe,
1792 size_t len, unsigned int flags)
1794 struct pipe_buffer *ibuf, *obuf;
1795 int ret = 0, nbuf;
1796 bool input_wakeup = false;
1799 retry:
1800 ret = ipipe_prep(ipipe, flags);
1801 if (ret)
1802 return ret;
1804 ret = opipe_prep(opipe, flags);
1805 if (ret)
1806 return ret;
1809 * Potential ABBA deadlock, work around it by ordering lock
1810 * grabbing by pipe info address. Otherwise two different processes
1811 * could deadlock (one doing tee from A -> B, the other from B -> A).
1813 pipe_double_lock(ipipe, opipe);
1815 do {
1816 if (!opipe->readers) {
1817 send_sig(SIGPIPE, current, 0);
1818 if (!ret)
1819 ret = -EPIPE;
1820 break;
1823 if (!ipipe->nrbufs && !ipipe->writers)
1824 break;
1827 * Cannot make any progress, because either the input
1828 * pipe is empty or the output pipe is full.
1830 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1831 /* Already processed some buffers, break */
1832 if (ret)
1833 break;
1835 if (flags & SPLICE_F_NONBLOCK) {
1836 ret = -EAGAIN;
1837 break;
1841 * We raced with another reader/writer and haven't
1842 * managed to process any buffers. A zero return
1843 * value means EOF, so retry instead.
1845 pipe_unlock(ipipe);
1846 pipe_unlock(opipe);
1847 goto retry;
1850 ibuf = ipipe->bufs + ipipe->curbuf;
1851 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1852 obuf = opipe->bufs + nbuf;
1854 if (len >= ibuf->len) {
1856 * Simply move the whole buffer from ipipe to opipe
1858 *obuf = *ibuf;
1859 ibuf->ops = NULL;
1860 opipe->nrbufs++;
1861 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1862 ipipe->nrbufs--;
1863 input_wakeup = true;
1864 } else {
1866 * Get a reference to this pipe buffer,
1867 * so we can copy the contents over.
1869 ibuf->ops->get(ipipe, ibuf);
1870 *obuf = *ibuf;
1873 * Don't inherit the gift flag, we need to
1874 * prevent multiple steals of this page.
1876 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1878 obuf->len = len;
1879 opipe->nrbufs++;
1880 ibuf->offset += obuf->len;
1881 ibuf->len -= obuf->len;
1883 ret += obuf->len;
1884 len -= obuf->len;
1885 } while (len);
1887 pipe_unlock(ipipe);
1888 pipe_unlock(opipe);
1891 * If we put data in the output pipe, wakeup any potential readers.
1893 if (ret > 0)
1894 wakeup_pipe_readers(opipe);
1896 if (input_wakeup)
1897 wakeup_pipe_writers(ipipe);
1899 return ret;
1903 * Link contents of ipipe to opipe.
1905 static int link_pipe(struct pipe_inode_info *ipipe,
1906 struct pipe_inode_info *opipe,
1907 size_t len, unsigned int flags)
1909 struct pipe_buffer *ibuf, *obuf;
1910 int ret = 0, i = 0, nbuf;
1913 * Potential ABBA deadlock, work around it by ordering lock
1914 * grabbing by pipe info address. Otherwise two different processes
1915 * could deadlock (one doing tee from A -> B, the other from B -> A).
1917 pipe_double_lock(ipipe, opipe);
1919 do {
1920 if (!opipe->readers) {
1921 send_sig(SIGPIPE, current, 0);
1922 if (!ret)
1923 ret = -EPIPE;
1924 break;
1928 * If we have iterated all input buffers or ran out of
1929 * output room, break.
1931 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1932 break;
1934 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1935 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1938 * Get a reference to this pipe buffer,
1939 * so we can copy the contents over.
1941 ibuf->ops->get(ipipe, ibuf);
1943 obuf = opipe->bufs + nbuf;
1944 *obuf = *ibuf;
1947 * Don't inherit the gift flag, we need to
1948 * prevent multiple steals of this page.
1950 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1952 if (obuf->len > len)
1953 obuf->len = len;
1955 opipe->nrbufs++;
1956 ret += obuf->len;
1957 len -= obuf->len;
1958 i++;
1959 } while (len);
1962 * return EAGAIN if we have the potential of some data in the
1963 * future, otherwise just return 0
1965 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1966 ret = -EAGAIN;
1968 pipe_unlock(ipipe);
1969 pipe_unlock(opipe);
1972 * If we put data in the output pipe, wakeup any potential readers.
1974 if (ret > 0)
1975 wakeup_pipe_readers(opipe);
1977 return ret;
1981 * This is a tee(1) implementation that works on pipes. It doesn't copy
1982 * any data, it simply references the 'in' pages on the 'out' pipe.
1983 * The 'flags' used are the SPLICE_F_* variants, currently the only
1984 * applicable one is SPLICE_F_NONBLOCK.
1986 static long do_tee(struct file *in, struct file *out, size_t len,
1987 unsigned int flags)
1989 struct pipe_inode_info *ipipe = get_pipe_info(in);
1990 struct pipe_inode_info *opipe = get_pipe_info(out);
1991 int ret = -EINVAL;
1994 * Duplicate the contents of ipipe to opipe without actually
1995 * copying the data.
1997 if (ipipe && opipe && ipipe != opipe) {
1999 * Keep going, unless we encounter an error. The ipipe/opipe
2000 * ordering doesn't really matter.
2002 ret = ipipe_prep(ipipe, flags);
2003 if (!ret) {
2004 ret = opipe_prep(opipe, flags);
2005 if (!ret)
2006 ret = link_pipe(ipipe, opipe, len, flags);
2010 return ret;
2013 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2015 struct fd in;
2016 int error;
2018 if (unlikely(!len))
2019 return 0;
2021 error = -EBADF;
2022 in = fdget(fdin);
2023 if (in.file) {
2024 if (in.file->f_mode & FMODE_READ) {
2025 struct fd out = fdget(fdout);
2026 if (out.file) {
2027 if (out.file->f_mode & FMODE_WRITE)
2028 error = do_tee(in.file, out.file,
2029 len, flags);
2030 fdput(out);
2033 fdput(in);
2036 return error;