4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 struct static_key cpusets_enabled_key __read_mostly
= STATIC_KEY_INIT_FALSE
;
66 /* See "Frequency meter" comments, below. */
69 int cnt
; /* unprocessed events count */
70 int val
; /* most recent output value */
71 time_t time
; /* clock (secs) when val computed */
72 spinlock_t lock
; /* guards read or write of above */
76 struct cgroup_subsys_state css
;
78 unsigned long flags
; /* "unsigned long" so bitops work */
81 * On default hierarchy:
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
97 * The user-configured masks are always the same with effective masks.
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed
;
102 nodemask_t mems_allowed
;
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus
;
106 nodemask_t effective_mems
;
109 * This is old Memory Nodes tasks took on.
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
118 nodemask_t old_mems_allowed
;
120 struct fmeter fmeter
; /* memory_pressure filter */
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 int attach_in_progress
;
128 /* partition number for rebuild_sched_domains() */
131 /* for custom sched domain */
132 int relax_domain_level
;
135 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
137 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset
*task_cs(struct task_struct
*task
)
143 return css_cs(task_css(task
, cpuset_cgrp_id
));
146 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
148 return css_cs(cs
->css
.parent
);
152 static inline bool task_has_mempolicy(struct task_struct
*task
)
154 return task
->mempolicy
;
157 static inline bool task_has_mempolicy(struct task_struct
*task
)
164 /* bits in struct cpuset flags field */
171 CS_SCHED_LOAD_BALANCE
,
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset
*cs
)
179 return test_bit(CS_ONLINE
, &cs
->flags
);
182 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
184 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
187 static inline int is_mem_exclusive(const struct cpuset
*cs
)
189 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
192 static inline int is_mem_hardwall(const struct cpuset
*cs
)
194 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
197 static inline int is_sched_load_balance(const struct cpuset
*cs
)
199 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
202 static inline int is_memory_migrate(const struct cpuset
*cs
)
204 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
207 static inline int is_spread_page(const struct cpuset
*cs
)
209 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
212 static inline int is_spread_slab(const struct cpuset
*cs
)
214 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
217 static struct cpuset top_cpuset
= {
218 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
219 (1 << CS_MEM_EXCLUSIVE
)),
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
271 * If a task is only holding callback_lock, then it has read-only
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
286 static DEFINE_MUTEX(cpuset_mutex
);
287 static DEFINE_SPINLOCK(callback_lock
);
290 * CPU / memory hotplug is handled asynchronously.
292 static void cpuset_hotplug_workfn(struct work_struct
*work
);
293 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
302 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
303 int flags
, const char *unused_dev_name
, void *data
)
305 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
306 struct dentry
*ret
= ERR_PTR(-ENODEV
);
310 "release_agent=/sbin/cpuset_release_agent";
311 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
312 unused_dev_name
, mountopts
);
313 put_filesystem(cgroup_fs
);
318 static struct file_system_type cpuset_fs_type
= {
320 .mount
= cpuset_mount
,
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus.
328 * One way or another, we guarantee to return some non-empty subset
329 * of cpu_online_mask.
331 * Call with callback_lock or cpuset_mutex held.
333 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
335 while (!cpumask_intersects(cs
->effective_cpus
, cpu_online_mask
)) {
339 * The top cpuset doesn't have any online cpu as a
340 * consequence of a race between cpuset_hotplug_work
341 * and cpu hotplug notifier. But we know the top
342 * cpuset's effective_cpus is on its way to to be
343 * identical to cpu_online_mask.
345 cpumask_copy(pmask
, cpu_online_mask
);
349 cpumask_and(pmask
, cs
->effective_cpus
, cpu_online_mask
);
353 * Return in *pmask the portion of a cpusets's mems_allowed that
354 * are online, with memory. If none are online with memory, walk
355 * up the cpuset hierarchy until we find one that does have some
356 * online mems. The top cpuset always has some mems online.
358 * One way or another, we guarantee to return some non-empty subset
359 * of node_states[N_MEMORY].
361 * Call with callback_lock or cpuset_mutex held.
363 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
365 while (!nodes_intersects(cs
->effective_mems
, node_states
[N_MEMORY
]))
367 nodes_and(*pmask
, cs
->effective_mems
, node_states
[N_MEMORY
]);
371 * update task's spread flag if cpuset's page/slab spread flag is set
373 * Call with callback_lock or cpuset_mutex held.
375 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
376 struct task_struct
*tsk
)
378 if (is_spread_page(cs
))
379 task_set_spread_page(tsk
);
381 task_clear_spread_page(tsk
);
383 if (is_spread_slab(cs
))
384 task_set_spread_slab(tsk
);
386 task_clear_spread_slab(tsk
);
390 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
392 * One cpuset is a subset of another if all its allowed CPUs and
393 * Memory Nodes are a subset of the other, and its exclusive flags
394 * are only set if the other's are set. Call holding cpuset_mutex.
397 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
399 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
400 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
401 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
402 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
406 * alloc_trial_cpuset - allocate a trial cpuset
407 * @cs: the cpuset that the trial cpuset duplicates
409 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
411 struct cpuset
*trial
;
413 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
417 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
))
419 if (!alloc_cpumask_var(&trial
->effective_cpus
, GFP_KERNEL
))
422 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
423 cpumask_copy(trial
->effective_cpus
, cs
->effective_cpus
);
427 free_cpumask_var(trial
->cpus_allowed
);
434 * free_trial_cpuset - free the trial cpuset
435 * @trial: the trial cpuset to be freed
437 static void free_trial_cpuset(struct cpuset
*trial
)
439 free_cpumask_var(trial
->effective_cpus
);
440 free_cpumask_var(trial
->cpus_allowed
);
445 * validate_change() - Used to validate that any proposed cpuset change
446 * follows the structural rules for cpusets.
448 * If we replaced the flag and mask values of the current cpuset
449 * (cur) with those values in the trial cpuset (trial), would
450 * our various subset and exclusive rules still be valid? Presumes
453 * 'cur' is the address of an actual, in-use cpuset. Operations
454 * such as list traversal that depend on the actual address of the
455 * cpuset in the list must use cur below, not trial.
457 * 'trial' is the address of bulk structure copy of cur, with
458 * perhaps one or more of the fields cpus_allowed, mems_allowed,
459 * or flags changed to new, trial values.
461 * Return 0 if valid, -errno if not.
464 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
466 struct cgroup_subsys_state
*css
;
467 struct cpuset
*c
, *par
;
472 /* Each of our child cpusets must be a subset of us */
474 cpuset_for_each_child(c
, css
, cur
)
475 if (!is_cpuset_subset(c
, trial
))
478 /* Remaining checks don't apply to root cpuset */
480 if (cur
== &top_cpuset
)
483 par
= parent_cs(cur
);
485 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
487 if (!cgroup_on_dfl(cur
->css
.cgroup
) && !is_cpuset_subset(trial
, par
))
491 * If either I or some sibling (!= me) is exclusive, we can't
495 cpuset_for_each_child(c
, css
, par
) {
496 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
498 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
500 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
502 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
507 * Cpusets with tasks - existing or newly being attached - can't
508 * be changed to have empty cpus_allowed or mems_allowed.
511 if ((cgroup_has_tasks(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
512 if (!cpumask_empty(cur
->cpus_allowed
) &&
513 cpumask_empty(trial
->cpus_allowed
))
515 if (!nodes_empty(cur
->mems_allowed
) &&
516 nodes_empty(trial
->mems_allowed
))
521 * We can't shrink if we won't have enough room for SCHED_DEADLINE
525 if (is_cpu_exclusive(cur
) &&
526 !cpuset_cpumask_can_shrink(cur
->cpus_allowed
,
527 trial
->cpus_allowed
))
538 * Helper routine for generate_sched_domains().
539 * Do cpusets a, b have overlapping effective cpus_allowed masks?
541 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
543 return cpumask_intersects(a
->effective_cpus
, b
->effective_cpus
);
547 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
549 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
550 dattr
->relax_domain_level
= c
->relax_domain_level
;
554 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
555 struct cpuset
*root_cs
)
558 struct cgroup_subsys_state
*pos_css
;
561 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
562 /* skip the whole subtree if @cp doesn't have any CPU */
563 if (cpumask_empty(cp
->cpus_allowed
)) {
564 pos_css
= css_rightmost_descendant(pos_css
);
568 if (is_sched_load_balance(cp
))
569 update_domain_attr(dattr
, cp
);
575 * generate_sched_domains()
577 * This function builds a partial partition of the systems CPUs
578 * A 'partial partition' is a set of non-overlapping subsets whose
579 * union is a subset of that set.
580 * The output of this function needs to be passed to kernel/sched/core.c
581 * partition_sched_domains() routine, which will rebuild the scheduler's
582 * load balancing domains (sched domains) as specified by that partial
585 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
586 * for a background explanation of this.
588 * Does not return errors, on the theory that the callers of this
589 * routine would rather not worry about failures to rebuild sched
590 * domains when operating in the severe memory shortage situations
591 * that could cause allocation failures below.
593 * Must be called with cpuset_mutex held.
595 * The three key local variables below are:
596 * q - a linked-list queue of cpuset pointers, used to implement a
597 * top-down scan of all cpusets. This scan loads a pointer
598 * to each cpuset marked is_sched_load_balance into the
599 * array 'csa'. For our purposes, rebuilding the schedulers
600 * sched domains, we can ignore !is_sched_load_balance cpusets.
601 * csa - (for CpuSet Array) Array of pointers to all the cpusets
602 * that need to be load balanced, for convenient iterative
603 * access by the subsequent code that finds the best partition,
604 * i.e the set of domains (subsets) of CPUs such that the
605 * cpus_allowed of every cpuset marked is_sched_load_balance
606 * is a subset of one of these domains, while there are as
607 * many such domains as possible, each as small as possible.
608 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
609 * the kernel/sched/core.c routine partition_sched_domains() in a
610 * convenient format, that can be easily compared to the prior
611 * value to determine what partition elements (sched domains)
612 * were changed (added or removed.)
614 * Finding the best partition (set of domains):
615 * The triple nested loops below over i, j, k scan over the
616 * load balanced cpusets (using the array of cpuset pointers in
617 * csa[]) looking for pairs of cpusets that have overlapping
618 * cpus_allowed, but which don't have the same 'pn' partition
619 * number and gives them in the same partition number. It keeps
620 * looping on the 'restart' label until it can no longer find
623 * The union of the cpus_allowed masks from the set of
624 * all cpusets having the same 'pn' value then form the one
625 * element of the partition (one sched domain) to be passed to
626 * partition_sched_domains().
628 static int generate_sched_domains(cpumask_var_t
**domains
,
629 struct sched_domain_attr
**attributes
)
631 struct cpuset
*cp
; /* scans q */
632 struct cpuset
**csa
; /* array of all cpuset ptrs */
633 int csn
; /* how many cpuset ptrs in csa so far */
634 int i
, j
, k
; /* indices for partition finding loops */
635 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
636 cpumask_var_t non_isolated_cpus
; /* load balanced CPUs */
637 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
638 int ndoms
= 0; /* number of sched domains in result */
639 int nslot
; /* next empty doms[] struct cpumask slot */
640 struct cgroup_subsys_state
*pos_css
;
646 if (!alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
))
648 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
650 /* Special case for the 99% of systems with one, full, sched domain */
651 if (is_sched_load_balance(&top_cpuset
)) {
653 doms
= alloc_sched_domains(ndoms
);
657 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
659 *dattr
= SD_ATTR_INIT
;
660 update_domain_attr_tree(dattr
, &top_cpuset
);
662 cpumask_and(doms
[0], top_cpuset
.effective_cpus
,
668 csa
= kmalloc(nr_cpusets() * sizeof(cp
), GFP_KERNEL
);
674 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
675 if (cp
== &top_cpuset
)
678 * Continue traversing beyond @cp iff @cp has some CPUs and
679 * isn't load balancing. The former is obvious. The
680 * latter: All child cpusets contain a subset of the
681 * parent's cpus, so just skip them, and then we call
682 * update_domain_attr_tree() to calc relax_domain_level of
683 * the corresponding sched domain.
685 if (!cpumask_empty(cp
->cpus_allowed
) &&
686 !(is_sched_load_balance(cp
) &&
687 cpumask_intersects(cp
->cpus_allowed
, non_isolated_cpus
)))
690 if (is_sched_load_balance(cp
))
693 /* skip @cp's subtree */
694 pos_css
= css_rightmost_descendant(pos_css
);
698 for (i
= 0; i
< csn
; i
++)
703 /* Find the best partition (set of sched domains) */
704 for (i
= 0; i
< csn
; i
++) {
705 struct cpuset
*a
= csa
[i
];
708 for (j
= 0; j
< csn
; j
++) {
709 struct cpuset
*b
= csa
[j
];
712 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
713 for (k
= 0; k
< csn
; k
++) {
714 struct cpuset
*c
= csa
[k
];
719 ndoms
--; /* one less element */
726 * Now we know how many domains to create.
727 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
729 doms
= alloc_sched_domains(ndoms
);
734 * The rest of the code, including the scheduler, can deal with
735 * dattr==NULL case. No need to abort if alloc fails.
737 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
739 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
740 struct cpuset
*a
= csa
[i
];
745 /* Skip completed partitions */
751 if (nslot
== ndoms
) {
752 static int warnings
= 10;
754 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
755 nslot
, ndoms
, csn
, i
, apn
);
763 *(dattr
+ nslot
) = SD_ATTR_INIT
;
764 for (j
= i
; j
< csn
; j
++) {
765 struct cpuset
*b
= csa
[j
];
768 cpumask_or(dp
, dp
, b
->effective_cpus
);
769 cpumask_and(dp
, dp
, non_isolated_cpus
);
771 update_domain_attr_tree(dattr
+ nslot
, b
);
773 /* Done with this partition */
779 BUG_ON(nslot
!= ndoms
);
782 free_cpumask_var(non_isolated_cpus
);
786 * Fallback to the default domain if kmalloc() failed.
787 * See comments in partition_sched_domains().
798 * Rebuild scheduler domains.
800 * If the flag 'sched_load_balance' of any cpuset with non-empty
801 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
802 * which has that flag enabled, or if any cpuset with a non-empty
803 * 'cpus' is removed, then call this routine to rebuild the
804 * scheduler's dynamic sched domains.
806 * Call with cpuset_mutex held. Takes get_online_cpus().
808 static void rebuild_sched_domains_locked(void)
810 struct sched_domain_attr
*attr
;
814 lockdep_assert_held(&cpuset_mutex
);
818 * We have raced with CPU hotplug. Don't do anything to avoid
819 * passing doms with offlined cpu to partition_sched_domains().
820 * Anyways, hotplug work item will rebuild sched domains.
822 if (!cpumask_equal(top_cpuset
.effective_cpus
, cpu_active_mask
))
825 /* Generate domain masks and attrs */
826 ndoms
= generate_sched_domains(&doms
, &attr
);
828 /* Have scheduler rebuild the domains */
829 partition_sched_domains(ndoms
, doms
, attr
);
833 #else /* !CONFIG_SMP */
834 static void rebuild_sched_domains_locked(void)
837 #endif /* CONFIG_SMP */
839 void rebuild_sched_domains(void)
841 mutex_lock(&cpuset_mutex
);
842 rebuild_sched_domains_locked();
843 mutex_unlock(&cpuset_mutex
);
847 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
848 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
850 * Iterate through each task of @cs updating its cpus_allowed to the
851 * effective cpuset's. As this function is called with cpuset_mutex held,
852 * cpuset membership stays stable.
854 static void update_tasks_cpumask(struct cpuset
*cs
)
856 struct css_task_iter it
;
857 struct task_struct
*task
;
859 css_task_iter_start(&cs
->css
, &it
);
860 while ((task
= css_task_iter_next(&it
)))
861 set_cpus_allowed_ptr(task
, cs
->effective_cpus
);
862 css_task_iter_end(&it
);
866 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
867 * @cs: the cpuset to consider
868 * @new_cpus: temp variable for calculating new effective_cpus
870 * When congifured cpumask is changed, the effective cpumasks of this cpuset
871 * and all its descendants need to be updated.
873 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
875 * Called with cpuset_mutex held
877 static void update_cpumasks_hier(struct cpuset
*cs
, struct cpumask
*new_cpus
)
880 struct cgroup_subsys_state
*pos_css
;
881 bool need_rebuild_sched_domains
= false;
884 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
885 struct cpuset
*parent
= parent_cs(cp
);
887 cpumask_and(new_cpus
, cp
->cpus_allowed
, parent
->effective_cpus
);
890 * If it becomes empty, inherit the effective mask of the
891 * parent, which is guaranteed to have some CPUs.
893 if (cgroup_on_dfl(cp
->css
.cgroup
) && cpumask_empty(new_cpus
))
894 cpumask_copy(new_cpus
, parent
->effective_cpus
);
896 /* Skip the whole subtree if the cpumask remains the same. */
897 if (cpumask_equal(new_cpus
, cp
->effective_cpus
)) {
898 pos_css
= css_rightmost_descendant(pos_css
);
902 if (!css_tryget_online(&cp
->css
))
906 spin_lock_irq(&callback_lock
);
907 cpumask_copy(cp
->effective_cpus
, new_cpus
);
908 spin_unlock_irq(&callback_lock
);
910 WARN_ON(!cgroup_on_dfl(cp
->css
.cgroup
) &&
911 !cpumask_equal(cp
->cpus_allowed
, cp
->effective_cpus
));
913 update_tasks_cpumask(cp
);
916 * If the effective cpumask of any non-empty cpuset is changed,
917 * we need to rebuild sched domains.
919 if (!cpumask_empty(cp
->cpus_allowed
) &&
920 is_sched_load_balance(cp
))
921 need_rebuild_sched_domains
= true;
928 if (need_rebuild_sched_domains
)
929 rebuild_sched_domains_locked();
933 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
934 * @cs: the cpuset to consider
935 * @trialcs: trial cpuset
936 * @buf: buffer of cpu numbers written to this cpuset
938 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
943 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
944 if (cs
== &top_cpuset
)
948 * An empty cpus_allowed is ok only if the cpuset has no tasks.
949 * Since cpulist_parse() fails on an empty mask, we special case
950 * that parsing. The validate_change() call ensures that cpusets
951 * with tasks have cpus.
954 cpumask_clear(trialcs
->cpus_allowed
);
956 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
960 if (!cpumask_subset(trialcs
->cpus_allowed
,
961 top_cpuset
.cpus_allowed
))
965 /* Nothing to do if the cpus didn't change */
966 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
969 retval
= validate_change(cs
, trialcs
);
973 spin_lock_irq(&callback_lock
);
974 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
975 spin_unlock_irq(&callback_lock
);
977 /* use trialcs->cpus_allowed as a temp variable */
978 update_cpumasks_hier(cs
, trialcs
->cpus_allowed
);
985 * Migrate memory region from one set of nodes to another.
987 * Temporarilly set tasks mems_allowed to target nodes of migration,
988 * so that the migration code can allocate pages on these nodes.
990 * While the mm_struct we are migrating is typically from some
991 * other task, the task_struct mems_allowed that we are hacking
992 * is for our current task, which must allocate new pages for that
993 * migrating memory region.
996 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
997 const nodemask_t
*to
)
999 struct task_struct
*tsk
= current
;
1001 tsk
->mems_allowed
= *to
;
1003 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
1006 guarantee_online_mems(task_cs(tsk
), &tsk
->mems_allowed
);
1011 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1012 * @tsk: the task to change
1013 * @newmems: new nodes that the task will be set
1015 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1016 * we structure updates as setting all new allowed nodes, then clearing newly
1019 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1020 nodemask_t
*newmems
)
1025 * Allow tasks that have access to memory reserves because they have
1026 * been OOM killed to get memory anywhere.
1028 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
1030 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
1035 * Determine if a loop is necessary if another thread is doing
1036 * read_mems_allowed_begin(). If at least one node remains unchanged and
1037 * tsk does not have a mempolicy, then an empty nodemask will not be
1038 * possible when mems_allowed is larger than a word.
1040 need_loop
= task_has_mempolicy(tsk
) ||
1041 !nodes_intersects(*newmems
, tsk
->mems_allowed
);
1044 local_irq_disable();
1045 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1048 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1049 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP1
);
1051 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP2
);
1052 tsk
->mems_allowed
= *newmems
;
1055 write_seqcount_end(&tsk
->mems_allowed_seq
);
1062 static void *cpuset_being_rebound
;
1065 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1066 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1068 * Iterate through each task of @cs updating its mems_allowed to the
1069 * effective cpuset's. As this function is called with cpuset_mutex held,
1070 * cpuset membership stays stable.
1072 static void update_tasks_nodemask(struct cpuset
*cs
)
1074 static nodemask_t newmems
; /* protected by cpuset_mutex */
1075 struct css_task_iter it
;
1076 struct task_struct
*task
;
1078 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1080 guarantee_online_mems(cs
, &newmems
);
1083 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1084 * take while holding tasklist_lock. Forks can happen - the
1085 * mpol_dup() cpuset_being_rebound check will catch such forks,
1086 * and rebind their vma mempolicies too. Because we still hold
1087 * the global cpuset_mutex, we know that no other rebind effort
1088 * will be contending for the global variable cpuset_being_rebound.
1089 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1090 * is idempotent. Also migrate pages in each mm to new nodes.
1092 css_task_iter_start(&cs
->css
, &it
);
1093 while ((task
= css_task_iter_next(&it
))) {
1094 struct mm_struct
*mm
;
1097 cpuset_change_task_nodemask(task
, &newmems
);
1099 mm
= get_task_mm(task
);
1103 migrate
= is_memory_migrate(cs
);
1105 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1107 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1110 css_task_iter_end(&it
);
1113 * All the tasks' nodemasks have been updated, update
1114 * cs->old_mems_allowed.
1116 cs
->old_mems_allowed
= newmems
;
1118 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1119 cpuset_being_rebound
= NULL
;
1123 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1124 * @cs: the cpuset to consider
1125 * @new_mems: a temp variable for calculating new effective_mems
1127 * When configured nodemask is changed, the effective nodemasks of this cpuset
1128 * and all its descendants need to be updated.
1130 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1132 * Called with cpuset_mutex held
1134 static void update_nodemasks_hier(struct cpuset
*cs
, nodemask_t
*new_mems
)
1137 struct cgroup_subsys_state
*pos_css
;
1140 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1141 struct cpuset
*parent
= parent_cs(cp
);
1143 nodes_and(*new_mems
, cp
->mems_allowed
, parent
->effective_mems
);
1146 * If it becomes empty, inherit the effective mask of the
1147 * parent, which is guaranteed to have some MEMs.
1149 if (cgroup_on_dfl(cp
->css
.cgroup
) && nodes_empty(*new_mems
))
1150 *new_mems
= parent
->effective_mems
;
1152 /* Skip the whole subtree if the nodemask remains the same. */
1153 if (nodes_equal(*new_mems
, cp
->effective_mems
)) {
1154 pos_css
= css_rightmost_descendant(pos_css
);
1158 if (!css_tryget_online(&cp
->css
))
1162 spin_lock_irq(&callback_lock
);
1163 cp
->effective_mems
= *new_mems
;
1164 spin_unlock_irq(&callback_lock
);
1166 WARN_ON(!cgroup_on_dfl(cp
->css
.cgroup
) &&
1167 !nodes_equal(cp
->mems_allowed
, cp
->effective_mems
));
1169 update_tasks_nodemask(cp
);
1178 * Handle user request to change the 'mems' memory placement
1179 * of a cpuset. Needs to validate the request, update the
1180 * cpusets mems_allowed, and for each task in the cpuset,
1181 * update mems_allowed and rebind task's mempolicy and any vma
1182 * mempolicies and if the cpuset is marked 'memory_migrate',
1183 * migrate the tasks pages to the new memory.
1185 * Call with cpuset_mutex held. May take callback_lock during call.
1186 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1187 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1188 * their mempolicies to the cpusets new mems_allowed.
1190 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1196 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1199 if (cs
== &top_cpuset
) {
1205 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1206 * Since nodelist_parse() fails on an empty mask, we special case
1207 * that parsing. The validate_change() call ensures that cpusets
1208 * with tasks have memory.
1211 nodes_clear(trialcs
->mems_allowed
);
1213 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1217 if (!nodes_subset(trialcs
->mems_allowed
,
1218 top_cpuset
.mems_allowed
)) {
1224 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1225 retval
= 0; /* Too easy - nothing to do */
1228 retval
= validate_change(cs
, trialcs
);
1232 spin_lock_irq(&callback_lock
);
1233 cs
->mems_allowed
= trialcs
->mems_allowed
;
1234 spin_unlock_irq(&callback_lock
);
1236 /* use trialcs->mems_allowed as a temp variable */
1237 update_nodemasks_hier(cs
, &trialcs
->mems_allowed
);
1242 int current_cpuset_is_being_rebound(void)
1247 ret
= task_cs(current
) == cpuset_being_rebound
;
1253 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1256 if (val
< -1 || val
>= sched_domain_level_max
)
1260 if (val
!= cs
->relax_domain_level
) {
1261 cs
->relax_domain_level
= val
;
1262 if (!cpumask_empty(cs
->cpus_allowed
) &&
1263 is_sched_load_balance(cs
))
1264 rebuild_sched_domains_locked();
1271 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1272 * @cs: the cpuset in which each task's spread flags needs to be changed
1274 * Iterate through each task of @cs updating its spread flags. As this
1275 * function is called with cpuset_mutex held, cpuset membership stays
1278 static void update_tasks_flags(struct cpuset
*cs
)
1280 struct css_task_iter it
;
1281 struct task_struct
*task
;
1283 css_task_iter_start(&cs
->css
, &it
);
1284 while ((task
= css_task_iter_next(&it
)))
1285 cpuset_update_task_spread_flag(cs
, task
);
1286 css_task_iter_end(&it
);
1290 * update_flag - read a 0 or a 1 in a file and update associated flag
1291 * bit: the bit to update (see cpuset_flagbits_t)
1292 * cs: the cpuset to update
1293 * turning_on: whether the flag is being set or cleared
1295 * Call with cpuset_mutex held.
1298 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1301 struct cpuset
*trialcs
;
1302 int balance_flag_changed
;
1303 int spread_flag_changed
;
1306 trialcs
= alloc_trial_cpuset(cs
);
1311 set_bit(bit
, &trialcs
->flags
);
1313 clear_bit(bit
, &trialcs
->flags
);
1315 err
= validate_change(cs
, trialcs
);
1319 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1320 is_sched_load_balance(trialcs
));
1322 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1323 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1325 spin_lock_irq(&callback_lock
);
1326 cs
->flags
= trialcs
->flags
;
1327 spin_unlock_irq(&callback_lock
);
1329 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1330 rebuild_sched_domains_locked();
1332 if (spread_flag_changed
)
1333 update_tasks_flags(cs
);
1335 free_trial_cpuset(trialcs
);
1340 * Frequency meter - How fast is some event occurring?
1342 * These routines manage a digitally filtered, constant time based,
1343 * event frequency meter. There are four routines:
1344 * fmeter_init() - initialize a frequency meter.
1345 * fmeter_markevent() - called each time the event happens.
1346 * fmeter_getrate() - returns the recent rate of such events.
1347 * fmeter_update() - internal routine used to update fmeter.
1349 * A common data structure is passed to each of these routines,
1350 * which is used to keep track of the state required to manage the
1351 * frequency meter and its digital filter.
1353 * The filter works on the number of events marked per unit time.
1354 * The filter is single-pole low-pass recursive (IIR). The time unit
1355 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1356 * simulate 3 decimal digits of precision (multiplied by 1000).
1358 * With an FM_COEF of 933, and a time base of 1 second, the filter
1359 * has a half-life of 10 seconds, meaning that if the events quit
1360 * happening, then the rate returned from the fmeter_getrate()
1361 * will be cut in half each 10 seconds, until it converges to zero.
1363 * It is not worth doing a real infinitely recursive filter. If more
1364 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1365 * just compute FM_MAXTICKS ticks worth, by which point the level
1368 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1369 * arithmetic overflow in the fmeter_update() routine.
1371 * Given the simple 32 bit integer arithmetic used, this meter works
1372 * best for reporting rates between one per millisecond (msec) and
1373 * one per 32 (approx) seconds. At constant rates faster than one
1374 * per msec it maxes out at values just under 1,000,000. At constant
1375 * rates between one per msec, and one per second it will stabilize
1376 * to a value N*1000, where N is the rate of events per second.
1377 * At constant rates between one per second and one per 32 seconds,
1378 * it will be choppy, moving up on the seconds that have an event,
1379 * and then decaying until the next event. At rates slower than
1380 * about one in 32 seconds, it decays all the way back to zero between
1384 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1385 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1386 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1387 #define FM_SCALE 1000 /* faux fixed point scale */
1389 /* Initialize a frequency meter */
1390 static void fmeter_init(struct fmeter
*fmp
)
1395 spin_lock_init(&fmp
->lock
);
1398 /* Internal meter update - process cnt events and update value */
1399 static void fmeter_update(struct fmeter
*fmp
)
1401 time_t now
= get_seconds();
1402 time_t ticks
= now
- fmp
->time
;
1407 ticks
= min(FM_MAXTICKS
, ticks
);
1409 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1412 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1416 /* Process any previous ticks, then bump cnt by one (times scale). */
1417 static void fmeter_markevent(struct fmeter
*fmp
)
1419 spin_lock(&fmp
->lock
);
1421 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1422 spin_unlock(&fmp
->lock
);
1425 /* Process any previous ticks, then return current value. */
1426 static int fmeter_getrate(struct fmeter
*fmp
)
1430 spin_lock(&fmp
->lock
);
1433 spin_unlock(&fmp
->lock
);
1437 static struct cpuset
*cpuset_attach_old_cs
;
1439 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1440 static int cpuset_can_attach(struct cgroup_subsys_state
*css
,
1441 struct cgroup_taskset
*tset
)
1443 struct cpuset
*cs
= css_cs(css
);
1444 struct task_struct
*task
;
1447 /* used later by cpuset_attach() */
1448 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
));
1450 mutex_lock(&cpuset_mutex
);
1452 /* allow moving tasks into an empty cpuset if on default hierarchy */
1454 if (!cgroup_on_dfl(css
->cgroup
) &&
1455 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1458 cgroup_taskset_for_each(task
, tset
) {
1459 ret
= task_can_attach(task
, cs
->cpus_allowed
);
1462 ret
= security_task_setscheduler(task
);
1468 * Mark attach is in progress. This makes validate_change() fail
1469 * changes which zero cpus/mems_allowed.
1471 cs
->attach_in_progress
++;
1474 mutex_unlock(&cpuset_mutex
);
1478 static void cpuset_cancel_attach(struct cgroup_subsys_state
*css
,
1479 struct cgroup_taskset
*tset
)
1481 mutex_lock(&cpuset_mutex
);
1482 css_cs(css
)->attach_in_progress
--;
1483 mutex_unlock(&cpuset_mutex
);
1487 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1488 * but we can't allocate it dynamically there. Define it global and
1489 * allocate from cpuset_init().
1491 static cpumask_var_t cpus_attach
;
1493 static void cpuset_attach(struct cgroup_subsys_state
*css
,
1494 struct cgroup_taskset
*tset
)
1496 /* static buf protected by cpuset_mutex */
1497 static nodemask_t cpuset_attach_nodemask_to
;
1498 struct mm_struct
*mm
;
1499 struct task_struct
*task
;
1500 struct task_struct
*leader
= cgroup_taskset_first(tset
);
1501 struct cpuset
*cs
= css_cs(css
);
1502 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
1504 mutex_lock(&cpuset_mutex
);
1506 /* prepare for attach */
1507 if (cs
== &top_cpuset
)
1508 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1510 guarantee_online_cpus(cs
, cpus_attach
);
1512 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
1514 cgroup_taskset_for_each(task
, tset
) {
1516 * can_attach beforehand should guarantee that this doesn't
1517 * fail. TODO: have a better way to handle failure here
1519 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1521 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1522 cpuset_update_task_spread_flag(cs
, task
);
1526 * Change mm, possibly for multiple threads in a threadgroup. This is
1527 * expensive and may sleep.
1529 cpuset_attach_nodemask_to
= cs
->effective_mems
;
1530 mm
= get_task_mm(leader
);
1532 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1535 * old_mems_allowed is the same with mems_allowed here, except
1536 * if this task is being moved automatically due to hotplug.
1537 * In that case @mems_allowed has been updated and is empty,
1538 * so @old_mems_allowed is the right nodesets that we migrate
1541 if (is_memory_migrate(cs
)) {
1542 cpuset_migrate_mm(mm
, &oldcs
->old_mems_allowed
,
1543 &cpuset_attach_nodemask_to
);
1548 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1550 cs
->attach_in_progress
--;
1551 if (!cs
->attach_in_progress
)
1552 wake_up(&cpuset_attach_wq
);
1554 mutex_unlock(&cpuset_mutex
);
1557 /* The various types of files and directories in a cpuset file system */
1560 FILE_MEMORY_MIGRATE
,
1563 FILE_EFFECTIVE_CPULIST
,
1564 FILE_EFFECTIVE_MEMLIST
,
1568 FILE_SCHED_LOAD_BALANCE
,
1569 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1570 FILE_MEMORY_PRESSURE_ENABLED
,
1571 FILE_MEMORY_PRESSURE
,
1574 } cpuset_filetype_t
;
1576 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1579 struct cpuset
*cs
= css_cs(css
);
1580 cpuset_filetype_t type
= cft
->private;
1583 mutex_lock(&cpuset_mutex
);
1584 if (!is_cpuset_online(cs
)) {
1590 case FILE_CPU_EXCLUSIVE
:
1591 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1593 case FILE_MEM_EXCLUSIVE
:
1594 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1596 case FILE_MEM_HARDWALL
:
1597 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1599 case FILE_SCHED_LOAD_BALANCE
:
1600 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1602 case FILE_MEMORY_MIGRATE
:
1603 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1605 case FILE_MEMORY_PRESSURE_ENABLED
:
1606 cpuset_memory_pressure_enabled
= !!val
;
1608 case FILE_MEMORY_PRESSURE
:
1611 case FILE_SPREAD_PAGE
:
1612 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1614 case FILE_SPREAD_SLAB
:
1615 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1622 mutex_unlock(&cpuset_mutex
);
1626 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1629 struct cpuset
*cs
= css_cs(css
);
1630 cpuset_filetype_t type
= cft
->private;
1631 int retval
= -ENODEV
;
1633 mutex_lock(&cpuset_mutex
);
1634 if (!is_cpuset_online(cs
))
1638 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1639 retval
= update_relax_domain_level(cs
, val
);
1646 mutex_unlock(&cpuset_mutex
);
1651 * Common handling for a write to a "cpus" or "mems" file.
1653 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
1654 char *buf
, size_t nbytes
, loff_t off
)
1656 struct cpuset
*cs
= css_cs(of_css(of
));
1657 struct cpuset
*trialcs
;
1658 int retval
= -ENODEV
;
1660 buf
= strstrip(buf
);
1663 * CPU or memory hotunplug may leave @cs w/o any execution
1664 * resources, in which case the hotplug code asynchronously updates
1665 * configuration and transfers all tasks to the nearest ancestor
1666 * which can execute.
1668 * As writes to "cpus" or "mems" may restore @cs's execution
1669 * resources, wait for the previously scheduled operations before
1670 * proceeding, so that we don't end up keep removing tasks added
1671 * after execution capability is restored.
1673 * cpuset_hotplug_work calls back into cgroup core via
1674 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1675 * operation like this one can lead to a deadlock through kernfs
1676 * active_ref protection. Let's break the protection. Losing the
1677 * protection is okay as we check whether @cs is online after
1678 * grabbing cpuset_mutex anyway. This only happens on the legacy
1682 kernfs_break_active_protection(of
->kn
);
1683 flush_work(&cpuset_hotplug_work
);
1685 mutex_lock(&cpuset_mutex
);
1686 if (!is_cpuset_online(cs
))
1689 trialcs
= alloc_trial_cpuset(cs
);
1695 switch (of_cft(of
)->private) {
1697 retval
= update_cpumask(cs
, trialcs
, buf
);
1700 retval
= update_nodemask(cs
, trialcs
, buf
);
1707 free_trial_cpuset(trialcs
);
1709 mutex_unlock(&cpuset_mutex
);
1710 kernfs_unbreak_active_protection(of
->kn
);
1712 return retval
?: nbytes
;
1716 * These ascii lists should be read in a single call, by using a user
1717 * buffer large enough to hold the entire map. If read in smaller
1718 * chunks, there is no guarantee of atomicity. Since the display format
1719 * used, list of ranges of sequential numbers, is variable length,
1720 * and since these maps can change value dynamically, one could read
1721 * gibberish by doing partial reads while a list was changing.
1723 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
1725 struct cpuset
*cs
= css_cs(seq_css(sf
));
1726 cpuset_filetype_t type
= seq_cft(sf
)->private;
1729 spin_lock_irq(&callback_lock
);
1733 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->cpus_allowed
));
1736 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->mems_allowed
));
1738 case FILE_EFFECTIVE_CPULIST
:
1739 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->effective_cpus
));
1741 case FILE_EFFECTIVE_MEMLIST
:
1742 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->effective_mems
));
1748 spin_unlock_irq(&callback_lock
);
1752 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1754 struct cpuset
*cs
= css_cs(css
);
1755 cpuset_filetype_t type
= cft
->private;
1757 case FILE_CPU_EXCLUSIVE
:
1758 return is_cpu_exclusive(cs
);
1759 case FILE_MEM_EXCLUSIVE
:
1760 return is_mem_exclusive(cs
);
1761 case FILE_MEM_HARDWALL
:
1762 return is_mem_hardwall(cs
);
1763 case FILE_SCHED_LOAD_BALANCE
:
1764 return is_sched_load_balance(cs
);
1765 case FILE_MEMORY_MIGRATE
:
1766 return is_memory_migrate(cs
);
1767 case FILE_MEMORY_PRESSURE_ENABLED
:
1768 return cpuset_memory_pressure_enabled
;
1769 case FILE_MEMORY_PRESSURE
:
1770 return fmeter_getrate(&cs
->fmeter
);
1771 case FILE_SPREAD_PAGE
:
1772 return is_spread_page(cs
);
1773 case FILE_SPREAD_SLAB
:
1774 return is_spread_slab(cs
);
1779 /* Unreachable but makes gcc happy */
1783 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1785 struct cpuset
*cs
= css_cs(css
);
1786 cpuset_filetype_t type
= cft
->private;
1788 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1789 return cs
->relax_domain_level
;
1794 /* Unrechable but makes gcc happy */
1800 * for the common functions, 'private' gives the type of file
1803 static struct cftype files
[] = {
1806 .seq_show
= cpuset_common_seq_show
,
1807 .write
= cpuset_write_resmask
,
1808 .max_write_len
= (100U + 6 * NR_CPUS
),
1809 .private = FILE_CPULIST
,
1814 .seq_show
= cpuset_common_seq_show
,
1815 .write
= cpuset_write_resmask
,
1816 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1817 .private = FILE_MEMLIST
,
1821 .name
= "effective_cpus",
1822 .seq_show
= cpuset_common_seq_show
,
1823 .private = FILE_EFFECTIVE_CPULIST
,
1827 .name
= "effective_mems",
1828 .seq_show
= cpuset_common_seq_show
,
1829 .private = FILE_EFFECTIVE_MEMLIST
,
1833 .name
= "cpu_exclusive",
1834 .read_u64
= cpuset_read_u64
,
1835 .write_u64
= cpuset_write_u64
,
1836 .private = FILE_CPU_EXCLUSIVE
,
1840 .name
= "mem_exclusive",
1841 .read_u64
= cpuset_read_u64
,
1842 .write_u64
= cpuset_write_u64
,
1843 .private = FILE_MEM_EXCLUSIVE
,
1847 .name
= "mem_hardwall",
1848 .read_u64
= cpuset_read_u64
,
1849 .write_u64
= cpuset_write_u64
,
1850 .private = FILE_MEM_HARDWALL
,
1854 .name
= "sched_load_balance",
1855 .read_u64
= cpuset_read_u64
,
1856 .write_u64
= cpuset_write_u64
,
1857 .private = FILE_SCHED_LOAD_BALANCE
,
1861 .name
= "sched_relax_domain_level",
1862 .read_s64
= cpuset_read_s64
,
1863 .write_s64
= cpuset_write_s64
,
1864 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1868 .name
= "memory_migrate",
1869 .read_u64
= cpuset_read_u64
,
1870 .write_u64
= cpuset_write_u64
,
1871 .private = FILE_MEMORY_MIGRATE
,
1875 .name
= "memory_pressure",
1876 .read_u64
= cpuset_read_u64
,
1877 .write_u64
= cpuset_write_u64
,
1878 .private = FILE_MEMORY_PRESSURE
,
1883 .name
= "memory_spread_page",
1884 .read_u64
= cpuset_read_u64
,
1885 .write_u64
= cpuset_write_u64
,
1886 .private = FILE_SPREAD_PAGE
,
1890 .name
= "memory_spread_slab",
1891 .read_u64
= cpuset_read_u64
,
1892 .write_u64
= cpuset_write_u64
,
1893 .private = FILE_SPREAD_SLAB
,
1897 .name
= "memory_pressure_enabled",
1898 .flags
= CFTYPE_ONLY_ON_ROOT
,
1899 .read_u64
= cpuset_read_u64
,
1900 .write_u64
= cpuset_write_u64
,
1901 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1908 * cpuset_css_alloc - allocate a cpuset css
1909 * cgrp: control group that the new cpuset will be part of
1912 static struct cgroup_subsys_state
*
1913 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
1918 return &top_cpuset
.css
;
1920 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1922 return ERR_PTR(-ENOMEM
);
1923 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
))
1925 if (!alloc_cpumask_var(&cs
->effective_cpus
, GFP_KERNEL
))
1928 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1929 cpumask_clear(cs
->cpus_allowed
);
1930 nodes_clear(cs
->mems_allowed
);
1931 cpumask_clear(cs
->effective_cpus
);
1932 nodes_clear(cs
->effective_mems
);
1933 fmeter_init(&cs
->fmeter
);
1934 cs
->relax_domain_level
= -1;
1939 free_cpumask_var(cs
->cpus_allowed
);
1942 return ERR_PTR(-ENOMEM
);
1945 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
1947 struct cpuset
*cs
= css_cs(css
);
1948 struct cpuset
*parent
= parent_cs(cs
);
1949 struct cpuset
*tmp_cs
;
1950 struct cgroup_subsys_state
*pos_css
;
1955 mutex_lock(&cpuset_mutex
);
1957 set_bit(CS_ONLINE
, &cs
->flags
);
1958 if (is_spread_page(parent
))
1959 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1960 if (is_spread_slab(parent
))
1961 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1965 spin_lock_irq(&callback_lock
);
1966 if (cgroup_on_dfl(cs
->css
.cgroup
)) {
1967 cpumask_copy(cs
->effective_cpus
, parent
->effective_cpus
);
1968 cs
->effective_mems
= parent
->effective_mems
;
1970 spin_unlock_irq(&callback_lock
);
1972 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
1976 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1977 * set. This flag handling is implemented in cgroup core for
1978 * histrical reasons - the flag may be specified during mount.
1980 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1981 * refuse to clone the configuration - thereby refusing the task to
1982 * be entered, and as a result refusing the sys_unshare() or
1983 * clone() which initiated it. If this becomes a problem for some
1984 * users who wish to allow that scenario, then this could be
1985 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1986 * (and likewise for mems) to the new cgroup.
1989 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
1990 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
1997 spin_lock_irq(&callback_lock
);
1998 cs
->mems_allowed
= parent
->mems_allowed
;
1999 cs
->effective_mems
= parent
->mems_allowed
;
2000 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2001 cpumask_copy(cs
->effective_cpus
, parent
->cpus_allowed
);
2002 spin_unlock_irq(&callback_lock
);
2004 mutex_unlock(&cpuset_mutex
);
2009 * If the cpuset being removed has its flag 'sched_load_balance'
2010 * enabled, then simulate turning sched_load_balance off, which
2011 * will call rebuild_sched_domains_locked().
2014 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2016 struct cpuset
*cs
= css_cs(css
);
2018 mutex_lock(&cpuset_mutex
);
2020 if (is_sched_load_balance(cs
))
2021 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2024 clear_bit(CS_ONLINE
, &cs
->flags
);
2026 mutex_unlock(&cpuset_mutex
);
2029 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2031 struct cpuset
*cs
= css_cs(css
);
2033 free_cpumask_var(cs
->effective_cpus
);
2034 free_cpumask_var(cs
->cpus_allowed
);
2038 static void cpuset_bind(struct cgroup_subsys_state
*root_css
)
2040 mutex_lock(&cpuset_mutex
);
2041 spin_lock_irq(&callback_lock
);
2043 if (cgroup_on_dfl(root_css
->cgroup
)) {
2044 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_possible_mask
);
2045 top_cpuset
.mems_allowed
= node_possible_map
;
2047 cpumask_copy(top_cpuset
.cpus_allowed
,
2048 top_cpuset
.effective_cpus
);
2049 top_cpuset
.mems_allowed
= top_cpuset
.effective_mems
;
2052 spin_unlock_irq(&callback_lock
);
2053 mutex_unlock(&cpuset_mutex
);
2057 * Make sure the new task conform to the current state of its parent,
2058 * which could have been changed by cpuset just after it inherits the
2059 * state from the parent and before it sits on the cgroup's task list.
2061 void cpuset_fork(struct task_struct
*task
)
2063 if (task_css_is_root(task
, cpuset_cgrp_id
))
2066 set_cpus_allowed_ptr(task
, ¤t
->cpus_allowed
);
2067 task
->mems_allowed
= current
->mems_allowed
;
2070 struct cgroup_subsys cpuset_cgrp_subsys
= {
2071 .css_alloc
= cpuset_css_alloc
,
2072 .css_online
= cpuset_css_online
,
2073 .css_offline
= cpuset_css_offline
,
2074 .css_free
= cpuset_css_free
,
2075 .can_attach
= cpuset_can_attach
,
2076 .cancel_attach
= cpuset_cancel_attach
,
2077 .attach
= cpuset_attach
,
2078 .bind
= cpuset_bind
,
2079 .fork
= cpuset_fork
,
2080 .legacy_cftypes
= files
,
2085 * cpuset_init - initialize cpusets at system boot
2087 * Description: Initialize top_cpuset and the cpuset internal file system,
2090 int __init
cpuset_init(void)
2094 if (!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
))
2096 if (!alloc_cpumask_var(&top_cpuset
.effective_cpus
, GFP_KERNEL
))
2099 cpumask_setall(top_cpuset
.cpus_allowed
);
2100 nodes_setall(top_cpuset
.mems_allowed
);
2101 cpumask_setall(top_cpuset
.effective_cpus
);
2102 nodes_setall(top_cpuset
.effective_mems
);
2104 fmeter_init(&top_cpuset
.fmeter
);
2105 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2106 top_cpuset
.relax_domain_level
= -1;
2108 err
= register_filesystem(&cpuset_fs_type
);
2112 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
2119 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2120 * or memory nodes, we need to walk over the cpuset hierarchy,
2121 * removing that CPU or node from all cpusets. If this removes the
2122 * last CPU or node from a cpuset, then move the tasks in the empty
2123 * cpuset to its next-highest non-empty parent.
2125 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2127 struct cpuset
*parent
;
2130 * Find its next-highest non-empty parent, (top cpuset
2131 * has online cpus, so can't be empty).
2133 parent
= parent_cs(cs
);
2134 while (cpumask_empty(parent
->cpus_allowed
) ||
2135 nodes_empty(parent
->mems_allowed
))
2136 parent
= parent_cs(parent
);
2138 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2139 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2140 pr_cont_cgroup_name(cs
->css
.cgroup
);
2146 hotplug_update_tasks_legacy(struct cpuset
*cs
,
2147 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2148 bool cpus_updated
, bool mems_updated
)
2152 spin_lock_irq(&callback_lock
);
2153 cpumask_copy(cs
->cpus_allowed
, new_cpus
);
2154 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2155 cs
->mems_allowed
= *new_mems
;
2156 cs
->effective_mems
= *new_mems
;
2157 spin_unlock_irq(&callback_lock
);
2160 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2161 * as the tasks will be migratecd to an ancestor.
2163 if (cpus_updated
&& !cpumask_empty(cs
->cpus_allowed
))
2164 update_tasks_cpumask(cs
);
2165 if (mems_updated
&& !nodes_empty(cs
->mems_allowed
))
2166 update_tasks_nodemask(cs
);
2168 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2169 nodes_empty(cs
->mems_allowed
);
2171 mutex_unlock(&cpuset_mutex
);
2174 * Move tasks to the nearest ancestor with execution resources,
2175 * This is full cgroup operation which will also call back into
2176 * cpuset. Should be done outside any lock.
2179 remove_tasks_in_empty_cpuset(cs
);
2181 mutex_lock(&cpuset_mutex
);
2185 hotplug_update_tasks(struct cpuset
*cs
,
2186 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2187 bool cpus_updated
, bool mems_updated
)
2189 if (cpumask_empty(new_cpus
))
2190 cpumask_copy(new_cpus
, parent_cs(cs
)->effective_cpus
);
2191 if (nodes_empty(*new_mems
))
2192 *new_mems
= parent_cs(cs
)->effective_mems
;
2194 spin_lock_irq(&callback_lock
);
2195 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2196 cs
->effective_mems
= *new_mems
;
2197 spin_unlock_irq(&callback_lock
);
2200 update_tasks_cpumask(cs
);
2202 update_tasks_nodemask(cs
);
2206 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2207 * @cs: cpuset in interest
2209 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2210 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2211 * all its tasks are moved to the nearest ancestor with both resources.
2213 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2215 static cpumask_t new_cpus
;
2216 static nodemask_t new_mems
;
2220 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2222 mutex_lock(&cpuset_mutex
);
2225 * We have raced with task attaching. We wait until attaching
2226 * is finished, so we won't attach a task to an empty cpuset.
2228 if (cs
->attach_in_progress
) {
2229 mutex_unlock(&cpuset_mutex
);
2233 cpumask_and(&new_cpus
, cs
->cpus_allowed
, parent_cs(cs
)->effective_cpus
);
2234 nodes_and(new_mems
, cs
->mems_allowed
, parent_cs(cs
)->effective_mems
);
2236 cpus_updated
= !cpumask_equal(&new_cpus
, cs
->effective_cpus
);
2237 mems_updated
= !nodes_equal(new_mems
, cs
->effective_mems
);
2239 if (cgroup_on_dfl(cs
->css
.cgroup
))
2240 hotplug_update_tasks(cs
, &new_cpus
, &new_mems
,
2241 cpus_updated
, mems_updated
);
2243 hotplug_update_tasks_legacy(cs
, &new_cpus
, &new_mems
,
2244 cpus_updated
, mems_updated
);
2246 mutex_unlock(&cpuset_mutex
);
2250 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2252 * This function is called after either CPU or memory configuration has
2253 * changed and updates cpuset accordingly. The top_cpuset is always
2254 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2255 * order to make cpusets transparent (of no affect) on systems that are
2256 * actively using CPU hotplug but making no active use of cpusets.
2258 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2259 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2262 * Note that CPU offlining during suspend is ignored. We don't modify
2263 * cpusets across suspend/resume cycles at all.
2265 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2267 static cpumask_t new_cpus
;
2268 static nodemask_t new_mems
;
2269 bool cpus_updated
, mems_updated
;
2270 bool on_dfl
= cgroup_on_dfl(top_cpuset
.css
.cgroup
);
2272 mutex_lock(&cpuset_mutex
);
2274 /* fetch the available cpus/mems and find out which changed how */
2275 cpumask_copy(&new_cpus
, cpu_active_mask
);
2276 new_mems
= node_states
[N_MEMORY
];
2278 cpus_updated
= !cpumask_equal(top_cpuset
.effective_cpus
, &new_cpus
);
2279 mems_updated
= !nodes_equal(top_cpuset
.effective_mems
, new_mems
);
2281 /* synchronize cpus_allowed to cpu_active_mask */
2283 spin_lock_irq(&callback_lock
);
2285 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2286 cpumask_copy(top_cpuset
.effective_cpus
, &new_cpus
);
2287 spin_unlock_irq(&callback_lock
);
2288 /* we don't mess with cpumasks of tasks in top_cpuset */
2291 /* synchronize mems_allowed to N_MEMORY */
2293 spin_lock_irq(&callback_lock
);
2295 top_cpuset
.mems_allowed
= new_mems
;
2296 top_cpuset
.effective_mems
= new_mems
;
2297 spin_unlock_irq(&callback_lock
);
2298 update_tasks_nodemask(&top_cpuset
);
2301 mutex_unlock(&cpuset_mutex
);
2303 /* if cpus or mems changed, we need to propagate to descendants */
2304 if (cpus_updated
|| mems_updated
) {
2306 struct cgroup_subsys_state
*pos_css
;
2309 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
2310 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
2314 cpuset_hotplug_update_tasks(cs
);
2322 /* rebuild sched domains if cpus_allowed has changed */
2324 rebuild_sched_domains();
2327 void cpuset_update_active_cpus(bool cpu_online
)
2330 * We're inside cpu hotplug critical region which usually nests
2331 * inside cgroup synchronization. Bounce actual hotplug processing
2332 * to a work item to avoid reverse locking order.
2334 * We still need to do partition_sched_domains() synchronously;
2335 * otherwise, the scheduler will get confused and put tasks to the
2336 * dead CPU. Fall back to the default single domain.
2337 * cpuset_hotplug_workfn() will rebuild it as necessary.
2339 partition_sched_domains(1, NULL
, NULL
);
2340 schedule_work(&cpuset_hotplug_work
);
2344 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2345 * Call this routine anytime after node_states[N_MEMORY] changes.
2346 * See cpuset_update_active_cpus() for CPU hotplug handling.
2348 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2349 unsigned long action
, void *arg
)
2351 schedule_work(&cpuset_hotplug_work
);
2355 static struct notifier_block cpuset_track_online_nodes_nb
= {
2356 .notifier_call
= cpuset_track_online_nodes
,
2357 .priority
= 10, /* ??! */
2361 * cpuset_init_smp - initialize cpus_allowed
2363 * Description: Finish top cpuset after cpu, node maps are initialized
2365 void __init
cpuset_init_smp(void)
2367 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2368 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2369 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2371 cpumask_copy(top_cpuset
.effective_cpus
, cpu_active_mask
);
2372 top_cpuset
.effective_mems
= node_states
[N_MEMORY
];
2374 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2378 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2379 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2380 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2382 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2383 * attached to the specified @tsk. Guaranteed to return some non-empty
2384 * subset of cpu_online_mask, even if this means going outside the
2388 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2390 unsigned long flags
;
2392 spin_lock_irqsave(&callback_lock
, flags
);
2394 guarantee_online_cpus(task_cs(tsk
), pmask
);
2396 spin_unlock_irqrestore(&callback_lock
, flags
);
2399 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2402 do_set_cpus_allowed(tsk
, task_cs(tsk
)->effective_cpus
);
2406 * We own tsk->cpus_allowed, nobody can change it under us.
2408 * But we used cs && cs->cpus_allowed lockless and thus can
2409 * race with cgroup_attach_task() or update_cpumask() and get
2410 * the wrong tsk->cpus_allowed. However, both cases imply the
2411 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2412 * which takes task_rq_lock().
2414 * If we are called after it dropped the lock we must see all
2415 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2416 * set any mask even if it is not right from task_cs() pov,
2417 * the pending set_cpus_allowed_ptr() will fix things.
2419 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2424 void __init
cpuset_init_current_mems_allowed(void)
2426 nodes_setall(current
->mems_allowed
);
2430 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2431 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2433 * Description: Returns the nodemask_t mems_allowed of the cpuset
2434 * attached to the specified @tsk. Guaranteed to return some non-empty
2435 * subset of node_states[N_MEMORY], even if this means going outside the
2439 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2442 unsigned long flags
;
2444 spin_lock_irqsave(&callback_lock
, flags
);
2446 guarantee_online_mems(task_cs(tsk
), &mask
);
2448 spin_unlock_irqrestore(&callback_lock
, flags
);
2454 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2455 * @nodemask: the nodemask to be checked
2457 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2459 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2461 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2465 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2466 * mem_hardwall ancestor to the specified cpuset. Call holding
2467 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2468 * (an unusual configuration), then returns the root cpuset.
2470 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
2472 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2478 * cpuset_node_allowed - Can we allocate on a memory node?
2479 * @node: is this an allowed node?
2480 * @gfp_mask: memory allocation flags
2482 * If we're in interrupt, yes, we can always allocate. If @node is set in
2483 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2484 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2485 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2488 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2489 * and do not allow allocations outside the current tasks cpuset
2490 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2491 * GFP_KERNEL allocations are not so marked, so can escape to the
2492 * nearest enclosing hardwalled ancestor cpuset.
2494 * Scanning up parent cpusets requires callback_lock. The
2495 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2496 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2497 * current tasks mems_allowed came up empty on the first pass over
2498 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2499 * cpuset are short of memory, might require taking the callback_lock.
2501 * The first call here from mm/page_alloc:get_page_from_freelist()
2502 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2503 * so no allocation on a node outside the cpuset is allowed (unless
2504 * in interrupt, of course).
2506 * The second pass through get_page_from_freelist() doesn't even call
2507 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2508 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2509 * in alloc_flags. That logic and the checks below have the combined
2511 * in_interrupt - any node ok (current task context irrelevant)
2512 * GFP_ATOMIC - any node ok
2513 * TIF_MEMDIE - any node ok
2514 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2515 * GFP_USER - only nodes in current tasks mems allowed ok.
2517 int __cpuset_node_allowed(int node
, gfp_t gfp_mask
)
2519 struct cpuset
*cs
; /* current cpuset ancestors */
2520 int allowed
; /* is allocation in zone z allowed? */
2521 unsigned long flags
;
2525 if (node_isset(node
, current
->mems_allowed
))
2528 * Allow tasks that have access to memory reserves because they have
2529 * been OOM killed to get memory anywhere.
2531 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2533 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2536 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2539 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2540 spin_lock_irqsave(&callback_lock
, flags
);
2543 cs
= nearest_hardwall_ancestor(task_cs(current
));
2544 allowed
= node_isset(node
, cs
->mems_allowed
);
2547 spin_unlock_irqrestore(&callback_lock
, flags
);
2552 * cpuset_mem_spread_node() - On which node to begin search for a file page
2553 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2555 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2556 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2557 * and if the memory allocation used cpuset_mem_spread_node()
2558 * to determine on which node to start looking, as it will for
2559 * certain page cache or slab cache pages such as used for file
2560 * system buffers and inode caches, then instead of starting on the
2561 * local node to look for a free page, rather spread the starting
2562 * node around the tasks mems_allowed nodes.
2564 * We don't have to worry about the returned node being offline
2565 * because "it can't happen", and even if it did, it would be ok.
2567 * The routines calling guarantee_online_mems() are careful to
2568 * only set nodes in task->mems_allowed that are online. So it
2569 * should not be possible for the following code to return an
2570 * offline node. But if it did, that would be ok, as this routine
2571 * is not returning the node where the allocation must be, only
2572 * the node where the search should start. The zonelist passed to
2573 * __alloc_pages() will include all nodes. If the slab allocator
2574 * is passed an offline node, it will fall back to the local node.
2575 * See kmem_cache_alloc_node().
2578 static int cpuset_spread_node(int *rotor
)
2582 node
= next_node(*rotor
, current
->mems_allowed
);
2583 if (node
== MAX_NUMNODES
)
2584 node
= first_node(current
->mems_allowed
);
2589 int cpuset_mem_spread_node(void)
2591 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2592 current
->cpuset_mem_spread_rotor
=
2593 node_random(¤t
->mems_allowed
);
2595 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2598 int cpuset_slab_spread_node(void)
2600 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2601 current
->cpuset_slab_spread_rotor
=
2602 node_random(¤t
->mems_allowed
);
2604 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2607 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2610 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2611 * @tsk1: pointer to task_struct of some task.
2612 * @tsk2: pointer to task_struct of some other task.
2614 * Description: Return true if @tsk1's mems_allowed intersects the
2615 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2616 * one of the task's memory usage might impact the memory available
2620 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2621 const struct task_struct
*tsk2
)
2623 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2627 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2628 * @tsk: pointer to task_struct of some task.
2630 * Description: Prints @task's name, cpuset name, and cached copy of its
2631 * mems_allowed to the kernel log.
2633 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2635 struct cgroup
*cgrp
;
2639 cgrp
= task_cs(tsk
)->css
.cgroup
;
2640 pr_info("%s cpuset=", tsk
->comm
);
2641 pr_cont_cgroup_name(cgrp
);
2642 pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk
->mems_allowed
));
2648 * Collection of memory_pressure is suppressed unless
2649 * this flag is enabled by writing "1" to the special
2650 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2653 int cpuset_memory_pressure_enabled __read_mostly
;
2656 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2658 * Keep a running average of the rate of synchronous (direct)
2659 * page reclaim efforts initiated by tasks in each cpuset.
2661 * This represents the rate at which some task in the cpuset
2662 * ran low on memory on all nodes it was allowed to use, and
2663 * had to enter the kernels page reclaim code in an effort to
2664 * create more free memory by tossing clean pages or swapping
2665 * or writing dirty pages.
2667 * Display to user space in the per-cpuset read-only file
2668 * "memory_pressure". Value displayed is an integer
2669 * representing the recent rate of entry into the synchronous
2670 * (direct) page reclaim by any task attached to the cpuset.
2673 void __cpuset_memory_pressure_bump(void)
2676 fmeter_markevent(&task_cs(current
)->fmeter
);
2680 #ifdef CONFIG_PROC_PID_CPUSET
2682 * proc_cpuset_show()
2683 * - Print tasks cpuset path into seq_file.
2684 * - Used for /proc/<pid>/cpuset.
2685 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2686 * doesn't really matter if tsk->cpuset changes after we read it,
2687 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2690 int proc_cpuset_show(struct seq_file
*m
, struct pid_namespace
*ns
,
2691 struct pid
*pid
, struct task_struct
*tsk
)
2694 struct cgroup_subsys_state
*css
;
2698 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
2702 retval
= -ENAMETOOLONG
;
2704 css
= task_css(tsk
, cpuset_cgrp_id
);
2705 p
= cgroup_path(css
->cgroup
, buf
, PATH_MAX
);
2717 #endif /* CONFIG_PROC_PID_CPUSET */
2719 /* Display task mems_allowed in /proc/<pid>/status file. */
2720 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2722 seq_printf(m
, "Mems_allowed:\t%*pb\n",
2723 nodemask_pr_args(&task
->mems_allowed
));
2724 seq_printf(m
, "Mems_allowed_list:\t%*pbl\n",
2725 nodemask_pr_args(&task
->mems_allowed
));