gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / kernel / cpuset.c
blob71403502411bad780ae54766865d5734b94cb4e8
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
66 /* See "Frequency meter" comments, below. */
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
75 struct cpuset {
76 struct cgroup_subsys_state css;
78 unsigned long flags; /* "unsigned long" so bitops work */
81 * On default hierarchy:
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
95 * On legacy hierachy:
97 * The user-configured masks are always the same with effective masks.
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
109 * This is old Memory Nodes tasks took on.
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
118 nodemask_t old_mems_allowed;
120 struct fmeter fmeter; /* memory_pressure filter */
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 int attach_in_progress;
128 /* partition number for rebuild_sched_domains() */
129 int pn;
131 /* for custom sched domain */
132 int relax_domain_level;
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 return css ? container_of(css, struct cpuset, css) : NULL;
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
143 return css_cs(task_css(task, cpuset_cgrp_id));
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 return css_cs(cs->css.parent);
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
154 return task->mempolicy;
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
159 return false;
161 #endif
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
179 return test_bit(CS_ONLINE, &cs->flags);
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
187 static inline int is_mem_exclusive(const struct cpuset *cs)
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
192 static inline int is_mem_hardwall(const struct cpuset *cs)
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
197 static inline int is_sched_load_balance(const struct cpuset *cs)
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
202 static inline int is_memory_migrate(const struct cpuset *cs)
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207 static inline int is_spread_page(const struct cpuset *cs)
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
212 static inline int is_spread_slab(const struct cpuset *cs)
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
264 * everyone else.
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
271 * If a task is only holding callback_lock, then it has read-only
272 * access to cpusets.
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
290 * CPU / memory hotplug is handled asynchronously.
292 static void cpuset_hotplug_workfn(struct work_struct *work);
293 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
302 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
306 struct dentry *ret = ERR_PTR(-ENODEV);
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
313 put_filesystem(cgroup_fs);
315 return ret;
318 static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
320 .mount = cpuset_mount,
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus.
328 * One way or another, we guarantee to return some non-empty subset
329 * of cpu_online_mask.
331 * Call with callback_lock or cpuset_mutex held.
333 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
336 cs = parent_cs(cs);
337 if (unlikely(!cs)) {
339 * The top cpuset doesn't have any online cpu as a
340 * consequence of a race between cpuset_hotplug_work
341 * and cpu hotplug notifier. But we know the top
342 * cpuset's effective_cpus is on its way to to be
343 * identical to cpu_online_mask.
345 cpumask_copy(pmask, cpu_online_mask);
346 return;
349 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
353 * Return in *pmask the portion of a cpusets's mems_allowed that
354 * are online, with memory. If none are online with memory, walk
355 * up the cpuset hierarchy until we find one that does have some
356 * online mems. The top cpuset always has some mems online.
358 * One way or another, we guarantee to return some non-empty subset
359 * of node_states[N_MEMORY].
361 * Call with callback_lock or cpuset_mutex held.
363 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
365 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
366 cs = parent_cs(cs);
367 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
371 * update task's spread flag if cpuset's page/slab spread flag is set
373 * Call with callback_lock or cpuset_mutex held.
375 static void cpuset_update_task_spread_flag(struct cpuset *cs,
376 struct task_struct *tsk)
378 if (is_spread_page(cs))
379 task_set_spread_page(tsk);
380 else
381 task_clear_spread_page(tsk);
383 if (is_spread_slab(cs))
384 task_set_spread_slab(tsk);
385 else
386 task_clear_spread_slab(tsk);
390 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
392 * One cpuset is a subset of another if all its allowed CPUs and
393 * Memory Nodes are a subset of the other, and its exclusive flags
394 * are only set if the other's are set. Call holding cpuset_mutex.
397 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
399 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
400 nodes_subset(p->mems_allowed, q->mems_allowed) &&
401 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
402 is_mem_exclusive(p) <= is_mem_exclusive(q);
406 * alloc_trial_cpuset - allocate a trial cpuset
407 * @cs: the cpuset that the trial cpuset duplicates
409 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
411 struct cpuset *trial;
413 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
414 if (!trial)
415 return NULL;
417 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
418 goto free_cs;
419 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
420 goto free_cpus;
422 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
423 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
424 return trial;
426 free_cpus:
427 free_cpumask_var(trial->cpus_allowed);
428 free_cs:
429 kfree(trial);
430 return NULL;
434 * free_trial_cpuset - free the trial cpuset
435 * @trial: the trial cpuset to be freed
437 static void free_trial_cpuset(struct cpuset *trial)
439 free_cpumask_var(trial->effective_cpus);
440 free_cpumask_var(trial->cpus_allowed);
441 kfree(trial);
445 * validate_change() - Used to validate that any proposed cpuset change
446 * follows the structural rules for cpusets.
448 * If we replaced the flag and mask values of the current cpuset
449 * (cur) with those values in the trial cpuset (trial), would
450 * our various subset and exclusive rules still be valid? Presumes
451 * cpuset_mutex held.
453 * 'cur' is the address of an actual, in-use cpuset. Operations
454 * such as list traversal that depend on the actual address of the
455 * cpuset in the list must use cur below, not trial.
457 * 'trial' is the address of bulk structure copy of cur, with
458 * perhaps one or more of the fields cpus_allowed, mems_allowed,
459 * or flags changed to new, trial values.
461 * Return 0 if valid, -errno if not.
464 static int validate_change(struct cpuset *cur, struct cpuset *trial)
466 struct cgroup_subsys_state *css;
467 struct cpuset *c, *par;
468 int ret;
470 rcu_read_lock();
472 /* Each of our child cpusets must be a subset of us */
473 ret = -EBUSY;
474 cpuset_for_each_child(c, css, cur)
475 if (!is_cpuset_subset(c, trial))
476 goto out;
478 /* Remaining checks don't apply to root cpuset */
479 ret = 0;
480 if (cur == &top_cpuset)
481 goto out;
483 par = parent_cs(cur);
485 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
486 ret = -EACCES;
487 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
488 goto out;
491 * If either I or some sibling (!= me) is exclusive, we can't
492 * overlap
494 ret = -EINVAL;
495 cpuset_for_each_child(c, css, par) {
496 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
497 c != cur &&
498 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
499 goto out;
500 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
501 c != cur &&
502 nodes_intersects(trial->mems_allowed, c->mems_allowed))
503 goto out;
507 * Cpusets with tasks - existing or newly being attached - can't
508 * be changed to have empty cpus_allowed or mems_allowed.
510 ret = -ENOSPC;
511 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
512 if (!cpumask_empty(cur->cpus_allowed) &&
513 cpumask_empty(trial->cpus_allowed))
514 goto out;
515 if (!nodes_empty(cur->mems_allowed) &&
516 nodes_empty(trial->mems_allowed))
517 goto out;
521 * We can't shrink if we won't have enough room for SCHED_DEADLINE
522 * tasks.
524 ret = -EBUSY;
525 if (is_cpu_exclusive(cur) &&
526 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
527 trial->cpus_allowed))
528 goto out;
530 ret = 0;
531 out:
532 rcu_read_unlock();
533 return ret;
536 #ifdef CONFIG_SMP
538 * Helper routine for generate_sched_domains().
539 * Do cpusets a, b have overlapping effective cpus_allowed masks?
541 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
543 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
546 static void
547 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
549 if (dattr->relax_domain_level < c->relax_domain_level)
550 dattr->relax_domain_level = c->relax_domain_level;
551 return;
554 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
555 struct cpuset *root_cs)
557 struct cpuset *cp;
558 struct cgroup_subsys_state *pos_css;
560 rcu_read_lock();
561 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
562 /* skip the whole subtree if @cp doesn't have any CPU */
563 if (cpumask_empty(cp->cpus_allowed)) {
564 pos_css = css_rightmost_descendant(pos_css);
565 continue;
568 if (is_sched_load_balance(cp))
569 update_domain_attr(dattr, cp);
571 rcu_read_unlock();
575 * generate_sched_domains()
577 * This function builds a partial partition of the systems CPUs
578 * A 'partial partition' is a set of non-overlapping subsets whose
579 * union is a subset of that set.
580 * The output of this function needs to be passed to kernel/sched/core.c
581 * partition_sched_domains() routine, which will rebuild the scheduler's
582 * load balancing domains (sched domains) as specified by that partial
583 * partition.
585 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
586 * for a background explanation of this.
588 * Does not return errors, on the theory that the callers of this
589 * routine would rather not worry about failures to rebuild sched
590 * domains when operating in the severe memory shortage situations
591 * that could cause allocation failures below.
593 * Must be called with cpuset_mutex held.
595 * The three key local variables below are:
596 * q - a linked-list queue of cpuset pointers, used to implement a
597 * top-down scan of all cpusets. This scan loads a pointer
598 * to each cpuset marked is_sched_load_balance into the
599 * array 'csa'. For our purposes, rebuilding the schedulers
600 * sched domains, we can ignore !is_sched_load_balance cpusets.
601 * csa - (for CpuSet Array) Array of pointers to all the cpusets
602 * that need to be load balanced, for convenient iterative
603 * access by the subsequent code that finds the best partition,
604 * i.e the set of domains (subsets) of CPUs such that the
605 * cpus_allowed of every cpuset marked is_sched_load_balance
606 * is a subset of one of these domains, while there are as
607 * many such domains as possible, each as small as possible.
608 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
609 * the kernel/sched/core.c routine partition_sched_domains() in a
610 * convenient format, that can be easily compared to the prior
611 * value to determine what partition elements (sched domains)
612 * were changed (added or removed.)
614 * Finding the best partition (set of domains):
615 * The triple nested loops below over i, j, k scan over the
616 * load balanced cpusets (using the array of cpuset pointers in
617 * csa[]) looking for pairs of cpusets that have overlapping
618 * cpus_allowed, but which don't have the same 'pn' partition
619 * number and gives them in the same partition number. It keeps
620 * looping on the 'restart' label until it can no longer find
621 * any such pairs.
623 * The union of the cpus_allowed masks from the set of
624 * all cpusets having the same 'pn' value then form the one
625 * element of the partition (one sched domain) to be passed to
626 * partition_sched_domains().
628 static int generate_sched_domains(cpumask_var_t **domains,
629 struct sched_domain_attr **attributes)
631 struct cpuset *cp; /* scans q */
632 struct cpuset **csa; /* array of all cpuset ptrs */
633 int csn; /* how many cpuset ptrs in csa so far */
634 int i, j, k; /* indices for partition finding loops */
635 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
636 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
637 struct sched_domain_attr *dattr; /* attributes for custom domains */
638 int ndoms = 0; /* number of sched domains in result */
639 int nslot; /* next empty doms[] struct cpumask slot */
640 struct cgroup_subsys_state *pos_css;
642 doms = NULL;
643 dattr = NULL;
644 csa = NULL;
646 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
647 goto done;
648 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
650 /* Special case for the 99% of systems with one, full, sched domain */
651 if (is_sched_load_balance(&top_cpuset)) {
652 ndoms = 1;
653 doms = alloc_sched_domains(ndoms);
654 if (!doms)
655 goto done;
657 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
658 if (dattr) {
659 *dattr = SD_ATTR_INIT;
660 update_domain_attr_tree(dattr, &top_cpuset);
662 cpumask_and(doms[0], top_cpuset.effective_cpus,
663 non_isolated_cpus);
665 goto done;
668 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
669 if (!csa)
670 goto done;
671 csn = 0;
673 rcu_read_lock();
674 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
675 if (cp == &top_cpuset)
676 continue;
678 * Continue traversing beyond @cp iff @cp has some CPUs and
679 * isn't load balancing. The former is obvious. The
680 * latter: All child cpusets contain a subset of the
681 * parent's cpus, so just skip them, and then we call
682 * update_domain_attr_tree() to calc relax_domain_level of
683 * the corresponding sched domain.
685 if (!cpumask_empty(cp->cpus_allowed) &&
686 !(is_sched_load_balance(cp) &&
687 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
688 continue;
690 if (is_sched_load_balance(cp))
691 csa[csn++] = cp;
693 /* skip @cp's subtree */
694 pos_css = css_rightmost_descendant(pos_css);
696 rcu_read_unlock();
698 for (i = 0; i < csn; i++)
699 csa[i]->pn = i;
700 ndoms = csn;
702 restart:
703 /* Find the best partition (set of sched domains) */
704 for (i = 0; i < csn; i++) {
705 struct cpuset *a = csa[i];
706 int apn = a->pn;
708 for (j = 0; j < csn; j++) {
709 struct cpuset *b = csa[j];
710 int bpn = b->pn;
712 if (apn != bpn && cpusets_overlap(a, b)) {
713 for (k = 0; k < csn; k++) {
714 struct cpuset *c = csa[k];
716 if (c->pn == bpn)
717 c->pn = apn;
719 ndoms--; /* one less element */
720 goto restart;
726 * Now we know how many domains to create.
727 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
729 doms = alloc_sched_domains(ndoms);
730 if (!doms)
731 goto done;
734 * The rest of the code, including the scheduler, can deal with
735 * dattr==NULL case. No need to abort if alloc fails.
737 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
739 for (nslot = 0, i = 0; i < csn; i++) {
740 struct cpuset *a = csa[i];
741 struct cpumask *dp;
742 int apn = a->pn;
744 if (apn < 0) {
745 /* Skip completed partitions */
746 continue;
749 dp = doms[nslot];
751 if (nslot == ndoms) {
752 static int warnings = 10;
753 if (warnings) {
754 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
755 nslot, ndoms, csn, i, apn);
756 warnings--;
758 continue;
761 cpumask_clear(dp);
762 if (dattr)
763 *(dattr + nslot) = SD_ATTR_INIT;
764 for (j = i; j < csn; j++) {
765 struct cpuset *b = csa[j];
767 if (apn == b->pn) {
768 cpumask_or(dp, dp, b->effective_cpus);
769 cpumask_and(dp, dp, non_isolated_cpus);
770 if (dattr)
771 update_domain_attr_tree(dattr + nslot, b);
773 /* Done with this partition */
774 b->pn = -1;
777 nslot++;
779 BUG_ON(nslot != ndoms);
781 done:
782 free_cpumask_var(non_isolated_cpus);
783 kfree(csa);
786 * Fallback to the default domain if kmalloc() failed.
787 * See comments in partition_sched_domains().
789 if (doms == NULL)
790 ndoms = 1;
792 *domains = doms;
793 *attributes = dattr;
794 return ndoms;
798 * Rebuild scheduler domains.
800 * If the flag 'sched_load_balance' of any cpuset with non-empty
801 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
802 * which has that flag enabled, or if any cpuset with a non-empty
803 * 'cpus' is removed, then call this routine to rebuild the
804 * scheduler's dynamic sched domains.
806 * Call with cpuset_mutex held. Takes get_online_cpus().
808 static void rebuild_sched_domains_locked(void)
810 struct sched_domain_attr *attr;
811 cpumask_var_t *doms;
812 int ndoms;
814 lockdep_assert_held(&cpuset_mutex);
815 get_online_cpus();
818 * We have raced with CPU hotplug. Don't do anything to avoid
819 * passing doms with offlined cpu to partition_sched_domains().
820 * Anyways, hotplug work item will rebuild sched domains.
822 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
823 goto out;
825 /* Generate domain masks and attrs */
826 ndoms = generate_sched_domains(&doms, &attr);
828 /* Have scheduler rebuild the domains */
829 partition_sched_domains(ndoms, doms, attr);
830 out:
831 put_online_cpus();
833 #else /* !CONFIG_SMP */
834 static void rebuild_sched_domains_locked(void)
837 #endif /* CONFIG_SMP */
839 void rebuild_sched_domains(void)
841 mutex_lock(&cpuset_mutex);
842 rebuild_sched_domains_locked();
843 mutex_unlock(&cpuset_mutex);
847 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
848 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
850 * Iterate through each task of @cs updating its cpus_allowed to the
851 * effective cpuset's. As this function is called with cpuset_mutex held,
852 * cpuset membership stays stable.
854 static void update_tasks_cpumask(struct cpuset *cs)
856 struct css_task_iter it;
857 struct task_struct *task;
859 css_task_iter_start(&cs->css, &it);
860 while ((task = css_task_iter_next(&it)))
861 set_cpus_allowed_ptr(task, cs->effective_cpus);
862 css_task_iter_end(&it);
866 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
867 * @cs: the cpuset to consider
868 * @new_cpus: temp variable for calculating new effective_cpus
870 * When congifured cpumask is changed, the effective cpumasks of this cpuset
871 * and all its descendants need to be updated.
873 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
875 * Called with cpuset_mutex held
877 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
879 struct cpuset *cp;
880 struct cgroup_subsys_state *pos_css;
881 bool need_rebuild_sched_domains = false;
883 rcu_read_lock();
884 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
885 struct cpuset *parent = parent_cs(cp);
887 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
890 * If it becomes empty, inherit the effective mask of the
891 * parent, which is guaranteed to have some CPUs.
893 if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
894 cpumask_copy(new_cpus, parent->effective_cpus);
896 /* Skip the whole subtree if the cpumask remains the same. */
897 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
898 pos_css = css_rightmost_descendant(pos_css);
899 continue;
902 if (!css_tryget_online(&cp->css))
903 continue;
904 rcu_read_unlock();
906 spin_lock_irq(&callback_lock);
907 cpumask_copy(cp->effective_cpus, new_cpus);
908 spin_unlock_irq(&callback_lock);
910 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
911 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
913 update_tasks_cpumask(cp);
916 * If the effective cpumask of any non-empty cpuset is changed,
917 * we need to rebuild sched domains.
919 if (!cpumask_empty(cp->cpus_allowed) &&
920 is_sched_load_balance(cp))
921 need_rebuild_sched_domains = true;
923 rcu_read_lock();
924 css_put(&cp->css);
926 rcu_read_unlock();
928 if (need_rebuild_sched_domains)
929 rebuild_sched_domains_locked();
933 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
934 * @cs: the cpuset to consider
935 * @trialcs: trial cpuset
936 * @buf: buffer of cpu numbers written to this cpuset
938 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
939 const char *buf)
941 int retval;
943 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
944 if (cs == &top_cpuset)
945 return -EACCES;
948 * An empty cpus_allowed is ok only if the cpuset has no tasks.
949 * Since cpulist_parse() fails on an empty mask, we special case
950 * that parsing. The validate_change() call ensures that cpusets
951 * with tasks have cpus.
953 if (!*buf) {
954 cpumask_clear(trialcs->cpus_allowed);
955 } else {
956 retval = cpulist_parse(buf, trialcs->cpus_allowed);
957 if (retval < 0)
958 return retval;
960 if (!cpumask_subset(trialcs->cpus_allowed,
961 top_cpuset.cpus_allowed))
962 return -EINVAL;
965 /* Nothing to do if the cpus didn't change */
966 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
967 return 0;
969 retval = validate_change(cs, trialcs);
970 if (retval < 0)
971 return retval;
973 spin_lock_irq(&callback_lock);
974 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
975 spin_unlock_irq(&callback_lock);
977 /* use trialcs->cpus_allowed as a temp variable */
978 update_cpumasks_hier(cs, trialcs->cpus_allowed);
979 return 0;
983 * cpuset_migrate_mm
985 * Migrate memory region from one set of nodes to another.
987 * Temporarilly set tasks mems_allowed to target nodes of migration,
988 * so that the migration code can allocate pages on these nodes.
990 * While the mm_struct we are migrating is typically from some
991 * other task, the task_struct mems_allowed that we are hacking
992 * is for our current task, which must allocate new pages for that
993 * migrating memory region.
996 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
997 const nodemask_t *to)
999 struct task_struct *tsk = current;
1001 tsk->mems_allowed = *to;
1003 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1005 rcu_read_lock();
1006 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
1007 rcu_read_unlock();
1011 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1012 * @tsk: the task to change
1013 * @newmems: new nodes that the task will be set
1015 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1016 * we structure updates as setting all new allowed nodes, then clearing newly
1017 * disallowed ones.
1019 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1020 nodemask_t *newmems)
1022 bool need_loop;
1025 * Allow tasks that have access to memory reserves because they have
1026 * been OOM killed to get memory anywhere.
1028 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1029 return;
1030 if (current->flags & PF_EXITING) /* Let dying task have memory */
1031 return;
1033 task_lock(tsk);
1035 * Determine if a loop is necessary if another thread is doing
1036 * read_mems_allowed_begin(). If at least one node remains unchanged and
1037 * tsk does not have a mempolicy, then an empty nodemask will not be
1038 * possible when mems_allowed is larger than a word.
1040 need_loop = task_has_mempolicy(tsk) ||
1041 !nodes_intersects(*newmems, tsk->mems_allowed);
1043 if (need_loop) {
1044 local_irq_disable();
1045 write_seqcount_begin(&tsk->mems_allowed_seq);
1048 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1049 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1051 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1052 tsk->mems_allowed = *newmems;
1054 if (need_loop) {
1055 write_seqcount_end(&tsk->mems_allowed_seq);
1056 local_irq_enable();
1059 task_unlock(tsk);
1062 static void *cpuset_being_rebound;
1065 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1066 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1068 * Iterate through each task of @cs updating its mems_allowed to the
1069 * effective cpuset's. As this function is called with cpuset_mutex held,
1070 * cpuset membership stays stable.
1072 static void update_tasks_nodemask(struct cpuset *cs)
1074 static nodemask_t newmems; /* protected by cpuset_mutex */
1075 struct css_task_iter it;
1076 struct task_struct *task;
1078 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1080 guarantee_online_mems(cs, &newmems);
1083 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1084 * take while holding tasklist_lock. Forks can happen - the
1085 * mpol_dup() cpuset_being_rebound check will catch such forks,
1086 * and rebind their vma mempolicies too. Because we still hold
1087 * the global cpuset_mutex, we know that no other rebind effort
1088 * will be contending for the global variable cpuset_being_rebound.
1089 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1090 * is idempotent. Also migrate pages in each mm to new nodes.
1092 css_task_iter_start(&cs->css, &it);
1093 while ((task = css_task_iter_next(&it))) {
1094 struct mm_struct *mm;
1095 bool migrate;
1097 cpuset_change_task_nodemask(task, &newmems);
1099 mm = get_task_mm(task);
1100 if (!mm)
1101 continue;
1103 migrate = is_memory_migrate(cs);
1105 mpol_rebind_mm(mm, &cs->mems_allowed);
1106 if (migrate)
1107 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1108 mmput(mm);
1110 css_task_iter_end(&it);
1113 * All the tasks' nodemasks have been updated, update
1114 * cs->old_mems_allowed.
1116 cs->old_mems_allowed = newmems;
1118 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1119 cpuset_being_rebound = NULL;
1123 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1124 * @cs: the cpuset to consider
1125 * @new_mems: a temp variable for calculating new effective_mems
1127 * When configured nodemask is changed, the effective nodemasks of this cpuset
1128 * and all its descendants need to be updated.
1130 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1132 * Called with cpuset_mutex held
1134 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1136 struct cpuset *cp;
1137 struct cgroup_subsys_state *pos_css;
1139 rcu_read_lock();
1140 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1141 struct cpuset *parent = parent_cs(cp);
1143 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1146 * If it becomes empty, inherit the effective mask of the
1147 * parent, which is guaranteed to have some MEMs.
1149 if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
1150 *new_mems = parent->effective_mems;
1152 /* Skip the whole subtree if the nodemask remains the same. */
1153 if (nodes_equal(*new_mems, cp->effective_mems)) {
1154 pos_css = css_rightmost_descendant(pos_css);
1155 continue;
1158 if (!css_tryget_online(&cp->css))
1159 continue;
1160 rcu_read_unlock();
1162 spin_lock_irq(&callback_lock);
1163 cp->effective_mems = *new_mems;
1164 spin_unlock_irq(&callback_lock);
1166 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1167 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1169 update_tasks_nodemask(cp);
1171 rcu_read_lock();
1172 css_put(&cp->css);
1174 rcu_read_unlock();
1178 * Handle user request to change the 'mems' memory placement
1179 * of a cpuset. Needs to validate the request, update the
1180 * cpusets mems_allowed, and for each task in the cpuset,
1181 * update mems_allowed and rebind task's mempolicy and any vma
1182 * mempolicies and if the cpuset is marked 'memory_migrate',
1183 * migrate the tasks pages to the new memory.
1185 * Call with cpuset_mutex held. May take callback_lock during call.
1186 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1187 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1188 * their mempolicies to the cpusets new mems_allowed.
1190 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1191 const char *buf)
1193 int retval;
1196 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1197 * it's read-only
1199 if (cs == &top_cpuset) {
1200 retval = -EACCES;
1201 goto done;
1205 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1206 * Since nodelist_parse() fails on an empty mask, we special case
1207 * that parsing. The validate_change() call ensures that cpusets
1208 * with tasks have memory.
1210 if (!*buf) {
1211 nodes_clear(trialcs->mems_allowed);
1212 } else {
1213 retval = nodelist_parse(buf, trialcs->mems_allowed);
1214 if (retval < 0)
1215 goto done;
1217 if (!nodes_subset(trialcs->mems_allowed,
1218 top_cpuset.mems_allowed)) {
1219 retval = -EINVAL;
1220 goto done;
1224 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1225 retval = 0; /* Too easy - nothing to do */
1226 goto done;
1228 retval = validate_change(cs, trialcs);
1229 if (retval < 0)
1230 goto done;
1232 spin_lock_irq(&callback_lock);
1233 cs->mems_allowed = trialcs->mems_allowed;
1234 spin_unlock_irq(&callback_lock);
1236 /* use trialcs->mems_allowed as a temp variable */
1237 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1238 done:
1239 return retval;
1242 int current_cpuset_is_being_rebound(void)
1244 int ret;
1246 rcu_read_lock();
1247 ret = task_cs(current) == cpuset_being_rebound;
1248 rcu_read_unlock();
1250 return ret;
1253 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1255 #ifdef CONFIG_SMP
1256 if (val < -1 || val >= sched_domain_level_max)
1257 return -EINVAL;
1258 #endif
1260 if (val != cs->relax_domain_level) {
1261 cs->relax_domain_level = val;
1262 if (!cpumask_empty(cs->cpus_allowed) &&
1263 is_sched_load_balance(cs))
1264 rebuild_sched_domains_locked();
1267 return 0;
1271 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1272 * @cs: the cpuset in which each task's spread flags needs to be changed
1274 * Iterate through each task of @cs updating its spread flags. As this
1275 * function is called with cpuset_mutex held, cpuset membership stays
1276 * stable.
1278 static void update_tasks_flags(struct cpuset *cs)
1280 struct css_task_iter it;
1281 struct task_struct *task;
1283 css_task_iter_start(&cs->css, &it);
1284 while ((task = css_task_iter_next(&it)))
1285 cpuset_update_task_spread_flag(cs, task);
1286 css_task_iter_end(&it);
1290 * update_flag - read a 0 or a 1 in a file and update associated flag
1291 * bit: the bit to update (see cpuset_flagbits_t)
1292 * cs: the cpuset to update
1293 * turning_on: whether the flag is being set or cleared
1295 * Call with cpuset_mutex held.
1298 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1299 int turning_on)
1301 struct cpuset *trialcs;
1302 int balance_flag_changed;
1303 int spread_flag_changed;
1304 int err;
1306 trialcs = alloc_trial_cpuset(cs);
1307 if (!trialcs)
1308 return -ENOMEM;
1310 if (turning_on)
1311 set_bit(bit, &trialcs->flags);
1312 else
1313 clear_bit(bit, &trialcs->flags);
1315 err = validate_change(cs, trialcs);
1316 if (err < 0)
1317 goto out;
1319 balance_flag_changed = (is_sched_load_balance(cs) !=
1320 is_sched_load_balance(trialcs));
1322 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1323 || (is_spread_page(cs) != is_spread_page(trialcs)));
1325 spin_lock_irq(&callback_lock);
1326 cs->flags = trialcs->flags;
1327 spin_unlock_irq(&callback_lock);
1329 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1330 rebuild_sched_domains_locked();
1332 if (spread_flag_changed)
1333 update_tasks_flags(cs);
1334 out:
1335 free_trial_cpuset(trialcs);
1336 return err;
1340 * Frequency meter - How fast is some event occurring?
1342 * These routines manage a digitally filtered, constant time based,
1343 * event frequency meter. There are four routines:
1344 * fmeter_init() - initialize a frequency meter.
1345 * fmeter_markevent() - called each time the event happens.
1346 * fmeter_getrate() - returns the recent rate of such events.
1347 * fmeter_update() - internal routine used to update fmeter.
1349 * A common data structure is passed to each of these routines,
1350 * which is used to keep track of the state required to manage the
1351 * frequency meter and its digital filter.
1353 * The filter works on the number of events marked per unit time.
1354 * The filter is single-pole low-pass recursive (IIR). The time unit
1355 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1356 * simulate 3 decimal digits of precision (multiplied by 1000).
1358 * With an FM_COEF of 933, and a time base of 1 second, the filter
1359 * has a half-life of 10 seconds, meaning that if the events quit
1360 * happening, then the rate returned from the fmeter_getrate()
1361 * will be cut in half each 10 seconds, until it converges to zero.
1363 * It is not worth doing a real infinitely recursive filter. If more
1364 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1365 * just compute FM_MAXTICKS ticks worth, by which point the level
1366 * will be stable.
1368 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1369 * arithmetic overflow in the fmeter_update() routine.
1371 * Given the simple 32 bit integer arithmetic used, this meter works
1372 * best for reporting rates between one per millisecond (msec) and
1373 * one per 32 (approx) seconds. At constant rates faster than one
1374 * per msec it maxes out at values just under 1,000,000. At constant
1375 * rates between one per msec, and one per second it will stabilize
1376 * to a value N*1000, where N is the rate of events per second.
1377 * At constant rates between one per second and one per 32 seconds,
1378 * it will be choppy, moving up on the seconds that have an event,
1379 * and then decaying until the next event. At rates slower than
1380 * about one in 32 seconds, it decays all the way back to zero between
1381 * each event.
1384 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1385 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1386 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1387 #define FM_SCALE 1000 /* faux fixed point scale */
1389 /* Initialize a frequency meter */
1390 static void fmeter_init(struct fmeter *fmp)
1392 fmp->cnt = 0;
1393 fmp->val = 0;
1394 fmp->time = 0;
1395 spin_lock_init(&fmp->lock);
1398 /* Internal meter update - process cnt events and update value */
1399 static void fmeter_update(struct fmeter *fmp)
1401 time_t now = get_seconds();
1402 time_t ticks = now - fmp->time;
1404 if (ticks == 0)
1405 return;
1407 ticks = min(FM_MAXTICKS, ticks);
1408 while (ticks-- > 0)
1409 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1410 fmp->time = now;
1412 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1413 fmp->cnt = 0;
1416 /* Process any previous ticks, then bump cnt by one (times scale). */
1417 static void fmeter_markevent(struct fmeter *fmp)
1419 spin_lock(&fmp->lock);
1420 fmeter_update(fmp);
1421 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1422 spin_unlock(&fmp->lock);
1425 /* Process any previous ticks, then return current value. */
1426 static int fmeter_getrate(struct fmeter *fmp)
1428 int val;
1430 spin_lock(&fmp->lock);
1431 fmeter_update(fmp);
1432 val = fmp->val;
1433 spin_unlock(&fmp->lock);
1434 return val;
1437 static struct cpuset *cpuset_attach_old_cs;
1439 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1440 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1441 struct cgroup_taskset *tset)
1443 struct cpuset *cs = css_cs(css);
1444 struct task_struct *task;
1445 int ret;
1447 /* used later by cpuset_attach() */
1448 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1450 mutex_lock(&cpuset_mutex);
1452 /* allow moving tasks into an empty cpuset if on default hierarchy */
1453 ret = -ENOSPC;
1454 if (!cgroup_on_dfl(css->cgroup) &&
1455 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1456 goto out_unlock;
1458 cgroup_taskset_for_each(task, tset) {
1459 ret = task_can_attach(task, cs->cpus_allowed);
1460 if (ret)
1461 goto out_unlock;
1462 ret = security_task_setscheduler(task);
1463 if (ret)
1464 goto out_unlock;
1468 * Mark attach is in progress. This makes validate_change() fail
1469 * changes which zero cpus/mems_allowed.
1471 cs->attach_in_progress++;
1472 ret = 0;
1473 out_unlock:
1474 mutex_unlock(&cpuset_mutex);
1475 return ret;
1478 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1479 struct cgroup_taskset *tset)
1481 mutex_lock(&cpuset_mutex);
1482 css_cs(css)->attach_in_progress--;
1483 mutex_unlock(&cpuset_mutex);
1487 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1488 * but we can't allocate it dynamically there. Define it global and
1489 * allocate from cpuset_init().
1491 static cpumask_var_t cpus_attach;
1493 static void cpuset_attach(struct cgroup_subsys_state *css,
1494 struct cgroup_taskset *tset)
1496 /* static buf protected by cpuset_mutex */
1497 static nodemask_t cpuset_attach_nodemask_to;
1498 struct mm_struct *mm;
1499 struct task_struct *task;
1500 struct task_struct *leader = cgroup_taskset_first(tset);
1501 struct cpuset *cs = css_cs(css);
1502 struct cpuset *oldcs = cpuset_attach_old_cs;
1504 mutex_lock(&cpuset_mutex);
1506 /* prepare for attach */
1507 if (cs == &top_cpuset)
1508 cpumask_copy(cpus_attach, cpu_possible_mask);
1509 else
1510 guarantee_online_cpus(cs, cpus_attach);
1512 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1514 cgroup_taskset_for_each(task, tset) {
1516 * can_attach beforehand should guarantee that this doesn't
1517 * fail. TODO: have a better way to handle failure here
1519 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1521 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1522 cpuset_update_task_spread_flag(cs, task);
1526 * Change mm, possibly for multiple threads in a threadgroup. This is
1527 * expensive and may sleep.
1529 cpuset_attach_nodemask_to = cs->effective_mems;
1530 mm = get_task_mm(leader);
1531 if (mm) {
1532 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1535 * old_mems_allowed is the same with mems_allowed here, except
1536 * if this task is being moved automatically due to hotplug.
1537 * In that case @mems_allowed has been updated and is empty,
1538 * so @old_mems_allowed is the right nodesets that we migrate
1539 * mm from.
1541 if (is_memory_migrate(cs)) {
1542 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1543 &cpuset_attach_nodemask_to);
1545 mmput(mm);
1548 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1550 cs->attach_in_progress--;
1551 if (!cs->attach_in_progress)
1552 wake_up(&cpuset_attach_wq);
1554 mutex_unlock(&cpuset_mutex);
1557 /* The various types of files and directories in a cpuset file system */
1559 typedef enum {
1560 FILE_MEMORY_MIGRATE,
1561 FILE_CPULIST,
1562 FILE_MEMLIST,
1563 FILE_EFFECTIVE_CPULIST,
1564 FILE_EFFECTIVE_MEMLIST,
1565 FILE_CPU_EXCLUSIVE,
1566 FILE_MEM_EXCLUSIVE,
1567 FILE_MEM_HARDWALL,
1568 FILE_SCHED_LOAD_BALANCE,
1569 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1570 FILE_MEMORY_PRESSURE_ENABLED,
1571 FILE_MEMORY_PRESSURE,
1572 FILE_SPREAD_PAGE,
1573 FILE_SPREAD_SLAB,
1574 } cpuset_filetype_t;
1576 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1577 u64 val)
1579 struct cpuset *cs = css_cs(css);
1580 cpuset_filetype_t type = cft->private;
1581 int retval = 0;
1583 mutex_lock(&cpuset_mutex);
1584 if (!is_cpuset_online(cs)) {
1585 retval = -ENODEV;
1586 goto out_unlock;
1589 switch (type) {
1590 case FILE_CPU_EXCLUSIVE:
1591 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1592 break;
1593 case FILE_MEM_EXCLUSIVE:
1594 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1595 break;
1596 case FILE_MEM_HARDWALL:
1597 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1598 break;
1599 case FILE_SCHED_LOAD_BALANCE:
1600 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1601 break;
1602 case FILE_MEMORY_MIGRATE:
1603 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1604 break;
1605 case FILE_MEMORY_PRESSURE_ENABLED:
1606 cpuset_memory_pressure_enabled = !!val;
1607 break;
1608 case FILE_MEMORY_PRESSURE:
1609 retval = -EACCES;
1610 break;
1611 case FILE_SPREAD_PAGE:
1612 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1613 break;
1614 case FILE_SPREAD_SLAB:
1615 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1616 break;
1617 default:
1618 retval = -EINVAL;
1619 break;
1621 out_unlock:
1622 mutex_unlock(&cpuset_mutex);
1623 return retval;
1626 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1627 s64 val)
1629 struct cpuset *cs = css_cs(css);
1630 cpuset_filetype_t type = cft->private;
1631 int retval = -ENODEV;
1633 mutex_lock(&cpuset_mutex);
1634 if (!is_cpuset_online(cs))
1635 goto out_unlock;
1637 switch (type) {
1638 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1639 retval = update_relax_domain_level(cs, val);
1640 break;
1641 default:
1642 retval = -EINVAL;
1643 break;
1645 out_unlock:
1646 mutex_unlock(&cpuset_mutex);
1647 return retval;
1651 * Common handling for a write to a "cpus" or "mems" file.
1653 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1654 char *buf, size_t nbytes, loff_t off)
1656 struct cpuset *cs = css_cs(of_css(of));
1657 struct cpuset *trialcs;
1658 int retval = -ENODEV;
1660 buf = strstrip(buf);
1663 * CPU or memory hotunplug may leave @cs w/o any execution
1664 * resources, in which case the hotplug code asynchronously updates
1665 * configuration and transfers all tasks to the nearest ancestor
1666 * which can execute.
1668 * As writes to "cpus" or "mems" may restore @cs's execution
1669 * resources, wait for the previously scheduled operations before
1670 * proceeding, so that we don't end up keep removing tasks added
1671 * after execution capability is restored.
1673 * cpuset_hotplug_work calls back into cgroup core via
1674 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1675 * operation like this one can lead to a deadlock through kernfs
1676 * active_ref protection. Let's break the protection. Losing the
1677 * protection is okay as we check whether @cs is online after
1678 * grabbing cpuset_mutex anyway. This only happens on the legacy
1679 * hierarchies.
1681 css_get(&cs->css);
1682 kernfs_break_active_protection(of->kn);
1683 flush_work(&cpuset_hotplug_work);
1685 mutex_lock(&cpuset_mutex);
1686 if (!is_cpuset_online(cs))
1687 goto out_unlock;
1689 trialcs = alloc_trial_cpuset(cs);
1690 if (!trialcs) {
1691 retval = -ENOMEM;
1692 goto out_unlock;
1695 switch (of_cft(of)->private) {
1696 case FILE_CPULIST:
1697 retval = update_cpumask(cs, trialcs, buf);
1698 break;
1699 case FILE_MEMLIST:
1700 retval = update_nodemask(cs, trialcs, buf);
1701 break;
1702 default:
1703 retval = -EINVAL;
1704 break;
1707 free_trial_cpuset(trialcs);
1708 out_unlock:
1709 mutex_unlock(&cpuset_mutex);
1710 kernfs_unbreak_active_protection(of->kn);
1711 css_put(&cs->css);
1712 return retval ?: nbytes;
1716 * These ascii lists should be read in a single call, by using a user
1717 * buffer large enough to hold the entire map. If read in smaller
1718 * chunks, there is no guarantee of atomicity. Since the display format
1719 * used, list of ranges of sequential numbers, is variable length,
1720 * and since these maps can change value dynamically, one could read
1721 * gibberish by doing partial reads while a list was changing.
1723 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1725 struct cpuset *cs = css_cs(seq_css(sf));
1726 cpuset_filetype_t type = seq_cft(sf)->private;
1727 int ret = 0;
1729 spin_lock_irq(&callback_lock);
1731 switch (type) {
1732 case FILE_CPULIST:
1733 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1734 break;
1735 case FILE_MEMLIST:
1736 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1737 break;
1738 case FILE_EFFECTIVE_CPULIST:
1739 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1740 break;
1741 case FILE_EFFECTIVE_MEMLIST:
1742 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1743 break;
1744 default:
1745 ret = -EINVAL;
1748 spin_unlock_irq(&callback_lock);
1749 return ret;
1752 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1754 struct cpuset *cs = css_cs(css);
1755 cpuset_filetype_t type = cft->private;
1756 switch (type) {
1757 case FILE_CPU_EXCLUSIVE:
1758 return is_cpu_exclusive(cs);
1759 case FILE_MEM_EXCLUSIVE:
1760 return is_mem_exclusive(cs);
1761 case FILE_MEM_HARDWALL:
1762 return is_mem_hardwall(cs);
1763 case FILE_SCHED_LOAD_BALANCE:
1764 return is_sched_load_balance(cs);
1765 case FILE_MEMORY_MIGRATE:
1766 return is_memory_migrate(cs);
1767 case FILE_MEMORY_PRESSURE_ENABLED:
1768 return cpuset_memory_pressure_enabled;
1769 case FILE_MEMORY_PRESSURE:
1770 return fmeter_getrate(&cs->fmeter);
1771 case FILE_SPREAD_PAGE:
1772 return is_spread_page(cs);
1773 case FILE_SPREAD_SLAB:
1774 return is_spread_slab(cs);
1775 default:
1776 BUG();
1779 /* Unreachable but makes gcc happy */
1780 return 0;
1783 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1785 struct cpuset *cs = css_cs(css);
1786 cpuset_filetype_t type = cft->private;
1787 switch (type) {
1788 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1789 return cs->relax_domain_level;
1790 default:
1791 BUG();
1794 /* Unrechable but makes gcc happy */
1795 return 0;
1800 * for the common functions, 'private' gives the type of file
1803 static struct cftype files[] = {
1805 .name = "cpus",
1806 .seq_show = cpuset_common_seq_show,
1807 .write = cpuset_write_resmask,
1808 .max_write_len = (100U + 6 * NR_CPUS),
1809 .private = FILE_CPULIST,
1813 .name = "mems",
1814 .seq_show = cpuset_common_seq_show,
1815 .write = cpuset_write_resmask,
1816 .max_write_len = (100U + 6 * MAX_NUMNODES),
1817 .private = FILE_MEMLIST,
1821 .name = "effective_cpus",
1822 .seq_show = cpuset_common_seq_show,
1823 .private = FILE_EFFECTIVE_CPULIST,
1827 .name = "effective_mems",
1828 .seq_show = cpuset_common_seq_show,
1829 .private = FILE_EFFECTIVE_MEMLIST,
1833 .name = "cpu_exclusive",
1834 .read_u64 = cpuset_read_u64,
1835 .write_u64 = cpuset_write_u64,
1836 .private = FILE_CPU_EXCLUSIVE,
1840 .name = "mem_exclusive",
1841 .read_u64 = cpuset_read_u64,
1842 .write_u64 = cpuset_write_u64,
1843 .private = FILE_MEM_EXCLUSIVE,
1847 .name = "mem_hardwall",
1848 .read_u64 = cpuset_read_u64,
1849 .write_u64 = cpuset_write_u64,
1850 .private = FILE_MEM_HARDWALL,
1854 .name = "sched_load_balance",
1855 .read_u64 = cpuset_read_u64,
1856 .write_u64 = cpuset_write_u64,
1857 .private = FILE_SCHED_LOAD_BALANCE,
1861 .name = "sched_relax_domain_level",
1862 .read_s64 = cpuset_read_s64,
1863 .write_s64 = cpuset_write_s64,
1864 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1868 .name = "memory_migrate",
1869 .read_u64 = cpuset_read_u64,
1870 .write_u64 = cpuset_write_u64,
1871 .private = FILE_MEMORY_MIGRATE,
1875 .name = "memory_pressure",
1876 .read_u64 = cpuset_read_u64,
1877 .write_u64 = cpuset_write_u64,
1878 .private = FILE_MEMORY_PRESSURE,
1879 .mode = S_IRUGO,
1883 .name = "memory_spread_page",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_SPREAD_PAGE,
1890 .name = "memory_spread_slab",
1891 .read_u64 = cpuset_read_u64,
1892 .write_u64 = cpuset_write_u64,
1893 .private = FILE_SPREAD_SLAB,
1897 .name = "memory_pressure_enabled",
1898 .flags = CFTYPE_ONLY_ON_ROOT,
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_MEMORY_PRESSURE_ENABLED,
1904 { } /* terminate */
1908 * cpuset_css_alloc - allocate a cpuset css
1909 * cgrp: control group that the new cpuset will be part of
1912 static struct cgroup_subsys_state *
1913 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1915 struct cpuset *cs;
1917 if (!parent_css)
1918 return &top_cpuset.css;
1920 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1921 if (!cs)
1922 return ERR_PTR(-ENOMEM);
1923 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1924 goto free_cs;
1925 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1926 goto free_cpus;
1928 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1929 cpumask_clear(cs->cpus_allowed);
1930 nodes_clear(cs->mems_allowed);
1931 cpumask_clear(cs->effective_cpus);
1932 nodes_clear(cs->effective_mems);
1933 fmeter_init(&cs->fmeter);
1934 cs->relax_domain_level = -1;
1936 return &cs->css;
1938 free_cpus:
1939 free_cpumask_var(cs->cpus_allowed);
1940 free_cs:
1941 kfree(cs);
1942 return ERR_PTR(-ENOMEM);
1945 static int cpuset_css_online(struct cgroup_subsys_state *css)
1947 struct cpuset *cs = css_cs(css);
1948 struct cpuset *parent = parent_cs(cs);
1949 struct cpuset *tmp_cs;
1950 struct cgroup_subsys_state *pos_css;
1952 if (!parent)
1953 return 0;
1955 mutex_lock(&cpuset_mutex);
1957 set_bit(CS_ONLINE, &cs->flags);
1958 if (is_spread_page(parent))
1959 set_bit(CS_SPREAD_PAGE, &cs->flags);
1960 if (is_spread_slab(parent))
1961 set_bit(CS_SPREAD_SLAB, &cs->flags);
1963 cpuset_inc();
1965 spin_lock_irq(&callback_lock);
1966 if (cgroup_on_dfl(cs->css.cgroup)) {
1967 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1968 cs->effective_mems = parent->effective_mems;
1970 spin_unlock_irq(&callback_lock);
1972 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1973 goto out_unlock;
1976 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1977 * set. This flag handling is implemented in cgroup core for
1978 * histrical reasons - the flag may be specified during mount.
1980 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1981 * refuse to clone the configuration - thereby refusing the task to
1982 * be entered, and as a result refusing the sys_unshare() or
1983 * clone() which initiated it. If this becomes a problem for some
1984 * users who wish to allow that scenario, then this could be
1985 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1986 * (and likewise for mems) to the new cgroup.
1988 rcu_read_lock();
1989 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1990 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1991 rcu_read_unlock();
1992 goto out_unlock;
1995 rcu_read_unlock();
1997 spin_lock_irq(&callback_lock);
1998 cs->mems_allowed = parent->mems_allowed;
1999 cs->effective_mems = parent->mems_allowed;
2000 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2001 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2002 spin_unlock_irq(&callback_lock);
2003 out_unlock:
2004 mutex_unlock(&cpuset_mutex);
2005 return 0;
2009 * If the cpuset being removed has its flag 'sched_load_balance'
2010 * enabled, then simulate turning sched_load_balance off, which
2011 * will call rebuild_sched_domains_locked().
2014 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2016 struct cpuset *cs = css_cs(css);
2018 mutex_lock(&cpuset_mutex);
2020 if (is_sched_load_balance(cs))
2021 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2023 cpuset_dec();
2024 clear_bit(CS_ONLINE, &cs->flags);
2026 mutex_unlock(&cpuset_mutex);
2029 static void cpuset_css_free(struct cgroup_subsys_state *css)
2031 struct cpuset *cs = css_cs(css);
2033 free_cpumask_var(cs->effective_cpus);
2034 free_cpumask_var(cs->cpus_allowed);
2035 kfree(cs);
2038 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2040 mutex_lock(&cpuset_mutex);
2041 spin_lock_irq(&callback_lock);
2043 if (cgroup_on_dfl(root_css->cgroup)) {
2044 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2045 top_cpuset.mems_allowed = node_possible_map;
2046 } else {
2047 cpumask_copy(top_cpuset.cpus_allowed,
2048 top_cpuset.effective_cpus);
2049 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2052 spin_unlock_irq(&callback_lock);
2053 mutex_unlock(&cpuset_mutex);
2057 * Make sure the new task conform to the current state of its parent,
2058 * which could have been changed by cpuset just after it inherits the
2059 * state from the parent and before it sits on the cgroup's task list.
2061 void cpuset_fork(struct task_struct *task)
2063 if (task_css_is_root(task, cpuset_cgrp_id))
2064 return;
2066 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2067 task->mems_allowed = current->mems_allowed;
2070 struct cgroup_subsys cpuset_cgrp_subsys = {
2071 .css_alloc = cpuset_css_alloc,
2072 .css_online = cpuset_css_online,
2073 .css_offline = cpuset_css_offline,
2074 .css_free = cpuset_css_free,
2075 .can_attach = cpuset_can_attach,
2076 .cancel_attach = cpuset_cancel_attach,
2077 .attach = cpuset_attach,
2078 .bind = cpuset_bind,
2079 .fork = cpuset_fork,
2080 .legacy_cftypes = files,
2081 .early_init = 1,
2085 * cpuset_init - initialize cpusets at system boot
2087 * Description: Initialize top_cpuset and the cpuset internal file system,
2090 int __init cpuset_init(void)
2092 int err = 0;
2094 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2095 BUG();
2096 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2097 BUG();
2099 cpumask_setall(top_cpuset.cpus_allowed);
2100 nodes_setall(top_cpuset.mems_allowed);
2101 cpumask_setall(top_cpuset.effective_cpus);
2102 nodes_setall(top_cpuset.effective_mems);
2104 fmeter_init(&top_cpuset.fmeter);
2105 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2106 top_cpuset.relax_domain_level = -1;
2108 err = register_filesystem(&cpuset_fs_type);
2109 if (err < 0)
2110 return err;
2112 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2113 BUG();
2115 return 0;
2119 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2120 * or memory nodes, we need to walk over the cpuset hierarchy,
2121 * removing that CPU or node from all cpusets. If this removes the
2122 * last CPU or node from a cpuset, then move the tasks in the empty
2123 * cpuset to its next-highest non-empty parent.
2125 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2127 struct cpuset *parent;
2130 * Find its next-highest non-empty parent, (top cpuset
2131 * has online cpus, so can't be empty).
2133 parent = parent_cs(cs);
2134 while (cpumask_empty(parent->cpus_allowed) ||
2135 nodes_empty(parent->mems_allowed))
2136 parent = parent_cs(parent);
2138 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2139 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2140 pr_cont_cgroup_name(cs->css.cgroup);
2141 pr_cont("\n");
2145 static void
2146 hotplug_update_tasks_legacy(struct cpuset *cs,
2147 struct cpumask *new_cpus, nodemask_t *new_mems,
2148 bool cpus_updated, bool mems_updated)
2150 bool is_empty;
2152 spin_lock_irq(&callback_lock);
2153 cpumask_copy(cs->cpus_allowed, new_cpus);
2154 cpumask_copy(cs->effective_cpus, new_cpus);
2155 cs->mems_allowed = *new_mems;
2156 cs->effective_mems = *new_mems;
2157 spin_unlock_irq(&callback_lock);
2160 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2161 * as the tasks will be migratecd to an ancestor.
2163 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2164 update_tasks_cpumask(cs);
2165 if (mems_updated && !nodes_empty(cs->mems_allowed))
2166 update_tasks_nodemask(cs);
2168 is_empty = cpumask_empty(cs->cpus_allowed) ||
2169 nodes_empty(cs->mems_allowed);
2171 mutex_unlock(&cpuset_mutex);
2174 * Move tasks to the nearest ancestor with execution resources,
2175 * This is full cgroup operation which will also call back into
2176 * cpuset. Should be done outside any lock.
2178 if (is_empty)
2179 remove_tasks_in_empty_cpuset(cs);
2181 mutex_lock(&cpuset_mutex);
2184 static void
2185 hotplug_update_tasks(struct cpuset *cs,
2186 struct cpumask *new_cpus, nodemask_t *new_mems,
2187 bool cpus_updated, bool mems_updated)
2189 if (cpumask_empty(new_cpus))
2190 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2191 if (nodes_empty(*new_mems))
2192 *new_mems = parent_cs(cs)->effective_mems;
2194 spin_lock_irq(&callback_lock);
2195 cpumask_copy(cs->effective_cpus, new_cpus);
2196 cs->effective_mems = *new_mems;
2197 spin_unlock_irq(&callback_lock);
2199 if (cpus_updated)
2200 update_tasks_cpumask(cs);
2201 if (mems_updated)
2202 update_tasks_nodemask(cs);
2206 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2207 * @cs: cpuset in interest
2209 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2210 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2211 * all its tasks are moved to the nearest ancestor with both resources.
2213 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2215 static cpumask_t new_cpus;
2216 static nodemask_t new_mems;
2217 bool cpus_updated;
2218 bool mems_updated;
2219 retry:
2220 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2222 mutex_lock(&cpuset_mutex);
2225 * We have raced with task attaching. We wait until attaching
2226 * is finished, so we won't attach a task to an empty cpuset.
2228 if (cs->attach_in_progress) {
2229 mutex_unlock(&cpuset_mutex);
2230 goto retry;
2233 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2234 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2236 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2237 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2239 if (cgroup_on_dfl(cs->css.cgroup))
2240 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2241 cpus_updated, mems_updated);
2242 else
2243 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2244 cpus_updated, mems_updated);
2246 mutex_unlock(&cpuset_mutex);
2250 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2252 * This function is called after either CPU or memory configuration has
2253 * changed and updates cpuset accordingly. The top_cpuset is always
2254 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2255 * order to make cpusets transparent (of no affect) on systems that are
2256 * actively using CPU hotplug but making no active use of cpusets.
2258 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2259 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2260 * all descendants.
2262 * Note that CPU offlining during suspend is ignored. We don't modify
2263 * cpusets across suspend/resume cycles at all.
2265 static void cpuset_hotplug_workfn(struct work_struct *work)
2267 static cpumask_t new_cpus;
2268 static nodemask_t new_mems;
2269 bool cpus_updated, mems_updated;
2270 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2272 mutex_lock(&cpuset_mutex);
2274 /* fetch the available cpus/mems and find out which changed how */
2275 cpumask_copy(&new_cpus, cpu_active_mask);
2276 new_mems = node_states[N_MEMORY];
2278 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2279 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2281 /* synchronize cpus_allowed to cpu_active_mask */
2282 if (cpus_updated) {
2283 spin_lock_irq(&callback_lock);
2284 if (!on_dfl)
2285 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2286 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2287 spin_unlock_irq(&callback_lock);
2288 /* we don't mess with cpumasks of tasks in top_cpuset */
2291 /* synchronize mems_allowed to N_MEMORY */
2292 if (mems_updated) {
2293 spin_lock_irq(&callback_lock);
2294 if (!on_dfl)
2295 top_cpuset.mems_allowed = new_mems;
2296 top_cpuset.effective_mems = new_mems;
2297 spin_unlock_irq(&callback_lock);
2298 update_tasks_nodemask(&top_cpuset);
2301 mutex_unlock(&cpuset_mutex);
2303 /* if cpus or mems changed, we need to propagate to descendants */
2304 if (cpus_updated || mems_updated) {
2305 struct cpuset *cs;
2306 struct cgroup_subsys_state *pos_css;
2308 rcu_read_lock();
2309 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2310 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2311 continue;
2312 rcu_read_unlock();
2314 cpuset_hotplug_update_tasks(cs);
2316 rcu_read_lock();
2317 css_put(&cs->css);
2319 rcu_read_unlock();
2322 /* rebuild sched domains if cpus_allowed has changed */
2323 if (cpus_updated)
2324 rebuild_sched_domains();
2327 void cpuset_update_active_cpus(bool cpu_online)
2330 * We're inside cpu hotplug critical region which usually nests
2331 * inside cgroup synchronization. Bounce actual hotplug processing
2332 * to a work item to avoid reverse locking order.
2334 * We still need to do partition_sched_domains() synchronously;
2335 * otherwise, the scheduler will get confused and put tasks to the
2336 * dead CPU. Fall back to the default single domain.
2337 * cpuset_hotplug_workfn() will rebuild it as necessary.
2339 partition_sched_domains(1, NULL, NULL);
2340 schedule_work(&cpuset_hotplug_work);
2344 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2345 * Call this routine anytime after node_states[N_MEMORY] changes.
2346 * See cpuset_update_active_cpus() for CPU hotplug handling.
2348 static int cpuset_track_online_nodes(struct notifier_block *self,
2349 unsigned long action, void *arg)
2351 schedule_work(&cpuset_hotplug_work);
2352 return NOTIFY_OK;
2355 static struct notifier_block cpuset_track_online_nodes_nb = {
2356 .notifier_call = cpuset_track_online_nodes,
2357 .priority = 10, /* ??! */
2361 * cpuset_init_smp - initialize cpus_allowed
2363 * Description: Finish top cpuset after cpu, node maps are initialized
2365 void __init cpuset_init_smp(void)
2367 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2368 top_cpuset.mems_allowed = node_states[N_MEMORY];
2369 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2371 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2372 top_cpuset.effective_mems = node_states[N_MEMORY];
2374 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2378 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2379 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2380 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2382 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2383 * attached to the specified @tsk. Guaranteed to return some non-empty
2384 * subset of cpu_online_mask, even if this means going outside the
2385 * tasks cpuset.
2388 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2390 unsigned long flags;
2392 spin_lock_irqsave(&callback_lock, flags);
2393 rcu_read_lock();
2394 guarantee_online_cpus(task_cs(tsk), pmask);
2395 rcu_read_unlock();
2396 spin_unlock_irqrestore(&callback_lock, flags);
2399 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2401 rcu_read_lock();
2402 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2403 rcu_read_unlock();
2406 * We own tsk->cpus_allowed, nobody can change it under us.
2408 * But we used cs && cs->cpus_allowed lockless and thus can
2409 * race with cgroup_attach_task() or update_cpumask() and get
2410 * the wrong tsk->cpus_allowed. However, both cases imply the
2411 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2412 * which takes task_rq_lock().
2414 * If we are called after it dropped the lock we must see all
2415 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2416 * set any mask even if it is not right from task_cs() pov,
2417 * the pending set_cpus_allowed_ptr() will fix things.
2419 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2420 * if required.
2424 void __init cpuset_init_current_mems_allowed(void)
2426 nodes_setall(current->mems_allowed);
2430 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2431 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2433 * Description: Returns the nodemask_t mems_allowed of the cpuset
2434 * attached to the specified @tsk. Guaranteed to return some non-empty
2435 * subset of node_states[N_MEMORY], even if this means going outside the
2436 * tasks cpuset.
2439 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2441 nodemask_t mask;
2442 unsigned long flags;
2444 spin_lock_irqsave(&callback_lock, flags);
2445 rcu_read_lock();
2446 guarantee_online_mems(task_cs(tsk), &mask);
2447 rcu_read_unlock();
2448 spin_unlock_irqrestore(&callback_lock, flags);
2450 return mask;
2454 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2455 * @nodemask: the nodemask to be checked
2457 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2459 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2461 return nodes_intersects(*nodemask, current->mems_allowed);
2465 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2466 * mem_hardwall ancestor to the specified cpuset. Call holding
2467 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2468 * (an unusual configuration), then returns the root cpuset.
2470 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2472 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2473 cs = parent_cs(cs);
2474 return cs;
2478 * cpuset_node_allowed - Can we allocate on a memory node?
2479 * @node: is this an allowed node?
2480 * @gfp_mask: memory allocation flags
2482 * If we're in interrupt, yes, we can always allocate. If @node is set in
2483 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2484 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2485 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2486 * Otherwise, no.
2488 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2489 * and do not allow allocations outside the current tasks cpuset
2490 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2491 * GFP_KERNEL allocations are not so marked, so can escape to the
2492 * nearest enclosing hardwalled ancestor cpuset.
2494 * Scanning up parent cpusets requires callback_lock. The
2495 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2496 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2497 * current tasks mems_allowed came up empty on the first pass over
2498 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2499 * cpuset are short of memory, might require taking the callback_lock.
2501 * The first call here from mm/page_alloc:get_page_from_freelist()
2502 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2503 * so no allocation on a node outside the cpuset is allowed (unless
2504 * in interrupt, of course).
2506 * The second pass through get_page_from_freelist() doesn't even call
2507 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2508 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2509 * in alloc_flags. That logic and the checks below have the combined
2510 * affect that:
2511 * in_interrupt - any node ok (current task context irrelevant)
2512 * GFP_ATOMIC - any node ok
2513 * TIF_MEMDIE - any node ok
2514 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2515 * GFP_USER - only nodes in current tasks mems allowed ok.
2517 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2519 struct cpuset *cs; /* current cpuset ancestors */
2520 int allowed; /* is allocation in zone z allowed? */
2521 unsigned long flags;
2523 if (in_interrupt())
2524 return 1;
2525 if (node_isset(node, current->mems_allowed))
2526 return 1;
2528 * Allow tasks that have access to memory reserves because they have
2529 * been OOM killed to get memory anywhere.
2531 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2532 return 1;
2533 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2534 return 0;
2536 if (current->flags & PF_EXITING) /* Let dying task have memory */
2537 return 1;
2539 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2540 spin_lock_irqsave(&callback_lock, flags);
2542 rcu_read_lock();
2543 cs = nearest_hardwall_ancestor(task_cs(current));
2544 allowed = node_isset(node, cs->mems_allowed);
2545 rcu_read_unlock();
2547 spin_unlock_irqrestore(&callback_lock, flags);
2548 return allowed;
2552 * cpuset_mem_spread_node() - On which node to begin search for a file page
2553 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2555 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2556 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2557 * and if the memory allocation used cpuset_mem_spread_node()
2558 * to determine on which node to start looking, as it will for
2559 * certain page cache or slab cache pages such as used for file
2560 * system buffers and inode caches, then instead of starting on the
2561 * local node to look for a free page, rather spread the starting
2562 * node around the tasks mems_allowed nodes.
2564 * We don't have to worry about the returned node being offline
2565 * because "it can't happen", and even if it did, it would be ok.
2567 * The routines calling guarantee_online_mems() are careful to
2568 * only set nodes in task->mems_allowed that are online. So it
2569 * should not be possible for the following code to return an
2570 * offline node. But if it did, that would be ok, as this routine
2571 * is not returning the node where the allocation must be, only
2572 * the node where the search should start. The zonelist passed to
2573 * __alloc_pages() will include all nodes. If the slab allocator
2574 * is passed an offline node, it will fall back to the local node.
2575 * See kmem_cache_alloc_node().
2578 static int cpuset_spread_node(int *rotor)
2580 int node;
2582 node = next_node(*rotor, current->mems_allowed);
2583 if (node == MAX_NUMNODES)
2584 node = first_node(current->mems_allowed);
2585 *rotor = node;
2586 return node;
2589 int cpuset_mem_spread_node(void)
2591 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2592 current->cpuset_mem_spread_rotor =
2593 node_random(&current->mems_allowed);
2595 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2598 int cpuset_slab_spread_node(void)
2600 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2601 current->cpuset_slab_spread_rotor =
2602 node_random(&current->mems_allowed);
2604 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2607 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2610 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2611 * @tsk1: pointer to task_struct of some task.
2612 * @tsk2: pointer to task_struct of some other task.
2614 * Description: Return true if @tsk1's mems_allowed intersects the
2615 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2616 * one of the task's memory usage might impact the memory available
2617 * to the other.
2620 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2621 const struct task_struct *tsk2)
2623 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2627 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2628 * @tsk: pointer to task_struct of some task.
2630 * Description: Prints @task's name, cpuset name, and cached copy of its
2631 * mems_allowed to the kernel log.
2633 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2635 struct cgroup *cgrp;
2637 rcu_read_lock();
2639 cgrp = task_cs(tsk)->css.cgroup;
2640 pr_info("%s cpuset=", tsk->comm);
2641 pr_cont_cgroup_name(cgrp);
2642 pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2644 rcu_read_unlock();
2648 * Collection of memory_pressure is suppressed unless
2649 * this flag is enabled by writing "1" to the special
2650 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2653 int cpuset_memory_pressure_enabled __read_mostly;
2656 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2658 * Keep a running average of the rate of synchronous (direct)
2659 * page reclaim efforts initiated by tasks in each cpuset.
2661 * This represents the rate at which some task in the cpuset
2662 * ran low on memory on all nodes it was allowed to use, and
2663 * had to enter the kernels page reclaim code in an effort to
2664 * create more free memory by tossing clean pages or swapping
2665 * or writing dirty pages.
2667 * Display to user space in the per-cpuset read-only file
2668 * "memory_pressure". Value displayed is an integer
2669 * representing the recent rate of entry into the synchronous
2670 * (direct) page reclaim by any task attached to the cpuset.
2673 void __cpuset_memory_pressure_bump(void)
2675 rcu_read_lock();
2676 fmeter_markevent(&task_cs(current)->fmeter);
2677 rcu_read_unlock();
2680 #ifdef CONFIG_PROC_PID_CPUSET
2682 * proc_cpuset_show()
2683 * - Print tasks cpuset path into seq_file.
2684 * - Used for /proc/<pid>/cpuset.
2685 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2686 * doesn't really matter if tsk->cpuset changes after we read it,
2687 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2688 * anyway.
2690 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2691 struct pid *pid, struct task_struct *tsk)
2693 char *buf, *p;
2694 struct cgroup_subsys_state *css;
2695 int retval;
2697 retval = -ENOMEM;
2698 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2699 if (!buf)
2700 goto out;
2702 retval = -ENAMETOOLONG;
2703 rcu_read_lock();
2704 css = task_css(tsk, cpuset_cgrp_id);
2705 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2706 rcu_read_unlock();
2707 if (!p)
2708 goto out_free;
2709 seq_puts(m, p);
2710 seq_putc(m, '\n');
2711 retval = 0;
2712 out_free:
2713 kfree(buf);
2714 out:
2715 return retval;
2717 #endif /* CONFIG_PROC_PID_CPUSET */
2719 /* Display task mems_allowed in /proc/<pid>/status file. */
2720 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2722 seq_printf(m, "Mems_allowed:\t%*pb\n",
2723 nodemask_pr_args(&task->mems_allowed));
2724 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2725 nodemask_pr_args(&task->mems_allowed));