2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
85 #define MAX_STAT_DEPTH 32
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define KEY_MAX ((t_key)~0)
90 typedef unsigned int t_key
;
92 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93 #define IS_TNODE(n) ((n)->bits)
94 #define IS_LEAF(n) (!(n)->bits)
98 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
99 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
103 struct hlist_head leaf
;
104 /* This array is valid if (pos | bits) > 0 (TNODE) */
105 struct key_vector __rcu
*tnode
[0];
111 t_key empty_children
; /* KEYLENGTH bits needed */
112 t_key full_children
; /* KEYLENGTH bits needed */
113 struct key_vector __rcu
*parent
;
114 struct key_vector kv
[1];
115 #define tn_bits kv[0].bits
118 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE TNODE_SIZE(1)
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats
{
124 unsigned int backtrack
;
125 unsigned int semantic_match_passed
;
126 unsigned int semantic_match_miss
;
127 unsigned int null_node_hit
;
128 unsigned int resize_node_skipped
;
133 unsigned int totdepth
;
134 unsigned int maxdepth
;
137 unsigned int nullpointers
;
138 unsigned int prefixes
;
139 unsigned int nodesizes
[MAX_STAT_DEPTH
];
143 struct key_vector kv
[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu
*stats
;
149 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
150 static size_t tnode_free_size
;
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
157 static const int sync_pages
= 128;
159 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
160 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
162 static inline struct tnode
*tn_info(struct key_vector
*kv
)
164 return container_of(kv
, struct tnode
, kv
[0]);
167 /* caller must hold RTNL */
168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
175 /* wrapper for rcu_assign_pointer */
176 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
179 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184 /* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
187 static inline unsigned long child_length(const struct key_vector
*tn
)
189 return (1ul << tn
->bits
) & ~(1ul);
192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
196 unsigned long index
= key
^ kv
->key
;
198 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
201 return index
>> kv
->pos
;
204 /* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
208 * Consider a node 'n' and its parent 'tp'.
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
263 static const int halve_threshold
= 25;
264 static const int inflate_threshold
= 50;
265 static const int halve_threshold_root
= 15;
266 static const int inflate_threshold_root
= 30;
268 static void __alias_free_mem(struct rcu_head
*head
)
270 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
271 kmem_cache_free(fn_alias_kmem
, fa
);
274 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
276 call_rcu(&fa
->rcu
, __alias_free_mem
);
279 #define TNODE_KMALLOC_MAX \
280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281 #define TNODE_VMALLOC_MAX \
282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
284 static void __node_free_rcu(struct rcu_head
*head
)
286 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
289 kmem_cache_free(trie_leaf_kmem
, n
);
290 else if (n
->tn_bits
<= TNODE_KMALLOC_MAX
)
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298 static struct tnode
*tnode_alloc(int bits
)
302 /* verify bits is within bounds */
303 if (bits
> TNODE_VMALLOC_MAX
)
306 /* determine size and verify it is non-zero and didn't overflow */
307 size
= TNODE_SIZE(1ul << bits
);
309 if (size
<= PAGE_SIZE
)
310 return kzalloc(size
, GFP_KERNEL
);
312 return vzalloc(size
);
315 static inline void empty_child_inc(struct key_vector
*n
)
317 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
320 static inline void empty_child_dec(struct key_vector
*n
)
322 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
325 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
327 struct tnode
*kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
328 struct key_vector
*l
= kv
->kv
;
333 /* initialize key vector */
337 l
->slen
= fa
->fa_slen
;
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l
->leaf
);
341 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
346 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
348 struct tnode
*tnode
= tnode_alloc(bits
);
349 unsigned int shift
= pos
+ bits
;
350 struct key_vector
*tn
= tnode
->kv
;
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
355 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
356 sizeof(struct key_vector
*) << bits
);
361 if (bits
== KEYLENGTH
)
362 tnode
->full_children
= 1;
364 tnode
->empty_children
= 1ul << bits
;
366 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
375 * and no bits are skipped. See discussion in dyntree paper p. 6
377 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
379 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
382 /* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
385 static void put_child(struct key_vector
*tn
, unsigned long i
,
386 struct key_vector
*n
)
388 struct key_vector
*chi
= get_child(tn
, i
);
391 BUG_ON(i
>= child_length(tn
));
393 /* update emptyChildren, overflow into fullChildren */
399 /* update fullChildren */
400 wasfull
= tnode_full(tn
, chi
);
401 isfull
= tnode_full(tn
, n
);
403 if (wasfull
&& !isfull
)
404 tn_info(tn
)->full_children
--;
405 else if (!wasfull
&& isfull
)
406 tn_info(tn
)->full_children
++;
408 if (n
&& (tn
->slen
< n
->slen
))
411 rcu_assign_pointer(tn
->tnode
[i
], n
);
414 static void update_children(struct key_vector
*tn
)
418 /* update all of the child parent pointers */
419 for (i
= child_length(tn
); i
;) {
420 struct key_vector
*inode
= get_child(tn
, --i
);
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
429 if (node_parent(inode
) == tn
)
430 update_children(inode
);
432 node_set_parent(inode
, tn
);
436 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
437 struct key_vector
*n
)
440 rcu_assign_pointer(tp
->tnode
[0], n
);
442 put_child(tp
, get_index(key
, tp
), n
);
445 static inline void tnode_free_init(struct key_vector
*tn
)
447 tn_info(tn
)->rcu
.next
= NULL
;
450 static inline void tnode_free_append(struct key_vector
*tn
,
451 struct key_vector
*n
)
453 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
454 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
457 static void tnode_free(struct key_vector
*tn
)
459 struct callback_head
*head
= &tn_info(tn
)->rcu
;
463 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
466 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
469 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
475 static struct key_vector
*replace(struct trie
*t
,
476 struct key_vector
*oldtnode
,
477 struct key_vector
*tn
)
479 struct key_vector
*tp
= node_parent(oldtnode
);
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn
, tp
);
484 put_child_root(tp
, tn
->key
, tn
);
486 /* update all of the child parent pointers */
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode
);
492 /* resize children now that oldtnode is freed */
493 for (i
= child_length(tn
); i
;) {
494 struct key_vector
*inode
= get_child(tn
, --i
);
496 /* resize child node */
497 if (tnode_full(tn
, inode
))
498 tn
= resize(t
, inode
);
504 static struct key_vector
*inflate(struct trie
*t
,
505 struct key_vector
*oldtnode
)
507 struct key_vector
*tn
;
511 pr_debug("In inflate\n");
513 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode
);
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
525 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
526 struct key_vector
*inode
= get_child(oldtnode
, --i
);
527 struct key_vector
*node0
, *node1
;
534 /* A leaf or an internal node with skipped bits */
535 if (!tnode_full(oldtnode
, inode
)) {
536 put_child(tn
, get_index(inode
->key
, tn
), inode
);
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode
, inode
);
543 /* An internal node with two children */
544 if (inode
->bits
== 1) {
545 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
546 put_child(tn
, 2 * i
, get_child(inode
, 0));
550 /* We will replace this node 'inode' with two new
551 * ones, 'node0' and 'node1', each with half of the
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
557 * node0's key and "1" in node1's key. Since we are
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
564 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
567 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
569 tnode_free_append(tn
, node1
);
572 tnode_free_append(tn
, node0
);
574 /* populate child pointers in new nodes */
575 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
576 put_child(node1
, --j
, get_child(inode
, --k
));
577 put_child(node0
, j
, get_child(inode
, j
));
578 put_child(node1
, --j
, get_child(inode
, --k
));
579 put_child(node0
, j
, get_child(inode
, j
));
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1
, tn
);
584 NODE_INIT_PARENT(node0
, tn
);
586 /* link parent to nodes */
587 put_child(tn
, 2 * i
+ 1, node1
);
588 put_child(tn
, 2 * i
, node0
);
591 /* setup the parent pointers into and out of this node */
592 return replace(t
, oldtnode
, tn
);
594 /* all pointers should be clean so we are done */
600 static struct key_vector
*halve(struct trie
*t
,
601 struct key_vector
*oldtnode
)
603 struct key_vector
*tn
;
606 pr_debug("In halve\n");
608 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode
);
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
620 for (i
= child_length(oldtnode
); i
;) {
621 struct key_vector
*node1
= get_child(oldtnode
, --i
);
622 struct key_vector
*node0
= get_child(oldtnode
, --i
);
623 struct key_vector
*inode
;
625 /* At least one of the children is empty */
626 if (!node1
|| !node0
) {
627 put_child(tn
, i
/ 2, node1
? : node0
);
631 /* Two nonempty children */
632 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
635 tnode_free_append(tn
, inode
);
637 /* initialize pointers out of node */
638 put_child(inode
, 1, node1
);
639 put_child(inode
, 0, node0
);
640 NODE_INIT_PARENT(inode
, tn
);
642 /* link parent to node */
643 put_child(tn
, i
/ 2, inode
);
646 /* setup the parent pointers into and out of this node */
647 return replace(t
, oldtnode
, tn
);
649 /* all pointers should be clean so we are done */
655 static struct key_vector
*collapse(struct trie
*t
,
656 struct key_vector
*oldtnode
)
658 struct key_vector
*n
, *tp
;
661 /* scan the tnode looking for that one child that might still exist */
662 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
663 n
= get_child(oldtnode
, --i
);
665 /* compress one level */
666 tp
= node_parent(oldtnode
);
667 put_child_root(tp
, oldtnode
->key
, n
);
668 node_set_parent(n
, tp
);
676 static unsigned char update_suffix(struct key_vector
*tn
)
678 unsigned char slen
= tn
->pos
;
679 unsigned long stride
, i
;
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
686 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
687 struct key_vector
*n
= get_child(tn
, i
);
689 if (!n
|| (n
->slen
<= slen
))
692 /* update stride and slen based on new value */
693 stride
<<= (n
->slen
- slen
);
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
702 if ((slen
+ 1) >= (tn
->pos
+ tn
->bits
))
711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
719 * child_length() and instead of multiplying by 2 (since the
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
724 * The left-hand side may look a bit weird: child_length(tn)
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
731 * A clearer way to write this would be:
733 * to_be_doubled = tn->full_children;
734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
737 * new_child_length = child_length(tn) * 2;
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
741 * if (new_fill_factor >= inflate_threshold)
743 * ...and so on, tho it would mess up the while () loop.
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
754 * 100 * (child_length(tn) - tn->empty_children +
755 * tn->full_children) >= inflate_threshold * new_child_length
757 * expand new_child_length:
758 * 100 * (child_length(tn) - tn->empty_children +
759 * tn->full_children) >=
760 * inflate_threshold * child_length(tn) * 2
763 * 50 * (tn->full_children + child_length(tn) -
764 * tn->empty_children) >= inflate_threshold *
768 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
770 unsigned long used
= child_length(tn
);
771 unsigned long threshold
= used
;
773 /* Keep root node larger */
774 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
775 used
-= tn_info(tn
)->empty_children
;
776 used
+= tn_info(tn
)->full_children
;
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
780 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
783 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
785 unsigned long used
= child_length(tn
);
786 unsigned long threshold
= used
;
788 /* Keep root node larger */
789 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
790 used
-= tn_info(tn
)->empty_children
;
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
794 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
797 static inline bool should_collapse(struct key_vector
*tn
)
799 unsigned long used
= child_length(tn
);
801 used
-= tn_info(tn
)->empty_children
;
803 /* account for bits == KEYLENGTH case */
804 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
807 /* One child or none, time to drop us from the trie */
812 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
814 #ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu
*stats
= t
->stats
;
817 struct key_vector
*tp
= node_parent(tn
);
818 unsigned long cindex
= get_index(tn
->key
, tp
);
819 int max_work
= MAX_WORK
;
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn
, inflate_threshold
, halve_threshold
);
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
828 BUG_ON(tn
!= get_child(tp
, cindex
));
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
833 while (should_inflate(tp
, tn
) && max_work
) {
836 #ifdef CONFIG_IP_FIB_TRIE_STATS
837 this_cpu_inc(stats
->resize_node_skipped
);
843 tn
= get_child(tp
, cindex
);
846 /* update parent in case inflate failed */
847 tp
= node_parent(tn
);
849 /* Return if at least one inflate is run */
850 if (max_work
!= MAX_WORK
)
853 /* Halve as long as the number of empty children in this
854 * node is above threshold.
856 while (should_halve(tp
, tn
) && max_work
) {
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 this_cpu_inc(stats
->resize_node_skipped
);
866 tn
= get_child(tp
, cindex
);
869 /* Only one child remains */
870 if (should_collapse(tn
))
871 return collapse(t
, tn
);
873 /* update parent in case halve failed */
874 tp
= node_parent(tn
);
876 /* Return if at least one deflate was run */
877 if (max_work
!= MAX_WORK
)
880 /* push the suffix length to the parent node */
881 if (tn
->slen
> tn
->pos
) {
882 unsigned char slen
= update_suffix(tn
);
891 static void leaf_pull_suffix(struct key_vector
*tp
, struct key_vector
*l
)
893 while ((tp
->slen
> tp
->pos
) && (tp
->slen
> l
->slen
)) {
894 if (update_suffix(tp
) > l
->slen
)
896 tp
= node_parent(tp
);
900 static void leaf_push_suffix(struct key_vector
*tn
, struct key_vector
*l
)
902 /* if this is a new leaf then tn will be NULL and we can sort
903 * out parent suffix lengths as a part of trie_rebalance
905 while (tn
->slen
< l
->slen
) {
907 tn
= node_parent(tn
);
911 /* rcu_read_lock needs to be hold by caller from readside */
912 static struct key_vector
*fib_find_node(struct trie
*t
,
913 struct key_vector
**tp
, u32 key
)
915 struct key_vector
*pn
, *n
= t
->kv
;
916 unsigned long index
= 0;
920 n
= get_child_rcu(n
, index
);
925 index
= get_cindex(key
, n
);
927 /* This bit of code is a bit tricky but it combines multiple
928 * checks into a single check. The prefix consists of the
929 * prefix plus zeros for the bits in the cindex. The index
930 * is the difference between the key and this value. From
931 * this we can actually derive several pieces of data.
932 * if (index >= (1ul << bits))
933 * we have a mismatch in skip bits and failed
935 * we know the value is cindex
937 * This check is safe even if bits == KEYLENGTH due to the
938 * fact that we can only allocate a node with 32 bits if a
939 * long is greater than 32 bits.
941 if (index
>= (1ul << n
->bits
)) {
946 /* keep searching until we find a perfect match leaf or NULL */
947 } while (IS_TNODE(n
));
954 /* Return the first fib alias matching TOS with
955 * priority less than or equal to PRIO.
957 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
958 u8 tos
, u32 prio
, u32 tb_id
)
960 struct fib_alias
*fa
;
965 hlist_for_each_entry(fa
, fah
, fa_list
) {
966 if (fa
->fa_slen
< slen
)
968 if (fa
->fa_slen
!= slen
)
970 if (fa
->tb_id
> tb_id
)
972 if (fa
->tb_id
!= tb_id
)
974 if (fa
->fa_tos
> tos
)
976 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
983 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
989 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
990 struct fib_alias
*new, t_key key
)
992 struct key_vector
*n
, *l
;
994 l
= leaf_new(key
, new);
998 /* retrieve child from parent node */
999 n
= get_child(tp
, get_index(key
, tp
));
1001 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1003 * Add a new tnode here
1004 * first tnode need some special handling
1005 * leaves us in position for handling as case 3
1008 struct key_vector
*tn
;
1010 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1014 /* initialize routes out of node */
1015 NODE_INIT_PARENT(tn
, tp
);
1016 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1018 /* start adding routes into the node */
1019 put_child_root(tp
, key
, tn
);
1020 node_set_parent(n
, tn
);
1022 /* parent now has a NULL spot where the leaf can go */
1026 /* Case 3: n is NULL, and will just insert a new leaf */
1027 NODE_INIT_PARENT(l
, tp
);
1028 put_child_root(tp
, key
, l
);
1029 trie_rebalance(t
, tp
);
1038 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1039 struct key_vector
*l
, struct fib_alias
*new,
1040 struct fib_alias
*fa
, t_key key
)
1043 return fib_insert_node(t
, tp
, new, key
);
1046 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1048 struct fib_alias
*last
;
1050 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1051 if (new->fa_slen
< last
->fa_slen
)
1053 if ((new->fa_slen
== last
->fa_slen
) &&
1054 (new->tb_id
> last
->tb_id
))
1060 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1062 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1065 /* if we added to the tail node then we need to update slen */
1066 if (l
->slen
< new->fa_slen
) {
1067 l
->slen
= new->fa_slen
;
1068 leaf_push_suffix(tp
, l
);
1074 /* Caller must hold RTNL. */
1075 int fib_table_insert(struct fib_table
*tb
, struct fib_config
*cfg
)
1077 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1078 struct fib_alias
*fa
, *new_fa
;
1079 struct key_vector
*l
, *tp
;
1080 struct fib_info
*fi
;
1081 u8 plen
= cfg
->fc_dst_len
;
1082 u8 slen
= KEYLENGTH
- plen
;
1083 u8 tos
= cfg
->fc_tos
;
1087 if (plen
> KEYLENGTH
)
1090 key
= ntohl(cfg
->fc_dst
);
1092 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1094 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1097 fi
= fib_create_info(cfg
);
1103 l
= fib_find_node(t
, &tp
, key
);
1104 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1107 /* Now fa, if non-NULL, points to the first fib alias
1108 * with the same keys [prefix,tos,priority], if such key already
1109 * exists or to the node before which we will insert new one.
1111 * If fa is NULL, we will need to allocate a new one and
1112 * insert to the tail of the section matching the suffix length
1116 if (fa
&& fa
->fa_tos
== tos
&&
1117 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1118 struct fib_alias
*fa_first
, *fa_match
;
1121 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1125 * 1. Find exact match for type, scope, fib_info to avoid
1127 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1131 hlist_for_each_entry_from(fa
, fa_list
) {
1132 if ((fa
->fa_slen
!= slen
) ||
1133 (fa
->tb_id
!= tb
->tb_id
) ||
1134 (fa
->fa_tos
!= tos
))
1136 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1138 if (fa
->fa_type
== cfg
->fc_type
&&
1139 fa
->fa_info
== fi
) {
1145 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1146 struct fib_info
*fi_drop
;
1156 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1160 fi_drop
= fa
->fa_info
;
1161 new_fa
->fa_tos
= fa
->fa_tos
;
1162 new_fa
->fa_info
= fi
;
1163 new_fa
->fa_type
= cfg
->fc_type
;
1164 state
= fa
->fa_state
;
1165 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1166 new_fa
->fa_slen
= fa
->fa_slen
;
1167 new_fa
->tb_id
= tb
->tb_id
;
1169 err
= netdev_switch_fib_ipv4_add(key
, plen
, fi
,
1175 netdev_switch_fib_ipv4_abort(fi
);
1176 kmem_cache_free(fn_alias_kmem
, new_fa
);
1180 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1182 alias_free_mem_rcu(fa
);
1184 fib_release_info(fi_drop
);
1185 if (state
& FA_S_ACCESSED
)
1186 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1187 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1188 tb
->tb_id
, &cfg
->fc_nlinfo
, NLM_F_REPLACE
);
1192 /* Error if we find a perfect match which
1193 * uses the same scope, type, and nexthop
1199 if (!(cfg
->fc_nlflags
& NLM_F_APPEND
))
1203 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1207 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1211 new_fa
->fa_info
= fi
;
1212 new_fa
->fa_tos
= tos
;
1213 new_fa
->fa_type
= cfg
->fc_type
;
1214 new_fa
->fa_state
= 0;
1215 new_fa
->fa_slen
= slen
;
1216 new_fa
->tb_id
= tb
->tb_id
;
1218 /* (Optionally) offload fib entry to switch hardware. */
1219 err
= netdev_switch_fib_ipv4_add(key
, plen
, fi
, tos
,
1224 netdev_switch_fib_ipv4_abort(fi
);
1225 goto out_free_new_fa
;
1228 /* Insert new entry to the list. */
1229 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1231 goto out_sw_fib_del
;
1234 tb
->tb_num_default
++;
1236 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1237 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1238 &cfg
->fc_nlinfo
, 0);
1243 netdev_switch_fib_ipv4_del(key
, plen
, fi
, tos
, cfg
->fc_type
, tb
->tb_id
);
1245 kmem_cache_free(fn_alias_kmem
, new_fa
);
1247 fib_release_info(fi
);
1252 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1254 t_key prefix
= n
->key
;
1256 return (key
^ prefix
) & (prefix
| -prefix
);
1259 /* should be called with rcu_read_lock */
1260 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1261 struct fib_result
*res
, int fib_flags
)
1263 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1264 #ifdef CONFIG_IP_FIB_TRIE_STATS
1265 struct trie_use_stats __percpu
*stats
= t
->stats
;
1267 const t_key key
= ntohl(flp
->daddr
);
1268 struct key_vector
*n
, *pn
;
1269 struct fib_alias
*fa
;
1270 unsigned long index
;
1276 n
= get_child_rcu(pn
, cindex
);
1280 #ifdef CONFIG_IP_FIB_TRIE_STATS
1281 this_cpu_inc(stats
->gets
);
1284 /* Step 1: Travel to the longest prefix match in the trie */
1286 index
= get_cindex(key
, n
);
1288 /* This bit of code is a bit tricky but it combines multiple
1289 * checks into a single check. The prefix consists of the
1290 * prefix plus zeros for the "bits" in the prefix. The index
1291 * is the difference between the key and this value. From
1292 * this we can actually derive several pieces of data.
1293 * if (index >= (1ul << bits))
1294 * we have a mismatch in skip bits and failed
1296 * we know the value is cindex
1298 * This check is safe even if bits == KEYLENGTH due to the
1299 * fact that we can only allocate a node with 32 bits if a
1300 * long is greater than 32 bits.
1302 if (index
>= (1ul << n
->bits
))
1305 /* we have found a leaf. Prefixes have already been compared */
1309 /* only record pn and cindex if we are going to be chopping
1310 * bits later. Otherwise we are just wasting cycles.
1312 if (n
->slen
> n
->pos
) {
1317 n
= get_child_rcu(n
, index
);
1322 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1324 /* record the pointer where our next node pointer is stored */
1325 struct key_vector __rcu
**cptr
= n
->tnode
;
1327 /* This test verifies that none of the bits that differ
1328 * between the key and the prefix exist in the region of
1329 * the lsb and higher in the prefix.
1331 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1334 /* exit out and process leaf */
1335 if (unlikely(IS_LEAF(n
)))
1338 /* Don't bother recording parent info. Since we are in
1339 * prefix match mode we will have to come back to wherever
1340 * we started this traversal anyway
1343 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1345 #ifdef CONFIG_IP_FIB_TRIE_STATS
1347 this_cpu_inc(stats
->null_node_hit
);
1349 /* If we are at cindex 0 there are no more bits for
1350 * us to strip at this level so we must ascend back
1351 * up one level to see if there are any more bits to
1352 * be stripped there.
1355 t_key pkey
= pn
->key
;
1357 /* If we don't have a parent then there is
1358 * nothing for us to do as we do not have any
1359 * further nodes to parse.
1363 #ifdef CONFIG_IP_FIB_TRIE_STATS
1364 this_cpu_inc(stats
->backtrack
);
1366 /* Get Child's index */
1367 pn
= node_parent_rcu(pn
);
1368 cindex
= get_index(pkey
, pn
);
1371 /* strip the least significant bit from the cindex */
1372 cindex
&= cindex
- 1;
1374 /* grab pointer for next child node */
1375 cptr
= &pn
->tnode
[cindex
];
1380 /* this line carries forward the xor from earlier in the function */
1381 index
= key
^ n
->key
;
1383 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1384 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1385 struct fib_info
*fi
= fa
->fa_info
;
1388 if ((index
>= (1ul << fa
->fa_slen
)) &&
1389 ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
!= KEYLENGTH
)))
1391 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1395 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1397 fib_alias_accessed(fa
);
1398 err
= fib_props
[fa
->fa_type
].error
;
1399 if (unlikely(err
< 0)) {
1400 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 this_cpu_inc(stats
->semantic_match_passed
);
1405 if (fi
->fib_flags
& RTNH_F_DEAD
)
1407 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1408 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1410 if (nh
->nh_flags
& RTNH_F_DEAD
)
1412 if (flp
->flowi4_oif
&& flp
->flowi4_oif
!= nh
->nh_oif
)
1415 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1416 atomic_inc(&fi
->fib_clntref
);
1418 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1419 res
->nh_sel
= nhsel
;
1420 res
->type
= fa
->fa_type
;
1421 res
->scope
= fi
->fib_scope
;
1424 res
->fa_head
= &n
->leaf
;
1425 #ifdef CONFIG_IP_FIB_TRIE_STATS
1426 this_cpu_inc(stats
->semantic_match_passed
);
1431 #ifdef CONFIG_IP_FIB_TRIE_STATS
1432 this_cpu_inc(stats
->semantic_match_miss
);
1436 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1438 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1439 struct key_vector
*l
, struct fib_alias
*old
)
1441 /* record the location of the previous list_info entry */
1442 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1443 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1445 /* remove the fib_alias from the list */
1446 hlist_del_rcu(&old
->fa_list
);
1448 /* if we emptied the list this leaf will be freed and we can sort
1449 * out parent suffix lengths as a part of trie_rebalance
1451 if (hlist_empty(&l
->leaf
)) {
1452 put_child_root(tp
, l
->key
, NULL
);
1454 trie_rebalance(t
, tp
);
1458 /* only access fa if it is pointing at the last valid hlist_node */
1462 /* update the trie with the latest suffix length */
1463 l
->slen
= fa
->fa_slen
;
1464 leaf_pull_suffix(tp
, l
);
1467 /* Caller must hold RTNL. */
1468 int fib_table_delete(struct fib_table
*tb
, struct fib_config
*cfg
)
1470 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1471 struct fib_alias
*fa
, *fa_to_delete
;
1472 struct key_vector
*l
, *tp
;
1473 u8 plen
= cfg
->fc_dst_len
;
1474 u8 slen
= KEYLENGTH
- plen
;
1475 u8 tos
= cfg
->fc_tos
;
1478 if (plen
> KEYLENGTH
)
1481 key
= ntohl(cfg
->fc_dst
);
1483 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1486 l
= fib_find_node(t
, &tp
, key
);
1490 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1494 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1496 fa_to_delete
= NULL
;
1497 hlist_for_each_entry_from(fa
, fa_list
) {
1498 struct fib_info
*fi
= fa
->fa_info
;
1500 if ((fa
->fa_slen
!= slen
) ||
1501 (fa
->tb_id
!= tb
->tb_id
) ||
1502 (fa
->fa_tos
!= tos
))
1505 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1506 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1507 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1508 (!cfg
->fc_prefsrc
||
1509 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1510 (!cfg
->fc_protocol
||
1511 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1512 fib_nh_match(cfg
, fi
) == 0) {
1521 netdev_switch_fib_ipv4_del(key
, plen
, fa_to_delete
->fa_info
, tos
,
1522 cfg
->fc_type
, tb
->tb_id
);
1524 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1525 &cfg
->fc_nlinfo
, 0);
1528 tb
->tb_num_default
--;
1530 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1532 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1533 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1535 fib_release_info(fa_to_delete
->fa_info
);
1536 alias_free_mem_rcu(fa_to_delete
);
1540 /* Scan for the next leaf starting at the provided key value */
1541 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1543 struct key_vector
*pn
, *n
= *tn
;
1544 unsigned long cindex
;
1546 /* this loop is meant to try and find the key in the trie */
1548 /* record parent and next child index */
1550 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1552 if (cindex
>> pn
->bits
)
1555 /* descend into the next child */
1556 n
= get_child_rcu(pn
, cindex
++);
1560 /* guarantee forward progress on the keys */
1561 if (IS_LEAF(n
) && (n
->key
>= key
))
1563 } while (IS_TNODE(n
));
1565 /* this loop will search for the next leaf with a greater key */
1566 while (!IS_TRIE(pn
)) {
1567 /* if we exhausted the parent node we will need to climb */
1568 if (cindex
>= (1ul << pn
->bits
)) {
1569 t_key pkey
= pn
->key
;
1571 pn
= node_parent_rcu(pn
);
1572 cindex
= get_index(pkey
, pn
) + 1;
1576 /* grab the next available node */
1577 n
= get_child_rcu(pn
, cindex
++);
1581 /* no need to compare keys since we bumped the index */
1585 /* Rescan start scanning in new node */
1591 return NULL
; /* Root of trie */
1593 /* if we are at the limit for keys just return NULL for the tnode */
1598 static void fib_trie_free(struct fib_table
*tb
)
1600 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1601 struct key_vector
*pn
= t
->kv
;
1602 unsigned long cindex
= 1;
1603 struct hlist_node
*tmp
;
1604 struct fib_alias
*fa
;
1606 /* walk trie in reverse order and free everything */
1608 struct key_vector
*n
;
1611 t_key pkey
= pn
->key
;
1617 pn
= node_parent(pn
);
1619 /* drop emptied tnode */
1620 put_child_root(pn
, n
->key
, NULL
);
1623 cindex
= get_index(pkey
, pn
);
1628 /* grab the next available node */
1629 n
= get_child(pn
, cindex
);
1634 /* record pn and cindex for leaf walking */
1636 cindex
= 1ul << n
->bits
;
1641 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1642 hlist_del_rcu(&fa
->fa_list
);
1643 alias_free_mem_rcu(fa
);
1646 put_child_root(pn
, n
->key
, NULL
);
1650 #ifdef CONFIG_IP_FIB_TRIE_STATS
1651 free_percpu(t
->stats
);
1656 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1658 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1659 struct key_vector
*l
, *tp
= ot
->kv
;
1660 struct fib_table
*local_tb
;
1661 struct fib_alias
*fa
;
1665 if (oldtb
->tb_data
== oldtb
->__data
)
1668 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1672 lt
= (struct trie
*)local_tb
->tb_data
;
1674 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1675 struct key_vector
*local_l
= NULL
, *local_tp
;
1677 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1678 struct fib_alias
*new_fa
;
1680 if (local_tb
->tb_id
!= fa
->tb_id
)
1683 /* clone fa for new local table */
1684 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1688 memcpy(new_fa
, fa
, sizeof(*fa
));
1690 /* insert clone into table */
1692 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1694 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1699 /* stop loop if key wrapped back to 0 */
1707 fib_trie_free(local_tb
);
1712 /* Caller must hold RTNL */
1713 void fib_table_flush_external(struct fib_table
*tb
)
1715 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1716 struct key_vector
*pn
= t
->kv
;
1717 unsigned long cindex
= 1;
1718 struct hlist_node
*tmp
;
1719 struct fib_alias
*fa
;
1721 /* walk trie in reverse order */
1723 unsigned char slen
= 0;
1724 struct key_vector
*n
;
1727 t_key pkey
= pn
->key
;
1729 /* cannot resize the trie vector */
1733 /* resize completed node */
1735 cindex
= get_index(pkey
, pn
);
1740 /* grab the next available node */
1741 n
= get_child(pn
, cindex
);
1746 /* record pn and cindex for leaf walking */
1748 cindex
= 1ul << n
->bits
;
1753 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1754 struct fib_info
*fi
= fa
->fa_info
;
1756 /* if alias was cloned to local then we just
1757 * need to remove the local copy from main
1759 if (tb
->tb_id
!= fa
->tb_id
) {
1760 hlist_del_rcu(&fa
->fa_list
);
1761 alias_free_mem_rcu(fa
);
1765 /* record local slen */
1768 if (!fi
|| !(fi
->fib_flags
& RTNH_F_OFFLOAD
))
1771 netdev_switch_fib_ipv4_del(n
->key
,
1772 KEYLENGTH
- fa
->fa_slen
,
1774 fa
->fa_type
, tb
->tb_id
);
1777 /* update leaf slen */
1780 if (hlist_empty(&n
->leaf
)) {
1781 put_child_root(pn
, n
->key
, NULL
);
1787 /* Caller must hold RTNL. */
1788 int fib_table_flush(struct fib_table
*tb
)
1790 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1791 struct key_vector
*pn
= t
->kv
;
1792 unsigned long cindex
= 1;
1793 struct hlist_node
*tmp
;
1794 struct fib_alias
*fa
;
1797 /* walk trie in reverse order */
1799 unsigned char slen
= 0;
1800 struct key_vector
*n
;
1803 t_key pkey
= pn
->key
;
1805 /* cannot resize the trie vector */
1809 /* resize completed node */
1811 cindex
= get_index(pkey
, pn
);
1816 /* grab the next available node */
1817 n
= get_child(pn
, cindex
);
1822 /* record pn and cindex for leaf walking */
1824 cindex
= 1ul << n
->bits
;
1829 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1830 struct fib_info
*fi
= fa
->fa_info
;
1832 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
)) {
1837 netdev_switch_fib_ipv4_del(n
->key
,
1838 KEYLENGTH
- fa
->fa_slen
,
1840 fa
->fa_type
, tb
->tb_id
);
1841 hlist_del_rcu(&fa
->fa_list
);
1842 fib_release_info(fa
->fa_info
);
1843 alias_free_mem_rcu(fa
);
1847 /* update leaf slen */
1850 if (hlist_empty(&n
->leaf
)) {
1851 put_child_root(pn
, n
->key
, NULL
);
1856 pr_debug("trie_flush found=%d\n", found
);
1860 static void __trie_free_rcu(struct rcu_head
*head
)
1862 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1863 #ifdef CONFIG_IP_FIB_TRIE_STATS
1864 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1866 if (tb
->tb_data
== tb
->__data
)
1867 free_percpu(t
->stats
);
1868 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1872 void fib_free_table(struct fib_table
*tb
)
1874 call_rcu(&tb
->rcu
, __trie_free_rcu
);
1877 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
1878 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1880 __be32 xkey
= htonl(l
->key
);
1881 struct fib_alias
*fa
;
1887 /* rcu_read_lock is hold by caller */
1888 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1894 if (tb
->tb_id
!= fa
->tb_id
) {
1899 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
1905 KEYLENGTH
- fa
->fa_slen
,
1907 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1918 /* rcu_read_lock needs to be hold by caller from readside */
1919 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1920 struct netlink_callback
*cb
)
1922 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1923 struct key_vector
*l
, *tp
= t
->kv
;
1924 /* Dump starting at last key.
1925 * Note: 0.0.0.0/0 (ie default) is first key.
1927 int count
= cb
->args
[2];
1928 t_key key
= cb
->args
[3];
1930 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1931 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1933 cb
->args
[2] = count
;
1940 memset(&cb
->args
[4], 0,
1941 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1943 /* stop loop if key wrapped back to 0 */
1949 cb
->args
[2] = count
;
1954 void __init
fib_trie_init(void)
1956 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias
),
1958 0, SLAB_PANIC
, NULL
);
1960 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
1962 0, SLAB_PANIC
, NULL
);
1965 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
1967 struct fib_table
*tb
;
1969 size_t sz
= sizeof(*tb
);
1972 sz
+= sizeof(struct trie
);
1974 tb
= kzalloc(sz
, GFP_KERNEL
);
1979 tb
->tb_default
= -1;
1980 tb
->tb_num_default
= 0;
1981 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
1986 t
= (struct trie
*) tb
->tb_data
;
1987 t
->kv
[0].pos
= KEYLENGTH
;
1988 t
->kv
[0].slen
= KEYLENGTH
;
1989 #ifdef CONFIG_IP_FIB_TRIE_STATS
1990 t
->stats
= alloc_percpu(struct trie_use_stats
);
2000 #ifdef CONFIG_PROC_FS
2001 /* Depth first Trie walk iterator */
2002 struct fib_trie_iter
{
2003 struct seq_net_private p
;
2004 struct fib_table
*tb
;
2005 struct key_vector
*tnode
;
2010 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2012 unsigned long cindex
= iter
->index
;
2013 struct key_vector
*pn
= iter
->tnode
;
2016 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2017 iter
->tnode
, iter
->index
, iter
->depth
);
2019 while (!IS_TRIE(pn
)) {
2020 while (cindex
< child_length(pn
)) {
2021 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2028 iter
->index
= cindex
;
2030 /* push down one level */
2039 /* Current node exhausted, pop back up */
2041 pn
= node_parent_rcu(pn
);
2042 cindex
= get_index(pkey
, pn
) + 1;
2046 /* record root node so further searches know we are done */
2053 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2056 struct key_vector
*n
, *pn
= t
->kv
;
2061 n
= rcu_dereference(pn
->tnode
[0]);
2078 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2080 struct key_vector
*n
;
2081 struct fib_trie_iter iter
;
2083 memset(s
, 0, sizeof(*s
));
2086 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2088 struct fib_alias
*fa
;
2091 s
->totdepth
+= iter
.depth
;
2092 if (iter
.depth
> s
->maxdepth
)
2093 s
->maxdepth
= iter
.depth
;
2095 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2099 if (n
->bits
< MAX_STAT_DEPTH
)
2100 s
->nodesizes
[n
->bits
]++;
2101 s
->nullpointers
+= tn_info(n
)->empty_children
;
2108 * This outputs /proc/net/fib_triestats
2110 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2112 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2115 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2119 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2120 avdepth
/ 100, avdepth
% 100);
2121 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2123 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2124 bytes
= LEAF_SIZE
* stat
->leaves
;
2126 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2127 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2129 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2130 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2132 max
= MAX_STAT_DEPTH
;
2133 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2137 for (i
= 1; i
< max
; i
++)
2138 if (stat
->nodesizes
[i
] != 0) {
2139 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2140 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2142 seq_putc(seq
, '\n');
2143 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2145 bytes
+= sizeof(struct key_vector
*) * pointers
;
2146 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2147 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2150 #ifdef CONFIG_IP_FIB_TRIE_STATS
2151 static void trie_show_usage(struct seq_file
*seq
,
2152 const struct trie_use_stats __percpu
*stats
)
2154 struct trie_use_stats s
= { 0 };
2157 /* loop through all of the CPUs and gather up the stats */
2158 for_each_possible_cpu(cpu
) {
2159 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2161 s
.gets
+= pcpu
->gets
;
2162 s
.backtrack
+= pcpu
->backtrack
;
2163 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2164 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2165 s
.null_node_hit
+= pcpu
->null_node_hit
;
2166 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2169 seq_printf(seq
, "\nCounters:\n---------\n");
2170 seq_printf(seq
, "gets = %u\n", s
.gets
);
2171 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2172 seq_printf(seq
, "semantic match passed = %u\n",
2173 s
.semantic_match_passed
);
2174 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2175 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2176 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2178 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2180 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2182 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2183 seq_puts(seq
, "Local:\n");
2184 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2185 seq_puts(seq
, "Main:\n");
2187 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2191 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2193 struct net
*net
= (struct net
*)seq
->private;
2197 "Basic info: size of leaf:"
2198 " %Zd bytes, size of tnode: %Zd bytes.\n",
2199 LEAF_SIZE
, TNODE_SIZE(0));
2201 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2202 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2203 struct fib_table
*tb
;
2205 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2206 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2207 struct trie_stat stat
;
2212 fib_table_print(seq
, tb
);
2214 trie_collect_stats(t
, &stat
);
2215 trie_show_stats(seq
, &stat
);
2216 #ifdef CONFIG_IP_FIB_TRIE_STATS
2217 trie_show_usage(seq
, t
->stats
);
2225 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2227 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2230 static const struct file_operations fib_triestat_fops
= {
2231 .owner
= THIS_MODULE
,
2232 .open
= fib_triestat_seq_open
,
2234 .llseek
= seq_lseek
,
2235 .release
= single_release_net
,
2238 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2240 struct fib_trie_iter
*iter
= seq
->private;
2241 struct net
*net
= seq_file_net(seq
);
2245 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2246 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2247 struct fib_table
*tb
;
2249 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2250 struct key_vector
*n
;
2252 for (n
= fib_trie_get_first(iter
,
2253 (struct trie
*) tb
->tb_data
);
2254 n
; n
= fib_trie_get_next(iter
))
2265 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2269 return fib_trie_get_idx(seq
, *pos
);
2272 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2274 struct fib_trie_iter
*iter
= seq
->private;
2275 struct net
*net
= seq_file_net(seq
);
2276 struct fib_table
*tb
= iter
->tb
;
2277 struct hlist_node
*tb_node
;
2279 struct key_vector
*n
;
2282 /* next node in same table */
2283 n
= fib_trie_get_next(iter
);
2287 /* walk rest of this hash chain */
2288 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2289 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2290 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2291 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2296 /* new hash chain */
2297 while (++h
< FIB_TABLE_HASHSZ
) {
2298 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2299 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2300 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2312 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2318 static void seq_indent(struct seq_file
*seq
, int n
)
2324 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2327 case RT_SCOPE_UNIVERSE
: return "universe";
2328 case RT_SCOPE_SITE
: return "site";
2329 case RT_SCOPE_LINK
: return "link";
2330 case RT_SCOPE_HOST
: return "host";
2331 case RT_SCOPE_NOWHERE
: return "nowhere";
2333 snprintf(buf
, len
, "scope=%d", s
);
2338 static const char *const rtn_type_names
[__RTN_MAX
] = {
2339 [RTN_UNSPEC
] = "UNSPEC",
2340 [RTN_UNICAST
] = "UNICAST",
2341 [RTN_LOCAL
] = "LOCAL",
2342 [RTN_BROADCAST
] = "BROADCAST",
2343 [RTN_ANYCAST
] = "ANYCAST",
2344 [RTN_MULTICAST
] = "MULTICAST",
2345 [RTN_BLACKHOLE
] = "BLACKHOLE",
2346 [RTN_UNREACHABLE
] = "UNREACHABLE",
2347 [RTN_PROHIBIT
] = "PROHIBIT",
2348 [RTN_THROW
] = "THROW",
2350 [RTN_XRESOLVE
] = "XRESOLVE",
2353 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2355 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2356 return rtn_type_names
[t
];
2357 snprintf(buf
, len
, "type %u", t
);
2361 /* Pretty print the trie */
2362 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2364 const struct fib_trie_iter
*iter
= seq
->private;
2365 struct key_vector
*n
= v
;
2367 if (IS_TRIE(node_parent_rcu(n
)))
2368 fib_table_print(seq
, iter
->tb
);
2371 __be32 prf
= htonl(n
->key
);
2373 seq_indent(seq
, iter
->depth
-1);
2374 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2375 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2376 tn_info(n
)->full_children
,
2377 tn_info(n
)->empty_children
);
2379 __be32 val
= htonl(n
->key
);
2380 struct fib_alias
*fa
;
2382 seq_indent(seq
, iter
->depth
);
2383 seq_printf(seq
, " |-- %pI4\n", &val
);
2385 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2386 char buf1
[32], buf2
[32];
2388 seq_indent(seq
, iter
->depth
+ 1);
2389 seq_printf(seq
, " /%zu %s %s",
2390 KEYLENGTH
- fa
->fa_slen
,
2391 rtn_scope(buf1
, sizeof(buf1
),
2392 fa
->fa_info
->fib_scope
),
2393 rtn_type(buf2
, sizeof(buf2
),
2396 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2397 seq_putc(seq
, '\n');
2404 static const struct seq_operations fib_trie_seq_ops
= {
2405 .start
= fib_trie_seq_start
,
2406 .next
= fib_trie_seq_next
,
2407 .stop
= fib_trie_seq_stop
,
2408 .show
= fib_trie_seq_show
,
2411 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2413 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2414 sizeof(struct fib_trie_iter
));
2417 static const struct file_operations fib_trie_fops
= {
2418 .owner
= THIS_MODULE
,
2419 .open
= fib_trie_seq_open
,
2421 .llseek
= seq_lseek
,
2422 .release
= seq_release_net
,
2425 struct fib_route_iter
{
2426 struct seq_net_private p
;
2427 struct fib_table
*main_tb
;
2428 struct key_vector
*tnode
;
2433 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2436 struct fib_table
*tb
= iter
->main_tb
;
2437 struct key_vector
*l
, **tp
= &iter
->tnode
;
2441 /* use cache location of next-to-find key */
2442 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2446 t
= (struct trie
*)tb
->tb_data
;
2447 iter
->tnode
= t
->kv
;
2452 while ((l
= leaf_walk_rcu(tp
, key
)) != NULL
) {
2461 /* handle unlikely case of a key wrap */
2467 iter
->key
= key
; /* remember it */
2469 iter
->pos
= 0; /* forget it */
2474 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2477 struct fib_route_iter
*iter
= seq
->private;
2478 struct fib_table
*tb
;
2483 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2490 return fib_route_get_idx(iter
, *pos
);
2492 t
= (struct trie
*)tb
->tb_data
;
2493 iter
->tnode
= t
->kv
;
2497 return SEQ_START_TOKEN
;
2500 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2502 struct fib_route_iter
*iter
= seq
->private;
2503 struct key_vector
*l
= NULL
;
2504 t_key key
= iter
->key
;
2508 /* only allow key of 0 for start of sequence */
2509 if ((v
== SEQ_START_TOKEN
) || key
)
2510 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2513 iter
->key
= l
->key
+ 1;
2522 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2528 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2530 unsigned int flags
= 0;
2532 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2534 if (fi
&& fi
->fib_nh
->nh_gw
)
2535 flags
|= RTF_GATEWAY
;
2536 if (mask
== htonl(0xFFFFFFFF))
2543 * This outputs /proc/net/route.
2544 * The format of the file is not supposed to be changed
2545 * and needs to be same as fib_hash output to avoid breaking
2548 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2550 struct fib_route_iter
*iter
= seq
->private;
2551 struct fib_table
*tb
= iter
->main_tb
;
2552 struct fib_alias
*fa
;
2553 struct key_vector
*l
= v
;
2556 if (v
== SEQ_START_TOKEN
) {
2557 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2558 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2563 prefix
= htonl(l
->key
);
2565 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2566 const struct fib_info
*fi
= fa
->fa_info
;
2567 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2568 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2570 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2571 (fa
->fa_type
== RTN_MULTICAST
))
2574 if (fa
->tb_id
!= tb
->tb_id
)
2577 seq_setwidth(seq
, 127);
2581 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2582 "%d\t%08X\t%d\t%u\t%u",
2583 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2585 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2589 fi
->fib_advmss
+ 40 : 0),
2594 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2595 "%d\t%08X\t%d\t%u\t%u",
2596 prefix
, 0, flags
, 0, 0, 0,
2605 static const struct seq_operations fib_route_seq_ops
= {
2606 .start
= fib_route_seq_start
,
2607 .next
= fib_route_seq_next
,
2608 .stop
= fib_route_seq_stop
,
2609 .show
= fib_route_seq_show
,
2612 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2614 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2615 sizeof(struct fib_route_iter
));
2618 static const struct file_operations fib_route_fops
= {
2619 .owner
= THIS_MODULE
,
2620 .open
= fib_route_seq_open
,
2622 .llseek
= seq_lseek
,
2623 .release
= seq_release_net
,
2626 int __net_init
fib_proc_init(struct net
*net
)
2628 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2631 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2632 &fib_triestat_fops
))
2635 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2641 remove_proc_entry("fib_triestat", net
->proc_net
);
2643 remove_proc_entry("fib_trie", net
->proc_net
);
2648 void __net_exit
fib_proc_exit(struct net
*net
)
2650 remove_proc_entry("fib_trie", net
->proc_net
);
2651 remove_proc_entry("fib_triestat", net
->proc_net
);
2652 remove_proc_entry("route", net
->proc_net
);
2655 #endif /* CONFIG_PROC_FS */