gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / net / ipv4 / fib_trie.c
blob93b8029848192f345ad71c1ad5127ca113ece2b1
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
85 #define MAX_STAT_DEPTH 32
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define KEY_MAX ((t_key)~0)
90 typedef unsigned int t_key;
92 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93 #define IS_TNODE(n) ((n)->bits)
94 #define IS_LEAF(n) (!(n)->bits)
96 struct key_vector {
97 t_key key;
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
100 unsigned char slen;
101 union {
102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
103 struct hlist_head leaf;
104 /* This array is valid if (pos | bits) > 0 (TNODE) */
105 struct key_vector __rcu *tnode[0];
109 struct tnode {
110 struct rcu_head rcu;
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
113 struct key_vector __rcu *parent;
114 struct key_vector kv[1];
115 #define tn_bits kv[0].bits
118 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE TNODE_SIZE(1)
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
128 unsigned int resize_node_skipped;
130 #endif
132 struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
138 unsigned int prefixes;
139 unsigned int nodesizes[MAX_STAT_DEPTH];
142 struct trie {
143 struct key_vector kv[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu *stats;
146 #endif
149 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 static size_t tnode_free_size;
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
157 static const int sync_pages = 128;
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
162 static inline struct tnode *tn_info(struct key_vector *kv)
164 return container_of(kv, struct tnode, kv[0]);
167 /* caller must hold RTNL */
168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
175 /* wrapper for rcu_assign_pointer */
176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
178 if (n)
179 rcu_assign_pointer(tn_info(n)->parent, tp);
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184 /* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
187 static inline unsigned long child_length(const struct key_vector *tn)
189 return (1ul << tn->bits) & ~(1ul);
192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194 static inline unsigned long get_index(t_key key, struct key_vector *kv)
196 unsigned long index = key ^ kv->key;
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
201 return index >> kv->pos;
204 /* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
208 * Consider a node 'n' and its parent 'tp'.
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
263 static const int halve_threshold = 25;
264 static const int inflate_threshold = 50;
265 static const int halve_threshold_root = 15;
266 static const int inflate_threshold_root = 30;
268 static void __alias_free_mem(struct rcu_head *head)
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
274 static inline void alias_free_mem_rcu(struct fib_alias *fa)
276 call_rcu(&fa->rcu, __alias_free_mem);
279 #define TNODE_KMALLOC_MAX \
280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281 #define TNODE_VMALLOC_MAX \
282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
284 static void __node_free_rcu(struct rcu_head *head)
286 struct tnode *n = container_of(head, struct tnode, rcu);
288 if (!n->tn_bits)
289 kmem_cache_free(trie_leaf_kmem, n);
290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 kfree(n);
292 else
293 vfree(n);
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298 static struct tnode *tnode_alloc(int bits)
300 size_t size;
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
309 if (size <= PAGE_SIZE)
310 return kzalloc(size, GFP_KERNEL);
311 else
312 return vzalloc(size);
315 static inline void empty_child_inc(struct key_vector *n)
317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
320 static inline void empty_child_dec(struct key_vector *n)
322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
330 if (!kv)
331 return NULL;
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
343 return l;
346 static struct key_vector *tnode_new(t_key key, int pos, int bits)
348 struct tnode *tnode = tnode_alloc(bits);
349 unsigned int shift = pos + bits;
350 struct key_vector *tn = tnode->kv;
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356 sizeof(struct key_vector *) << bits);
358 if (!tnode)
359 return NULL;
361 if (bits == KEYLENGTH)
362 tnode->full_children = 1;
363 else
364 tnode->empty_children = 1ul << bits;
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
371 return tn;
374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
375 * and no bits are skipped. See discussion in dyntree paper p. 6
377 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
382 /* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
385 static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
388 struct key_vector *chi = get_child(tn, i);
389 int isfull, wasfull;
391 BUG_ON(i >= child_length(tn));
393 /* update emptyChildren, overflow into fullChildren */
394 if (!n && chi)
395 empty_child_inc(tn);
396 if (n && !chi)
397 empty_child_dec(tn);
399 /* update fullChildren */
400 wasfull = tnode_full(tn, chi);
401 isfull = tnode_full(tn, n);
403 if (wasfull && !isfull)
404 tn_info(tn)->full_children--;
405 else if (!wasfull && isfull)
406 tn_info(tn)->full_children++;
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
411 rcu_assign_pointer(tn->tnode[i], n);
414 static void update_children(struct key_vector *tn)
416 unsigned long i;
418 /* update all of the child parent pointers */
419 for (i = child_length(tn); i;) {
420 struct key_vector *inode = get_child(tn, --i);
422 if (!inode)
423 continue;
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
436 static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
441 else
442 put_child(tp, get_index(key, tp), n);
445 static inline void tnode_free_init(struct key_vector *tn)
447 tn_info(tn)->rcu.next = NULL;
450 static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
457 static void tnode_free(struct key_vector *tn)
459 struct callback_head *head = &tn_info(tn)->rcu;
461 while (head) {
462 head = head->next;
463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 node_free(tn);
466 tn = container_of(head, struct tnode, rcu)->kv;
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
475 static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
479 struct key_vector *tp = node_parent(oldtnode);
480 unsigned long i;
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
484 put_child_root(tp, tn->key, tn);
486 /* update all of the child parent pointers */
487 update_children(tn);
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
492 /* resize children now that oldtnode is freed */
493 for (i = child_length(tn); i;) {
494 struct key_vector *inode = get_child(tn, --i);
496 /* resize child node */
497 if (tnode_full(tn, inode))
498 tn = resize(t, inode);
501 return tp;
504 static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
507 struct key_vector *tn;
508 unsigned long i;
509 t_key m;
511 pr_debug("In inflate\n");
513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
514 if (!tn)
515 goto notnode;
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526 struct key_vector *inode = get_child(oldtnode, --i);
527 struct key_vector *node0, *node1;
528 unsigned long j, k;
530 /* An empty child */
531 if (!inode)
532 continue;
534 /* A leaf or an internal node with skipped bits */
535 if (!tnode_full(oldtnode, inode)) {
536 put_child(tn, get_index(inode->key, tn), inode);
537 continue;
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
543 /* An internal node with two children */
544 if (inode->bits == 1) {
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
547 continue;
550 /* We will replace this node 'inode' with two new
551 * ones, 'node0' and 'node1', each with half of the
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
557 * node0's key and "1" in node1's key. Since we are
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
569 tnode_free_append(tn, node1);
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
574 /* populate child pointers in new nodes */
575 for (k = child_length(inode), j = k / 2; j;) {
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
591 /* setup the parent pointers into and out of this node */
592 return replace(t, oldtnode, tn);
593 nomem:
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
596 notnode:
597 return NULL;
600 static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
603 struct key_vector *tn;
604 unsigned long i;
606 pr_debug("In halve\n");
608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609 if (!tn)
610 goto notnode;
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
620 for (i = child_length(oldtnode); i;) {
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
623 struct key_vector *inode;
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
631 /* Two nonempty children */
632 inode = tnode_new(node0->key, oldtnode->pos, 1);
633 if (!inode)
634 goto nomem;
635 tnode_free_append(tn, inode);
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
646 /* setup the parent pointers into and out of this node */
647 return replace(t, oldtnode, tn);
648 nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651 notnode:
652 return NULL;
655 static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
658 struct key_vector *n, *tp;
659 unsigned long i;
661 /* scan the tnode looking for that one child that might still exist */
662 for (n = NULL, i = child_length(oldtnode); !n && i;)
663 n = get_child(oldtnode, --i);
665 /* compress one level */
666 tp = node_parent(oldtnode);
667 put_child_root(tp, oldtnode->key, n);
668 node_set_parent(n, tp);
670 /* drop dead node */
671 node_free(oldtnode);
673 return tp;
676 static unsigned char update_suffix(struct key_vector *tn)
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687 struct key_vector *n = get_child(tn, i);
689 if (!n || (n->slen <= slen))
690 continue;
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
706 tn->slen = slen;
708 return slen;
711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
719 * child_length() and instead of multiplying by 2 (since the
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
724 * The left-hand side may look a bit weird: child_length(tn)
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
731 * A clearer way to write this would be:
733 * to_be_doubled = tn->full_children;
734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
735 * tn->full_children;
737 * new_child_length = child_length(tn) * 2;
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
743 * ...and so on, tho it would mess up the while () loop.
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
754 * 100 * (child_length(tn) - tn->empty_children +
755 * tn->full_children) >= inflate_threshold * new_child_length
757 * expand new_child_length:
758 * 100 * (child_length(tn) - tn->empty_children +
759 * tn->full_children) >=
760 * inflate_threshold * child_length(tn) * 2
762 * shorten again:
763 * 50 * (tn->full_children + child_length(tn) -
764 * tn->empty_children) >= inflate_threshold *
765 * child_length(tn)
768 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
770 unsigned long used = child_length(tn);
771 unsigned long threshold = used;
773 /* Keep root node larger */
774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
783 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
785 unsigned long used = child_length(tn);
786 unsigned long threshold = used;
788 /* Keep root node larger */
789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790 used -= tn_info(tn)->empty_children;
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
797 static inline bool should_collapse(struct key_vector *tn)
799 unsigned long used = child_length(tn);
801 used -= tn_info(tn)->empty_children;
803 /* account for bits == KEYLENGTH case */
804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 used -= KEY_MAX;
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
811 #define MAX_WORK 10
812 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
814 #ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816 #endif
817 struct key_vector *tp = node_parent(tn);
818 unsigned long cindex = get_index(tn->key, tp);
819 int max_work = MAX_WORK;
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
828 BUG_ON(tn != get_child(tp, cindex));
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
833 while (should_inflate(tp, tn) && max_work) {
834 tp = inflate(t, tn);
835 if (!tp) {
836 #ifdef CONFIG_IP_FIB_TRIE_STATS
837 this_cpu_inc(stats->resize_node_skipped);
838 #endif
839 break;
842 max_work--;
843 tn = get_child(tp, cindex);
846 /* update parent in case inflate failed */
847 tp = node_parent(tn);
849 /* Return if at least one inflate is run */
850 if (max_work != MAX_WORK)
851 return tp;
853 /* Halve as long as the number of empty children in this
854 * node is above threshold.
856 while (should_halve(tp, tn) && max_work) {
857 tp = halve(t, tn);
858 if (!tp) {
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 this_cpu_inc(stats->resize_node_skipped);
861 #endif
862 break;
865 max_work--;
866 tn = get_child(tp, cindex);
869 /* Only one child remains */
870 if (should_collapse(tn))
871 return collapse(t, tn);
873 /* update parent in case halve failed */
874 tp = node_parent(tn);
876 /* Return if at least one deflate was run */
877 if (max_work != MAX_WORK)
878 return tp;
880 /* push the suffix length to the parent node */
881 if (tn->slen > tn->pos) {
882 unsigned char slen = update_suffix(tn);
884 if (slen > tp->slen)
885 tp->slen = slen;
888 return tp;
891 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
893 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
894 if (update_suffix(tp) > l->slen)
895 break;
896 tp = node_parent(tp);
900 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
902 /* if this is a new leaf then tn will be NULL and we can sort
903 * out parent suffix lengths as a part of trie_rebalance
905 while (tn->slen < l->slen) {
906 tn->slen = l->slen;
907 tn = node_parent(tn);
911 /* rcu_read_lock needs to be hold by caller from readside */
912 static struct key_vector *fib_find_node(struct trie *t,
913 struct key_vector **tp, u32 key)
915 struct key_vector *pn, *n = t->kv;
916 unsigned long index = 0;
918 do {
919 pn = n;
920 n = get_child_rcu(n, index);
922 if (!n)
923 break;
925 index = get_cindex(key, n);
927 /* This bit of code is a bit tricky but it combines multiple
928 * checks into a single check. The prefix consists of the
929 * prefix plus zeros for the bits in the cindex. The index
930 * is the difference between the key and this value. From
931 * this we can actually derive several pieces of data.
932 * if (index >= (1ul << bits))
933 * we have a mismatch in skip bits and failed
934 * else
935 * we know the value is cindex
937 * This check is safe even if bits == KEYLENGTH due to the
938 * fact that we can only allocate a node with 32 bits if a
939 * long is greater than 32 bits.
941 if (index >= (1ul << n->bits)) {
942 n = NULL;
943 break;
946 /* keep searching until we find a perfect match leaf or NULL */
947 } while (IS_TNODE(n));
949 *tp = pn;
951 return n;
954 /* Return the first fib alias matching TOS with
955 * priority less than or equal to PRIO.
957 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
958 u8 tos, u32 prio, u32 tb_id)
960 struct fib_alias *fa;
962 if (!fah)
963 return NULL;
965 hlist_for_each_entry(fa, fah, fa_list) {
966 if (fa->fa_slen < slen)
967 continue;
968 if (fa->fa_slen != slen)
969 break;
970 if (fa->tb_id > tb_id)
971 continue;
972 if (fa->tb_id != tb_id)
973 break;
974 if (fa->fa_tos > tos)
975 continue;
976 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
977 return fa;
980 return NULL;
983 static void trie_rebalance(struct trie *t, struct key_vector *tn)
985 while (!IS_TRIE(tn))
986 tn = resize(t, tn);
989 static int fib_insert_node(struct trie *t, struct key_vector *tp,
990 struct fib_alias *new, t_key key)
992 struct key_vector *n, *l;
994 l = leaf_new(key, new);
995 if (!l)
996 goto noleaf;
998 /* retrieve child from parent node */
999 n = get_child(tp, get_index(key, tp));
1001 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1003 * Add a new tnode here
1004 * first tnode need some special handling
1005 * leaves us in position for handling as case 3
1007 if (n) {
1008 struct key_vector *tn;
1010 tn = tnode_new(key, __fls(key ^ n->key), 1);
1011 if (!tn)
1012 goto notnode;
1014 /* initialize routes out of node */
1015 NODE_INIT_PARENT(tn, tp);
1016 put_child(tn, get_index(key, tn) ^ 1, n);
1018 /* start adding routes into the node */
1019 put_child_root(tp, key, tn);
1020 node_set_parent(n, tn);
1022 /* parent now has a NULL spot where the leaf can go */
1023 tp = tn;
1026 /* Case 3: n is NULL, and will just insert a new leaf */
1027 NODE_INIT_PARENT(l, tp);
1028 put_child_root(tp, key, l);
1029 trie_rebalance(t, tp);
1031 return 0;
1032 notnode:
1033 node_free(l);
1034 noleaf:
1035 return -ENOMEM;
1038 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039 struct key_vector *l, struct fib_alias *new,
1040 struct fib_alias *fa, t_key key)
1042 if (!l)
1043 return fib_insert_node(t, tp, new, key);
1045 if (fa) {
1046 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1047 } else {
1048 struct fib_alias *last;
1050 hlist_for_each_entry(last, &l->leaf, fa_list) {
1051 if (new->fa_slen < last->fa_slen)
1052 break;
1053 if ((new->fa_slen == last->fa_slen) &&
1054 (new->tb_id > last->tb_id))
1055 break;
1056 fa = last;
1059 if (fa)
1060 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 else
1062 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1065 /* if we added to the tail node then we need to update slen */
1066 if (l->slen < new->fa_slen) {
1067 l->slen = new->fa_slen;
1068 leaf_push_suffix(tp, l);
1071 return 0;
1074 /* Caller must hold RTNL. */
1075 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1077 struct trie *t = (struct trie *)tb->tb_data;
1078 struct fib_alias *fa, *new_fa;
1079 struct key_vector *l, *tp;
1080 struct fib_info *fi;
1081 u8 plen = cfg->fc_dst_len;
1082 u8 slen = KEYLENGTH - plen;
1083 u8 tos = cfg->fc_tos;
1084 u32 key;
1085 int err;
1087 if (plen > KEYLENGTH)
1088 return -EINVAL;
1090 key = ntohl(cfg->fc_dst);
1092 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1094 if ((plen < KEYLENGTH) && (key << plen))
1095 return -EINVAL;
1097 fi = fib_create_info(cfg);
1098 if (IS_ERR(fi)) {
1099 err = PTR_ERR(fi);
1100 goto err;
1103 l = fib_find_node(t, &tp, key);
1104 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105 tb->tb_id) : NULL;
1107 /* Now fa, if non-NULL, points to the first fib alias
1108 * with the same keys [prefix,tos,priority], if such key already
1109 * exists or to the node before which we will insert new one.
1111 * If fa is NULL, we will need to allocate a new one and
1112 * insert to the tail of the section matching the suffix length
1113 * of the new alias.
1116 if (fa && fa->fa_tos == tos &&
1117 fa->fa_info->fib_priority == fi->fib_priority) {
1118 struct fib_alias *fa_first, *fa_match;
1120 err = -EEXIST;
1121 if (cfg->fc_nlflags & NLM_F_EXCL)
1122 goto out;
1124 /* We have 2 goals:
1125 * 1. Find exact match for type, scope, fib_info to avoid
1126 * duplicate routes
1127 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1129 fa_match = NULL;
1130 fa_first = fa;
1131 hlist_for_each_entry_from(fa, fa_list) {
1132 if ((fa->fa_slen != slen) ||
1133 (fa->tb_id != tb->tb_id) ||
1134 (fa->fa_tos != tos))
1135 break;
1136 if (fa->fa_info->fib_priority != fi->fib_priority)
1137 break;
1138 if (fa->fa_type == cfg->fc_type &&
1139 fa->fa_info == fi) {
1140 fa_match = fa;
1141 break;
1145 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146 struct fib_info *fi_drop;
1147 u8 state;
1149 fa = fa_first;
1150 if (fa_match) {
1151 if (fa == fa_match)
1152 err = 0;
1153 goto out;
1155 err = -ENOBUFS;
1156 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1157 if (!new_fa)
1158 goto out;
1160 fi_drop = fa->fa_info;
1161 new_fa->fa_tos = fa->fa_tos;
1162 new_fa->fa_info = fi;
1163 new_fa->fa_type = cfg->fc_type;
1164 state = fa->fa_state;
1165 new_fa->fa_state = state & ~FA_S_ACCESSED;
1166 new_fa->fa_slen = fa->fa_slen;
1167 new_fa->tb_id = tb->tb_id;
1169 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1170 new_fa->fa_tos,
1171 cfg->fc_type,
1172 cfg->fc_nlflags,
1173 tb->tb_id);
1174 if (err) {
1175 netdev_switch_fib_ipv4_abort(fi);
1176 kmem_cache_free(fn_alias_kmem, new_fa);
1177 goto out;
1180 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1182 alias_free_mem_rcu(fa);
1184 fib_release_info(fi_drop);
1185 if (state & FA_S_ACCESSED)
1186 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1187 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1188 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1190 goto succeeded;
1192 /* Error if we find a perfect match which
1193 * uses the same scope, type, and nexthop
1194 * information.
1196 if (fa_match)
1197 goto out;
1199 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1200 fa = fa_first;
1202 err = -ENOENT;
1203 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1204 goto out;
1206 err = -ENOBUFS;
1207 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1208 if (!new_fa)
1209 goto out;
1211 new_fa->fa_info = fi;
1212 new_fa->fa_tos = tos;
1213 new_fa->fa_type = cfg->fc_type;
1214 new_fa->fa_state = 0;
1215 new_fa->fa_slen = slen;
1216 new_fa->tb_id = tb->tb_id;
1218 /* (Optionally) offload fib entry to switch hardware. */
1219 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1220 cfg->fc_type,
1221 cfg->fc_nlflags,
1222 tb->tb_id);
1223 if (err) {
1224 netdev_switch_fib_ipv4_abort(fi);
1225 goto out_free_new_fa;
1228 /* Insert new entry to the list. */
1229 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1230 if (err)
1231 goto out_sw_fib_del;
1233 if (!plen)
1234 tb->tb_num_default++;
1236 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1237 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1238 &cfg->fc_nlinfo, 0);
1239 succeeded:
1240 return 0;
1242 out_sw_fib_del:
1243 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1244 out_free_new_fa:
1245 kmem_cache_free(fn_alias_kmem, new_fa);
1246 out:
1247 fib_release_info(fi);
1248 err:
1249 return err;
1252 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1254 t_key prefix = n->key;
1256 return (key ^ prefix) & (prefix | -prefix);
1259 /* should be called with rcu_read_lock */
1260 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1261 struct fib_result *res, int fib_flags)
1263 struct trie *t = (struct trie *) tb->tb_data;
1264 #ifdef CONFIG_IP_FIB_TRIE_STATS
1265 struct trie_use_stats __percpu *stats = t->stats;
1266 #endif
1267 const t_key key = ntohl(flp->daddr);
1268 struct key_vector *n, *pn;
1269 struct fib_alias *fa;
1270 unsigned long index;
1271 t_key cindex;
1273 pn = t->kv;
1274 cindex = 0;
1276 n = get_child_rcu(pn, cindex);
1277 if (!n)
1278 return -EAGAIN;
1280 #ifdef CONFIG_IP_FIB_TRIE_STATS
1281 this_cpu_inc(stats->gets);
1282 #endif
1284 /* Step 1: Travel to the longest prefix match in the trie */
1285 for (;;) {
1286 index = get_cindex(key, n);
1288 /* This bit of code is a bit tricky but it combines multiple
1289 * checks into a single check. The prefix consists of the
1290 * prefix plus zeros for the "bits" in the prefix. The index
1291 * is the difference between the key and this value. From
1292 * this we can actually derive several pieces of data.
1293 * if (index >= (1ul << bits))
1294 * we have a mismatch in skip bits and failed
1295 * else
1296 * we know the value is cindex
1298 * This check is safe even if bits == KEYLENGTH due to the
1299 * fact that we can only allocate a node with 32 bits if a
1300 * long is greater than 32 bits.
1302 if (index >= (1ul << n->bits))
1303 break;
1305 /* we have found a leaf. Prefixes have already been compared */
1306 if (IS_LEAF(n))
1307 goto found;
1309 /* only record pn and cindex if we are going to be chopping
1310 * bits later. Otherwise we are just wasting cycles.
1312 if (n->slen > n->pos) {
1313 pn = n;
1314 cindex = index;
1317 n = get_child_rcu(n, index);
1318 if (unlikely(!n))
1319 goto backtrace;
1322 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1323 for (;;) {
1324 /* record the pointer where our next node pointer is stored */
1325 struct key_vector __rcu **cptr = n->tnode;
1327 /* This test verifies that none of the bits that differ
1328 * between the key and the prefix exist in the region of
1329 * the lsb and higher in the prefix.
1331 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1332 goto backtrace;
1334 /* exit out and process leaf */
1335 if (unlikely(IS_LEAF(n)))
1336 break;
1338 /* Don't bother recording parent info. Since we are in
1339 * prefix match mode we will have to come back to wherever
1340 * we started this traversal anyway
1343 while ((n = rcu_dereference(*cptr)) == NULL) {
1344 backtrace:
1345 #ifdef CONFIG_IP_FIB_TRIE_STATS
1346 if (!n)
1347 this_cpu_inc(stats->null_node_hit);
1348 #endif
1349 /* If we are at cindex 0 there are no more bits for
1350 * us to strip at this level so we must ascend back
1351 * up one level to see if there are any more bits to
1352 * be stripped there.
1354 while (!cindex) {
1355 t_key pkey = pn->key;
1357 /* If we don't have a parent then there is
1358 * nothing for us to do as we do not have any
1359 * further nodes to parse.
1361 if (IS_TRIE(pn))
1362 return -EAGAIN;
1363 #ifdef CONFIG_IP_FIB_TRIE_STATS
1364 this_cpu_inc(stats->backtrack);
1365 #endif
1366 /* Get Child's index */
1367 pn = node_parent_rcu(pn);
1368 cindex = get_index(pkey, pn);
1371 /* strip the least significant bit from the cindex */
1372 cindex &= cindex - 1;
1374 /* grab pointer for next child node */
1375 cptr = &pn->tnode[cindex];
1379 found:
1380 /* this line carries forward the xor from earlier in the function */
1381 index = key ^ n->key;
1383 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1384 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1385 struct fib_info *fi = fa->fa_info;
1386 int nhsel, err;
1388 if ((index >= (1ul << fa->fa_slen)) &&
1389 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1390 continue;
1391 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1392 continue;
1393 if (fi->fib_dead)
1394 continue;
1395 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1396 continue;
1397 fib_alias_accessed(fa);
1398 err = fib_props[fa->fa_type].error;
1399 if (unlikely(err < 0)) {
1400 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 this_cpu_inc(stats->semantic_match_passed);
1402 #endif
1403 return err;
1405 if (fi->fib_flags & RTNH_F_DEAD)
1406 continue;
1407 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1408 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1410 if (nh->nh_flags & RTNH_F_DEAD)
1411 continue;
1412 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1413 continue;
1415 if (!(fib_flags & FIB_LOOKUP_NOREF))
1416 atomic_inc(&fi->fib_clntref);
1418 res->prefixlen = KEYLENGTH - fa->fa_slen;
1419 res->nh_sel = nhsel;
1420 res->type = fa->fa_type;
1421 res->scope = fi->fib_scope;
1422 res->fi = fi;
1423 res->table = tb;
1424 res->fa_head = &n->leaf;
1425 #ifdef CONFIG_IP_FIB_TRIE_STATS
1426 this_cpu_inc(stats->semantic_match_passed);
1427 #endif
1428 return err;
1431 #ifdef CONFIG_IP_FIB_TRIE_STATS
1432 this_cpu_inc(stats->semantic_match_miss);
1433 #endif
1434 goto backtrace;
1436 EXPORT_SYMBOL_GPL(fib_table_lookup);
1438 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1439 struct key_vector *l, struct fib_alias *old)
1441 /* record the location of the previous list_info entry */
1442 struct hlist_node **pprev = old->fa_list.pprev;
1443 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1445 /* remove the fib_alias from the list */
1446 hlist_del_rcu(&old->fa_list);
1448 /* if we emptied the list this leaf will be freed and we can sort
1449 * out parent suffix lengths as a part of trie_rebalance
1451 if (hlist_empty(&l->leaf)) {
1452 put_child_root(tp, l->key, NULL);
1453 node_free(l);
1454 trie_rebalance(t, tp);
1455 return;
1458 /* only access fa if it is pointing at the last valid hlist_node */
1459 if (*pprev)
1460 return;
1462 /* update the trie with the latest suffix length */
1463 l->slen = fa->fa_slen;
1464 leaf_pull_suffix(tp, l);
1467 /* Caller must hold RTNL. */
1468 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1470 struct trie *t = (struct trie *) tb->tb_data;
1471 struct fib_alias *fa, *fa_to_delete;
1472 struct key_vector *l, *tp;
1473 u8 plen = cfg->fc_dst_len;
1474 u8 slen = KEYLENGTH - plen;
1475 u8 tos = cfg->fc_tos;
1476 u32 key;
1478 if (plen > KEYLENGTH)
1479 return -EINVAL;
1481 key = ntohl(cfg->fc_dst);
1483 if ((plen < KEYLENGTH) && (key << plen))
1484 return -EINVAL;
1486 l = fib_find_node(t, &tp, key);
1487 if (!l)
1488 return -ESRCH;
1490 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1491 if (!fa)
1492 return -ESRCH;
1494 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1496 fa_to_delete = NULL;
1497 hlist_for_each_entry_from(fa, fa_list) {
1498 struct fib_info *fi = fa->fa_info;
1500 if ((fa->fa_slen != slen) ||
1501 (fa->tb_id != tb->tb_id) ||
1502 (fa->fa_tos != tos))
1503 break;
1505 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1506 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1507 fa->fa_info->fib_scope == cfg->fc_scope) &&
1508 (!cfg->fc_prefsrc ||
1509 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1510 (!cfg->fc_protocol ||
1511 fi->fib_protocol == cfg->fc_protocol) &&
1512 fib_nh_match(cfg, fi) == 0) {
1513 fa_to_delete = fa;
1514 break;
1518 if (!fa_to_delete)
1519 return -ESRCH;
1521 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1522 cfg->fc_type, tb->tb_id);
1524 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1525 &cfg->fc_nlinfo, 0);
1527 if (!plen)
1528 tb->tb_num_default--;
1530 fib_remove_alias(t, tp, l, fa_to_delete);
1532 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1533 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1535 fib_release_info(fa_to_delete->fa_info);
1536 alias_free_mem_rcu(fa_to_delete);
1537 return 0;
1540 /* Scan for the next leaf starting at the provided key value */
1541 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1543 struct key_vector *pn, *n = *tn;
1544 unsigned long cindex;
1546 /* this loop is meant to try and find the key in the trie */
1547 do {
1548 /* record parent and next child index */
1549 pn = n;
1550 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1552 if (cindex >> pn->bits)
1553 break;
1555 /* descend into the next child */
1556 n = get_child_rcu(pn, cindex++);
1557 if (!n)
1558 break;
1560 /* guarantee forward progress on the keys */
1561 if (IS_LEAF(n) && (n->key >= key))
1562 goto found;
1563 } while (IS_TNODE(n));
1565 /* this loop will search for the next leaf with a greater key */
1566 while (!IS_TRIE(pn)) {
1567 /* if we exhausted the parent node we will need to climb */
1568 if (cindex >= (1ul << pn->bits)) {
1569 t_key pkey = pn->key;
1571 pn = node_parent_rcu(pn);
1572 cindex = get_index(pkey, pn) + 1;
1573 continue;
1576 /* grab the next available node */
1577 n = get_child_rcu(pn, cindex++);
1578 if (!n)
1579 continue;
1581 /* no need to compare keys since we bumped the index */
1582 if (IS_LEAF(n))
1583 goto found;
1585 /* Rescan start scanning in new node */
1586 pn = n;
1587 cindex = 0;
1590 *tn = pn;
1591 return NULL; /* Root of trie */
1592 found:
1593 /* if we are at the limit for keys just return NULL for the tnode */
1594 *tn = pn;
1595 return n;
1598 static void fib_trie_free(struct fib_table *tb)
1600 struct trie *t = (struct trie *)tb->tb_data;
1601 struct key_vector *pn = t->kv;
1602 unsigned long cindex = 1;
1603 struct hlist_node *tmp;
1604 struct fib_alias *fa;
1606 /* walk trie in reverse order and free everything */
1607 for (;;) {
1608 struct key_vector *n;
1610 if (!(cindex--)) {
1611 t_key pkey = pn->key;
1613 if (IS_TRIE(pn))
1614 break;
1616 n = pn;
1617 pn = node_parent(pn);
1619 /* drop emptied tnode */
1620 put_child_root(pn, n->key, NULL);
1621 node_free(n);
1623 cindex = get_index(pkey, pn);
1625 continue;
1628 /* grab the next available node */
1629 n = get_child(pn, cindex);
1630 if (!n)
1631 continue;
1633 if (IS_TNODE(n)) {
1634 /* record pn and cindex for leaf walking */
1635 pn = n;
1636 cindex = 1ul << n->bits;
1638 continue;
1641 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1642 hlist_del_rcu(&fa->fa_list);
1643 alias_free_mem_rcu(fa);
1646 put_child_root(pn, n->key, NULL);
1647 node_free(n);
1650 #ifdef CONFIG_IP_FIB_TRIE_STATS
1651 free_percpu(t->stats);
1652 #endif
1653 kfree(tb);
1656 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1658 struct trie *ot = (struct trie *)oldtb->tb_data;
1659 struct key_vector *l, *tp = ot->kv;
1660 struct fib_table *local_tb;
1661 struct fib_alias *fa;
1662 struct trie *lt;
1663 t_key key = 0;
1665 if (oldtb->tb_data == oldtb->__data)
1666 return oldtb;
1668 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1669 if (!local_tb)
1670 return NULL;
1672 lt = (struct trie *)local_tb->tb_data;
1674 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1675 struct key_vector *local_l = NULL, *local_tp;
1677 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1678 struct fib_alias *new_fa;
1680 if (local_tb->tb_id != fa->tb_id)
1681 continue;
1683 /* clone fa for new local table */
1684 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1685 if (!new_fa)
1686 goto out;
1688 memcpy(new_fa, fa, sizeof(*fa));
1690 /* insert clone into table */
1691 if (!local_l)
1692 local_l = fib_find_node(lt, &local_tp, l->key);
1694 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1695 NULL, l->key))
1696 goto out;
1699 /* stop loop if key wrapped back to 0 */
1700 key = l->key + 1;
1701 if (key < l->key)
1702 break;
1705 return local_tb;
1706 out:
1707 fib_trie_free(local_tb);
1709 return NULL;
1712 /* Caller must hold RTNL */
1713 void fib_table_flush_external(struct fib_table *tb)
1715 struct trie *t = (struct trie *)tb->tb_data;
1716 struct key_vector *pn = t->kv;
1717 unsigned long cindex = 1;
1718 struct hlist_node *tmp;
1719 struct fib_alias *fa;
1721 /* walk trie in reverse order */
1722 for (;;) {
1723 unsigned char slen = 0;
1724 struct key_vector *n;
1726 if (!(cindex--)) {
1727 t_key pkey = pn->key;
1729 /* cannot resize the trie vector */
1730 if (IS_TRIE(pn))
1731 break;
1733 /* resize completed node */
1734 pn = resize(t, pn);
1735 cindex = get_index(pkey, pn);
1737 continue;
1740 /* grab the next available node */
1741 n = get_child(pn, cindex);
1742 if (!n)
1743 continue;
1745 if (IS_TNODE(n)) {
1746 /* record pn and cindex for leaf walking */
1747 pn = n;
1748 cindex = 1ul << n->bits;
1750 continue;
1753 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1754 struct fib_info *fi = fa->fa_info;
1756 /* if alias was cloned to local then we just
1757 * need to remove the local copy from main
1759 if (tb->tb_id != fa->tb_id) {
1760 hlist_del_rcu(&fa->fa_list);
1761 alias_free_mem_rcu(fa);
1762 continue;
1765 /* record local slen */
1766 slen = fa->fa_slen;
1768 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1769 continue;
1771 netdev_switch_fib_ipv4_del(n->key,
1772 KEYLENGTH - fa->fa_slen,
1773 fi, fa->fa_tos,
1774 fa->fa_type, tb->tb_id);
1777 /* update leaf slen */
1778 n->slen = slen;
1780 if (hlist_empty(&n->leaf)) {
1781 put_child_root(pn, n->key, NULL);
1782 node_free(n);
1787 /* Caller must hold RTNL. */
1788 int fib_table_flush(struct fib_table *tb)
1790 struct trie *t = (struct trie *)tb->tb_data;
1791 struct key_vector *pn = t->kv;
1792 unsigned long cindex = 1;
1793 struct hlist_node *tmp;
1794 struct fib_alias *fa;
1795 int found = 0;
1797 /* walk trie in reverse order */
1798 for (;;) {
1799 unsigned char slen = 0;
1800 struct key_vector *n;
1802 if (!(cindex--)) {
1803 t_key pkey = pn->key;
1805 /* cannot resize the trie vector */
1806 if (IS_TRIE(pn))
1807 break;
1809 /* resize completed node */
1810 pn = resize(t, pn);
1811 cindex = get_index(pkey, pn);
1813 continue;
1816 /* grab the next available node */
1817 n = get_child(pn, cindex);
1818 if (!n)
1819 continue;
1821 if (IS_TNODE(n)) {
1822 /* record pn and cindex for leaf walking */
1823 pn = n;
1824 cindex = 1ul << n->bits;
1826 continue;
1829 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1830 struct fib_info *fi = fa->fa_info;
1832 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1833 slen = fa->fa_slen;
1834 continue;
1837 netdev_switch_fib_ipv4_del(n->key,
1838 KEYLENGTH - fa->fa_slen,
1839 fi, fa->fa_tos,
1840 fa->fa_type, tb->tb_id);
1841 hlist_del_rcu(&fa->fa_list);
1842 fib_release_info(fa->fa_info);
1843 alias_free_mem_rcu(fa);
1844 found++;
1847 /* update leaf slen */
1848 n->slen = slen;
1850 if (hlist_empty(&n->leaf)) {
1851 put_child_root(pn, n->key, NULL);
1852 node_free(n);
1856 pr_debug("trie_flush found=%d\n", found);
1857 return found;
1860 static void __trie_free_rcu(struct rcu_head *head)
1862 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1863 #ifdef CONFIG_IP_FIB_TRIE_STATS
1864 struct trie *t = (struct trie *)tb->tb_data;
1866 if (tb->tb_data == tb->__data)
1867 free_percpu(t->stats);
1868 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1869 kfree(tb);
1872 void fib_free_table(struct fib_table *tb)
1874 call_rcu(&tb->rcu, __trie_free_rcu);
1877 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1878 struct sk_buff *skb, struct netlink_callback *cb)
1880 __be32 xkey = htonl(l->key);
1881 struct fib_alias *fa;
1882 int i, s_i;
1884 s_i = cb->args[4];
1885 i = 0;
1887 /* rcu_read_lock is hold by caller */
1888 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1889 if (i < s_i) {
1890 i++;
1891 continue;
1894 if (tb->tb_id != fa->tb_id) {
1895 i++;
1896 continue;
1899 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1900 cb->nlh->nlmsg_seq,
1901 RTM_NEWROUTE,
1902 tb->tb_id,
1903 fa->fa_type,
1904 xkey,
1905 KEYLENGTH - fa->fa_slen,
1906 fa->fa_tos,
1907 fa->fa_info, NLM_F_MULTI) < 0) {
1908 cb->args[4] = i;
1909 return -1;
1911 i++;
1914 cb->args[4] = i;
1915 return skb->len;
1918 /* rcu_read_lock needs to be hold by caller from readside */
1919 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1920 struct netlink_callback *cb)
1922 struct trie *t = (struct trie *)tb->tb_data;
1923 struct key_vector *l, *tp = t->kv;
1924 /* Dump starting at last key.
1925 * Note: 0.0.0.0/0 (ie default) is first key.
1927 int count = cb->args[2];
1928 t_key key = cb->args[3];
1930 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1931 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1932 cb->args[3] = key;
1933 cb->args[2] = count;
1934 return -1;
1937 ++count;
1938 key = l->key + 1;
1940 memset(&cb->args[4], 0,
1941 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1943 /* stop loop if key wrapped back to 0 */
1944 if (key < l->key)
1945 break;
1948 cb->args[3] = key;
1949 cb->args[2] = count;
1951 return skb->len;
1954 void __init fib_trie_init(void)
1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias),
1958 0, SLAB_PANIC, NULL);
1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 LEAF_SIZE,
1962 0, SLAB_PANIC, NULL);
1965 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1967 struct fib_table *tb;
1968 struct trie *t;
1969 size_t sz = sizeof(*tb);
1971 if (!alias)
1972 sz += sizeof(struct trie);
1974 tb = kzalloc(sz, GFP_KERNEL);
1975 if (!tb)
1976 return NULL;
1978 tb->tb_id = id;
1979 tb->tb_default = -1;
1980 tb->tb_num_default = 0;
1981 tb->tb_data = (alias ? alias->__data : tb->__data);
1983 if (alias)
1984 return tb;
1986 t = (struct trie *) tb->tb_data;
1987 t->kv[0].pos = KEYLENGTH;
1988 t->kv[0].slen = KEYLENGTH;
1989 #ifdef CONFIG_IP_FIB_TRIE_STATS
1990 t->stats = alloc_percpu(struct trie_use_stats);
1991 if (!t->stats) {
1992 kfree(tb);
1993 tb = NULL;
1995 #endif
1997 return tb;
2000 #ifdef CONFIG_PROC_FS
2001 /* Depth first Trie walk iterator */
2002 struct fib_trie_iter {
2003 struct seq_net_private p;
2004 struct fib_table *tb;
2005 struct key_vector *tnode;
2006 unsigned int index;
2007 unsigned int depth;
2010 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2012 unsigned long cindex = iter->index;
2013 struct key_vector *pn = iter->tnode;
2014 t_key pkey;
2016 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2017 iter->tnode, iter->index, iter->depth);
2019 while (!IS_TRIE(pn)) {
2020 while (cindex < child_length(pn)) {
2021 struct key_vector *n = get_child_rcu(pn, cindex++);
2023 if (!n)
2024 continue;
2026 if (IS_LEAF(n)) {
2027 iter->tnode = pn;
2028 iter->index = cindex;
2029 } else {
2030 /* push down one level */
2031 iter->tnode = n;
2032 iter->index = 0;
2033 ++iter->depth;
2036 return n;
2039 /* Current node exhausted, pop back up */
2040 pkey = pn->key;
2041 pn = node_parent_rcu(pn);
2042 cindex = get_index(pkey, pn) + 1;
2043 --iter->depth;
2046 /* record root node so further searches know we are done */
2047 iter->tnode = pn;
2048 iter->index = 0;
2050 return NULL;
2053 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2054 struct trie *t)
2056 struct key_vector *n, *pn = t->kv;
2058 if (!t)
2059 return NULL;
2061 n = rcu_dereference(pn->tnode[0]);
2062 if (!n)
2063 return NULL;
2065 if (IS_TNODE(n)) {
2066 iter->tnode = n;
2067 iter->index = 0;
2068 iter->depth = 1;
2069 } else {
2070 iter->tnode = pn;
2071 iter->index = 0;
2072 iter->depth = 0;
2075 return n;
2078 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2080 struct key_vector *n;
2081 struct fib_trie_iter iter;
2083 memset(s, 0, sizeof(*s));
2085 rcu_read_lock();
2086 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2087 if (IS_LEAF(n)) {
2088 struct fib_alias *fa;
2090 s->leaves++;
2091 s->totdepth += iter.depth;
2092 if (iter.depth > s->maxdepth)
2093 s->maxdepth = iter.depth;
2095 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2096 ++s->prefixes;
2097 } else {
2098 s->tnodes++;
2099 if (n->bits < MAX_STAT_DEPTH)
2100 s->nodesizes[n->bits]++;
2101 s->nullpointers += tn_info(n)->empty_children;
2104 rcu_read_unlock();
2108 * This outputs /proc/net/fib_triestats
2110 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2112 unsigned int i, max, pointers, bytes, avdepth;
2114 if (stat->leaves)
2115 avdepth = stat->totdepth*100 / stat->leaves;
2116 else
2117 avdepth = 0;
2119 seq_printf(seq, "\tAver depth: %u.%02d\n",
2120 avdepth / 100, avdepth % 100);
2121 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2123 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2124 bytes = LEAF_SIZE * stat->leaves;
2126 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2127 bytes += sizeof(struct fib_alias) * stat->prefixes;
2129 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2130 bytes += TNODE_SIZE(0) * stat->tnodes;
2132 max = MAX_STAT_DEPTH;
2133 while (max > 0 && stat->nodesizes[max-1] == 0)
2134 max--;
2136 pointers = 0;
2137 for (i = 1; i < max; i++)
2138 if (stat->nodesizes[i] != 0) {
2139 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2140 pointers += (1<<i) * stat->nodesizes[i];
2142 seq_putc(seq, '\n');
2143 seq_printf(seq, "\tPointers: %u\n", pointers);
2145 bytes += sizeof(struct key_vector *) * pointers;
2146 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2147 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2150 #ifdef CONFIG_IP_FIB_TRIE_STATS
2151 static void trie_show_usage(struct seq_file *seq,
2152 const struct trie_use_stats __percpu *stats)
2154 struct trie_use_stats s = { 0 };
2155 int cpu;
2157 /* loop through all of the CPUs and gather up the stats */
2158 for_each_possible_cpu(cpu) {
2159 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2161 s.gets += pcpu->gets;
2162 s.backtrack += pcpu->backtrack;
2163 s.semantic_match_passed += pcpu->semantic_match_passed;
2164 s.semantic_match_miss += pcpu->semantic_match_miss;
2165 s.null_node_hit += pcpu->null_node_hit;
2166 s.resize_node_skipped += pcpu->resize_node_skipped;
2169 seq_printf(seq, "\nCounters:\n---------\n");
2170 seq_printf(seq, "gets = %u\n", s.gets);
2171 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2172 seq_printf(seq, "semantic match passed = %u\n",
2173 s.semantic_match_passed);
2174 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2175 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2176 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2178 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2180 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2182 if (tb->tb_id == RT_TABLE_LOCAL)
2183 seq_puts(seq, "Local:\n");
2184 else if (tb->tb_id == RT_TABLE_MAIN)
2185 seq_puts(seq, "Main:\n");
2186 else
2187 seq_printf(seq, "Id %d:\n", tb->tb_id);
2191 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2193 struct net *net = (struct net *)seq->private;
2194 unsigned int h;
2196 seq_printf(seq,
2197 "Basic info: size of leaf:"
2198 " %Zd bytes, size of tnode: %Zd bytes.\n",
2199 LEAF_SIZE, TNODE_SIZE(0));
2201 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2202 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2203 struct fib_table *tb;
2205 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2206 struct trie *t = (struct trie *) tb->tb_data;
2207 struct trie_stat stat;
2209 if (!t)
2210 continue;
2212 fib_table_print(seq, tb);
2214 trie_collect_stats(t, &stat);
2215 trie_show_stats(seq, &stat);
2216 #ifdef CONFIG_IP_FIB_TRIE_STATS
2217 trie_show_usage(seq, t->stats);
2218 #endif
2222 return 0;
2225 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2227 return single_open_net(inode, file, fib_triestat_seq_show);
2230 static const struct file_operations fib_triestat_fops = {
2231 .owner = THIS_MODULE,
2232 .open = fib_triestat_seq_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
2235 .release = single_release_net,
2238 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2240 struct fib_trie_iter *iter = seq->private;
2241 struct net *net = seq_file_net(seq);
2242 loff_t idx = 0;
2243 unsigned int h;
2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247 struct fib_table *tb;
2249 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2250 struct key_vector *n;
2252 for (n = fib_trie_get_first(iter,
2253 (struct trie *) tb->tb_data);
2254 n; n = fib_trie_get_next(iter))
2255 if (pos == idx++) {
2256 iter->tb = tb;
2257 return n;
2262 return NULL;
2265 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2266 __acquires(RCU)
2268 rcu_read_lock();
2269 return fib_trie_get_idx(seq, *pos);
2272 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274 struct fib_trie_iter *iter = seq->private;
2275 struct net *net = seq_file_net(seq);
2276 struct fib_table *tb = iter->tb;
2277 struct hlist_node *tb_node;
2278 unsigned int h;
2279 struct key_vector *n;
2281 ++*pos;
2282 /* next node in same table */
2283 n = fib_trie_get_next(iter);
2284 if (n)
2285 return n;
2287 /* walk rest of this hash chain */
2288 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2289 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2290 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2291 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2292 if (n)
2293 goto found;
2296 /* new hash chain */
2297 while (++h < FIB_TABLE_HASHSZ) {
2298 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2299 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2300 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2301 if (n)
2302 goto found;
2305 return NULL;
2307 found:
2308 iter->tb = tb;
2309 return n;
2312 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2313 __releases(RCU)
2315 rcu_read_unlock();
2318 static void seq_indent(struct seq_file *seq, int n)
2320 while (n-- > 0)
2321 seq_puts(seq, " ");
2324 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2326 switch (s) {
2327 case RT_SCOPE_UNIVERSE: return "universe";
2328 case RT_SCOPE_SITE: return "site";
2329 case RT_SCOPE_LINK: return "link";
2330 case RT_SCOPE_HOST: return "host";
2331 case RT_SCOPE_NOWHERE: return "nowhere";
2332 default:
2333 snprintf(buf, len, "scope=%d", s);
2334 return buf;
2338 static const char *const rtn_type_names[__RTN_MAX] = {
2339 [RTN_UNSPEC] = "UNSPEC",
2340 [RTN_UNICAST] = "UNICAST",
2341 [RTN_LOCAL] = "LOCAL",
2342 [RTN_BROADCAST] = "BROADCAST",
2343 [RTN_ANYCAST] = "ANYCAST",
2344 [RTN_MULTICAST] = "MULTICAST",
2345 [RTN_BLACKHOLE] = "BLACKHOLE",
2346 [RTN_UNREACHABLE] = "UNREACHABLE",
2347 [RTN_PROHIBIT] = "PROHIBIT",
2348 [RTN_THROW] = "THROW",
2349 [RTN_NAT] = "NAT",
2350 [RTN_XRESOLVE] = "XRESOLVE",
2353 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2355 if (t < __RTN_MAX && rtn_type_names[t])
2356 return rtn_type_names[t];
2357 snprintf(buf, len, "type %u", t);
2358 return buf;
2361 /* Pretty print the trie */
2362 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2364 const struct fib_trie_iter *iter = seq->private;
2365 struct key_vector *n = v;
2367 if (IS_TRIE(node_parent_rcu(n)))
2368 fib_table_print(seq, iter->tb);
2370 if (IS_TNODE(n)) {
2371 __be32 prf = htonl(n->key);
2373 seq_indent(seq, iter->depth-1);
2374 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2375 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2376 tn_info(n)->full_children,
2377 tn_info(n)->empty_children);
2378 } else {
2379 __be32 val = htonl(n->key);
2380 struct fib_alias *fa;
2382 seq_indent(seq, iter->depth);
2383 seq_printf(seq, " |-- %pI4\n", &val);
2385 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2386 char buf1[32], buf2[32];
2388 seq_indent(seq, iter->depth + 1);
2389 seq_printf(seq, " /%zu %s %s",
2390 KEYLENGTH - fa->fa_slen,
2391 rtn_scope(buf1, sizeof(buf1),
2392 fa->fa_info->fib_scope),
2393 rtn_type(buf2, sizeof(buf2),
2394 fa->fa_type));
2395 if (fa->fa_tos)
2396 seq_printf(seq, " tos=%d", fa->fa_tos);
2397 seq_putc(seq, '\n');
2401 return 0;
2404 static const struct seq_operations fib_trie_seq_ops = {
2405 .start = fib_trie_seq_start,
2406 .next = fib_trie_seq_next,
2407 .stop = fib_trie_seq_stop,
2408 .show = fib_trie_seq_show,
2411 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2413 return seq_open_net(inode, file, &fib_trie_seq_ops,
2414 sizeof(struct fib_trie_iter));
2417 static const struct file_operations fib_trie_fops = {
2418 .owner = THIS_MODULE,
2419 .open = fib_trie_seq_open,
2420 .read = seq_read,
2421 .llseek = seq_lseek,
2422 .release = seq_release_net,
2425 struct fib_route_iter {
2426 struct seq_net_private p;
2427 struct fib_table *main_tb;
2428 struct key_vector *tnode;
2429 loff_t pos;
2430 t_key key;
2433 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2434 loff_t pos)
2436 struct fib_table *tb = iter->main_tb;
2437 struct key_vector *l, **tp = &iter->tnode;
2438 struct trie *t;
2439 t_key key;
2441 /* use cache location of next-to-find key */
2442 if (iter->pos > 0 && pos >= iter->pos) {
2443 pos -= iter->pos;
2444 key = iter->key;
2445 } else {
2446 t = (struct trie *)tb->tb_data;
2447 iter->tnode = t->kv;
2448 iter->pos = 0;
2449 key = 0;
2452 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2453 key = l->key + 1;
2454 iter->pos++;
2456 if (--pos <= 0)
2457 break;
2459 l = NULL;
2461 /* handle unlikely case of a key wrap */
2462 if (!key)
2463 break;
2466 if (l)
2467 iter->key = key; /* remember it */
2468 else
2469 iter->pos = 0; /* forget it */
2471 return l;
2474 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2475 __acquires(RCU)
2477 struct fib_route_iter *iter = seq->private;
2478 struct fib_table *tb;
2479 struct trie *t;
2481 rcu_read_lock();
2483 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2484 if (!tb)
2485 return NULL;
2487 iter->main_tb = tb;
2489 if (*pos != 0)
2490 return fib_route_get_idx(iter, *pos);
2492 t = (struct trie *)tb->tb_data;
2493 iter->tnode = t->kv;
2494 iter->pos = 0;
2495 iter->key = 0;
2497 return SEQ_START_TOKEN;
2500 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2502 struct fib_route_iter *iter = seq->private;
2503 struct key_vector *l = NULL;
2504 t_key key = iter->key;
2506 ++*pos;
2508 /* only allow key of 0 for start of sequence */
2509 if ((v == SEQ_START_TOKEN) || key)
2510 l = leaf_walk_rcu(&iter->tnode, key);
2512 if (l) {
2513 iter->key = l->key + 1;
2514 iter->pos++;
2515 } else {
2516 iter->pos = 0;
2519 return l;
2522 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2523 __releases(RCU)
2525 rcu_read_unlock();
2528 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2530 unsigned int flags = 0;
2532 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2533 flags = RTF_REJECT;
2534 if (fi && fi->fib_nh->nh_gw)
2535 flags |= RTF_GATEWAY;
2536 if (mask == htonl(0xFFFFFFFF))
2537 flags |= RTF_HOST;
2538 flags |= RTF_UP;
2539 return flags;
2543 * This outputs /proc/net/route.
2544 * The format of the file is not supposed to be changed
2545 * and needs to be same as fib_hash output to avoid breaking
2546 * legacy utilities
2548 static int fib_route_seq_show(struct seq_file *seq, void *v)
2550 struct fib_route_iter *iter = seq->private;
2551 struct fib_table *tb = iter->main_tb;
2552 struct fib_alias *fa;
2553 struct key_vector *l = v;
2554 __be32 prefix;
2556 if (v == SEQ_START_TOKEN) {
2557 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2558 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2559 "\tWindow\tIRTT");
2560 return 0;
2563 prefix = htonl(l->key);
2565 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2566 const struct fib_info *fi = fa->fa_info;
2567 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2568 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2570 if ((fa->fa_type == RTN_BROADCAST) ||
2571 (fa->fa_type == RTN_MULTICAST))
2572 continue;
2574 if (fa->tb_id != tb->tb_id)
2575 continue;
2577 seq_setwidth(seq, 127);
2579 if (fi)
2580 seq_printf(seq,
2581 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2582 "%d\t%08X\t%d\t%u\t%u",
2583 fi->fib_dev ? fi->fib_dev->name : "*",
2584 prefix,
2585 fi->fib_nh->nh_gw, flags, 0, 0,
2586 fi->fib_priority,
2587 mask,
2588 (fi->fib_advmss ?
2589 fi->fib_advmss + 40 : 0),
2590 fi->fib_window,
2591 fi->fib_rtt >> 3);
2592 else
2593 seq_printf(seq,
2594 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2595 "%d\t%08X\t%d\t%u\t%u",
2596 prefix, 0, flags, 0, 0, 0,
2597 mask, 0, 0, 0);
2599 seq_pad(seq, '\n');
2602 return 0;
2605 static const struct seq_operations fib_route_seq_ops = {
2606 .start = fib_route_seq_start,
2607 .next = fib_route_seq_next,
2608 .stop = fib_route_seq_stop,
2609 .show = fib_route_seq_show,
2612 static int fib_route_seq_open(struct inode *inode, struct file *file)
2614 return seq_open_net(inode, file, &fib_route_seq_ops,
2615 sizeof(struct fib_route_iter));
2618 static const struct file_operations fib_route_fops = {
2619 .owner = THIS_MODULE,
2620 .open = fib_route_seq_open,
2621 .read = seq_read,
2622 .llseek = seq_lseek,
2623 .release = seq_release_net,
2626 int __net_init fib_proc_init(struct net *net)
2628 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2629 goto out1;
2631 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2632 &fib_triestat_fops))
2633 goto out2;
2635 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2636 goto out3;
2638 return 0;
2640 out3:
2641 remove_proc_entry("fib_triestat", net->proc_net);
2642 out2:
2643 remove_proc_entry("fib_trie", net->proc_net);
2644 out1:
2645 return -ENOMEM;
2648 void __net_exit fib_proc_exit(struct net *net)
2650 remove_proc_entry("fib_trie", net->proc_net);
2651 remove_proc_entry("fib_triestat", net->proc_net);
2652 remove_proc_entry("route", net->proc_net);
2655 #endif /* CONFIG_PROC_FS */