gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blob51573f8a39bca8bd531ea2af738d8cc45e5d2707
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
89 iph->check = 0;
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 EXPORT_SYMBOL(ip_send_check);
94 int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
96 struct iphdr *iph = ip_hdr(skb);
98 iph->tot_len = htons(skb->len);
99 ip_send_check(iph);
100 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, sk, skb, NULL,
101 skb_dst(skb)->dev, dst_output_sk);
104 int __ip_local_out(struct sk_buff *skb)
106 return __ip_local_out_sk(skb->sk, skb);
109 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
111 int err;
113 err = __ip_local_out(skb);
114 if (likely(err == 1))
115 err = dst_output_sk(sk, skb);
117 return err;
119 EXPORT_SYMBOL_GPL(ip_local_out_sk);
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
123 int ttl = inet->uc_ttl;
125 if (ttl < 0)
126 ttl = ip4_dst_hoplimit(dst);
127 return ttl;
131 * Add an ip header to a skbuff and send it out.
134 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
135 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
137 struct inet_sock *inet = inet_sk(sk);
138 struct rtable *rt = skb_rtable(skb);
139 struct iphdr *iph;
141 /* Build the IP header. */
142 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
143 skb_reset_network_header(skb);
144 iph = ip_hdr(skb);
145 iph->version = 4;
146 iph->ihl = 5;
147 iph->tos = inet->tos;
148 if (ip_dont_fragment(sk, &rt->dst))
149 iph->frag_off = htons(IP_DF);
150 else
151 iph->frag_off = 0;
152 iph->ttl = ip_select_ttl(inet, &rt->dst);
153 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
154 iph->saddr = saddr;
155 iph->protocol = sk->sk_protocol;
156 ip_select_ident(sock_net(sk), skb, sk);
158 if (opt && opt->opt.optlen) {
159 iph->ihl += opt->opt.optlen>>2;
160 ip_options_build(skb, &opt->opt, daddr, rt, 0);
163 skb->priority = sk->sk_priority;
164 skb->mark = sk->sk_mark;
166 /* Send it out. */
167 return ip_local_out(skb);
169 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
171 static inline int ip_finish_output2(struct sock *sk, struct sk_buff *skb)
173 struct dst_entry *dst = skb_dst(skb);
174 struct rtable *rt = (struct rtable *)dst;
175 struct net_device *dev = dst->dev;
176 unsigned int hh_len = LL_RESERVED_SPACE(dev);
177 struct neighbour *neigh;
178 u32 nexthop;
180 if (rt->rt_type == RTN_MULTICAST) {
181 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
182 } else if (rt->rt_type == RTN_BROADCAST)
183 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
185 /* Be paranoid, rather than too clever. */
186 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
187 struct sk_buff *skb2;
189 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
190 if (!skb2) {
191 kfree_skb(skb);
192 return -ENOMEM;
194 if (skb->sk)
195 skb_set_owner_w(skb2, skb->sk);
196 consume_skb(skb);
197 skb = skb2;
200 rcu_read_lock_bh();
201 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
202 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
203 if (unlikely(!neigh))
204 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
205 if (!IS_ERR(neigh)) {
206 int res = dst_neigh_output(dst, neigh, skb);
208 rcu_read_unlock_bh();
209 return res;
211 rcu_read_unlock_bh();
213 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
214 __func__);
215 kfree_skb(skb);
216 return -EINVAL;
219 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb)
221 netdev_features_t features;
222 struct sk_buff *segs;
223 int ret = 0;
225 /* common case: locally created skb or seglen is <= mtu */
226 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
227 skb_gso_network_seglen(skb) <= ip_skb_dst_mtu(skb))
228 return ip_finish_output2(sk, skb);
230 /* Slowpath - GSO segment length is exceeding the dst MTU.
232 * This can happen in two cases:
233 * 1) TCP GRO packet, DF bit not set
234 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
235 * from host network stack.
237 features = netif_skb_features(skb);
238 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
239 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
240 if (IS_ERR_OR_NULL(segs)) {
241 kfree_skb(skb);
242 return -ENOMEM;
245 consume_skb(skb);
247 do {
248 struct sk_buff *nskb = segs->next;
249 int err;
251 segs->next = NULL;
252 err = ip_fragment(sk, segs, ip_finish_output2);
254 if (err && ret == 0)
255 ret = err;
256 segs = nskb;
257 } while (segs);
259 return ret;
262 static int ip_finish_output(struct sock *sk, struct sk_buff *skb)
264 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
265 /* Policy lookup after SNAT yielded a new policy */
266 if (skb_dst(skb)->xfrm) {
267 IPCB(skb)->flags |= IPSKB_REROUTED;
268 return dst_output_sk(sk, skb);
270 #endif
271 if (skb_is_gso(skb))
272 return ip_finish_output_gso(sk, skb);
274 if (skb->len > ip_skb_dst_mtu(skb))
275 return ip_fragment(sk, skb, ip_finish_output2);
277 return ip_finish_output2(sk, skb);
280 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
282 struct rtable *rt = skb_rtable(skb);
283 struct net_device *dev = rt->dst.dev;
286 * If the indicated interface is up and running, send the packet.
288 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
290 skb->dev = dev;
291 skb->protocol = htons(ETH_P_IP);
294 * Multicasts are looped back for other local users
297 if (rt->rt_flags&RTCF_MULTICAST) {
298 if (sk_mc_loop(sk)
299 #ifdef CONFIG_IP_MROUTE
300 /* Small optimization: do not loopback not local frames,
301 which returned after forwarding; they will be dropped
302 by ip_mr_input in any case.
303 Note, that local frames are looped back to be delivered
304 to local recipients.
306 This check is duplicated in ip_mr_input at the moment.
309 ((rt->rt_flags & RTCF_LOCAL) ||
310 !(IPCB(skb)->flags & IPSKB_FORWARDED))
311 #endif
313 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
314 if (newskb)
315 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
316 sk, newskb, NULL, newskb->dev,
317 dev_loopback_xmit);
320 /* Multicasts with ttl 0 must not go beyond the host */
322 if (ip_hdr(skb)->ttl == 0) {
323 kfree_skb(skb);
324 return 0;
328 if (rt->rt_flags&RTCF_BROADCAST) {
329 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
330 if (newskb)
331 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, newskb,
332 NULL, newskb->dev, dev_loopback_xmit);
335 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, NULL,
336 skb->dev, ip_finish_output,
337 !(IPCB(skb)->flags & IPSKB_REROUTED));
340 int ip_output(struct sock *sk, struct sk_buff *skb)
342 struct net_device *dev = skb_dst(skb)->dev;
344 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
346 skb->dev = dev;
347 skb->protocol = htons(ETH_P_IP);
349 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb,
350 NULL, dev,
351 ip_finish_output,
352 !(IPCB(skb)->flags & IPSKB_REROUTED));
356 * copy saddr and daddr, possibly using 64bit load/stores
357 * Equivalent to :
358 * iph->saddr = fl4->saddr;
359 * iph->daddr = fl4->daddr;
361 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
363 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
364 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
365 memcpy(&iph->saddr, &fl4->saddr,
366 sizeof(fl4->saddr) + sizeof(fl4->daddr));
369 /* Note: skb->sk can be different from sk, in case of tunnels */
370 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
372 struct inet_sock *inet = inet_sk(sk);
373 struct ip_options_rcu *inet_opt;
374 struct flowi4 *fl4;
375 struct rtable *rt;
376 struct iphdr *iph;
377 int res;
379 /* Skip all of this if the packet is already routed,
380 * f.e. by something like SCTP.
382 rcu_read_lock();
383 inet_opt = rcu_dereference(inet->inet_opt);
384 fl4 = &fl->u.ip4;
385 rt = skb_rtable(skb);
386 if (rt)
387 goto packet_routed;
389 /* Make sure we can route this packet. */
390 rt = (struct rtable *)__sk_dst_check(sk, 0);
391 if (!rt) {
392 __be32 daddr;
394 /* Use correct destination address if we have options. */
395 daddr = inet->inet_daddr;
396 if (inet_opt && inet_opt->opt.srr)
397 daddr = inet_opt->opt.faddr;
399 /* If this fails, retransmit mechanism of transport layer will
400 * keep trying until route appears or the connection times
401 * itself out.
403 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
404 daddr, inet->inet_saddr,
405 inet->inet_dport,
406 inet->inet_sport,
407 sk->sk_protocol,
408 RT_CONN_FLAGS(sk),
409 sk->sk_bound_dev_if);
410 if (IS_ERR(rt))
411 goto no_route;
412 sk_setup_caps(sk, &rt->dst);
414 skb_dst_set_noref(skb, &rt->dst);
416 packet_routed:
417 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
418 goto no_route;
420 /* OK, we know where to send it, allocate and build IP header. */
421 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
422 skb_reset_network_header(skb);
423 iph = ip_hdr(skb);
424 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
425 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
426 iph->frag_off = htons(IP_DF);
427 else
428 iph->frag_off = 0;
429 iph->ttl = ip_select_ttl(inet, &rt->dst);
430 iph->protocol = sk->sk_protocol;
431 ip_copy_addrs(iph, fl4);
433 /* Transport layer set skb->h.foo itself. */
435 if (inet_opt && inet_opt->opt.optlen) {
436 iph->ihl += inet_opt->opt.optlen >> 2;
437 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
440 ip_select_ident_segs(sock_net(sk), skb, sk,
441 skb_shinfo(skb)->gso_segs ?: 1);
443 /* TODO : should we use skb->sk here instead of sk ? */
444 skb->priority = sk->sk_priority;
445 skb->mark = sk->sk_mark;
447 res = ip_local_out(skb);
448 rcu_read_unlock();
449 return res;
451 no_route:
452 rcu_read_unlock();
453 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
454 kfree_skb(skb);
455 return -EHOSTUNREACH;
457 EXPORT_SYMBOL(ip_queue_xmit);
459 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
461 to->pkt_type = from->pkt_type;
462 to->priority = from->priority;
463 to->protocol = from->protocol;
464 skb_dst_drop(to);
465 skb_dst_copy(to, from);
466 to->dev = from->dev;
467 to->mark = from->mark;
469 /* Copy the flags to each fragment. */
470 IPCB(to)->flags = IPCB(from)->flags;
472 #ifdef CONFIG_NET_SCHED
473 to->tc_index = from->tc_index;
474 #endif
475 nf_copy(to, from);
476 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
477 to->ipvs_property = from->ipvs_property;
478 #endif
479 skb_copy_secmark(to, from);
483 * This IP datagram is too large to be sent in one piece. Break it up into
484 * smaller pieces (each of size equal to IP header plus
485 * a block of the data of the original IP data part) that will yet fit in a
486 * single device frame, and queue such a frame for sending.
489 int ip_fragment(struct sock *sk, struct sk_buff *skb,
490 int (*output)(struct sock *, struct sk_buff *))
492 struct iphdr *iph;
493 int ptr;
494 struct net_device *dev;
495 struct sk_buff *skb2;
496 unsigned int mtu, hlen, left, len, ll_rs;
497 int offset;
498 __be16 not_last_frag;
499 struct rtable *rt = skb_rtable(skb);
500 int err = 0;
502 dev = rt->dst.dev;
505 * Point into the IP datagram header.
508 iph = ip_hdr(skb);
510 mtu = ip_skb_dst_mtu(skb);
511 if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
512 (IPCB(skb)->frag_max_size &&
513 IPCB(skb)->frag_max_size > mtu))) {
514 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
515 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
516 htonl(mtu));
517 kfree_skb(skb);
518 return -EMSGSIZE;
522 * Setup starting values.
525 hlen = iph->ihl * 4;
526 mtu = mtu - hlen; /* Size of data space */
527 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
528 if (skb->nf_bridge)
529 mtu -= nf_bridge_mtu_reduction(skb);
530 #endif
531 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
533 /* When frag_list is given, use it. First, check its validity:
534 * some transformers could create wrong frag_list or break existing
535 * one, it is not prohibited. In this case fall back to copying.
537 * LATER: this step can be merged to real generation of fragments,
538 * we can switch to copy when see the first bad fragment.
540 if (skb_has_frag_list(skb)) {
541 struct sk_buff *frag, *frag2;
542 int first_len = skb_pagelen(skb);
544 if (first_len - hlen > mtu ||
545 ((first_len - hlen) & 7) ||
546 ip_is_fragment(iph) ||
547 skb_cloned(skb))
548 goto slow_path;
550 skb_walk_frags(skb, frag) {
551 /* Correct geometry. */
552 if (frag->len > mtu ||
553 ((frag->len & 7) && frag->next) ||
554 skb_headroom(frag) < hlen)
555 goto slow_path_clean;
557 /* Partially cloned skb? */
558 if (skb_shared(frag))
559 goto slow_path_clean;
561 BUG_ON(frag->sk);
562 if (skb->sk) {
563 frag->sk = skb->sk;
564 frag->destructor = sock_wfree;
566 skb->truesize -= frag->truesize;
569 /* Everything is OK. Generate! */
571 err = 0;
572 offset = 0;
573 frag = skb_shinfo(skb)->frag_list;
574 skb_frag_list_init(skb);
575 skb->data_len = first_len - skb_headlen(skb);
576 skb->len = first_len;
577 iph->tot_len = htons(first_len);
578 iph->frag_off = htons(IP_MF);
579 ip_send_check(iph);
581 for (;;) {
582 /* Prepare header of the next frame,
583 * before previous one went down. */
584 if (frag) {
585 frag->ip_summed = CHECKSUM_NONE;
586 skb_reset_transport_header(frag);
587 __skb_push(frag, hlen);
588 skb_reset_network_header(frag);
589 memcpy(skb_network_header(frag), iph, hlen);
590 iph = ip_hdr(frag);
591 iph->tot_len = htons(frag->len);
592 ip_copy_metadata(frag, skb);
593 if (offset == 0)
594 ip_options_fragment(frag);
595 offset += skb->len - hlen;
596 iph->frag_off = htons(offset>>3);
597 if (frag->next)
598 iph->frag_off |= htons(IP_MF);
599 /* Ready, complete checksum */
600 ip_send_check(iph);
603 err = output(sk, skb);
605 if (!err)
606 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
607 if (err || !frag)
608 break;
610 skb = frag;
611 frag = skb->next;
612 skb->next = NULL;
615 if (err == 0) {
616 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
617 return 0;
620 while (frag) {
621 skb = frag->next;
622 kfree_skb(frag);
623 frag = skb;
625 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
626 return err;
628 slow_path_clean:
629 skb_walk_frags(skb, frag2) {
630 if (frag2 == frag)
631 break;
632 frag2->sk = NULL;
633 frag2->destructor = NULL;
634 skb->truesize += frag2->truesize;
638 slow_path:
639 /* for offloaded checksums cleanup checksum before fragmentation */
640 if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
641 goto fail;
642 iph = ip_hdr(skb);
644 left = skb->len - hlen; /* Space per frame */
645 ptr = hlen; /* Where to start from */
647 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
650 * Fragment the datagram.
653 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
654 not_last_frag = iph->frag_off & htons(IP_MF);
657 * Keep copying data until we run out.
660 while (left > 0) {
661 len = left;
662 /* IF: it doesn't fit, use 'mtu' - the data space left */
663 if (len > mtu)
664 len = mtu;
665 /* IF: we are not sending up to and including the packet end
666 then align the next start on an eight byte boundary */
667 if (len < left) {
668 len &= ~7;
671 /* Allocate buffer */
672 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
673 if (!skb2) {
674 err = -ENOMEM;
675 goto fail;
679 * Set up data on packet
682 ip_copy_metadata(skb2, skb);
683 skb_reserve(skb2, ll_rs);
684 skb_put(skb2, len + hlen);
685 skb_reset_network_header(skb2);
686 skb2->transport_header = skb2->network_header + hlen;
689 * Charge the memory for the fragment to any owner
690 * it might possess
693 if (skb->sk)
694 skb_set_owner_w(skb2, skb->sk);
697 * Copy the packet header into the new buffer.
700 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
703 * Copy a block of the IP datagram.
705 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
706 BUG();
707 left -= len;
710 * Fill in the new header fields.
712 iph = ip_hdr(skb2);
713 iph->frag_off = htons((offset >> 3));
715 /* ANK: dirty, but effective trick. Upgrade options only if
716 * the segment to be fragmented was THE FIRST (otherwise,
717 * options are already fixed) and make it ONCE
718 * on the initial skb, so that all the following fragments
719 * will inherit fixed options.
721 if (offset == 0)
722 ip_options_fragment(skb);
725 * Added AC : If we are fragmenting a fragment that's not the
726 * last fragment then keep MF on each bit
728 if (left > 0 || not_last_frag)
729 iph->frag_off |= htons(IP_MF);
730 ptr += len;
731 offset += len;
734 * Put this fragment into the sending queue.
736 iph->tot_len = htons(len + hlen);
738 ip_send_check(iph);
740 err = output(sk, skb2);
741 if (err)
742 goto fail;
744 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
746 consume_skb(skb);
747 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
748 return err;
750 fail:
751 kfree_skb(skb);
752 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
753 return err;
755 EXPORT_SYMBOL(ip_fragment);
758 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
760 struct msghdr *msg = from;
762 if (skb->ip_summed == CHECKSUM_PARTIAL) {
763 if (copy_from_iter(to, len, &msg->msg_iter) != len)
764 return -EFAULT;
765 } else {
766 __wsum csum = 0;
767 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
768 return -EFAULT;
769 skb->csum = csum_block_add(skb->csum, csum, odd);
771 return 0;
773 EXPORT_SYMBOL(ip_generic_getfrag);
775 static inline __wsum
776 csum_page(struct page *page, int offset, int copy)
778 char *kaddr;
779 __wsum csum;
780 kaddr = kmap(page);
781 csum = csum_partial(kaddr + offset, copy, 0);
782 kunmap(page);
783 return csum;
786 static inline int ip_ufo_append_data(struct sock *sk,
787 struct sk_buff_head *queue,
788 int getfrag(void *from, char *to, int offset, int len,
789 int odd, struct sk_buff *skb),
790 void *from, int length, int hh_len, int fragheaderlen,
791 int transhdrlen, int maxfraglen, unsigned int flags)
793 struct sk_buff *skb;
794 int err;
796 /* There is support for UDP fragmentation offload by network
797 * device, so create one single skb packet containing complete
798 * udp datagram
800 skb = skb_peek_tail(queue);
801 if (!skb) {
802 skb = sock_alloc_send_skb(sk,
803 hh_len + fragheaderlen + transhdrlen + 20,
804 (flags & MSG_DONTWAIT), &err);
806 if (!skb)
807 return err;
809 /* reserve space for Hardware header */
810 skb_reserve(skb, hh_len);
812 /* create space for UDP/IP header */
813 skb_put(skb, fragheaderlen + transhdrlen);
815 /* initialize network header pointer */
816 skb_reset_network_header(skb);
818 /* initialize protocol header pointer */
819 skb->transport_header = skb->network_header + fragheaderlen;
821 skb->csum = 0;
823 __skb_queue_tail(queue, skb);
824 } else if (skb_is_gso(skb)) {
825 goto append;
828 skb->ip_summed = CHECKSUM_PARTIAL;
829 /* specify the length of each IP datagram fragment */
830 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
831 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
833 append:
834 return skb_append_datato_frags(sk, skb, getfrag, from,
835 (length - transhdrlen));
838 static int __ip_append_data(struct sock *sk,
839 struct flowi4 *fl4,
840 struct sk_buff_head *queue,
841 struct inet_cork *cork,
842 struct page_frag *pfrag,
843 int getfrag(void *from, char *to, int offset,
844 int len, int odd, struct sk_buff *skb),
845 void *from, int length, int transhdrlen,
846 unsigned int flags)
848 struct inet_sock *inet = inet_sk(sk);
849 struct sk_buff *skb;
851 struct ip_options *opt = cork->opt;
852 int hh_len;
853 int exthdrlen;
854 int mtu;
855 int copy;
856 int err;
857 int offset = 0;
858 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
859 int csummode = CHECKSUM_NONE;
860 struct rtable *rt = (struct rtable *)cork->dst;
861 u32 tskey = 0;
863 skb = skb_peek_tail(queue);
865 exthdrlen = !skb ? rt->dst.header_len : 0;
866 mtu = cork->fragsize;
867 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
868 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
869 tskey = sk->sk_tskey++;
871 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
873 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
874 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
875 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
877 if (cork->length + length > maxnonfragsize - fragheaderlen) {
878 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
879 mtu - (opt ? opt->optlen : 0));
880 return -EMSGSIZE;
884 * transhdrlen > 0 means that this is the first fragment and we wish
885 * it won't be fragmented in the future.
887 if (transhdrlen &&
888 length + fragheaderlen <= mtu &&
889 rt->dst.dev->features & NETIF_F_V4_CSUM &&
890 !exthdrlen)
891 csummode = CHECKSUM_PARTIAL;
893 cork->length += length;
894 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
895 (sk->sk_protocol == IPPROTO_UDP) &&
896 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
897 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
898 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
899 hh_len, fragheaderlen, transhdrlen,
900 maxfraglen, flags);
901 if (err)
902 goto error;
903 return 0;
906 /* So, what's going on in the loop below?
908 * We use calculated fragment length to generate chained skb,
909 * each of segments is IP fragment ready for sending to network after
910 * adding appropriate IP header.
913 if (!skb)
914 goto alloc_new_skb;
916 while (length > 0) {
917 /* Check if the remaining data fits into current packet. */
918 copy = mtu - skb->len;
919 if (copy < length)
920 copy = maxfraglen - skb->len;
921 if (copy <= 0) {
922 char *data;
923 unsigned int datalen;
924 unsigned int fraglen;
925 unsigned int fraggap;
926 unsigned int alloclen;
927 struct sk_buff *skb_prev;
928 alloc_new_skb:
929 skb_prev = skb;
930 if (skb_prev)
931 fraggap = skb_prev->len - maxfraglen;
932 else
933 fraggap = 0;
936 * If remaining data exceeds the mtu,
937 * we know we need more fragment(s).
939 datalen = length + fraggap;
940 if (datalen > mtu - fragheaderlen)
941 datalen = maxfraglen - fragheaderlen;
942 fraglen = datalen + fragheaderlen;
944 if ((flags & MSG_MORE) &&
945 !(rt->dst.dev->features&NETIF_F_SG))
946 alloclen = mtu;
947 else
948 alloclen = fraglen;
950 alloclen += exthdrlen;
952 /* The last fragment gets additional space at tail.
953 * Note, with MSG_MORE we overallocate on fragments,
954 * because we have no idea what fragment will be
955 * the last.
957 if (datalen == length + fraggap)
958 alloclen += rt->dst.trailer_len;
960 if (transhdrlen) {
961 skb = sock_alloc_send_skb(sk,
962 alloclen + hh_len + 15,
963 (flags & MSG_DONTWAIT), &err);
964 } else {
965 skb = NULL;
966 if (atomic_read(&sk->sk_wmem_alloc) <=
967 2 * sk->sk_sndbuf)
968 skb = sock_wmalloc(sk,
969 alloclen + hh_len + 15, 1,
970 sk->sk_allocation);
971 if (unlikely(!skb))
972 err = -ENOBUFS;
974 if (!skb)
975 goto error;
978 * Fill in the control structures
980 skb->ip_summed = csummode;
981 skb->csum = 0;
982 skb_reserve(skb, hh_len);
984 /* only the initial fragment is time stamped */
985 skb_shinfo(skb)->tx_flags = cork->tx_flags;
986 cork->tx_flags = 0;
987 skb_shinfo(skb)->tskey = tskey;
988 tskey = 0;
991 * Find where to start putting bytes.
993 data = skb_put(skb, fraglen + exthdrlen);
994 skb_set_network_header(skb, exthdrlen);
995 skb->transport_header = (skb->network_header +
996 fragheaderlen);
997 data += fragheaderlen + exthdrlen;
999 if (fraggap) {
1000 skb->csum = skb_copy_and_csum_bits(
1001 skb_prev, maxfraglen,
1002 data + transhdrlen, fraggap, 0);
1003 skb_prev->csum = csum_sub(skb_prev->csum,
1004 skb->csum);
1005 data += fraggap;
1006 pskb_trim_unique(skb_prev, maxfraglen);
1009 copy = datalen - transhdrlen - fraggap;
1010 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1011 err = -EFAULT;
1012 kfree_skb(skb);
1013 goto error;
1016 offset += copy;
1017 length -= datalen - fraggap;
1018 transhdrlen = 0;
1019 exthdrlen = 0;
1020 csummode = CHECKSUM_NONE;
1023 * Put the packet on the pending queue.
1025 __skb_queue_tail(queue, skb);
1026 continue;
1029 if (copy > length)
1030 copy = length;
1032 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1033 unsigned int off;
1035 off = skb->len;
1036 if (getfrag(from, skb_put(skb, copy),
1037 offset, copy, off, skb) < 0) {
1038 __skb_trim(skb, off);
1039 err = -EFAULT;
1040 goto error;
1042 } else {
1043 int i = skb_shinfo(skb)->nr_frags;
1045 err = -ENOMEM;
1046 if (!sk_page_frag_refill(sk, pfrag))
1047 goto error;
1049 if (!skb_can_coalesce(skb, i, pfrag->page,
1050 pfrag->offset)) {
1051 err = -EMSGSIZE;
1052 if (i == MAX_SKB_FRAGS)
1053 goto error;
1055 __skb_fill_page_desc(skb, i, pfrag->page,
1056 pfrag->offset, 0);
1057 skb_shinfo(skb)->nr_frags = ++i;
1058 get_page(pfrag->page);
1060 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1061 if (getfrag(from,
1062 page_address(pfrag->page) + pfrag->offset,
1063 offset, copy, skb->len, skb) < 0)
1064 goto error_efault;
1066 pfrag->offset += copy;
1067 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1068 skb->len += copy;
1069 skb->data_len += copy;
1070 skb->truesize += copy;
1071 atomic_add(copy, &sk->sk_wmem_alloc);
1073 offset += copy;
1074 length -= copy;
1077 return 0;
1079 error_efault:
1080 err = -EFAULT;
1081 error:
1082 cork->length -= length;
1083 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1084 return err;
1087 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1088 struct ipcm_cookie *ipc, struct rtable **rtp)
1090 struct ip_options_rcu *opt;
1091 struct rtable *rt;
1094 * setup for corking.
1096 opt = ipc->opt;
1097 if (opt) {
1098 if (!cork->opt) {
1099 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1100 sk->sk_allocation);
1101 if (unlikely(!cork->opt))
1102 return -ENOBUFS;
1104 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1105 cork->flags |= IPCORK_OPT;
1106 cork->addr = ipc->addr;
1108 rt = *rtp;
1109 if (unlikely(!rt))
1110 return -EFAULT;
1112 * We steal reference to this route, caller should not release it
1114 *rtp = NULL;
1115 cork->fragsize = ip_sk_use_pmtu(sk) ?
1116 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1117 cork->dst = &rt->dst;
1118 cork->length = 0;
1119 cork->ttl = ipc->ttl;
1120 cork->tos = ipc->tos;
1121 cork->priority = ipc->priority;
1122 cork->tx_flags = ipc->tx_flags;
1124 return 0;
1128 * ip_append_data() and ip_append_page() can make one large IP datagram
1129 * from many pieces of data. Each pieces will be holded on the socket
1130 * until ip_push_pending_frames() is called. Each piece can be a page
1131 * or non-page data.
1133 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1134 * this interface potentially.
1136 * LATER: length must be adjusted by pad at tail, when it is required.
1138 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1139 int getfrag(void *from, char *to, int offset, int len,
1140 int odd, struct sk_buff *skb),
1141 void *from, int length, int transhdrlen,
1142 struct ipcm_cookie *ipc, struct rtable **rtp,
1143 unsigned int flags)
1145 struct inet_sock *inet = inet_sk(sk);
1146 int err;
1148 if (flags&MSG_PROBE)
1149 return 0;
1151 if (skb_queue_empty(&sk->sk_write_queue)) {
1152 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1153 if (err)
1154 return err;
1155 } else {
1156 transhdrlen = 0;
1159 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1160 sk_page_frag(sk), getfrag,
1161 from, length, transhdrlen, flags);
1164 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1165 int offset, size_t size, int flags)
1167 struct inet_sock *inet = inet_sk(sk);
1168 struct sk_buff *skb;
1169 struct rtable *rt;
1170 struct ip_options *opt = NULL;
1171 struct inet_cork *cork;
1172 int hh_len;
1173 int mtu;
1174 int len;
1175 int err;
1176 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1178 if (inet->hdrincl)
1179 return -EPERM;
1181 if (flags&MSG_PROBE)
1182 return 0;
1184 if (skb_queue_empty(&sk->sk_write_queue))
1185 return -EINVAL;
1187 cork = &inet->cork.base;
1188 rt = (struct rtable *)cork->dst;
1189 if (cork->flags & IPCORK_OPT)
1190 opt = cork->opt;
1192 if (!(rt->dst.dev->features&NETIF_F_SG))
1193 return -EOPNOTSUPP;
1195 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1196 mtu = cork->fragsize;
1198 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1199 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1200 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1202 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1203 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1204 mtu - (opt ? opt->optlen : 0));
1205 return -EMSGSIZE;
1208 skb = skb_peek_tail(&sk->sk_write_queue);
1209 if (!skb)
1210 return -EINVAL;
1212 cork->length += size;
1213 if ((size + skb->len > mtu) &&
1214 (sk->sk_protocol == IPPROTO_UDP) &&
1215 (rt->dst.dev->features & NETIF_F_UFO)) {
1216 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1217 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1220 while (size > 0) {
1221 int i;
1223 if (skb_is_gso(skb))
1224 len = size;
1225 else {
1227 /* Check if the remaining data fits into current packet. */
1228 len = mtu - skb->len;
1229 if (len < size)
1230 len = maxfraglen - skb->len;
1232 if (len <= 0) {
1233 struct sk_buff *skb_prev;
1234 int alloclen;
1236 skb_prev = skb;
1237 fraggap = skb_prev->len - maxfraglen;
1239 alloclen = fragheaderlen + hh_len + fraggap + 15;
1240 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1241 if (unlikely(!skb)) {
1242 err = -ENOBUFS;
1243 goto error;
1247 * Fill in the control structures
1249 skb->ip_summed = CHECKSUM_NONE;
1250 skb->csum = 0;
1251 skb_reserve(skb, hh_len);
1254 * Find where to start putting bytes.
1256 skb_put(skb, fragheaderlen + fraggap);
1257 skb_reset_network_header(skb);
1258 skb->transport_header = (skb->network_header +
1259 fragheaderlen);
1260 if (fraggap) {
1261 skb->csum = skb_copy_and_csum_bits(skb_prev,
1262 maxfraglen,
1263 skb_transport_header(skb),
1264 fraggap, 0);
1265 skb_prev->csum = csum_sub(skb_prev->csum,
1266 skb->csum);
1267 pskb_trim_unique(skb_prev, maxfraglen);
1271 * Put the packet on the pending queue.
1273 __skb_queue_tail(&sk->sk_write_queue, skb);
1274 continue;
1277 i = skb_shinfo(skb)->nr_frags;
1278 if (len > size)
1279 len = size;
1280 if (skb_can_coalesce(skb, i, page, offset)) {
1281 skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1282 } else if (i < MAX_SKB_FRAGS) {
1283 get_page(page);
1284 skb_fill_page_desc(skb, i, page, offset, len);
1285 } else {
1286 err = -EMSGSIZE;
1287 goto error;
1290 if (skb->ip_summed == CHECKSUM_NONE) {
1291 __wsum csum;
1292 csum = csum_page(page, offset, len);
1293 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1296 skb->len += len;
1297 skb->data_len += len;
1298 skb->truesize += len;
1299 atomic_add(len, &sk->sk_wmem_alloc);
1300 offset += len;
1301 size -= len;
1303 return 0;
1305 error:
1306 cork->length -= size;
1307 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1308 return err;
1311 static void ip_cork_release(struct inet_cork *cork)
1313 cork->flags &= ~IPCORK_OPT;
1314 kfree(cork->opt);
1315 cork->opt = NULL;
1316 dst_release(cork->dst);
1317 cork->dst = NULL;
1321 * Combined all pending IP fragments on the socket as one IP datagram
1322 * and push them out.
1324 struct sk_buff *__ip_make_skb(struct sock *sk,
1325 struct flowi4 *fl4,
1326 struct sk_buff_head *queue,
1327 struct inet_cork *cork)
1329 struct sk_buff *skb, *tmp_skb;
1330 struct sk_buff **tail_skb;
1331 struct inet_sock *inet = inet_sk(sk);
1332 struct net *net = sock_net(sk);
1333 struct ip_options *opt = NULL;
1334 struct rtable *rt = (struct rtable *)cork->dst;
1335 struct iphdr *iph;
1336 __be16 df = 0;
1337 __u8 ttl;
1339 skb = __skb_dequeue(queue);
1340 if (!skb)
1341 goto out;
1342 tail_skb = &(skb_shinfo(skb)->frag_list);
1344 /* move skb->data to ip header from ext header */
1345 if (skb->data < skb_network_header(skb))
1346 __skb_pull(skb, skb_network_offset(skb));
1347 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1348 __skb_pull(tmp_skb, skb_network_header_len(skb));
1349 *tail_skb = tmp_skb;
1350 tail_skb = &(tmp_skb->next);
1351 skb->len += tmp_skb->len;
1352 skb->data_len += tmp_skb->len;
1353 skb->truesize += tmp_skb->truesize;
1354 tmp_skb->destructor = NULL;
1355 tmp_skb->sk = NULL;
1358 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1359 * to fragment the frame generated here. No matter, what transforms
1360 * how transforms change size of the packet, it will come out.
1362 skb->ignore_df = ip_sk_ignore_df(sk);
1364 /* DF bit is set when we want to see DF on outgoing frames.
1365 * If ignore_df is set too, we still allow to fragment this frame
1366 * locally. */
1367 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1368 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1369 (skb->len <= dst_mtu(&rt->dst) &&
1370 ip_dont_fragment(sk, &rt->dst)))
1371 df = htons(IP_DF);
1373 if (cork->flags & IPCORK_OPT)
1374 opt = cork->opt;
1376 if (cork->ttl != 0)
1377 ttl = cork->ttl;
1378 else if (rt->rt_type == RTN_MULTICAST)
1379 ttl = inet->mc_ttl;
1380 else
1381 ttl = ip_select_ttl(inet, &rt->dst);
1383 iph = ip_hdr(skb);
1384 iph->version = 4;
1385 iph->ihl = 5;
1386 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1387 iph->frag_off = df;
1388 iph->ttl = ttl;
1389 iph->protocol = sk->sk_protocol;
1390 ip_copy_addrs(iph, fl4);
1391 ip_select_ident(net, skb, sk);
1393 if (opt) {
1394 iph->ihl += opt->optlen>>2;
1395 ip_options_build(skb, opt, cork->addr, rt, 0);
1398 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1399 skb->mark = sk->sk_mark;
1401 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1402 * on dst refcount
1404 cork->dst = NULL;
1405 skb_dst_set(skb, &rt->dst);
1407 if (iph->protocol == IPPROTO_ICMP)
1408 icmp_out_count(net, ((struct icmphdr *)
1409 skb_transport_header(skb))->type);
1411 ip_cork_release(cork);
1412 out:
1413 return skb;
1416 int ip_send_skb(struct net *net, struct sk_buff *skb)
1418 int err;
1420 err = ip_local_out(skb);
1421 if (err) {
1422 if (err > 0)
1423 err = net_xmit_errno(err);
1424 if (err)
1425 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1428 return err;
1431 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1433 struct sk_buff *skb;
1435 skb = ip_finish_skb(sk, fl4);
1436 if (!skb)
1437 return 0;
1439 /* Netfilter gets whole the not fragmented skb. */
1440 return ip_send_skb(sock_net(sk), skb);
1444 * Throw away all pending data on the socket.
1446 static void __ip_flush_pending_frames(struct sock *sk,
1447 struct sk_buff_head *queue,
1448 struct inet_cork *cork)
1450 struct sk_buff *skb;
1452 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1453 kfree_skb(skb);
1455 ip_cork_release(cork);
1458 void ip_flush_pending_frames(struct sock *sk)
1460 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1463 struct sk_buff *ip_make_skb(struct sock *sk,
1464 struct flowi4 *fl4,
1465 int getfrag(void *from, char *to, int offset,
1466 int len, int odd, struct sk_buff *skb),
1467 void *from, int length, int transhdrlen,
1468 struct ipcm_cookie *ipc, struct rtable **rtp,
1469 unsigned int flags)
1471 struct inet_cork cork;
1472 struct sk_buff_head queue;
1473 int err;
1475 if (flags & MSG_PROBE)
1476 return NULL;
1478 __skb_queue_head_init(&queue);
1480 cork.flags = 0;
1481 cork.addr = 0;
1482 cork.opt = NULL;
1483 err = ip_setup_cork(sk, &cork, ipc, rtp);
1484 if (err)
1485 return ERR_PTR(err);
1487 err = __ip_append_data(sk, fl4, &queue, &cork,
1488 &current->task_frag, getfrag,
1489 from, length, transhdrlen, flags);
1490 if (err) {
1491 __ip_flush_pending_frames(sk, &queue, &cork);
1492 return ERR_PTR(err);
1495 return __ip_make_skb(sk, fl4, &queue, &cork);
1499 * Fetch data from kernel space and fill in checksum if needed.
1501 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1502 int len, int odd, struct sk_buff *skb)
1504 __wsum csum;
1506 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1507 skb->csum = csum_block_add(skb->csum, csum, odd);
1508 return 0;
1512 * Generic function to send a packet as reply to another packet.
1513 * Used to send some TCP resets/acks so far.
1515 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1516 const struct ip_options *sopt,
1517 __be32 daddr, __be32 saddr,
1518 const struct ip_reply_arg *arg,
1519 unsigned int len)
1521 struct ip_options_data replyopts;
1522 struct ipcm_cookie ipc;
1523 struct flowi4 fl4;
1524 struct rtable *rt = skb_rtable(skb);
1525 struct net *net = sock_net(sk);
1526 struct sk_buff *nskb;
1527 int err;
1529 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1530 return;
1532 ipc.addr = daddr;
1533 ipc.opt = NULL;
1534 ipc.tx_flags = 0;
1535 ipc.ttl = 0;
1536 ipc.tos = -1;
1538 if (replyopts.opt.opt.optlen) {
1539 ipc.opt = &replyopts.opt;
1541 if (replyopts.opt.opt.srr)
1542 daddr = replyopts.opt.opt.faddr;
1545 flowi4_init_output(&fl4, arg->bound_dev_if,
1546 IP4_REPLY_MARK(net, skb->mark),
1547 RT_TOS(arg->tos),
1548 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1549 ip_reply_arg_flowi_flags(arg),
1550 daddr, saddr,
1551 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1552 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1553 rt = ip_route_output_key(net, &fl4);
1554 if (IS_ERR(rt))
1555 return;
1557 inet_sk(sk)->tos = arg->tos;
1559 sk->sk_priority = skb->priority;
1560 sk->sk_protocol = ip_hdr(skb)->protocol;
1561 sk->sk_bound_dev_if = arg->bound_dev_if;
1562 sk->sk_sndbuf = sysctl_wmem_default;
1563 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1564 len, 0, &ipc, &rt, MSG_DONTWAIT);
1565 if (unlikely(err)) {
1566 ip_flush_pending_frames(sk);
1567 goto out;
1570 nskb = skb_peek(&sk->sk_write_queue);
1571 if (nskb) {
1572 if (arg->csumoffset >= 0)
1573 *((__sum16 *)skb_transport_header(nskb) +
1574 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1575 arg->csum));
1576 nskb->ip_summed = CHECKSUM_NONE;
1577 skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1578 ip_push_pending_frames(sk, &fl4);
1580 out:
1581 ip_rt_put(rt);
1584 void __init ip_init(void)
1586 ip_rt_init();
1587 inet_initpeers();
1589 #if defined(CONFIG_IP_MULTICAST)
1590 igmp_mc_init();
1591 #endif