gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blob19d385a0f02de5b6f8806cbea80e18a9cdf323e1
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
287 int sysctl_tcp_min_tso_segs __read_mostly = 2;
289 int sysctl_tcp_autocorking __read_mostly = 1;
291 struct percpu_counter tcp_orphan_count;
292 EXPORT_SYMBOL_GPL(tcp_orphan_count);
294 long sysctl_tcp_mem[3] __read_mostly;
295 int sysctl_tcp_wmem[3] __read_mostly;
296 int sysctl_tcp_rmem[3] __read_mostly;
298 EXPORT_SYMBOL(sysctl_tcp_mem);
299 EXPORT_SYMBOL(sysctl_tcp_rmem);
300 EXPORT_SYMBOL(sysctl_tcp_wmem);
302 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
306 * Current number of TCP sockets.
308 struct percpu_counter tcp_sockets_allocated;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
312 * TCP splice context
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
326 int tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL(tcp_memory_pressure);
329 void tcp_enter_memory_pressure(struct sock *sk)
331 if (!tcp_memory_pressure) {
332 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
333 tcp_memory_pressure = 1;
336 EXPORT_SYMBOL(tcp_enter_memory_pressure);
338 /* Convert seconds to retransmits based on initial and max timeout */
339 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
341 u8 res = 0;
343 if (seconds > 0) {
344 int period = timeout;
346 res = 1;
347 while (seconds > period && res < 255) {
348 res++;
349 timeout <<= 1;
350 if (timeout > rto_max)
351 timeout = rto_max;
352 period += timeout;
355 return res;
358 /* Convert retransmits to seconds based on initial and max timeout */
359 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
361 int period = 0;
363 if (retrans > 0) {
364 period = timeout;
365 while (--retrans) {
366 timeout <<= 1;
367 if (timeout > rto_max)
368 timeout = rto_max;
369 period += timeout;
372 return period;
375 /* Address-family independent initialization for a tcp_sock.
377 * NOTE: A lot of things set to zero explicitly by call to
378 * sk_alloc() so need not be done here.
380 void tcp_init_sock(struct sock *sk)
382 struct inet_connection_sock *icsk = inet_csk(sk);
383 struct tcp_sock *tp = tcp_sk(sk);
385 __skb_queue_head_init(&tp->out_of_order_queue);
386 tcp_init_xmit_timers(sk);
387 tcp_prequeue_init(tp);
388 INIT_LIST_HEAD(&tp->tsq_node);
390 icsk->icsk_rto = TCP_TIMEOUT_INIT;
391 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
393 /* So many TCP implementations out there (incorrectly) count the
394 * initial SYN frame in their delayed-ACK and congestion control
395 * algorithms that we must have the following bandaid to talk
396 * efficiently to them. -DaveM
398 tp->snd_cwnd = TCP_INIT_CWND;
400 /* See draft-stevens-tcpca-spec-01 for discussion of the
401 * initialization of these values.
403 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
404 tp->snd_cwnd_clamp = ~0;
405 tp->mss_cache = TCP_MSS_DEFAULT;
406 u64_stats_init(&tp->syncp);
408 tp->reordering = sysctl_tcp_reordering;
409 tcp_enable_early_retrans(tp);
410 tcp_assign_congestion_control(sk);
412 tp->tsoffset = 0;
414 sk->sk_state = TCP_CLOSE;
416 sk->sk_write_space = sk_stream_write_space;
417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
419 icsk->icsk_sync_mss = tcp_sync_mss;
421 sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
424 local_bh_disable();
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
429 EXPORT_SYMBOL(tcp_init_sock);
431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
433 if (sk->sk_tsflags) {
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
436 sock_tx_timestamp(sk, &shinfo->tx_flags);
437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
443 * Wait for a TCP event.
445 * Note that we don't need to lock the socket, as the upper poll layers
446 * take care of normal races (between the test and the event) and we don't
447 * go look at any of the socket buffers directly.
449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
451 unsigned int mask;
452 struct sock *sk = sock->sk;
453 const struct tcp_sock *tp = tcp_sk(sk);
455 sock_rps_record_flow(sk);
457 sock_poll_wait(file, sk_sleep(sk), wait);
458 if (sk->sk_state == TCP_LISTEN)
459 return inet_csk_listen_poll(sk);
461 /* Socket is not locked. We are protected from async events
462 * by poll logic and correct handling of state changes
463 * made by other threads is impossible in any case.
466 mask = 0;
469 * POLLHUP is certainly not done right. But poll() doesn't
470 * have a notion of HUP in just one direction, and for a
471 * socket the read side is more interesting.
473 * Some poll() documentation says that POLLHUP is incompatible
474 * with the POLLOUT/POLLWR flags, so somebody should check this
475 * all. But careful, it tends to be safer to return too many
476 * bits than too few, and you can easily break real applications
477 * if you don't tell them that something has hung up!
479 * Check-me.
481 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
482 * our fs/select.c). It means that after we received EOF,
483 * poll always returns immediately, making impossible poll() on write()
484 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
485 * if and only if shutdown has been made in both directions.
486 * Actually, it is interesting to look how Solaris and DUX
487 * solve this dilemma. I would prefer, if POLLHUP were maskable,
488 * then we could set it on SND_SHUTDOWN. BTW examples given
489 * in Stevens' books assume exactly this behaviour, it explains
490 * why POLLHUP is incompatible with POLLOUT. --ANK
492 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
493 * blocking on fresh not-connected or disconnected socket. --ANK
495 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
496 mask |= POLLHUP;
497 if (sk->sk_shutdown & RCV_SHUTDOWN)
498 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
500 /* Connected or passive Fast Open socket? */
501 if (sk->sk_state != TCP_SYN_SENT &&
502 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
503 int target = sock_rcvlowat(sk, 0, INT_MAX);
505 if (tp->urg_seq == tp->copied_seq &&
506 !sock_flag(sk, SOCK_URGINLINE) &&
507 tp->urg_data)
508 target++;
510 /* Potential race condition. If read of tp below will
511 * escape above sk->sk_state, we can be illegally awaken
512 * in SYN_* states. */
513 if (tp->rcv_nxt - tp->copied_seq >= target)
514 mask |= POLLIN | POLLRDNORM;
516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 if (sk_stream_is_writeable(sk)) {
518 mask |= POLLOUT | POLLWRNORM;
519 } else { /* send SIGIO later */
520 set_bit(SOCK_ASYNC_NOSPACE,
521 &sk->sk_socket->flags);
522 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524 /* Race breaker. If space is freed after
525 * wspace test but before the flags are set,
526 * IO signal will be lost. Memory barrier
527 * pairs with the input side.
529 smp_mb__after_atomic();
530 if (sk_stream_is_writeable(sk))
531 mask |= POLLOUT | POLLWRNORM;
533 } else
534 mask |= POLLOUT | POLLWRNORM;
536 if (tp->urg_data & TCP_URG_VALID)
537 mask |= POLLPRI;
539 /* This barrier is coupled with smp_wmb() in tcp_reset() */
540 smp_rmb();
541 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
542 mask |= POLLERR;
544 return mask;
546 EXPORT_SYMBOL(tcp_poll);
548 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 struct tcp_sock *tp = tcp_sk(sk);
551 int answ;
552 bool slow;
554 switch (cmd) {
555 case SIOCINQ:
556 if (sk->sk_state == TCP_LISTEN)
557 return -EINVAL;
559 slow = lock_sock_fast(sk);
560 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
561 answ = 0;
562 else if (sock_flag(sk, SOCK_URGINLINE) ||
563 !tp->urg_data ||
564 before(tp->urg_seq, tp->copied_seq) ||
565 !before(tp->urg_seq, tp->rcv_nxt)) {
567 answ = tp->rcv_nxt - tp->copied_seq;
569 /* Subtract 1, if FIN was received */
570 if (answ && sock_flag(sk, SOCK_DONE))
571 answ--;
572 } else
573 answ = tp->urg_seq - tp->copied_seq;
574 unlock_sock_fast(sk, slow);
575 break;
576 case SIOCATMARK:
577 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
578 break;
579 case SIOCOUTQ:
580 if (sk->sk_state == TCP_LISTEN)
581 return -EINVAL;
583 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 answ = 0;
585 else
586 answ = tp->write_seq - tp->snd_una;
587 break;
588 case SIOCOUTQNSD:
589 if (sk->sk_state == TCP_LISTEN)
590 return -EINVAL;
592 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
593 answ = 0;
594 else
595 answ = tp->write_seq - tp->snd_nxt;
596 break;
597 default:
598 return -ENOIOCTLCMD;
601 return put_user(answ, (int __user *)arg);
603 EXPORT_SYMBOL(tcp_ioctl);
605 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
607 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
608 tp->pushed_seq = tp->write_seq;
611 static inline bool forced_push(const struct tcp_sock *tp)
613 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
616 static void skb_entail(struct sock *sk, struct sk_buff *skb)
618 struct tcp_sock *tp = tcp_sk(sk);
619 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
621 skb->csum = 0;
622 tcb->seq = tcb->end_seq = tp->write_seq;
623 tcb->tcp_flags = TCPHDR_ACK;
624 tcb->sacked = 0;
625 __skb_header_release(skb);
626 tcp_add_write_queue_tail(sk, skb);
627 sk->sk_wmem_queued += skb->truesize;
628 sk_mem_charge(sk, skb->truesize);
629 if (tp->nonagle & TCP_NAGLE_PUSH)
630 tp->nonagle &= ~TCP_NAGLE_PUSH;
633 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
635 if (flags & MSG_OOB)
636 tp->snd_up = tp->write_seq;
639 /* If a not yet filled skb is pushed, do not send it if
640 * we have data packets in Qdisc or NIC queues :
641 * Because TX completion will happen shortly, it gives a chance
642 * to coalesce future sendmsg() payload into this skb, without
643 * need for a timer, and with no latency trade off.
644 * As packets containing data payload have a bigger truesize
645 * than pure acks (dataless) packets, the last checks prevent
646 * autocorking if we only have an ACK in Qdisc/NIC queues,
647 * or if TX completion was delayed after we processed ACK packet.
649 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
650 int size_goal)
652 return skb->len < size_goal &&
653 sysctl_tcp_autocorking &&
654 skb != tcp_write_queue_head(sk) &&
655 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
658 static void tcp_push(struct sock *sk, int flags, int mss_now,
659 int nonagle, int size_goal)
661 struct tcp_sock *tp = tcp_sk(sk);
662 struct sk_buff *skb;
664 if (!tcp_send_head(sk))
665 return;
667 skb = tcp_write_queue_tail(sk);
668 if (!(flags & MSG_MORE) || forced_push(tp))
669 tcp_mark_push(tp, skb);
671 tcp_mark_urg(tp, flags);
673 if (tcp_should_autocork(sk, skb, size_goal)) {
675 /* avoid atomic op if TSQ_THROTTLED bit is already set */
676 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
677 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
678 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
680 /* It is possible TX completion already happened
681 * before we set TSQ_THROTTLED.
683 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
684 return;
687 if (flags & MSG_MORE)
688 nonagle = TCP_NAGLE_CORK;
690 __tcp_push_pending_frames(sk, mss_now, nonagle);
693 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
694 unsigned int offset, size_t len)
696 struct tcp_splice_state *tss = rd_desc->arg.data;
697 int ret;
699 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
700 tss->flags);
701 if (ret > 0)
702 rd_desc->count -= ret;
703 return ret;
706 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
708 /* Store TCP splice context information in read_descriptor_t. */
709 read_descriptor_t rd_desc = {
710 .arg.data = tss,
711 .count = tss->len,
714 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
718 * tcp_splice_read - splice data from TCP socket to a pipe
719 * @sock: socket to splice from
720 * @ppos: position (not valid)
721 * @pipe: pipe to splice to
722 * @len: number of bytes to splice
723 * @flags: splice modifier flags
725 * Description:
726 * Will read pages from given socket and fill them into a pipe.
729 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
730 struct pipe_inode_info *pipe, size_t len,
731 unsigned int flags)
733 struct sock *sk = sock->sk;
734 struct tcp_splice_state tss = {
735 .pipe = pipe,
736 .len = len,
737 .flags = flags,
739 long timeo;
740 ssize_t spliced;
741 int ret;
743 sock_rps_record_flow(sk);
745 * We can't seek on a socket input
747 if (unlikely(*ppos))
748 return -ESPIPE;
750 ret = spliced = 0;
752 lock_sock(sk);
754 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
755 while (tss.len) {
756 ret = __tcp_splice_read(sk, &tss);
757 if (ret < 0)
758 break;
759 else if (!ret) {
760 if (spliced)
761 break;
762 if (sock_flag(sk, SOCK_DONE))
763 break;
764 if (sk->sk_err) {
765 ret = sock_error(sk);
766 break;
768 if (sk->sk_shutdown & RCV_SHUTDOWN)
769 break;
770 if (sk->sk_state == TCP_CLOSE) {
772 * This occurs when user tries to read
773 * from never connected socket.
775 if (!sock_flag(sk, SOCK_DONE))
776 ret = -ENOTCONN;
777 break;
779 if (!timeo) {
780 ret = -EAGAIN;
781 break;
783 sk_wait_data(sk, &timeo);
784 if (signal_pending(current)) {
785 ret = sock_intr_errno(timeo);
786 break;
788 continue;
790 tss.len -= ret;
791 spliced += ret;
793 if (!timeo)
794 break;
795 release_sock(sk);
796 lock_sock(sk);
798 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
799 (sk->sk_shutdown & RCV_SHUTDOWN) ||
800 signal_pending(current))
801 break;
804 release_sock(sk);
806 if (spliced)
807 return spliced;
809 return ret;
811 EXPORT_SYMBOL(tcp_splice_read);
813 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
815 struct sk_buff *skb;
817 /* The TCP header must be at least 32-bit aligned. */
818 size = ALIGN(size, 4);
820 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
821 if (skb) {
822 if (sk_wmem_schedule(sk, skb->truesize)) {
823 skb_reserve(skb, sk->sk_prot->max_header);
825 * Make sure that we have exactly size bytes
826 * available to the caller, no more, no less.
828 skb->reserved_tailroom = skb->end - skb->tail - size;
829 return skb;
831 __kfree_skb(skb);
832 } else {
833 sk->sk_prot->enter_memory_pressure(sk);
834 sk_stream_moderate_sndbuf(sk);
836 return NULL;
839 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
840 int large_allowed)
842 struct tcp_sock *tp = tcp_sk(sk);
843 u32 new_size_goal, size_goal;
845 if (!large_allowed || !sk_can_gso(sk))
846 return mss_now;
848 /* Note : tcp_tso_autosize() will eventually split this later */
849 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
850 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
852 /* We try hard to avoid divides here */
853 size_goal = tp->gso_segs * mss_now;
854 if (unlikely(new_size_goal < size_goal ||
855 new_size_goal >= size_goal + mss_now)) {
856 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
857 sk->sk_gso_max_segs);
858 size_goal = tp->gso_segs * mss_now;
861 return max(size_goal, mss_now);
864 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
866 int mss_now;
868 mss_now = tcp_current_mss(sk);
869 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
871 return mss_now;
874 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
875 size_t size, int flags)
877 struct tcp_sock *tp = tcp_sk(sk);
878 int mss_now, size_goal;
879 int err;
880 ssize_t copied;
881 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
883 /* Wait for a connection to finish. One exception is TCP Fast Open
884 * (passive side) where data is allowed to be sent before a connection
885 * is fully established.
887 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
888 !tcp_passive_fastopen(sk)) {
889 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
890 goto out_err;
893 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
895 mss_now = tcp_send_mss(sk, &size_goal, flags);
896 copied = 0;
898 err = -EPIPE;
899 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
900 goto out_err;
902 while (size > 0) {
903 struct sk_buff *skb = tcp_write_queue_tail(sk);
904 int copy, i;
905 bool can_coalesce;
907 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
908 new_segment:
909 if (!sk_stream_memory_free(sk))
910 goto wait_for_sndbuf;
912 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
913 if (!skb)
914 goto wait_for_memory;
916 skb_entail(sk, skb);
917 copy = size_goal;
920 if (copy > size)
921 copy = size;
923 i = skb_shinfo(skb)->nr_frags;
924 can_coalesce = skb_can_coalesce(skb, i, page, offset);
925 if (!can_coalesce && i >= sysctl_max_skb_frags) {
926 tcp_mark_push(tp, skb);
927 goto new_segment;
929 if (!sk_wmem_schedule(sk, copy))
930 goto wait_for_memory;
932 if (can_coalesce) {
933 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
934 } else {
935 get_page(page);
936 skb_fill_page_desc(skb, i, page, offset, copy);
938 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
940 skb->len += copy;
941 skb->data_len += copy;
942 skb->truesize += copy;
943 sk->sk_wmem_queued += copy;
944 sk_mem_charge(sk, copy);
945 skb->ip_summed = CHECKSUM_PARTIAL;
946 tp->write_seq += copy;
947 TCP_SKB_CB(skb)->end_seq += copy;
948 tcp_skb_pcount_set(skb, 0);
950 if (!copied)
951 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
953 copied += copy;
954 offset += copy;
955 if (!(size -= copy)) {
956 tcp_tx_timestamp(sk, skb);
957 goto out;
960 if (skb->len < size_goal || (flags & MSG_OOB))
961 continue;
963 if (forced_push(tp)) {
964 tcp_mark_push(tp, skb);
965 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
966 } else if (skb == tcp_send_head(sk))
967 tcp_push_one(sk, mss_now);
968 continue;
970 wait_for_sndbuf:
971 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
972 wait_for_memory:
973 tcp_push(sk, flags & ~MSG_MORE, mss_now,
974 TCP_NAGLE_PUSH, size_goal);
976 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
977 goto do_error;
979 mss_now = tcp_send_mss(sk, &size_goal, flags);
982 out:
983 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
984 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
985 return copied;
987 do_error:
988 if (copied)
989 goto out;
990 out_err:
991 return sk_stream_error(sk, flags, err);
994 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
995 size_t size, int flags)
997 ssize_t res;
999 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1000 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1001 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1002 flags);
1004 lock_sock(sk);
1005 res = do_tcp_sendpages(sk, page, offset, size, flags);
1006 release_sock(sk);
1007 return res;
1009 EXPORT_SYMBOL(tcp_sendpage);
1011 static inline int select_size(const struct sock *sk, bool sg)
1013 const struct tcp_sock *tp = tcp_sk(sk);
1014 int tmp = tp->mss_cache;
1016 if (sg) {
1017 if (sk_can_gso(sk)) {
1018 /* Small frames wont use a full page:
1019 * Payload will immediately follow tcp header.
1021 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1022 } else {
1023 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1025 if (tmp >= pgbreak &&
1026 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1027 tmp = pgbreak;
1031 return tmp;
1034 void tcp_free_fastopen_req(struct tcp_sock *tp)
1036 if (tp->fastopen_req) {
1037 kfree(tp->fastopen_req);
1038 tp->fastopen_req = NULL;
1042 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1043 int *copied, size_t size)
1045 struct tcp_sock *tp = tcp_sk(sk);
1046 int err, flags;
1048 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1049 return -EOPNOTSUPP;
1050 if (tp->fastopen_req)
1051 return -EALREADY; /* Another Fast Open is in progress */
1053 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1054 sk->sk_allocation);
1055 if (unlikely(!tp->fastopen_req))
1056 return -ENOBUFS;
1057 tp->fastopen_req->data = msg;
1058 tp->fastopen_req->size = size;
1060 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1061 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1062 msg->msg_namelen, flags);
1063 *copied = tp->fastopen_req->copied;
1064 tcp_free_fastopen_req(tp);
1065 return err;
1068 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1070 struct tcp_sock *tp = tcp_sk(sk);
1071 struct sk_buff *skb;
1072 int flags, err, copied = 0;
1073 int mss_now = 0, size_goal, copied_syn = 0;
1074 bool sg;
1075 long timeo;
1077 lock_sock(sk);
1079 flags = msg->msg_flags;
1080 if (flags & MSG_FASTOPEN) {
1081 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1082 if (err == -EINPROGRESS && copied_syn > 0)
1083 goto out;
1084 else if (err)
1085 goto out_err;
1088 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1090 /* Wait for a connection to finish. One exception is TCP Fast Open
1091 * (passive side) where data is allowed to be sent before a connection
1092 * is fully established.
1094 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1095 !tcp_passive_fastopen(sk)) {
1096 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1097 goto do_error;
1100 if (unlikely(tp->repair)) {
1101 if (tp->repair_queue == TCP_RECV_QUEUE) {
1102 copied = tcp_send_rcvq(sk, msg, size);
1103 goto out_nopush;
1106 err = -EINVAL;
1107 if (tp->repair_queue == TCP_NO_QUEUE)
1108 goto out_err;
1110 /* 'common' sending to sendq */
1113 /* This should be in poll */
1114 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1116 mss_now = tcp_send_mss(sk, &size_goal, flags);
1118 /* Ok commence sending. */
1119 copied = 0;
1121 err = -EPIPE;
1122 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1123 goto out_err;
1125 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1127 while (msg_data_left(msg)) {
1128 int copy = 0;
1129 int max = size_goal;
1131 skb = tcp_write_queue_tail(sk);
1132 if (tcp_send_head(sk)) {
1133 if (skb->ip_summed == CHECKSUM_NONE)
1134 max = mss_now;
1135 copy = max - skb->len;
1138 if (copy <= 0) {
1139 new_segment:
1140 /* Allocate new segment. If the interface is SG,
1141 * allocate skb fitting to single page.
1143 if (!sk_stream_memory_free(sk))
1144 goto wait_for_sndbuf;
1146 skb = sk_stream_alloc_skb(sk,
1147 select_size(sk, sg),
1148 sk->sk_allocation);
1149 if (!skb)
1150 goto wait_for_memory;
1153 * Check whether we can use HW checksum.
1155 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1156 skb->ip_summed = CHECKSUM_PARTIAL;
1158 skb_entail(sk, skb);
1159 copy = size_goal;
1160 max = size_goal;
1162 /* All packets are restored as if they have
1163 * already been sent. skb_mstamp isn't set to
1164 * avoid wrong rtt estimation.
1166 if (tp->repair)
1167 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1170 /* Try to append data to the end of skb. */
1171 if (copy > msg_data_left(msg))
1172 copy = msg_data_left(msg);
1174 /* Where to copy to? */
1175 if (skb_availroom(skb) > 0) {
1176 /* We have some space in skb head. Superb! */
1177 copy = min_t(int, copy, skb_availroom(skb));
1178 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1179 if (err)
1180 goto do_fault;
1181 } else {
1182 bool merge = true;
1183 int i = skb_shinfo(skb)->nr_frags;
1184 struct page_frag *pfrag = sk_page_frag(sk);
1186 if (!sk_page_frag_refill(sk, pfrag))
1187 goto wait_for_memory;
1189 if (!skb_can_coalesce(skb, i, pfrag->page,
1190 pfrag->offset)) {
1191 if (i == sysctl_max_skb_frags || !sg) {
1192 tcp_mark_push(tp, skb);
1193 goto new_segment;
1195 merge = false;
1198 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200 if (!sk_wmem_schedule(sk, copy))
1201 goto wait_for_memory;
1203 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1204 pfrag->page,
1205 pfrag->offset,
1206 copy);
1207 if (err)
1208 goto do_error;
1210 /* Update the skb. */
1211 if (merge) {
1212 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1213 } else {
1214 skb_fill_page_desc(skb, i, pfrag->page,
1215 pfrag->offset, copy);
1216 get_page(pfrag->page);
1218 pfrag->offset += copy;
1221 if (!copied)
1222 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1224 tp->write_seq += copy;
1225 TCP_SKB_CB(skb)->end_seq += copy;
1226 tcp_skb_pcount_set(skb, 0);
1228 copied += copy;
1229 if (!msg_data_left(msg)) {
1230 tcp_tx_timestamp(sk, skb);
1231 goto out;
1234 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1235 continue;
1237 if (forced_push(tp)) {
1238 tcp_mark_push(tp, skb);
1239 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1240 } else if (skb == tcp_send_head(sk))
1241 tcp_push_one(sk, mss_now);
1242 continue;
1244 wait_for_sndbuf:
1245 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1246 wait_for_memory:
1247 if (copied)
1248 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1249 TCP_NAGLE_PUSH, size_goal);
1251 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1252 goto do_error;
1254 mss_now = tcp_send_mss(sk, &size_goal, flags);
1257 out:
1258 if (copied)
1259 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1260 out_nopush:
1261 release_sock(sk);
1262 return copied + copied_syn;
1264 do_fault:
1265 if (!skb->len) {
1266 tcp_unlink_write_queue(skb, sk);
1267 /* It is the one place in all of TCP, except connection
1268 * reset, where we can be unlinking the send_head.
1270 tcp_check_send_head(sk, skb);
1271 sk_wmem_free_skb(sk, skb);
1274 do_error:
1275 if (copied + copied_syn)
1276 goto out;
1277 out_err:
1278 err = sk_stream_error(sk, flags, err);
1279 release_sock(sk);
1280 return err;
1282 EXPORT_SYMBOL(tcp_sendmsg);
1285 * Handle reading urgent data. BSD has very simple semantics for
1286 * this, no blocking and very strange errors 8)
1289 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1291 struct tcp_sock *tp = tcp_sk(sk);
1293 /* No URG data to read. */
1294 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1295 tp->urg_data == TCP_URG_READ)
1296 return -EINVAL; /* Yes this is right ! */
1298 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1299 return -ENOTCONN;
1301 if (tp->urg_data & TCP_URG_VALID) {
1302 int err = 0;
1303 char c = tp->urg_data;
1305 if (!(flags & MSG_PEEK))
1306 tp->urg_data = TCP_URG_READ;
1308 /* Read urgent data. */
1309 msg->msg_flags |= MSG_OOB;
1311 if (len > 0) {
1312 if (!(flags & MSG_TRUNC))
1313 err = memcpy_to_msg(msg, &c, 1);
1314 len = 1;
1315 } else
1316 msg->msg_flags |= MSG_TRUNC;
1318 return err ? -EFAULT : len;
1321 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1322 return 0;
1324 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1325 * the available implementations agree in this case:
1326 * this call should never block, independent of the
1327 * blocking state of the socket.
1328 * Mike <pall@rz.uni-karlsruhe.de>
1330 return -EAGAIN;
1333 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1335 struct sk_buff *skb;
1336 int copied = 0, err = 0;
1338 /* XXX -- need to support SO_PEEK_OFF */
1340 skb_queue_walk(&sk->sk_write_queue, skb) {
1341 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1342 if (err)
1343 break;
1345 copied += skb->len;
1348 return err ?: copied;
1351 /* Clean up the receive buffer for full frames taken by the user,
1352 * then send an ACK if necessary. COPIED is the number of bytes
1353 * tcp_recvmsg has given to the user so far, it speeds up the
1354 * calculation of whether or not we must ACK for the sake of
1355 * a window update.
1357 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1359 struct tcp_sock *tp = tcp_sk(sk);
1360 bool time_to_ack = false;
1362 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1364 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1365 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1366 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1368 if (inet_csk_ack_scheduled(sk)) {
1369 const struct inet_connection_sock *icsk = inet_csk(sk);
1370 /* Delayed ACKs frequently hit locked sockets during bulk
1371 * receive. */
1372 if (icsk->icsk_ack.blocked ||
1373 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1374 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1376 * If this read emptied read buffer, we send ACK, if
1377 * connection is not bidirectional, user drained
1378 * receive buffer and there was a small segment
1379 * in queue.
1381 (copied > 0 &&
1382 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1383 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1384 !icsk->icsk_ack.pingpong)) &&
1385 !atomic_read(&sk->sk_rmem_alloc)))
1386 time_to_ack = true;
1389 /* We send an ACK if we can now advertise a non-zero window
1390 * which has been raised "significantly".
1392 * Even if window raised up to infinity, do not send window open ACK
1393 * in states, where we will not receive more. It is useless.
1395 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1396 __u32 rcv_window_now = tcp_receive_window(tp);
1398 /* Optimize, __tcp_select_window() is not cheap. */
1399 if (2*rcv_window_now <= tp->window_clamp) {
1400 __u32 new_window = __tcp_select_window(sk);
1402 /* Send ACK now, if this read freed lots of space
1403 * in our buffer. Certainly, new_window is new window.
1404 * We can advertise it now, if it is not less than current one.
1405 * "Lots" means "at least twice" here.
1407 if (new_window && new_window >= 2 * rcv_window_now)
1408 time_to_ack = true;
1411 if (time_to_ack)
1412 tcp_send_ack(sk);
1415 static void tcp_prequeue_process(struct sock *sk)
1417 struct sk_buff *skb;
1418 struct tcp_sock *tp = tcp_sk(sk);
1420 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1422 /* RX process wants to run with disabled BHs, though it is not
1423 * necessary */
1424 local_bh_disable();
1425 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1426 sk_backlog_rcv(sk, skb);
1427 local_bh_enable();
1429 /* Clear memory counter. */
1430 tp->ucopy.memory = 0;
1433 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1435 struct sk_buff *skb;
1436 u32 offset;
1438 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1439 offset = seq - TCP_SKB_CB(skb)->seq;
1440 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1441 offset--;
1442 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1443 *off = offset;
1444 return skb;
1446 /* This looks weird, but this can happen if TCP collapsing
1447 * splitted a fat GRO packet, while we released socket lock
1448 * in skb_splice_bits()
1450 sk_eat_skb(sk, skb);
1452 return NULL;
1456 * This routine provides an alternative to tcp_recvmsg() for routines
1457 * that would like to handle copying from skbuffs directly in 'sendfile'
1458 * fashion.
1459 * Note:
1460 * - It is assumed that the socket was locked by the caller.
1461 * - The routine does not block.
1462 * - At present, there is no support for reading OOB data
1463 * or for 'peeking' the socket using this routine
1464 * (although both would be easy to implement).
1466 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1467 sk_read_actor_t recv_actor)
1469 struct sk_buff *skb;
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 u32 seq = tp->copied_seq;
1472 u32 offset;
1473 int copied = 0;
1475 if (sk->sk_state == TCP_LISTEN)
1476 return -ENOTCONN;
1477 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1478 if (offset < skb->len) {
1479 int used;
1480 size_t len;
1482 len = skb->len - offset;
1483 /* Stop reading if we hit a patch of urgent data */
1484 if (tp->urg_data) {
1485 u32 urg_offset = tp->urg_seq - seq;
1486 if (urg_offset < len)
1487 len = urg_offset;
1488 if (!len)
1489 break;
1491 used = recv_actor(desc, skb, offset, len);
1492 if (used <= 0) {
1493 if (!copied)
1494 copied = used;
1495 break;
1496 } else if (used <= len) {
1497 seq += used;
1498 copied += used;
1499 offset += used;
1501 /* If recv_actor drops the lock (e.g. TCP splice
1502 * receive) the skb pointer might be invalid when
1503 * getting here: tcp_collapse might have deleted it
1504 * while aggregating skbs from the socket queue.
1506 skb = tcp_recv_skb(sk, seq - 1, &offset);
1507 if (!skb)
1508 break;
1509 /* TCP coalescing might have appended data to the skb.
1510 * Try to splice more frags
1512 if (offset + 1 != skb->len)
1513 continue;
1515 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1516 sk_eat_skb(sk, skb);
1517 ++seq;
1518 break;
1520 sk_eat_skb(sk, skb);
1521 if (!desc->count)
1522 break;
1523 tp->copied_seq = seq;
1525 tp->copied_seq = seq;
1527 tcp_rcv_space_adjust(sk);
1529 /* Clean up data we have read: This will do ACK frames. */
1530 if (copied > 0) {
1531 tcp_recv_skb(sk, seq, &offset);
1532 tcp_cleanup_rbuf(sk, copied);
1534 return copied;
1536 EXPORT_SYMBOL(tcp_read_sock);
1539 * This routine copies from a sock struct into the user buffer.
1541 * Technical note: in 2.3 we work on _locked_ socket, so that
1542 * tricks with *seq access order and skb->users are not required.
1543 * Probably, code can be easily improved even more.
1546 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1547 int flags, int *addr_len)
1549 struct tcp_sock *tp = tcp_sk(sk);
1550 int copied = 0;
1551 u32 peek_seq;
1552 u32 *seq;
1553 unsigned long used;
1554 int err;
1555 int target; /* Read at least this many bytes */
1556 long timeo;
1557 struct task_struct *user_recv = NULL;
1558 struct sk_buff *skb;
1559 u32 urg_hole = 0;
1561 if (unlikely(flags & MSG_ERRQUEUE))
1562 return inet_recv_error(sk, msg, len, addr_len);
1564 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1565 (sk->sk_state == TCP_ESTABLISHED))
1566 sk_busy_loop(sk, nonblock);
1568 lock_sock(sk);
1570 err = -ENOTCONN;
1571 if (sk->sk_state == TCP_LISTEN)
1572 goto out;
1574 timeo = sock_rcvtimeo(sk, nonblock);
1576 /* Urgent data needs to be handled specially. */
1577 if (flags & MSG_OOB)
1578 goto recv_urg;
1580 if (unlikely(tp->repair)) {
1581 err = -EPERM;
1582 if (!(flags & MSG_PEEK))
1583 goto out;
1585 if (tp->repair_queue == TCP_SEND_QUEUE)
1586 goto recv_sndq;
1588 err = -EINVAL;
1589 if (tp->repair_queue == TCP_NO_QUEUE)
1590 goto out;
1592 /* 'common' recv queue MSG_PEEK-ing */
1595 seq = &tp->copied_seq;
1596 if (flags & MSG_PEEK) {
1597 peek_seq = tp->copied_seq;
1598 seq = &peek_seq;
1601 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1603 do {
1604 u32 offset;
1606 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1607 if (tp->urg_data && tp->urg_seq == *seq) {
1608 if (copied)
1609 break;
1610 if (signal_pending(current)) {
1611 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1612 break;
1616 /* Next get a buffer. */
1618 skb_queue_walk(&sk->sk_receive_queue, skb) {
1619 /* Now that we have two receive queues this
1620 * shouldn't happen.
1622 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1623 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1624 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1625 flags))
1626 break;
1628 offset = *seq - TCP_SKB_CB(skb)->seq;
1629 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1630 offset--;
1631 if (offset < skb->len)
1632 goto found_ok_skb;
1633 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1634 goto found_fin_ok;
1635 WARN(!(flags & MSG_PEEK),
1636 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1637 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1640 /* Well, if we have backlog, try to process it now yet. */
1642 if (copied >= target && !sk->sk_backlog.tail)
1643 break;
1645 if (copied) {
1646 if (sk->sk_err ||
1647 sk->sk_state == TCP_CLOSE ||
1648 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1649 !timeo ||
1650 signal_pending(current))
1651 break;
1652 } else {
1653 if (sock_flag(sk, SOCK_DONE))
1654 break;
1656 if (sk->sk_err) {
1657 copied = sock_error(sk);
1658 break;
1661 if (sk->sk_shutdown & RCV_SHUTDOWN)
1662 break;
1664 if (sk->sk_state == TCP_CLOSE) {
1665 if (!sock_flag(sk, SOCK_DONE)) {
1666 /* This occurs when user tries to read
1667 * from never connected socket.
1669 copied = -ENOTCONN;
1670 break;
1672 break;
1675 if (!timeo) {
1676 copied = -EAGAIN;
1677 break;
1680 if (signal_pending(current)) {
1681 copied = sock_intr_errno(timeo);
1682 break;
1686 tcp_cleanup_rbuf(sk, copied);
1688 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1689 /* Install new reader */
1690 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1691 user_recv = current;
1692 tp->ucopy.task = user_recv;
1693 tp->ucopy.msg = msg;
1696 tp->ucopy.len = len;
1698 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1699 !(flags & (MSG_PEEK | MSG_TRUNC)));
1701 /* Ugly... If prequeue is not empty, we have to
1702 * process it before releasing socket, otherwise
1703 * order will be broken at second iteration.
1704 * More elegant solution is required!!!
1706 * Look: we have the following (pseudo)queues:
1708 * 1. packets in flight
1709 * 2. backlog
1710 * 3. prequeue
1711 * 4. receive_queue
1713 * Each queue can be processed only if the next ones
1714 * are empty. At this point we have empty receive_queue.
1715 * But prequeue _can_ be not empty after 2nd iteration,
1716 * when we jumped to start of loop because backlog
1717 * processing added something to receive_queue.
1718 * We cannot release_sock(), because backlog contains
1719 * packets arrived _after_ prequeued ones.
1721 * Shortly, algorithm is clear --- to process all
1722 * the queues in order. We could make it more directly,
1723 * requeueing packets from backlog to prequeue, if
1724 * is not empty. It is more elegant, but eats cycles,
1725 * unfortunately.
1727 if (!skb_queue_empty(&tp->ucopy.prequeue))
1728 goto do_prequeue;
1730 /* __ Set realtime policy in scheduler __ */
1733 if (copied >= target) {
1734 /* Do not sleep, just process backlog. */
1735 release_sock(sk);
1736 lock_sock(sk);
1737 } else
1738 sk_wait_data(sk, &timeo);
1740 if (user_recv) {
1741 int chunk;
1743 /* __ Restore normal policy in scheduler __ */
1745 if ((chunk = len - tp->ucopy.len) != 0) {
1746 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1747 len -= chunk;
1748 copied += chunk;
1751 if (tp->rcv_nxt == tp->copied_seq &&
1752 !skb_queue_empty(&tp->ucopy.prequeue)) {
1753 do_prequeue:
1754 tcp_prequeue_process(sk);
1756 if ((chunk = len - tp->ucopy.len) != 0) {
1757 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1758 len -= chunk;
1759 copied += chunk;
1763 if ((flags & MSG_PEEK) &&
1764 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1765 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1766 current->comm,
1767 task_pid_nr(current));
1768 peek_seq = tp->copied_seq;
1770 continue;
1772 found_ok_skb:
1773 /* Ok so how much can we use? */
1774 used = skb->len - offset;
1775 if (len < used)
1776 used = len;
1778 /* Do we have urgent data here? */
1779 if (tp->urg_data) {
1780 u32 urg_offset = tp->urg_seq - *seq;
1781 if (urg_offset < used) {
1782 if (!urg_offset) {
1783 if (!sock_flag(sk, SOCK_URGINLINE)) {
1784 ++*seq;
1785 urg_hole++;
1786 offset++;
1787 used--;
1788 if (!used)
1789 goto skip_copy;
1791 } else
1792 used = urg_offset;
1796 if (!(flags & MSG_TRUNC)) {
1797 err = skb_copy_datagram_msg(skb, offset, msg, used);
1798 if (err) {
1799 /* Exception. Bailout! */
1800 if (!copied)
1801 copied = -EFAULT;
1802 break;
1806 *seq += used;
1807 copied += used;
1808 len -= used;
1810 tcp_rcv_space_adjust(sk);
1812 skip_copy:
1813 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1814 tp->urg_data = 0;
1815 tcp_fast_path_check(sk);
1817 if (used + offset < skb->len)
1818 continue;
1820 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1821 goto found_fin_ok;
1822 if (!(flags & MSG_PEEK))
1823 sk_eat_skb(sk, skb);
1824 continue;
1826 found_fin_ok:
1827 /* Process the FIN. */
1828 ++*seq;
1829 if (!(flags & MSG_PEEK))
1830 sk_eat_skb(sk, skb);
1831 break;
1832 } while (len > 0);
1834 if (user_recv) {
1835 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1836 int chunk;
1838 tp->ucopy.len = copied > 0 ? len : 0;
1840 tcp_prequeue_process(sk);
1842 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1843 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1844 len -= chunk;
1845 copied += chunk;
1849 tp->ucopy.task = NULL;
1850 tp->ucopy.len = 0;
1853 /* According to UNIX98, msg_name/msg_namelen are ignored
1854 * on connected socket. I was just happy when found this 8) --ANK
1857 /* Clean up data we have read: This will do ACK frames. */
1858 tcp_cleanup_rbuf(sk, copied);
1860 release_sock(sk);
1861 return copied;
1863 out:
1864 release_sock(sk);
1865 return err;
1867 recv_urg:
1868 err = tcp_recv_urg(sk, msg, len, flags);
1869 goto out;
1871 recv_sndq:
1872 err = tcp_peek_sndq(sk, msg, len);
1873 goto out;
1875 EXPORT_SYMBOL(tcp_recvmsg);
1877 void tcp_set_state(struct sock *sk, int state)
1879 int oldstate = sk->sk_state;
1881 switch (state) {
1882 case TCP_ESTABLISHED:
1883 if (oldstate != TCP_ESTABLISHED)
1884 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1885 break;
1887 case TCP_CLOSE:
1888 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1889 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1891 sk->sk_prot->unhash(sk);
1892 if (inet_csk(sk)->icsk_bind_hash &&
1893 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1894 inet_put_port(sk);
1895 /* fall through */
1896 default:
1897 if (oldstate == TCP_ESTABLISHED)
1898 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1901 /* Change state AFTER socket is unhashed to avoid closed
1902 * socket sitting in hash tables.
1904 sk->sk_state = state;
1906 #ifdef STATE_TRACE
1907 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1908 #endif
1910 EXPORT_SYMBOL_GPL(tcp_set_state);
1913 * State processing on a close. This implements the state shift for
1914 * sending our FIN frame. Note that we only send a FIN for some
1915 * states. A shutdown() may have already sent the FIN, or we may be
1916 * closed.
1919 static const unsigned char new_state[16] = {
1920 /* current state: new state: action: */
1921 [0 /* (Invalid) */] = TCP_CLOSE,
1922 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1923 [TCP_SYN_SENT] = TCP_CLOSE,
1924 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1925 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1926 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1927 [TCP_TIME_WAIT] = TCP_CLOSE,
1928 [TCP_CLOSE] = TCP_CLOSE,
1929 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1930 [TCP_LAST_ACK] = TCP_LAST_ACK,
1931 [TCP_LISTEN] = TCP_CLOSE,
1932 [TCP_CLOSING] = TCP_CLOSING,
1933 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1936 static int tcp_close_state(struct sock *sk)
1938 int next = (int)new_state[sk->sk_state];
1939 int ns = next & TCP_STATE_MASK;
1941 tcp_set_state(sk, ns);
1943 return next & TCP_ACTION_FIN;
1947 * Shutdown the sending side of a connection. Much like close except
1948 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1951 void tcp_shutdown(struct sock *sk, int how)
1953 /* We need to grab some memory, and put together a FIN,
1954 * and then put it into the queue to be sent.
1955 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1957 if (!(how & SEND_SHUTDOWN))
1958 return;
1960 /* If we've already sent a FIN, or it's a closed state, skip this. */
1961 if ((1 << sk->sk_state) &
1962 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1963 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1964 /* Clear out any half completed packets. FIN if needed. */
1965 if (tcp_close_state(sk))
1966 tcp_send_fin(sk);
1969 EXPORT_SYMBOL(tcp_shutdown);
1971 bool tcp_check_oom(struct sock *sk, int shift)
1973 bool too_many_orphans, out_of_socket_memory;
1975 too_many_orphans = tcp_too_many_orphans(sk, shift);
1976 out_of_socket_memory = tcp_out_of_memory(sk);
1978 if (too_many_orphans)
1979 net_info_ratelimited("too many orphaned sockets\n");
1980 if (out_of_socket_memory)
1981 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
1982 return too_many_orphans || out_of_socket_memory;
1985 void tcp_close(struct sock *sk, long timeout)
1987 struct sk_buff *skb;
1988 int data_was_unread = 0;
1989 int state;
1991 lock_sock(sk);
1992 sk->sk_shutdown = SHUTDOWN_MASK;
1994 if (sk->sk_state == TCP_LISTEN) {
1995 tcp_set_state(sk, TCP_CLOSE);
1997 /* Special case. */
1998 inet_csk_listen_stop(sk);
2000 goto adjudge_to_death;
2003 /* We need to flush the recv. buffs. We do this only on the
2004 * descriptor close, not protocol-sourced closes, because the
2005 * reader process may not have drained the data yet!
2007 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2008 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2010 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2011 len--;
2012 data_was_unread += len;
2013 __kfree_skb(skb);
2016 sk_mem_reclaim(sk);
2018 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2019 if (sk->sk_state == TCP_CLOSE)
2020 goto adjudge_to_death;
2022 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2023 * data was lost. To witness the awful effects of the old behavior of
2024 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2025 * GET in an FTP client, suspend the process, wait for the client to
2026 * advertise a zero window, then kill -9 the FTP client, wheee...
2027 * Note: timeout is always zero in such a case.
2029 if (unlikely(tcp_sk(sk)->repair)) {
2030 sk->sk_prot->disconnect(sk, 0);
2031 } else if (data_was_unread) {
2032 /* Unread data was tossed, zap the connection. */
2033 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2034 tcp_set_state(sk, TCP_CLOSE);
2035 tcp_send_active_reset(sk, sk->sk_allocation);
2036 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2037 /* Check zero linger _after_ checking for unread data. */
2038 sk->sk_prot->disconnect(sk, 0);
2039 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2040 } else if (tcp_close_state(sk)) {
2041 /* We FIN if the application ate all the data before
2042 * zapping the connection.
2045 /* RED-PEN. Formally speaking, we have broken TCP state
2046 * machine. State transitions:
2048 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2049 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2050 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2052 * are legal only when FIN has been sent (i.e. in window),
2053 * rather than queued out of window. Purists blame.
2055 * F.e. "RFC state" is ESTABLISHED,
2056 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2058 * The visible declinations are that sometimes
2059 * we enter time-wait state, when it is not required really
2060 * (harmless), do not send active resets, when they are
2061 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2062 * they look as CLOSING or LAST_ACK for Linux)
2063 * Probably, I missed some more holelets.
2064 * --ANK
2065 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2066 * in a single packet! (May consider it later but will
2067 * probably need API support or TCP_CORK SYN-ACK until
2068 * data is written and socket is closed.)
2070 tcp_send_fin(sk);
2073 sk_stream_wait_close(sk, timeout);
2075 adjudge_to_death:
2076 state = sk->sk_state;
2077 sock_hold(sk);
2078 sock_orphan(sk);
2080 /* It is the last release_sock in its life. It will remove backlog. */
2081 release_sock(sk);
2084 /* Now socket is owned by kernel and we acquire BH lock
2085 to finish close. No need to check for user refs.
2087 local_bh_disable();
2088 bh_lock_sock(sk);
2089 WARN_ON(sock_owned_by_user(sk));
2091 percpu_counter_inc(sk->sk_prot->orphan_count);
2093 /* Have we already been destroyed by a softirq or backlog? */
2094 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2095 goto out;
2097 /* This is a (useful) BSD violating of the RFC. There is a
2098 * problem with TCP as specified in that the other end could
2099 * keep a socket open forever with no application left this end.
2100 * We use a 1 minute timeout (about the same as BSD) then kill
2101 * our end. If they send after that then tough - BUT: long enough
2102 * that we won't make the old 4*rto = almost no time - whoops
2103 * reset mistake.
2105 * Nope, it was not mistake. It is really desired behaviour
2106 * f.e. on http servers, when such sockets are useless, but
2107 * consume significant resources. Let's do it with special
2108 * linger2 option. --ANK
2111 if (sk->sk_state == TCP_FIN_WAIT2) {
2112 struct tcp_sock *tp = tcp_sk(sk);
2113 if (tp->linger2 < 0) {
2114 tcp_set_state(sk, TCP_CLOSE);
2115 tcp_send_active_reset(sk, GFP_ATOMIC);
2116 NET_INC_STATS_BH(sock_net(sk),
2117 LINUX_MIB_TCPABORTONLINGER);
2118 } else {
2119 const int tmo = tcp_fin_time(sk);
2121 if (tmo > TCP_TIMEWAIT_LEN) {
2122 inet_csk_reset_keepalive_timer(sk,
2123 tmo - TCP_TIMEWAIT_LEN);
2124 } else {
2125 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2126 goto out;
2130 if (sk->sk_state != TCP_CLOSE) {
2131 sk_mem_reclaim(sk);
2132 if (tcp_check_oom(sk, 0)) {
2133 tcp_set_state(sk, TCP_CLOSE);
2134 tcp_send_active_reset(sk, GFP_ATOMIC);
2135 NET_INC_STATS_BH(sock_net(sk),
2136 LINUX_MIB_TCPABORTONMEMORY);
2140 if (sk->sk_state == TCP_CLOSE) {
2141 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2142 /* We could get here with a non-NULL req if the socket is
2143 * aborted (e.g., closed with unread data) before 3WHS
2144 * finishes.
2146 if (req)
2147 reqsk_fastopen_remove(sk, req, false);
2148 inet_csk_destroy_sock(sk);
2150 /* Otherwise, socket is reprieved until protocol close. */
2152 out:
2153 bh_unlock_sock(sk);
2154 local_bh_enable();
2155 sock_put(sk);
2157 EXPORT_SYMBOL(tcp_close);
2159 /* These states need RST on ABORT according to RFC793 */
2161 static inline bool tcp_need_reset(int state)
2163 return (1 << state) &
2164 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2165 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2168 int tcp_disconnect(struct sock *sk, int flags)
2170 struct inet_sock *inet = inet_sk(sk);
2171 struct inet_connection_sock *icsk = inet_csk(sk);
2172 struct tcp_sock *tp = tcp_sk(sk);
2173 int err = 0;
2174 int old_state = sk->sk_state;
2176 if (old_state != TCP_CLOSE)
2177 tcp_set_state(sk, TCP_CLOSE);
2179 /* ABORT function of RFC793 */
2180 if (old_state == TCP_LISTEN) {
2181 inet_csk_listen_stop(sk);
2182 } else if (unlikely(tp->repair)) {
2183 sk->sk_err = ECONNABORTED;
2184 } else if (tcp_need_reset(old_state) ||
2185 (tp->snd_nxt != tp->write_seq &&
2186 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2187 /* The last check adjusts for discrepancy of Linux wrt. RFC
2188 * states
2190 tcp_send_active_reset(sk, gfp_any());
2191 sk->sk_err = ECONNRESET;
2192 } else if (old_state == TCP_SYN_SENT)
2193 sk->sk_err = ECONNRESET;
2195 tcp_clear_xmit_timers(sk);
2196 __skb_queue_purge(&sk->sk_receive_queue);
2197 tcp_write_queue_purge(sk);
2198 __skb_queue_purge(&tp->out_of_order_queue);
2200 inet->inet_dport = 0;
2202 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2203 inet_reset_saddr(sk);
2205 sk->sk_shutdown = 0;
2206 sock_reset_flag(sk, SOCK_DONE);
2207 tp->srtt_us = 0;
2208 if ((tp->write_seq += tp->max_window + 2) == 0)
2209 tp->write_seq = 1;
2210 icsk->icsk_backoff = 0;
2211 tp->snd_cwnd = 2;
2212 icsk->icsk_probes_out = 0;
2213 tp->packets_out = 0;
2214 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2215 tp->snd_cwnd_cnt = 0;
2216 tp->window_clamp = 0;
2217 tcp_set_ca_state(sk, TCP_CA_Open);
2218 tcp_clear_retrans(tp);
2219 inet_csk_delack_init(sk);
2220 tcp_init_send_head(sk);
2221 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2222 __sk_dst_reset(sk);
2224 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2226 sk->sk_error_report(sk);
2227 return err;
2229 EXPORT_SYMBOL(tcp_disconnect);
2231 void tcp_sock_destruct(struct sock *sk)
2233 inet_sock_destruct(sk);
2235 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2238 static inline bool tcp_can_repair_sock(const struct sock *sk)
2240 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2241 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2244 static int tcp_repair_options_est(struct tcp_sock *tp,
2245 struct tcp_repair_opt __user *optbuf, unsigned int len)
2247 struct tcp_repair_opt opt;
2249 while (len >= sizeof(opt)) {
2250 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2251 return -EFAULT;
2253 optbuf++;
2254 len -= sizeof(opt);
2256 switch (opt.opt_code) {
2257 case TCPOPT_MSS:
2258 tp->rx_opt.mss_clamp = opt.opt_val;
2259 break;
2260 case TCPOPT_WINDOW:
2262 u16 snd_wscale = opt.opt_val & 0xFFFF;
2263 u16 rcv_wscale = opt.opt_val >> 16;
2265 if (snd_wscale > 14 || rcv_wscale > 14)
2266 return -EFBIG;
2268 tp->rx_opt.snd_wscale = snd_wscale;
2269 tp->rx_opt.rcv_wscale = rcv_wscale;
2270 tp->rx_opt.wscale_ok = 1;
2272 break;
2273 case TCPOPT_SACK_PERM:
2274 if (opt.opt_val != 0)
2275 return -EINVAL;
2277 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2278 if (sysctl_tcp_fack)
2279 tcp_enable_fack(tp);
2280 break;
2281 case TCPOPT_TIMESTAMP:
2282 if (opt.opt_val != 0)
2283 return -EINVAL;
2285 tp->rx_opt.tstamp_ok = 1;
2286 break;
2290 return 0;
2294 * Socket option code for TCP.
2296 static int do_tcp_setsockopt(struct sock *sk, int level,
2297 int optname, char __user *optval, unsigned int optlen)
2299 struct tcp_sock *tp = tcp_sk(sk);
2300 struct inet_connection_sock *icsk = inet_csk(sk);
2301 int val;
2302 int err = 0;
2304 /* These are data/string values, all the others are ints */
2305 switch (optname) {
2306 case TCP_CONGESTION: {
2307 char name[TCP_CA_NAME_MAX];
2309 if (optlen < 1)
2310 return -EINVAL;
2312 val = strncpy_from_user(name, optval,
2313 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2314 if (val < 0)
2315 return -EFAULT;
2316 name[val] = 0;
2318 lock_sock(sk);
2319 err = tcp_set_congestion_control(sk, name);
2320 release_sock(sk);
2321 return err;
2323 default:
2324 /* fallthru */
2325 break;
2328 if (optlen < sizeof(int))
2329 return -EINVAL;
2331 if (get_user(val, (int __user *)optval))
2332 return -EFAULT;
2334 lock_sock(sk);
2336 switch (optname) {
2337 case TCP_MAXSEG:
2338 /* Values greater than interface MTU won't take effect. However
2339 * at the point when this call is done we typically don't yet
2340 * know which interface is going to be used */
2341 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2342 err = -EINVAL;
2343 break;
2345 tp->rx_opt.user_mss = val;
2346 break;
2348 case TCP_NODELAY:
2349 if (val) {
2350 /* TCP_NODELAY is weaker than TCP_CORK, so that
2351 * this option on corked socket is remembered, but
2352 * it is not activated until cork is cleared.
2354 * However, when TCP_NODELAY is set we make
2355 * an explicit push, which overrides even TCP_CORK
2356 * for currently queued segments.
2358 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2359 tcp_push_pending_frames(sk);
2360 } else {
2361 tp->nonagle &= ~TCP_NAGLE_OFF;
2363 break;
2365 case TCP_THIN_LINEAR_TIMEOUTS:
2366 if (val < 0 || val > 1)
2367 err = -EINVAL;
2368 else
2369 tp->thin_lto = val;
2370 break;
2372 case TCP_THIN_DUPACK:
2373 if (val < 0 || val > 1)
2374 err = -EINVAL;
2375 else {
2376 tp->thin_dupack = val;
2377 if (tp->thin_dupack)
2378 tcp_disable_early_retrans(tp);
2380 break;
2382 case TCP_REPAIR:
2383 if (!tcp_can_repair_sock(sk))
2384 err = -EPERM;
2385 else if (val == 1) {
2386 tp->repair = 1;
2387 sk->sk_reuse = SK_FORCE_REUSE;
2388 tp->repair_queue = TCP_NO_QUEUE;
2389 } else if (val == 0) {
2390 tp->repair = 0;
2391 sk->sk_reuse = SK_NO_REUSE;
2392 tcp_send_window_probe(sk);
2393 } else
2394 err = -EINVAL;
2396 break;
2398 case TCP_REPAIR_QUEUE:
2399 if (!tp->repair)
2400 err = -EPERM;
2401 else if (val < TCP_QUEUES_NR)
2402 tp->repair_queue = val;
2403 else
2404 err = -EINVAL;
2405 break;
2407 case TCP_QUEUE_SEQ:
2408 if (sk->sk_state != TCP_CLOSE)
2409 err = -EPERM;
2410 else if (tp->repair_queue == TCP_SEND_QUEUE)
2411 tp->write_seq = val;
2412 else if (tp->repair_queue == TCP_RECV_QUEUE)
2413 tp->rcv_nxt = val;
2414 else
2415 err = -EINVAL;
2416 break;
2418 case TCP_REPAIR_OPTIONS:
2419 if (!tp->repair)
2420 err = -EINVAL;
2421 else if (sk->sk_state == TCP_ESTABLISHED)
2422 err = tcp_repair_options_est(tp,
2423 (struct tcp_repair_opt __user *)optval,
2424 optlen);
2425 else
2426 err = -EPERM;
2427 break;
2429 case TCP_CORK:
2430 /* When set indicates to always queue non-full frames.
2431 * Later the user clears this option and we transmit
2432 * any pending partial frames in the queue. This is
2433 * meant to be used alongside sendfile() to get properly
2434 * filled frames when the user (for example) must write
2435 * out headers with a write() call first and then use
2436 * sendfile to send out the data parts.
2438 * TCP_CORK can be set together with TCP_NODELAY and it is
2439 * stronger than TCP_NODELAY.
2441 if (val) {
2442 tp->nonagle |= TCP_NAGLE_CORK;
2443 } else {
2444 tp->nonagle &= ~TCP_NAGLE_CORK;
2445 if (tp->nonagle&TCP_NAGLE_OFF)
2446 tp->nonagle |= TCP_NAGLE_PUSH;
2447 tcp_push_pending_frames(sk);
2449 break;
2451 case TCP_KEEPIDLE:
2452 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2453 err = -EINVAL;
2454 else {
2455 tp->keepalive_time = val * HZ;
2456 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2457 !((1 << sk->sk_state) &
2458 (TCPF_CLOSE | TCPF_LISTEN))) {
2459 u32 elapsed = keepalive_time_elapsed(tp);
2460 if (tp->keepalive_time > elapsed)
2461 elapsed = tp->keepalive_time - elapsed;
2462 else
2463 elapsed = 0;
2464 inet_csk_reset_keepalive_timer(sk, elapsed);
2467 break;
2468 case TCP_KEEPINTVL:
2469 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2470 err = -EINVAL;
2471 else
2472 tp->keepalive_intvl = val * HZ;
2473 break;
2474 case TCP_KEEPCNT:
2475 if (val < 1 || val > MAX_TCP_KEEPCNT)
2476 err = -EINVAL;
2477 else
2478 tp->keepalive_probes = val;
2479 break;
2480 case TCP_SYNCNT:
2481 if (val < 1 || val > MAX_TCP_SYNCNT)
2482 err = -EINVAL;
2483 else
2484 icsk->icsk_syn_retries = val;
2485 break;
2487 case TCP_LINGER2:
2488 if (val < 0)
2489 tp->linger2 = -1;
2490 else if (val > sysctl_tcp_fin_timeout / HZ)
2491 tp->linger2 = 0;
2492 else
2493 tp->linger2 = val * HZ;
2494 break;
2496 case TCP_DEFER_ACCEPT:
2497 /* Translate value in seconds to number of retransmits */
2498 icsk->icsk_accept_queue.rskq_defer_accept =
2499 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2500 TCP_RTO_MAX / HZ);
2501 break;
2503 case TCP_WINDOW_CLAMP:
2504 if (!val) {
2505 if (sk->sk_state != TCP_CLOSE) {
2506 err = -EINVAL;
2507 break;
2509 tp->window_clamp = 0;
2510 } else
2511 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2512 SOCK_MIN_RCVBUF / 2 : val;
2513 break;
2515 case TCP_QUICKACK:
2516 if (!val) {
2517 icsk->icsk_ack.pingpong = 1;
2518 } else {
2519 icsk->icsk_ack.pingpong = 0;
2520 if ((1 << sk->sk_state) &
2521 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2522 inet_csk_ack_scheduled(sk)) {
2523 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2524 tcp_cleanup_rbuf(sk, 1);
2525 if (!(val & 1))
2526 icsk->icsk_ack.pingpong = 1;
2529 break;
2531 #ifdef CONFIG_TCP_MD5SIG
2532 case TCP_MD5SIG:
2533 /* Read the IP->Key mappings from userspace */
2534 err = tp->af_specific->md5_parse(sk, optval, optlen);
2535 break;
2536 #endif
2537 case TCP_USER_TIMEOUT:
2538 /* Cap the max time in ms TCP will retry or probe the window
2539 * before giving up and aborting (ETIMEDOUT) a connection.
2541 if (val < 0)
2542 err = -EINVAL;
2543 else
2544 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2545 break;
2547 case TCP_FASTOPEN:
2548 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2549 TCPF_LISTEN))) {
2550 tcp_fastopen_init_key_once(true);
2552 err = fastopen_init_queue(sk, val);
2553 } else {
2554 err = -EINVAL;
2556 break;
2557 case TCP_TIMESTAMP:
2558 if (!tp->repair)
2559 err = -EPERM;
2560 else
2561 tp->tsoffset = val - tcp_time_stamp;
2562 break;
2563 case TCP_NOTSENT_LOWAT:
2564 tp->notsent_lowat = val;
2565 sk->sk_write_space(sk);
2566 break;
2567 default:
2568 err = -ENOPROTOOPT;
2569 break;
2572 release_sock(sk);
2573 return err;
2576 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2577 unsigned int optlen)
2579 const struct inet_connection_sock *icsk = inet_csk(sk);
2581 if (level != SOL_TCP)
2582 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2583 optval, optlen);
2584 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2586 EXPORT_SYMBOL(tcp_setsockopt);
2588 #ifdef CONFIG_COMPAT
2589 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2590 char __user *optval, unsigned int optlen)
2592 if (level != SOL_TCP)
2593 return inet_csk_compat_setsockopt(sk, level, optname,
2594 optval, optlen);
2595 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2597 EXPORT_SYMBOL(compat_tcp_setsockopt);
2598 #endif
2600 /* Return information about state of tcp endpoint in API format. */
2601 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2603 const struct tcp_sock *tp = tcp_sk(sk);
2604 const struct inet_connection_sock *icsk = inet_csk(sk);
2605 u32 now = tcp_time_stamp;
2606 unsigned int start;
2607 u64 rate64;
2608 u32 rate;
2610 memset(info, 0, sizeof(*info));
2612 info->tcpi_state = sk->sk_state;
2613 info->tcpi_ca_state = icsk->icsk_ca_state;
2614 info->tcpi_retransmits = icsk->icsk_retransmits;
2615 info->tcpi_probes = icsk->icsk_probes_out;
2616 info->tcpi_backoff = icsk->icsk_backoff;
2618 if (tp->rx_opt.tstamp_ok)
2619 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2620 if (tcp_is_sack(tp))
2621 info->tcpi_options |= TCPI_OPT_SACK;
2622 if (tp->rx_opt.wscale_ok) {
2623 info->tcpi_options |= TCPI_OPT_WSCALE;
2624 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2625 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2628 if (tp->ecn_flags & TCP_ECN_OK)
2629 info->tcpi_options |= TCPI_OPT_ECN;
2630 if (tp->ecn_flags & TCP_ECN_SEEN)
2631 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2632 if (tp->syn_data_acked)
2633 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2635 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2636 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2637 info->tcpi_snd_mss = tp->mss_cache;
2638 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2640 if (sk->sk_state == TCP_LISTEN) {
2641 info->tcpi_unacked = sk->sk_ack_backlog;
2642 info->tcpi_sacked = sk->sk_max_ack_backlog;
2643 } else {
2644 info->tcpi_unacked = tp->packets_out;
2645 info->tcpi_sacked = tp->sacked_out;
2647 info->tcpi_lost = tp->lost_out;
2648 info->tcpi_retrans = tp->retrans_out;
2649 info->tcpi_fackets = tp->fackets_out;
2651 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2652 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2653 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2655 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2656 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2657 info->tcpi_rtt = tp->srtt_us >> 3;
2658 info->tcpi_rttvar = tp->mdev_us >> 2;
2659 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2660 info->tcpi_snd_cwnd = tp->snd_cwnd;
2661 info->tcpi_advmss = tp->advmss;
2662 info->tcpi_reordering = tp->reordering;
2664 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2665 info->tcpi_rcv_space = tp->rcvq_space.space;
2667 info->tcpi_total_retrans = tp->total_retrans;
2669 rate = READ_ONCE(sk->sk_pacing_rate);
2670 rate64 = rate != ~0U ? rate : ~0ULL;
2671 put_unaligned(rate64, &info->tcpi_pacing_rate);
2673 rate = READ_ONCE(sk->sk_max_pacing_rate);
2674 rate64 = rate != ~0U ? rate : ~0ULL;
2675 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2677 do {
2678 start = u64_stats_fetch_begin_irq(&tp->syncp);
2679 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2680 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2681 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2683 EXPORT_SYMBOL_GPL(tcp_get_info);
2685 static int do_tcp_getsockopt(struct sock *sk, int level,
2686 int optname, char __user *optval, int __user *optlen)
2688 struct inet_connection_sock *icsk = inet_csk(sk);
2689 struct tcp_sock *tp = tcp_sk(sk);
2690 int val, len;
2692 if (get_user(len, optlen))
2693 return -EFAULT;
2695 len = min_t(unsigned int, len, sizeof(int));
2697 if (len < 0)
2698 return -EINVAL;
2700 switch (optname) {
2701 case TCP_MAXSEG:
2702 val = tp->mss_cache;
2703 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2704 val = tp->rx_opt.user_mss;
2705 if (tp->repair)
2706 val = tp->rx_opt.mss_clamp;
2707 break;
2708 case TCP_NODELAY:
2709 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2710 break;
2711 case TCP_CORK:
2712 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2713 break;
2714 case TCP_KEEPIDLE:
2715 val = keepalive_time_when(tp) / HZ;
2716 break;
2717 case TCP_KEEPINTVL:
2718 val = keepalive_intvl_when(tp) / HZ;
2719 break;
2720 case TCP_KEEPCNT:
2721 val = keepalive_probes(tp);
2722 break;
2723 case TCP_SYNCNT:
2724 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2725 break;
2726 case TCP_LINGER2:
2727 val = tp->linger2;
2728 if (val >= 0)
2729 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2730 break;
2731 case TCP_DEFER_ACCEPT:
2732 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2733 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2734 break;
2735 case TCP_WINDOW_CLAMP:
2736 val = tp->window_clamp;
2737 break;
2738 case TCP_INFO: {
2739 struct tcp_info info;
2741 if (get_user(len, optlen))
2742 return -EFAULT;
2744 tcp_get_info(sk, &info);
2746 len = min_t(unsigned int, len, sizeof(info));
2747 if (put_user(len, optlen))
2748 return -EFAULT;
2749 if (copy_to_user(optval, &info, len))
2750 return -EFAULT;
2751 return 0;
2753 case TCP_CC_INFO: {
2754 const struct tcp_congestion_ops *ca_ops;
2755 union tcp_cc_info info;
2756 size_t sz = 0;
2757 int attr;
2759 if (get_user(len, optlen))
2760 return -EFAULT;
2762 ca_ops = icsk->icsk_ca_ops;
2763 if (ca_ops && ca_ops->get_info)
2764 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2766 len = min_t(unsigned int, len, sz);
2767 if (put_user(len, optlen))
2768 return -EFAULT;
2769 if (copy_to_user(optval, &info, len))
2770 return -EFAULT;
2771 return 0;
2773 case TCP_QUICKACK:
2774 val = !icsk->icsk_ack.pingpong;
2775 break;
2777 case TCP_CONGESTION:
2778 if (get_user(len, optlen))
2779 return -EFAULT;
2780 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2781 if (put_user(len, optlen))
2782 return -EFAULT;
2783 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2784 return -EFAULT;
2785 return 0;
2787 case TCP_THIN_LINEAR_TIMEOUTS:
2788 val = tp->thin_lto;
2789 break;
2790 case TCP_THIN_DUPACK:
2791 val = tp->thin_dupack;
2792 break;
2794 case TCP_REPAIR:
2795 val = tp->repair;
2796 break;
2798 case TCP_REPAIR_QUEUE:
2799 if (tp->repair)
2800 val = tp->repair_queue;
2801 else
2802 return -EINVAL;
2803 break;
2805 case TCP_QUEUE_SEQ:
2806 if (tp->repair_queue == TCP_SEND_QUEUE)
2807 val = tp->write_seq;
2808 else if (tp->repair_queue == TCP_RECV_QUEUE)
2809 val = tp->rcv_nxt;
2810 else
2811 return -EINVAL;
2812 break;
2814 case TCP_USER_TIMEOUT:
2815 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2816 break;
2818 case TCP_FASTOPEN:
2819 if (icsk->icsk_accept_queue.fastopenq)
2820 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2821 else
2822 val = 0;
2823 break;
2825 case TCP_TIMESTAMP:
2826 val = tcp_time_stamp + tp->tsoffset;
2827 break;
2828 case TCP_NOTSENT_LOWAT:
2829 val = tp->notsent_lowat;
2830 break;
2831 default:
2832 return -ENOPROTOOPT;
2835 if (put_user(len, optlen))
2836 return -EFAULT;
2837 if (copy_to_user(optval, &val, len))
2838 return -EFAULT;
2839 return 0;
2842 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2843 int __user *optlen)
2845 struct inet_connection_sock *icsk = inet_csk(sk);
2847 if (level != SOL_TCP)
2848 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2849 optval, optlen);
2850 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2852 EXPORT_SYMBOL(tcp_getsockopt);
2854 #ifdef CONFIG_COMPAT
2855 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2856 char __user *optval, int __user *optlen)
2858 if (level != SOL_TCP)
2859 return inet_csk_compat_getsockopt(sk, level, optname,
2860 optval, optlen);
2861 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2863 EXPORT_SYMBOL(compat_tcp_getsockopt);
2864 #endif
2866 #ifdef CONFIG_TCP_MD5SIG
2867 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2868 static DEFINE_MUTEX(tcp_md5sig_mutex);
2869 static bool tcp_md5sig_pool_populated = false;
2871 static void __tcp_alloc_md5sig_pool(void)
2873 int cpu;
2875 for_each_possible_cpu(cpu) {
2876 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2877 struct crypto_hash *hash;
2879 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2880 if (IS_ERR_OR_NULL(hash))
2881 return;
2882 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2885 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2886 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2888 smp_wmb();
2889 tcp_md5sig_pool_populated = true;
2892 bool tcp_alloc_md5sig_pool(void)
2894 if (unlikely(!tcp_md5sig_pool_populated)) {
2895 mutex_lock(&tcp_md5sig_mutex);
2897 if (!tcp_md5sig_pool_populated)
2898 __tcp_alloc_md5sig_pool();
2900 mutex_unlock(&tcp_md5sig_mutex);
2902 return tcp_md5sig_pool_populated;
2904 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2908 * tcp_get_md5sig_pool - get md5sig_pool for this user
2910 * We use percpu structure, so if we succeed, we exit with preemption
2911 * and BH disabled, to make sure another thread or softirq handling
2912 * wont try to get same context.
2914 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2916 local_bh_disable();
2918 if (tcp_md5sig_pool_populated) {
2919 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2920 smp_rmb();
2921 return this_cpu_ptr(&tcp_md5sig_pool);
2923 local_bh_enable();
2924 return NULL;
2926 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2928 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2929 const struct tcphdr *th)
2931 struct scatterlist sg;
2932 struct tcphdr hdr;
2933 int err;
2935 /* We are not allowed to change tcphdr, make a local copy */
2936 memcpy(&hdr, th, sizeof(hdr));
2937 hdr.check = 0;
2939 /* options aren't included in the hash */
2940 sg_init_one(&sg, &hdr, sizeof(hdr));
2941 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2942 return err;
2944 EXPORT_SYMBOL(tcp_md5_hash_header);
2946 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2947 const struct sk_buff *skb, unsigned int header_len)
2949 struct scatterlist sg;
2950 const struct tcphdr *tp = tcp_hdr(skb);
2951 struct hash_desc *desc = &hp->md5_desc;
2952 unsigned int i;
2953 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2954 skb_headlen(skb) - header_len : 0;
2955 const struct skb_shared_info *shi = skb_shinfo(skb);
2956 struct sk_buff *frag_iter;
2958 sg_init_table(&sg, 1);
2960 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2961 if (crypto_hash_update(desc, &sg, head_data_len))
2962 return 1;
2964 for (i = 0; i < shi->nr_frags; ++i) {
2965 const struct skb_frag_struct *f = &shi->frags[i];
2966 unsigned int offset = f->page_offset;
2967 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2969 sg_set_page(&sg, page, skb_frag_size(f),
2970 offset_in_page(offset));
2971 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2972 return 1;
2975 skb_walk_frags(skb, frag_iter)
2976 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2977 return 1;
2979 return 0;
2981 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2983 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2985 struct scatterlist sg;
2987 sg_init_one(&sg, key->key, key->keylen);
2988 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2990 EXPORT_SYMBOL(tcp_md5_hash_key);
2992 #endif
2994 void tcp_done(struct sock *sk)
2996 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2998 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2999 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3001 tcp_set_state(sk, TCP_CLOSE);
3002 tcp_clear_xmit_timers(sk);
3003 if (req)
3004 reqsk_fastopen_remove(sk, req, false);
3006 sk->sk_shutdown = SHUTDOWN_MASK;
3008 if (!sock_flag(sk, SOCK_DEAD))
3009 sk->sk_state_change(sk);
3010 else
3011 inet_csk_destroy_sock(sk);
3013 EXPORT_SYMBOL_GPL(tcp_done);
3015 extern struct tcp_congestion_ops tcp_reno;
3017 static __initdata unsigned long thash_entries;
3018 static int __init set_thash_entries(char *str)
3020 ssize_t ret;
3022 if (!str)
3023 return 0;
3025 ret = kstrtoul(str, 0, &thash_entries);
3026 if (ret)
3027 return 0;
3029 return 1;
3031 __setup("thash_entries=", set_thash_entries);
3033 static void __init tcp_init_mem(void)
3035 unsigned long limit = nr_free_buffer_pages() / 8;
3036 limit = max(limit, 128UL);
3037 sysctl_tcp_mem[0] = limit / 4 * 3;
3038 sysctl_tcp_mem[1] = limit;
3039 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3042 void __init tcp_init(void)
3044 unsigned long limit;
3045 int max_rshare, max_wshare, cnt;
3046 unsigned int i;
3048 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3050 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3051 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3052 tcp_hashinfo.bind_bucket_cachep =
3053 kmem_cache_create("tcp_bind_bucket",
3054 sizeof(struct inet_bind_bucket), 0,
3055 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3057 /* Size and allocate the main established and bind bucket
3058 * hash tables.
3060 * The methodology is similar to that of the buffer cache.
3062 tcp_hashinfo.ehash =
3063 alloc_large_system_hash("TCP established",
3064 sizeof(struct inet_ehash_bucket),
3065 thash_entries,
3066 17, /* one slot per 128 KB of memory */
3068 NULL,
3069 &tcp_hashinfo.ehash_mask,
3071 thash_entries ? 0 : 512 * 1024);
3072 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3073 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3075 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3076 panic("TCP: failed to alloc ehash_locks");
3077 tcp_hashinfo.bhash =
3078 alloc_large_system_hash("TCP bind",
3079 sizeof(struct inet_bind_hashbucket),
3080 tcp_hashinfo.ehash_mask + 1,
3081 17, /* one slot per 128 KB of memory */
3083 &tcp_hashinfo.bhash_size,
3084 NULL,
3086 64 * 1024);
3087 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3088 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3089 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3090 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3094 cnt = tcp_hashinfo.ehash_mask + 1;
3096 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3097 sysctl_tcp_max_orphans = cnt / 2;
3098 sysctl_max_syn_backlog = max(128, cnt / 256);
3100 tcp_init_mem();
3101 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3102 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3103 max_wshare = min(4UL*1024*1024, limit);
3104 max_rshare = min(6UL*1024*1024, limit);
3106 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3107 sysctl_tcp_wmem[1] = 16*1024;
3108 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3110 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3111 sysctl_tcp_rmem[1] = 87380;
3112 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3114 pr_info("Hash tables configured (established %u bind %u)\n",
3115 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3117 tcp_metrics_init();
3118 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3119 tcp_tasklet_init();