gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob36b93adfd7dac399637e155a14b4078d55b4740e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 1000;
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
99 int sysctl_tcp_thin_dupack __read_mostly;
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
136 icsk->icsk_ack.last_seg_size = 0;
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
148 * "len" is invariant segment length, including TCP header.
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
176 static void tcp_incr_quickack(struct sock *sk)
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 static void tcp_enter_quickack_mode(struct sock *sk)
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
201 const struct inet_connection_sock *icsk = inet_csk(sk);
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (tcp_ca_needs_ecn((struct sock *)tp))
236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 break;
245 default:
246 if (tcp_ca_needs_ecn((struct sock *)tp))
247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 tp->ecn_flags |= TCP_ECN_SEEN;
249 break;
253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
255 if (tp->ecn_flags & TCP_ECN_OK)
256 __tcp_ecn_check_ce(tp, skb);
259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 tp->ecn_flags &= ~TCP_ECN_OK;
265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 return true;
275 return false;
278 /* Buffer size and advertised window tuning.
280 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
283 static void tcp_sndbuf_expand(struct sock *sk)
285 const struct tcp_sock *tp = tcp_sk(sk);
286 int sndmem, per_mss;
287 u32 nr_segs;
289 /* Worst case is non GSO/TSO : each frame consumes one skb
290 * and skb->head is kmalloced using power of two area of memory
292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 MAX_TCP_HEADER +
294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
296 per_mss = roundup_pow_of_two(per_mss) +
297 SKB_DATA_ALIGN(sizeof(struct sk_buff));
299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
302 /* Fast Recovery (RFC 5681 3.2) :
303 * Cubic needs 1.7 factor, rounded to 2 to include
304 * extra cushion (application might react slowly to POLLOUT)
306 sndmem = 2 * nr_segs * per_mss;
308 if (sk->sk_sndbuf < sndmem)
309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
314 * All tcp_full_space() is split to two parts: "network" buffer, allocated
315 * forward and advertised in receiver window (tp->rcv_wnd) and
316 * "application buffer", required to isolate scheduling/application
317 * latencies from network.
318 * window_clamp is maximal advertised window. It can be less than
319 * tcp_full_space(), in this case tcp_full_space() - window_clamp
320 * is reserved for "application" buffer. The less window_clamp is
321 * the smoother our behaviour from viewpoint of network, but the lower
322 * throughput and the higher sensitivity of the connection to losses. 8)
324 * rcv_ssthresh is more strict window_clamp used at "slow start"
325 * phase to predict further behaviour of this connection.
326 * It is used for two goals:
327 * - to enforce header prediction at sender, even when application
328 * requires some significant "application buffer". It is check #1.
329 * - to prevent pruning of receive queue because of misprediction
330 * of receiver window. Check #2.
332 * The scheme does not work when sender sends good segments opening
333 * window and then starts to feed us spaghetti. But it should work
334 * in common situations. Otherwise, we have to rely on queue collapsing.
337 /* Slow part of check#2. */
338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
340 struct tcp_sock *tp = tcp_sk(sk);
341 /* Optimize this! */
342 int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
345 while (tp->rcv_ssthresh <= window) {
346 if (truesize <= skb->len)
347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
349 truesize >>= 1;
350 window >>= 1;
352 return 0;
355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
357 struct tcp_sock *tp = tcp_sk(sk);
359 /* Check #1 */
360 if (tp->rcv_ssthresh < tp->window_clamp &&
361 (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 !sk_under_memory_pressure(sk)) {
363 int incr;
365 /* Check #2. Increase window, if skb with such overhead
366 * will fit to rcvbuf in future.
368 if (tcp_win_from_space(skb->truesize) <= skb->len)
369 incr = 2 * tp->advmss;
370 else
371 incr = __tcp_grow_window(sk, skb);
373 if (incr) {
374 incr = max_t(int, incr, 2 * skb->len);
375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 tp->window_clamp);
377 inet_csk(sk)->icsk_ack.quick |= 1;
382 /* 3. Tuning rcvbuf, when connection enters established state. */
383 static void tcp_fixup_rcvbuf(struct sock *sk)
385 u32 mss = tcp_sk(sk)->advmss;
386 int rcvmem;
388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 tcp_default_init_rwnd(mss);
391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 * Allow enough cushion so that sender is not limited by our window
394 if (sysctl_tcp_moderate_rcvbuf)
395 rcvmem <<= 2;
397 if (sk->sk_rcvbuf < rcvmem)
398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
401 /* 4. Try to fixup all. It is made immediately after connection enters
402 * established state.
404 void tcp_init_buffer_space(struct sock *sk)
406 struct tcp_sock *tp = tcp_sk(sk);
407 int maxwin;
409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 tcp_fixup_rcvbuf(sk);
411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 tcp_sndbuf_expand(sk);
414 tp->rcvq_space.space = tp->rcv_wnd;
415 tp->rcvq_space.time = tcp_time_stamp;
416 tp->rcvq_space.seq = tp->copied_seq;
418 maxwin = tcp_full_space(sk);
420 if (tp->window_clamp >= maxwin) {
421 tp->window_clamp = maxwin;
423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 tp->window_clamp = max(maxwin -
425 (maxwin >> sysctl_tcp_app_win),
426 4 * tp->advmss);
429 /* Force reservation of one segment. */
430 if (sysctl_tcp_app_win &&
431 tp->window_clamp > 2 * tp->advmss &&
432 tp->window_clamp + tp->advmss > maxwin)
433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 tp->snd_cwnd_stamp = tcp_time_stamp;
439 /* 5. Recalculate window clamp after socket hit its memory bounds. */
440 static void tcp_clamp_window(struct sock *sk)
442 struct tcp_sock *tp = tcp_sk(sk);
443 struct inet_connection_sock *icsk = inet_csk(sk);
445 icsk->icsk_ack.quick = 0;
447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 !sk_under_memory_pressure(sk) &&
450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 sysctl_tcp_rmem[2]);
454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
458 /* Initialize RCV_MSS value.
459 * RCV_MSS is an our guess about MSS used by the peer.
460 * We haven't any direct information about the MSS.
461 * It's better to underestimate the RCV_MSS rather than overestimate.
462 * Overestimations make us ACKing less frequently than needed.
463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
465 void tcp_initialize_rcv_mss(struct sock *sk)
467 const struct tcp_sock *tp = tcp_sk(sk);
468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
470 hint = min(hint, tp->rcv_wnd / 2);
471 hint = min(hint, TCP_MSS_DEFAULT);
472 hint = max(hint, TCP_MIN_MSS);
474 inet_csk(sk)->icsk_ack.rcv_mss = hint;
476 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
478 /* Receiver "autotuning" code.
480 * The algorithm for RTT estimation w/o timestamps is based on
481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482 * <http://public.lanl.gov/radiant/pubs.html#DRS>
484 * More detail on this code can be found at
485 * <http://staff.psc.edu/jheffner/>,
486 * though this reference is out of date. A new paper
487 * is pending.
489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
491 u32 new_sample = tp->rcv_rtt_est.rtt;
492 long m = sample;
494 if (m == 0)
495 m = 1;
497 if (new_sample != 0) {
498 /* If we sample in larger samples in the non-timestamp
499 * case, we could grossly overestimate the RTT especially
500 * with chatty applications or bulk transfer apps which
501 * are stalled on filesystem I/O.
503 * Also, since we are only going for a minimum in the
504 * non-timestamp case, we do not smooth things out
505 * else with timestamps disabled convergence takes too
506 * long.
508 if (!win_dep) {
509 m -= (new_sample >> 3);
510 new_sample += m;
511 } else {
512 m <<= 3;
513 if (m < new_sample)
514 new_sample = m;
516 } else {
517 /* No previous measure. */
518 new_sample = m << 3;
521 if (tp->rcv_rtt_est.rtt != new_sample)
522 tp->rcv_rtt_est.rtt = new_sample;
525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
527 if (tp->rcv_rtt_est.time == 0)
528 goto new_measure;
529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 return;
531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
533 new_measure:
534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 tp->rcv_rtt_est.time = tcp_time_stamp;
538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 const struct sk_buff *skb)
541 struct tcp_sock *tp = tcp_sk(sk);
542 if (tp->rx_opt.rcv_tsecr &&
543 (TCP_SKB_CB(skb)->end_seq -
544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
549 * This function should be called every time data is copied to user space.
550 * It calculates the appropriate TCP receive buffer space.
552 void tcp_rcv_space_adjust(struct sock *sk)
554 struct tcp_sock *tp = tcp_sk(sk);
555 int time;
556 int copied;
558 time = tcp_time_stamp - tp->rcvq_space.time;
559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 return;
562 /* Number of bytes copied to user in last RTT */
563 copied = tp->copied_seq - tp->rcvq_space.seq;
564 if (copied <= tp->rcvq_space.space)
565 goto new_measure;
567 /* A bit of theory :
568 * copied = bytes received in previous RTT, our base window
569 * To cope with packet losses, we need a 2x factor
570 * To cope with slow start, and sender growing its cwin by 100 %
571 * every RTT, we need a 4x factor, because the ACK we are sending
572 * now is for the next RTT, not the current one :
573 * <prev RTT . ><current RTT .. ><next RTT .... >
576 if (sysctl_tcp_moderate_rcvbuf &&
577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 int rcvwin, rcvmem, rcvbuf;
580 /* minimal window to cope with packet losses, assuming
581 * steady state. Add some cushion because of small variations.
583 rcvwin = (copied << 1) + 16 * tp->advmss;
585 /* If rate increased by 25%,
586 * assume slow start, rcvwin = 3 * copied
587 * If rate increased by 50%,
588 * assume sender can use 2x growth, rcvwin = 4 * copied
590 if (copied >=
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 if (copied >=
593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 rcvwin <<= 1;
595 else
596 rcvwin += (rcvwin >> 1);
599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 while (tcp_win_from_space(rcvmem) < tp->advmss)
601 rcvmem += 128;
603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 if (rcvbuf > sk->sk_rcvbuf) {
605 sk->sk_rcvbuf = rcvbuf;
607 /* Make the window clamp follow along. */
608 tp->window_clamp = rcvwin;
611 tp->rcvq_space.space = copied;
613 new_measure:
614 tp->rcvq_space.seq = tp->copied_seq;
615 tp->rcvq_space.time = tcp_time_stamp;
618 /* There is something which you must keep in mind when you analyze the
619 * behavior of the tp->ato delayed ack timeout interval. When a
620 * connection starts up, we want to ack as quickly as possible. The
621 * problem is that "good" TCP's do slow start at the beginning of data
622 * transmission. The means that until we send the first few ACK's the
623 * sender will sit on his end and only queue most of his data, because
624 * he can only send snd_cwnd unacked packets at any given time. For
625 * each ACK we send, he increments snd_cwnd and transmits more of his
626 * queue. -DaveM
628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
630 struct tcp_sock *tp = tcp_sk(sk);
631 struct inet_connection_sock *icsk = inet_csk(sk);
632 u32 now;
634 inet_csk_schedule_ack(sk);
636 tcp_measure_rcv_mss(sk, skb);
638 tcp_rcv_rtt_measure(tp);
640 now = tcp_time_stamp;
642 if (!icsk->icsk_ack.ato) {
643 /* The _first_ data packet received, initialize
644 * delayed ACK engine.
646 tcp_incr_quickack(sk);
647 icsk->icsk_ack.ato = TCP_ATO_MIN;
648 } else {
649 int m = now - icsk->icsk_ack.lrcvtime;
651 if (m <= TCP_ATO_MIN / 2) {
652 /* The fastest case is the first. */
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 } else if (m < icsk->icsk_ack.ato) {
655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 icsk->icsk_ack.ato = icsk->icsk_rto;
658 } else if (m > icsk->icsk_rto) {
659 /* Too long gap. Apparently sender failed to
660 * restart window, so that we send ACKs quickly.
662 tcp_incr_quickack(sk);
663 sk_mem_reclaim(sk);
666 icsk->icsk_ack.lrcvtime = now;
668 tcp_ecn_check_ce(tp, skb);
670 if (skb->len >= 128)
671 tcp_grow_window(sk, skb);
674 /* Called to compute a smoothed rtt estimate. The data fed to this
675 * routine either comes from timestamps, or from segments that were
676 * known _not_ to have been retransmitted [see Karn/Partridge
677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678 * piece by Van Jacobson.
679 * NOTE: the next three routines used to be one big routine.
680 * To save cycles in the RFC 1323 implementation it was better to break
681 * it up into three procedures. -- erics
683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
685 struct tcp_sock *tp = tcp_sk(sk);
686 long m = mrtt_us; /* RTT */
687 u32 srtt = tp->srtt_us;
689 /* The following amusing code comes from Jacobson's
690 * article in SIGCOMM '88. Note that rtt and mdev
691 * are scaled versions of rtt and mean deviation.
692 * This is designed to be as fast as possible
693 * m stands for "measurement".
695 * On a 1990 paper the rto value is changed to:
696 * RTO = rtt + 4 * mdev
698 * Funny. This algorithm seems to be very broken.
699 * These formulae increase RTO, when it should be decreased, increase
700 * too slowly, when it should be increased quickly, decrease too quickly
701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 * does not matter how to _calculate_ it. Seems, it was trap
703 * that VJ failed to avoid. 8)
705 if (srtt != 0) {
706 m -= (srtt >> 3); /* m is now error in rtt est */
707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
708 if (m < 0) {
709 m = -m; /* m is now abs(error) */
710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
711 /* This is similar to one of Eifel findings.
712 * Eifel blocks mdev updates when rtt decreases.
713 * This solution is a bit different: we use finer gain
714 * for mdev in this case (alpha*beta).
715 * Like Eifel it also prevents growth of rto,
716 * but also it limits too fast rto decreases,
717 * happening in pure Eifel.
719 if (m > 0)
720 m >>= 3;
721 } else {
722 m -= (tp->mdev_us >> 2); /* similar update on mdev */
724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
725 if (tp->mdev_us > tp->mdev_max_us) {
726 tp->mdev_max_us = tp->mdev_us;
727 if (tp->mdev_max_us > tp->rttvar_us)
728 tp->rttvar_us = tp->mdev_max_us;
730 if (after(tp->snd_una, tp->rtt_seq)) {
731 if (tp->mdev_max_us < tp->rttvar_us)
732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 tp->rtt_seq = tp->snd_nxt;
734 tp->mdev_max_us = tcp_rto_min_us(sk);
736 } else {
737 /* no previous measure. */
738 srtt = m << 3; /* take the measured time to be rtt */
739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 tp->mdev_max_us = tp->rttvar_us;
742 tp->rtt_seq = tp->snd_nxt;
744 tp->srtt_us = max(1U, srtt);
747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748 * Note: TCP stack does not yet implement pacing.
749 * FQ packet scheduler can be used to implement cheap but effective
750 * TCP pacing, to smooth the burst on large writes when packets
751 * in flight is significantly lower than cwnd (or rwin)
753 static void tcp_update_pacing_rate(struct sock *sk)
755 const struct tcp_sock *tp = tcp_sk(sk);
756 u64 rate;
758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
761 rate *= max(tp->snd_cwnd, tp->packets_out);
763 if (likely(tp->srtt_us))
764 do_div(rate, tp->srtt_us);
766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 * without any lock. We want to make sure compiler wont store
768 * intermediate values in this location.
770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 sk->sk_max_pacing_rate);
774 /* Calculate rto without backoff. This is the second half of Van Jacobson's
775 * routine referred to above.
777 static void tcp_set_rto(struct sock *sk)
779 const struct tcp_sock *tp = tcp_sk(sk);
780 /* Old crap is replaced with new one. 8)
782 * More seriously:
783 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 * It cannot be less due to utterly erratic ACK generation made
785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 * to do with delayed acks, because at cwnd>2 true delack timeout
787 * is invisible. Actually, Linux-2.4 also generates erratic
788 * ACKs in some circumstances.
790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
792 /* 2. Fixups made earlier cannot be right.
793 * If we do not estimate RTO correctly without them,
794 * all the algo is pure shit and should be replaced
795 * with correct one. It is exactly, which we pretend to do.
798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 * guarantees that rto is higher.
801 tcp_bound_rto(sk);
804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
808 if (!cwnd)
809 cwnd = TCP_INIT_CWND;
810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
814 * Packet counting of FACK is based on in-order assumptions, therefore TCP
815 * disables it when reordering is detected
817 void tcp_disable_fack(struct tcp_sock *tp)
819 /* RFC3517 uses different metric in lost marker => reset on change */
820 if (tcp_is_fack(tp))
821 tp->lost_skb_hint = NULL;
822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
825 /* Take a notice that peer is sending D-SACKs */
826 static void tcp_dsack_seen(struct tcp_sock *tp)
828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
831 static void tcp_update_reordering(struct sock *sk, const int metric,
832 const int ts)
834 struct tcp_sock *tp = tcp_sk(sk);
835 if (metric > tp->reordering) {
836 int mib_idx;
838 tp->reordering = min(sysctl_tcp_max_reordering, metric);
840 /* This exciting event is worth to be remembered. 8) */
841 if (ts)
842 mib_idx = LINUX_MIB_TCPTSREORDER;
843 else if (tcp_is_reno(tp))
844 mib_idx = LINUX_MIB_TCPRENOREORDER;
845 else if (tcp_is_fack(tp))
846 mib_idx = LINUX_MIB_TCPFACKREORDER;
847 else
848 mib_idx = LINUX_MIB_TCPSACKREORDER;
850 NET_INC_STATS_BH(sock_net(sk), mib_idx);
851 #if FASTRETRANS_DEBUG > 1
852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 tcp_disable_fack(tp);
862 if (metric > 0)
863 tcp_disable_early_retrans(tp);
866 /* This must be called before lost_out is incremented */
867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
869 if (!tp->retransmit_skb_hint ||
870 before(TCP_SKB_CB(skb)->seq,
871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 tp->retransmit_skb_hint = skb;
874 if (!tp->lost_out ||
875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tcp_verify_retransmit_hint(tp, skb);
884 tp->lost_out += tcp_skb_pcount(skb);
885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 struct sk_buff *skb)
892 tcp_verify_retransmit_hint(tp, skb);
894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 tp->lost_out += tcp_skb_pcount(skb);
896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
900 /* This procedure tags the retransmission queue when SACKs arrive.
902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903 * Packets in queue with these bits set are counted in variables
904 * sacked_out, retrans_out and lost_out, correspondingly.
906 * Valid combinations are:
907 * Tag InFlight Description
908 * 0 1 - orig segment is in flight.
909 * S 0 - nothing flies, orig reached receiver.
910 * L 0 - nothing flies, orig lost by net.
911 * R 2 - both orig and retransmit are in flight.
912 * L|R 1 - orig is lost, retransmit is in flight.
913 * S|R 1 - orig reached receiver, retrans is still in flight.
914 * (L|S|R is logically valid, it could occur when L|R is sacked,
915 * but it is equivalent to plain S and code short-curcuits it to S.
916 * L|S is logically invalid, it would mean -1 packet in flight 8))
918 * These 6 states form finite state machine, controlled by the following events:
919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921 * 3. Loss detection event of two flavors:
922 * A. Scoreboard estimator decided the packet is lost.
923 * A'. Reno "three dupacks" marks head of queue lost.
924 * A''. Its FACK modification, head until snd.fack is lost.
925 * B. SACK arrives sacking SND.NXT at the moment, when the
926 * segment was retransmitted.
927 * 4. D-SACK added new rule: D-SACK changes any tag to S.
929 * It is pleasant to note, that state diagram turns out to be commutative,
930 * so that we are allowed not to be bothered by order of our actions,
931 * when multiple events arrive simultaneously. (see the function below).
933 * Reordering detection.
934 * --------------------
935 * Reordering metric is maximal distance, which a packet can be displaced
936 * in packet stream. With SACKs we can estimate it:
938 * 1. SACK fills old hole and the corresponding segment was not
939 * ever retransmitted -> reordering. Alas, we cannot use it
940 * when segment was retransmitted.
941 * 2. The last flaw is solved with D-SACK. D-SACK arrives
942 * for retransmitted and already SACKed segment -> reordering..
943 * Both of these heuristics are not used in Loss state, when we cannot
944 * account for retransmits accurately.
946 * SACK block validation.
947 * ----------------------
949 * SACK block range validation checks that the received SACK block fits to
950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951 * Note that SND.UNA is not included to the range though being valid because
952 * it means that the receiver is rather inconsistent with itself reporting
953 * SACK reneging when it should advance SND.UNA. Such SACK block this is
954 * perfectly valid, however, in light of RFC2018 which explicitly states
955 * that "SACK block MUST reflect the newest segment. Even if the newest
956 * segment is going to be discarded ...", not that it looks very clever
957 * in case of head skb. Due to potentional receiver driven attacks, we
958 * choose to avoid immediate execution of a walk in write queue due to
959 * reneging and defer head skb's loss recovery to standard loss recovery
960 * procedure that will eventually trigger (nothing forbids us doing this).
962 * Implements also blockage to start_seq wrap-around. Problem lies in the
963 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964 * there's no guarantee that it will be before snd_nxt (n). The problem
965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * wrap (s_w):
968 * <- outs wnd -> <- wrapzone ->
969 * u e n u_w e_w s n_w
970 * | | | | | | |
971 * |<------------+------+----- TCP seqno space --------------+---------->|
972 * ...-- <2^31 ->| |<--------...
973 * ...---- >2^31 ------>| |<--------...
975 * Current code wouldn't be vulnerable but it's better still to discard such
976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979 * equal to the ideal case (infinite seqno space without wrap caused issues).
981 * With D-SACK the lower bound is extended to cover sequence space below
982 * SND.UNA down to undo_marker, which is the last point of interest. Yet
983 * again, D-SACK block must not to go across snd_una (for the same reason as
984 * for the normal SACK blocks, explained above). But there all simplicity
985 * ends, TCP might receive valid D-SACKs below that. As long as they reside
986 * fully below undo_marker they do not affect behavior in anyway and can
987 * therefore be safely ignored. In rare cases (which are more or less
988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989 * fragmentation and packet reordering past skb's retransmission. To consider
990 * them correctly, the acceptable range must be extended even more though
991 * the exact amount is rather hard to quantify. However, tp->max_window can
992 * be used as an exaggerated estimate.
994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 u32 start_seq, u32 end_seq)
997 /* Too far in future, or reversed (interpretation is ambiguous) */
998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 return false;
1001 /* Nasty start_seq wrap-around check (see comments above) */
1002 if (!before(start_seq, tp->snd_nxt))
1003 return false;
1005 /* In outstanding window? ...This is valid exit for D-SACKs too.
1006 * start_seq == snd_una is non-sensical (see comments above)
1008 if (after(start_seq, tp->snd_una))
1009 return true;
1011 if (!is_dsack || !tp->undo_marker)
1012 return false;
1014 /* ...Then it's D-SACK, and must reside below snd_una completely */
1015 if (after(end_seq, tp->snd_una))
1016 return false;
1018 if (!before(start_seq, tp->undo_marker))
1019 return true;
1021 /* Too old */
1022 if (!after(end_seq, tp->undo_marker))
1023 return false;
1025 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 * start_seq < undo_marker and end_seq >= undo_marker.
1028 return !before(start_seq, end_seq - tp->max_window);
1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032 * Event "B". Later note: FACK people cheated me again 8), we have to account
1033 * for reordering! Ugly, but should help.
1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036 * less than what is now known to be received by the other end (derived from
1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038 * retransmitted skbs to avoid some costly processing per ACKs.
1040 static void tcp_mark_lost_retrans(struct sock *sk)
1042 const struct inet_connection_sock *icsk = inet_csk(sk);
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 struct sk_buff *skb;
1045 int cnt = 0;
1046 u32 new_low_seq = tp->snd_nxt;
1047 u32 received_upto = tcp_highest_sack_seq(tp);
1049 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 !after(received_upto, tp->lost_retrans_low) ||
1051 icsk->icsk_ca_state != TCP_CA_Recovery)
1052 return;
1054 tcp_for_write_queue(skb, sk) {
1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1057 if (skb == tcp_send_head(sk))
1058 break;
1059 if (cnt == tp->retrans_out)
1060 break;
1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 continue;
1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 continue;
1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 * constraint here (see above) but figuring out that at
1069 * least tp->reordering SACK blocks reside between ack_seq
1070 * and received_upto is not easy task to do cheaply with
1071 * the available datastructures.
1073 * Whether FACK should check here for tp->reordering segs
1074 * in-between one could argue for either way (it would be
1075 * rather simple to implement as we could count fack_count
1076 * during the walk and do tp->fackets_out - fack_count).
1078 if (after(received_upto, ack_seq)) {
1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 tp->retrans_out -= tcp_skb_pcount(skb);
1082 tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 } else {
1085 if (before(ack_seq, new_low_seq))
1086 new_low_seq = ack_seq;
1087 cnt += tcp_skb_pcount(skb);
1091 if (tp->retrans_out)
1092 tp->lost_retrans_low = new_low_seq;
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1114 dup_sack = true;
1115 tcp_dsack_seen(tp);
1116 NET_INC_STATS_BH(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1127 return dup_sack;
1130 struct tcp_sacktag_state {
1131 int reord;
1132 int fack_count;
1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1134 int flag;
1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138 * the incoming SACK may not exactly match but we can find smaller MSS
1139 * aligned portion of it that matches. Therefore we might need to fragment
1140 * which may fail and creates some hassle (caller must handle error case
1141 * returns).
1143 * FIXME: this could be merged to shift decision code
1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1146 u32 start_seq, u32 end_seq)
1148 int err;
1149 bool in_sack;
1150 unsigned int pkt_len;
1151 unsigned int mss;
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1156 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1158 mss = tcp_skb_mss(skb);
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1161 if (!in_sack) {
1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163 if (pkt_len < mss)
1164 pkt_len = mss;
1165 } else {
1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1167 if (pkt_len < mss)
1168 return -EINVAL;
1171 /* Round if necessary so that SACKs cover only full MSSes
1172 * and/or the remaining small portion (if present)
1174 if (pkt_len > mss) {
1175 unsigned int new_len = (pkt_len / mss) * mss;
1176 if (!in_sack && new_len < pkt_len) {
1177 new_len += mss;
1178 if (new_len >= skb->len)
1179 return 0;
1181 pkt_len = new_len;
1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184 if (err < 0)
1185 return err;
1188 return in_sack;
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 struct tcp_sacktag_state *state, u8 sacked,
1194 u32 start_seq, u32 end_seq,
1195 int dup_sack, int pcount,
1196 const struct skb_mstamp *xmit_time)
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 int fack_count = state->fack_count;
1201 /* Account D-SACK for retransmitted packet. */
1202 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203 if (tp->undo_marker && tp->undo_retrans > 0 &&
1204 after(end_seq, tp->undo_marker))
1205 tp->undo_retrans--;
1206 if (sacked & TCPCB_SACKED_ACKED)
1207 state->reord = min(fack_count, state->reord);
1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 if (!after(end_seq, tp->snd_una))
1212 return sacked;
1214 if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1220 if (sacked & TCPCB_LOST) {
1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1230 if (before(start_seq,
1231 tcp_highest_sack_seq(tp)))
1232 state->reord = min(fack_count,
1233 state->reord);
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
1236 /* Pick the earliest sequence sacked for RTT */
1237 if (state->rtt_us < 0) {
1238 struct skb_mstamp now;
1240 skb_mstamp_get(&now);
1241 state->rtt_us = skb_mstamp_us_delta(&now,
1242 xmit_time);
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1256 fack_count += pcount;
1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 tp->lost_cnt_hint += pcount;
1263 if (fack_count > tp->fackets_out)
1264 tp->fackets_out = fack_count;
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
1273 tp->retrans_out -= pcount;
1276 return sacked;
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1292 BUG_ON(!pcount);
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 start_seq, end_seq, dup_sack, pcount,
1302 &skb->skb_mstamp);
1304 if (skb == tp->lost_skb_hint)
1305 tp->lost_cnt_hint += pcount;
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1310 tcp_skb_pcount_add(prev, pcount);
1311 BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1319 if (!skb_shinfo(prev)->gso_size) {
1320 skb_shinfo(prev)->gso_size = mss;
1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1) {
1326 skb_shinfo(skb)->gso_size = 0;
1327 skb_shinfo(skb)->gso_type = 0;
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 return false;
1339 /* Whole SKB was eaten :-) */
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 TCP_SKB_CB(prev)->end_seq++;
1352 if (skb == tcp_highest_sack(sk))
1353 tcp_advance_highest_sack(sk, skb);
1355 tcp_unlink_write_queue(skb, sk);
1356 sk_wmem_free_skb(sk, skb);
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1360 return true;
1363 /* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1371 /* Shifting pages past head area doesn't work */
1372 static int skb_can_shift(const struct sk_buff *skb)
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 * skb.
1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381 struct tcp_sacktag_state *state,
1382 u32 start_seq, u32 end_seq,
1383 bool dup_sack)
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct sk_buff *prev;
1387 int mss;
1388 int pcount = 0;
1389 int len;
1390 int in_sack;
1392 if (!sk_can_gso(sk))
1393 goto fallback;
1395 /* Normally R but no L won't result in plain S */
1396 if (!dup_sack &&
1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 goto fallback;
1399 if (!skb_can_shift(skb))
1400 goto fallback;
1401 /* This frame is about to be dropped (was ACKed). */
1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 goto fallback;
1405 /* Can only happen with delayed DSACK + discard craziness */
1406 if (unlikely(skb == tcp_write_queue_head(sk)))
1407 goto fallback;
1408 prev = tcp_write_queue_prev(sk, skb);
1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 goto fallback;
1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1416 if (in_sack) {
1417 len = skb->len;
1418 pcount = tcp_skb_pcount(skb);
1419 mss = tcp_skb_seglen(skb);
1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 * drop this restriction as unnecessary
1424 if (mss != tcp_skb_seglen(prev))
1425 goto fallback;
1426 } else {
1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 goto noop;
1429 /* CHECKME: This is non-MSS split case only?, this will
1430 * cause skipped skbs due to advancing loop btw, original
1431 * has that feature too
1433 if (tcp_skb_pcount(skb) <= 1)
1434 goto noop;
1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 if (!in_sack) {
1438 /* TODO: head merge to next could be attempted here
1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 * though it might not be worth of the additional hassle
1442 * ...we can probably just fallback to what was done
1443 * previously. We could try merging non-SACKed ones
1444 * as well but it probably isn't going to buy off
1445 * because later SACKs might again split them, and
1446 * it would make skb timestamp tracking considerably
1447 * harder problem.
1449 goto fallback;
1452 len = end_seq - TCP_SKB_CB(skb)->seq;
1453 BUG_ON(len < 0);
1454 BUG_ON(len > skb->len);
1456 /* MSS boundaries should be honoured or else pcount will
1457 * severely break even though it makes things bit trickier.
1458 * Optimize common case to avoid most of the divides
1460 mss = tcp_skb_mss(skb);
1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 * drop this restriction as unnecessary
1465 if (mss != tcp_skb_seglen(prev))
1466 goto fallback;
1468 if (len == mss) {
1469 pcount = 1;
1470 } else if (len < mss) {
1471 goto noop;
1472 } else {
1473 pcount = len / mss;
1474 len = pcount * mss;
1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 goto fallback;
1482 if (!skb_shift(prev, skb, len))
1483 goto fallback;
1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 goto out;
1487 /* Hole filled allows collapsing with the next as well, this is very
1488 * useful when hole on every nth skb pattern happens
1490 if (prev == tcp_write_queue_tail(sk))
1491 goto out;
1492 skb = tcp_write_queue_next(sk, prev);
1494 if (!skb_can_shift(skb) ||
1495 (skb == tcp_send_head(sk)) ||
1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497 (mss != tcp_skb_seglen(skb)))
1498 goto out;
1500 len = skb->len;
1501 if (skb_shift(prev, skb, len)) {
1502 pcount += tcp_skb_pcount(skb);
1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1506 out:
1507 state->fack_count += pcount;
1508 return prev;
1510 noop:
1511 return skb;
1513 fallback:
1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515 return NULL;
1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 struct tcp_sack_block *next_dup,
1520 struct tcp_sacktag_state *state,
1521 u32 start_seq, u32 end_seq,
1522 bool dup_sack_in)
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct sk_buff *tmp;
1527 tcp_for_write_queue_from(skb, sk) {
1528 int in_sack = 0;
1529 bool dup_sack = dup_sack_in;
1531 if (skb == tcp_send_head(sk))
1532 break;
1534 /* queue is in-order => we can short-circuit the walk early */
1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 break;
1538 if (next_dup &&
1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 in_sack = tcp_match_skb_to_sack(sk, skb,
1541 next_dup->start_seq,
1542 next_dup->end_seq);
1543 if (in_sack > 0)
1544 dup_sack = true;
1547 /* skb reference here is a bit tricky to get right, since
1548 * shifting can eat and free both this skb and the next,
1549 * so not even _safe variant of the loop is enough.
1551 if (in_sack <= 0) {
1552 tmp = tcp_shift_skb_data(sk, skb, state,
1553 start_seq, end_seq, dup_sack);
1554 if (tmp) {
1555 if (tmp != skb) {
1556 skb = tmp;
1557 continue;
1560 in_sack = 0;
1561 } else {
1562 in_sack = tcp_match_skb_to_sack(sk, skb,
1563 start_seq,
1564 end_seq);
1568 if (unlikely(in_sack < 0))
1569 break;
1571 if (in_sack) {
1572 TCP_SKB_CB(skb)->sacked =
1573 tcp_sacktag_one(sk,
1574 state,
1575 TCP_SKB_CB(skb)->sacked,
1576 TCP_SKB_CB(skb)->seq,
1577 TCP_SKB_CB(skb)->end_seq,
1578 dup_sack,
1579 tcp_skb_pcount(skb),
1580 &skb->skb_mstamp);
1582 if (!before(TCP_SKB_CB(skb)->seq,
1583 tcp_highest_sack_seq(tp)))
1584 tcp_advance_highest_sack(sk, skb);
1587 state->fack_count += tcp_skb_pcount(skb);
1589 return skb;
1592 /* Avoid all extra work that is being done by sacktag while walking in
1593 * a normal way
1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596 struct tcp_sacktag_state *state,
1597 u32 skip_to_seq)
1599 tcp_for_write_queue_from(skb, sk) {
1600 if (skb == tcp_send_head(sk))
1601 break;
1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 break;
1606 state->fack_count += tcp_skb_pcount(skb);
1608 return skb;
1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 struct sock *sk,
1613 struct tcp_sack_block *next_dup,
1614 struct tcp_sacktag_state *state,
1615 u32 skip_to_seq)
1617 if (!next_dup)
1618 return skb;
1620 if (before(next_dup->start_seq, skip_to_seq)) {
1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 next_dup->start_seq, next_dup->end_seq,
1627 return skb;
1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1635 static int
1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637 u32 prior_snd_una, long *sack_rtt_us)
1639 struct tcp_sock *tp = tcp_sk(sk);
1640 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 TCP_SKB_CB(ack_skb)->sacked);
1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643 struct tcp_sack_block sp[TCP_NUM_SACKS];
1644 struct tcp_sack_block *cache;
1645 struct tcp_sacktag_state state;
1646 struct sk_buff *skb;
1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 int used_sacks;
1649 bool found_dup_sack = false;
1650 int i, j;
1651 int first_sack_index;
1653 state.flag = 0;
1654 state.reord = tp->packets_out;
1655 state.rtt_us = -1L;
1657 if (!tp->sacked_out) {
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
1660 tcp_highest_sack_reset(sk);
1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack)
1666 state.flag |= FLAG_DSACKING_ACK;
1668 /* Eliminate too old ACKs, but take into
1669 * account more or less fresh ones, they can
1670 * contain valid SACK info.
1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 return 0;
1675 if (!tp->packets_out)
1676 goto out;
1678 used_sacks = 0;
1679 first_sack_index = 0;
1680 for (i = 0; i < num_sacks; i++) {
1681 bool dup_sack = !i && found_dup_sack;
1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1686 if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 sp[used_sacks].start_seq,
1688 sp[used_sacks].end_seq)) {
1689 int mib_idx;
1691 if (dup_sack) {
1692 if (!tp->undo_marker)
1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 else
1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 } else {
1697 /* Don't count olds caused by ACK reordering */
1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 !after(sp[used_sacks].end_seq, tp->snd_una))
1700 continue;
1701 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1704 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705 if (i == 0)
1706 first_sack_index = -1;
1707 continue;
1710 /* Ignore very old stuff early */
1711 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 continue;
1714 used_sacks++;
1717 /* order SACK blocks to allow in order walk of the retrans queue */
1718 for (i = used_sacks - 1; i > 0; i--) {
1719 for (j = 0; j < i; j++) {
1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 swap(sp[j], sp[j + 1]);
1723 /* Track where the first SACK block goes to */
1724 if (j == first_sack_index)
1725 first_sack_index = j + 1;
1730 skb = tcp_write_queue_head(sk);
1731 state.fack_count = 0;
1732 i = 0;
1734 if (!tp->sacked_out) {
1735 /* It's already past, so skip checking against it */
1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 } else {
1738 cache = tp->recv_sack_cache;
1739 /* Skip empty blocks in at head of the cache */
1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 !cache->end_seq)
1742 cache++;
1745 while (i < used_sacks) {
1746 u32 start_seq = sp[i].start_seq;
1747 u32 end_seq = sp[i].end_seq;
1748 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 struct tcp_sack_block *next_dup = NULL;
1751 if (found_dup_sack && ((i + 1) == first_sack_index))
1752 next_dup = &sp[i + 1];
1754 /* Skip too early cached blocks */
1755 while (tcp_sack_cache_ok(tp, cache) &&
1756 !before(start_seq, cache->end_seq))
1757 cache++;
1759 /* Can skip some work by looking recv_sack_cache? */
1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 after(end_seq, cache->start_seq)) {
1763 /* Head todo? */
1764 if (before(start_seq, cache->start_seq)) {
1765 skb = tcp_sacktag_skip(skb, sk, &state,
1766 start_seq);
1767 skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 &state,
1769 start_seq,
1770 cache->start_seq,
1771 dup_sack);
1774 /* Rest of the block already fully processed? */
1775 if (!after(end_seq, cache->end_seq))
1776 goto advance_sp;
1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 &state,
1780 cache->end_seq);
1782 /* ...tail remains todo... */
1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 /* ...but better entrypoint exists! */
1785 skb = tcp_highest_sack(sk);
1786 if (!skb)
1787 break;
1788 state.fack_count = tp->fackets_out;
1789 cache++;
1790 goto walk;
1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794 /* Check overlap against next cached too (past this one already) */
1795 cache++;
1796 continue;
1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800 skb = tcp_highest_sack(sk);
1801 if (!skb)
1802 break;
1803 state.fack_count = tp->fackets_out;
1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1807 walk:
1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809 start_seq, end_seq, dup_sack);
1811 advance_sp:
1812 i++;
1815 /* Clear the head of the cache sack blocks so we can skip it next time */
1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 tp->recv_sack_cache[i].start_seq = 0;
1818 tp->recv_sack_cache[i].end_seq = 0;
1820 for (j = 0; j < used_sacks; j++)
1821 tp->recv_sack_cache[i++] = sp[j];
1823 if ((state.reord < tp->fackets_out) &&
1824 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1825 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1827 tcp_mark_lost_retrans(sk);
1828 tcp_verify_left_out(tp);
1829 out:
1831 #if FASTRETRANS_DEBUG > 0
1832 WARN_ON((int)tp->sacked_out < 0);
1833 WARN_ON((int)tp->lost_out < 0);
1834 WARN_ON((int)tp->retrans_out < 0);
1835 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1836 #endif
1837 *sack_rtt_us = state.rtt_us;
1838 return state.flag;
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1846 u32 holes;
1848 holes = max(tp->lost_out, 1U);
1849 holes = min(holes, tp->packets_out);
1851 if ((tp->sacked_out + holes) > tp->packets_out) {
1852 tp->sacked_out = tp->packets_out - holes;
1853 return true;
1855 return false;
1858 /* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1864 struct tcp_sock *tp = tcp_sk(sk);
1865 if (tcp_limit_reno_sacked(tp))
1866 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1871 static void tcp_add_reno_sack(struct sock *sk)
1873 struct tcp_sock *tp = tcp_sk(sk);
1874 tp->sacked_out++;
1875 tcp_check_reno_reordering(sk, 0);
1876 tcp_verify_left_out(tp);
1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1883 struct tcp_sock *tp = tcp_sk(sk);
1885 if (acked > 0) {
1886 /* One ACK acked hole. The rest eat duplicate ACKs. */
1887 if (acked - 1 >= tp->sacked_out)
1888 tp->sacked_out = 0;
1889 else
1890 tp->sacked_out -= acked - 1;
1892 tcp_check_reno_reordering(sk, acked);
1893 tcp_verify_left_out(tp);
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1898 tp->sacked_out = 0;
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1903 tp->retrans_out = 0;
1904 tp->lost_out = 0;
1905 tp->undo_marker = 0;
1906 tp->undo_retrans = -1;
1907 tp->fackets_out = 0;
1908 tp->sacked_out = 0;
1911 static inline void tcp_init_undo(struct tcp_sock *tp)
1913 tp->undo_marker = tp->snd_una;
1914 /* Retransmission still in flight may cause DSACKs later. */
1915 tp->undo_retrans = tp->retrans_out ? : -1;
1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919 * and reset tags completely, otherwise preserve SACKs. If receiver
1920 * dropped its ofo queue, we will know this due to reneging detection.
1922 void tcp_enter_loss(struct sock *sk)
1924 const struct inet_connection_sock *icsk = inet_csk(sk);
1925 struct tcp_sock *tp = tcp_sk(sk);
1926 struct sk_buff *skb;
1927 bool new_recovery = false;
1928 bool is_reneg; /* is receiver reneging on SACKs? */
1930 /* Reduce ssthresh if it has not yet been made inside this window. */
1931 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932 !after(tp->high_seq, tp->snd_una) ||
1933 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934 new_recovery = true;
1935 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937 tcp_ca_event(sk, CA_EVENT_LOSS);
1938 tcp_init_undo(tp);
1940 tp->snd_cwnd = 1;
1941 tp->snd_cwnd_cnt = 0;
1942 tp->snd_cwnd_stamp = tcp_time_stamp;
1944 tp->retrans_out = 0;
1945 tp->lost_out = 0;
1947 if (tcp_is_reno(tp))
1948 tcp_reset_reno_sack(tp);
1950 skb = tcp_write_queue_head(sk);
1951 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1952 if (is_reneg) {
1953 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1954 tp->sacked_out = 0;
1955 tp->fackets_out = 0;
1957 tcp_clear_all_retrans_hints(tp);
1959 tcp_for_write_queue(skb, sk) {
1960 if (skb == tcp_send_head(sk))
1961 break;
1963 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967 tp->lost_out += tcp_skb_pcount(skb);
1968 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1971 tcp_verify_left_out(tp);
1973 /* Timeout in disordered state after receiving substantial DUPACKs
1974 * suggests that the degree of reordering is over-estimated.
1976 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977 tp->sacked_out >= sysctl_tcp_reordering)
1978 tp->reordering = min_t(unsigned int, tp->reordering,
1979 sysctl_tcp_reordering);
1980 tcp_set_ca_state(sk, TCP_CA_Loss);
1981 tp->high_seq = tp->snd_nxt;
1982 tcp_ecn_queue_cwr(tp);
1984 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985 * loss recovery is underway except recurring timeout(s) on
1986 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1988 tp->frto = sysctl_tcp_frto &&
1989 (new_recovery || icsk->icsk_retransmits) &&
1990 !inet_csk(sk)->icsk_mtup.probe_size;
1993 /* If ACK arrived pointing to a remembered SACK, it means that our
1994 * remembered SACKs do not reflect real state of receiver i.e.
1995 * receiver _host_ is heavily congested (or buggy).
1997 * To avoid big spurious retransmission bursts due to transient SACK
1998 * scoreboard oddities that look like reneging, we give the receiver a
1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000 * restore sanity to the SACK scoreboard. If the apparent reneging
2001 * persists until this RTO then we'll clear the SACK scoreboard.
2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2005 if (flag & FLAG_SACK_RENEGING) {
2006 struct tcp_sock *tp = tcp_sk(sk);
2007 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008 msecs_to_jiffies(10));
2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011 delay, TCP_RTO_MAX);
2012 return true;
2014 return false;
2017 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2019 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023 * counter when SACK is enabled (without SACK, sacked_out is used for
2024 * that purpose).
2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027 * segments up to the highest received SACK block so far and holes in
2028 * between them.
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2035 * ignore them.
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2039 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 unsigned long delay;
2047 /* Delay early retransmit and entering fast recovery for
2048 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049 * available, or RTO is scheduled to fire first.
2051 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052 (flag & FLAG_ECE) || !tp->srtt_us)
2053 return false;
2055 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056 msecs_to_jiffies(2));
2058 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2059 return false;
2061 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2062 TCP_RTO_MAX);
2063 return true;
2066 /* Linux NewReno/SACK/FACK/ECN state machine.
2067 * --------------------------------------
2069 * "Open" Normal state, no dubious events, fast path.
2070 * "Disorder" In all the respects it is "Open",
2071 * but requires a bit more attention. It is entered when
2072 * we see some SACKs or dupacks. It is split of "Open"
2073 * mainly to move some processing from fast path to slow one.
2074 * "CWR" CWND was reduced due to some Congestion Notification event.
2075 * It can be ECN, ICMP source quench, local device congestion.
2076 * "Recovery" CWND was reduced, we are fast-retransmitting.
2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2079 * tcp_fastretrans_alert() is entered:
2080 * - each incoming ACK, if state is not "Open"
2081 * - when arrived ACK is unusual, namely:
2082 * * SACK
2083 * * Duplicate ACK.
2084 * * ECN ECE.
2086 * Counting packets in flight is pretty simple.
2088 * in_flight = packets_out - left_out + retrans_out
2090 * packets_out is SND.NXT-SND.UNA counted in packets.
2092 * retrans_out is number of retransmitted segments.
2094 * left_out is number of segments left network, but not ACKed yet.
2096 * left_out = sacked_out + lost_out
2098 * sacked_out: Packets, which arrived to receiver out of order
2099 * and hence not ACKed. With SACKs this number is simply
2100 * amount of SACKed data. Even without SACKs
2101 * it is easy to give pretty reliable estimate of this number,
2102 * counting duplicate ACKs.
2104 * lost_out: Packets lost by network. TCP has no explicit
2105 * "loss notification" feedback from network (for now).
2106 * It means that this number can be only _guessed_.
2107 * Actually, it is the heuristics to predict lossage that
2108 * distinguishes different algorithms.
2110 * F.e. after RTO, when all the queue is considered as lost,
2111 * lost_out = packets_out and in_flight = retrans_out.
2113 * Essentially, we have now two algorithms counting
2114 * lost packets.
2116 * FACK: It is the simplest heuristics. As soon as we decided
2117 * that something is lost, we decide that _all_ not SACKed
2118 * packets until the most forward SACK are lost. I.e.
2119 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120 * It is absolutely correct estimate, if network does not reorder
2121 * packets. And it loses any connection to reality when reordering
2122 * takes place. We use FACK by default until reordering
2123 * is suspected on the path to this destination.
2125 * NewReno: when Recovery is entered, we assume that one segment
2126 * is lost (classic Reno). While we are in Recovery and
2127 * a partial ACK arrives, we assume that one more packet
2128 * is lost (NewReno). This heuristics are the same in NewReno
2129 * and SACK.
2131 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2132 * deflation etc. CWND is real congestion window, never inflated, changes
2133 * only according to classic VJ rules.
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2161 struct tcp_sock *tp = tcp_sk(sk);
2162 __u32 packets_out;
2164 /* Trick#1: The loss is proven. */
2165 if (tp->lost_out)
2166 return true;
2168 /* Not-A-Trick#2 : Classic rule... */
2169 if (tcp_dupack_heuristics(tp) > tp->reordering)
2170 return true;
2172 /* Trick#4: It is still not OK... But will it be useful to delay
2173 * recovery more?
2175 packets_out = tp->packets_out;
2176 if (packets_out <= tp->reordering &&
2177 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178 !tcp_may_send_now(sk)) {
2179 /* We have nothing to send. This connection is limited
2180 * either by receiver window or by application.
2182 return true;
2185 /* If a thin stream is detected, retransmit after first
2186 * received dupack. Employ only if SACK is supported in order
2187 * to avoid possible corner-case series of spurious retransmissions
2188 * Use only if there are no unsent data.
2190 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192 tcp_is_sack(tp) && !tcp_send_head(sk))
2193 return true;
2195 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2196 * retransmissions due to small network reorderings, we implement
2197 * Mitigation A.3 in the RFC and delay the retransmission for a short
2198 * interval if appropriate.
2200 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202 !tcp_may_send_now(sk))
2203 return !tcp_pause_early_retransmit(sk, flag);
2205 return false;
2208 /* Detect loss in event "A" above by marking head of queue up as lost.
2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212 * the maximum SACKed segments to pass before reaching this limit.
2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2216 struct tcp_sock *tp = tcp_sk(sk);
2217 struct sk_buff *skb;
2218 int cnt, oldcnt;
2219 int err;
2220 unsigned int mss;
2221 /* Use SACK to deduce losses of new sequences sent during recovery */
2222 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2224 WARN_ON(packets > tp->packets_out);
2225 if (tp->lost_skb_hint) {
2226 skb = tp->lost_skb_hint;
2227 cnt = tp->lost_cnt_hint;
2228 /* Head already handled? */
2229 if (mark_head && skb != tcp_write_queue_head(sk))
2230 return;
2231 } else {
2232 skb = tcp_write_queue_head(sk);
2233 cnt = 0;
2236 tcp_for_write_queue_from(skb, sk) {
2237 if (skb == tcp_send_head(sk))
2238 break;
2239 /* TODO: do this better */
2240 /* this is not the most efficient way to do this... */
2241 tp->lost_skb_hint = skb;
2242 tp->lost_cnt_hint = cnt;
2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2245 break;
2247 oldcnt = cnt;
2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250 cnt += tcp_skb_pcount(skb);
2252 if (cnt > packets) {
2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255 (oldcnt >= packets))
2256 break;
2258 mss = skb_shinfo(skb)->gso_size;
2259 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2260 mss, GFP_ATOMIC);
2261 if (err < 0)
2262 break;
2263 cnt = packets;
2266 tcp_skb_mark_lost(tp, skb);
2268 if (mark_head)
2269 break;
2271 tcp_verify_left_out(tp);
2274 /* Account newly detected lost packet(s) */
2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2278 struct tcp_sock *tp = tcp_sk(sk);
2280 if (tcp_is_reno(tp)) {
2281 tcp_mark_head_lost(sk, 1, 1);
2282 } else if (tcp_is_fack(tp)) {
2283 int lost = tp->fackets_out - tp->reordering;
2284 if (lost <= 0)
2285 lost = 1;
2286 tcp_mark_head_lost(sk, lost, 0);
2287 } else {
2288 int sacked_upto = tp->sacked_out - tp->reordering;
2289 if (sacked_upto >= 0)
2290 tcp_mark_head_lost(sk, sacked_upto, 0);
2291 else if (fast_rexmit)
2292 tcp_mark_head_lost(sk, 1, 1);
2296 /* CWND moderation, preventing bursts due to too big ACKs
2297 * in dubious situations.
2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2301 tp->snd_cwnd = min(tp->snd_cwnd,
2302 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303 tp->snd_cwnd_stamp = tcp_time_stamp;
2306 /* Nothing was retransmitted or returned timestamp is less
2307 * than timestamp of the first retransmission.
2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2311 return !tp->retrans_stamp ||
2312 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2316 /* Undo procedures. */
2318 /* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2332 static bool tcp_any_retrans_done(const struct sock *sk)
2334 const struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb;
2337 if (tp->retrans_out)
2338 return true;
2340 skb = tcp_write_queue_head(sk);
2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 return true;
2344 return false;
2347 #if FASTRETRANS_DEBUG > 1
2348 static void DBGUNDO(struct sock *sk, const char *msg)
2350 struct tcp_sock *tp = tcp_sk(sk);
2351 struct inet_sock *inet = inet_sk(sk);
2353 if (sk->sk_family == AF_INET) {
2354 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355 msg,
2356 &inet->inet_daddr, ntohs(inet->inet_dport),
2357 tp->snd_cwnd, tcp_left_out(tp),
2358 tp->snd_ssthresh, tp->prior_ssthresh,
2359 tp->packets_out);
2361 #if IS_ENABLED(CONFIG_IPV6)
2362 else if (sk->sk_family == AF_INET6) {
2363 struct ipv6_pinfo *np = inet6_sk(sk);
2364 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365 msg,
2366 &np->daddr, ntohs(inet->inet_dport),
2367 tp->snd_cwnd, tcp_left_out(tp),
2368 tp->snd_ssthresh, tp->prior_ssthresh,
2369 tp->packets_out);
2371 #endif
2373 #else
2374 #define DBGUNDO(x...) do { } while (0)
2375 #endif
2377 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 struct tcp_sock *tp = tcp_sk(sk);
2381 if (unmark_loss) {
2382 struct sk_buff *skb;
2384 tcp_for_write_queue(skb, sk) {
2385 if (skb == tcp_send_head(sk))
2386 break;
2387 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 tp->lost_out = 0;
2390 tcp_clear_all_retrans_hints(tp);
2393 if (tp->prior_ssthresh) {
2394 const struct inet_connection_sock *icsk = inet_csk(sk);
2396 if (icsk->icsk_ca_ops->undo_cwnd)
2397 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398 else
2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2401 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2402 tp->snd_ssthresh = tp->prior_ssthresh;
2403 tcp_ecn_withdraw_cwr(tp);
2405 } else {
2406 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2408 tp->snd_cwnd_stamp = tcp_time_stamp;
2409 tp->undo_marker = 0;
2412 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2414 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2417 /* People celebrate: "We love our President!" */
2418 static bool tcp_try_undo_recovery(struct sock *sk)
2420 struct tcp_sock *tp = tcp_sk(sk);
2422 if (tcp_may_undo(tp)) {
2423 int mib_idx;
2425 /* Happy end! We did not retransmit anything
2426 * or our original transmission succeeded.
2428 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429 tcp_undo_cwnd_reduction(sk, false);
2430 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432 else
2433 mib_idx = LINUX_MIB_TCPFULLUNDO;
2435 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2437 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2438 /* Hold old state until something *above* high_seq
2439 * is ACKed. For Reno it is MUST to prevent false
2440 * fast retransmits (RFC2582). SACK TCP is safe. */
2441 tcp_moderate_cwnd(tp);
2442 if (!tcp_any_retrans_done(sk))
2443 tp->retrans_stamp = 0;
2444 return true;
2446 tcp_set_ca_state(sk, TCP_CA_Open);
2447 return false;
2450 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2451 static bool tcp_try_undo_dsack(struct sock *sk)
2453 struct tcp_sock *tp = tcp_sk(sk);
2455 if (tp->undo_marker && !tp->undo_retrans) {
2456 DBGUNDO(sk, "D-SACK");
2457 tcp_undo_cwnd_reduction(sk, false);
2458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2459 return true;
2461 return false;
2464 /* Undo during loss recovery after partial ACK or using F-RTO. */
2465 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2467 struct tcp_sock *tp = tcp_sk(sk);
2469 if (frto_undo || tcp_may_undo(tp)) {
2470 tcp_undo_cwnd_reduction(sk, true);
2472 DBGUNDO(sk, "partial loss");
2473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2474 if (frto_undo)
2475 NET_INC_STATS_BH(sock_net(sk),
2476 LINUX_MIB_TCPSPURIOUSRTOS);
2477 inet_csk(sk)->icsk_retransmits = 0;
2478 if (frto_undo || tcp_is_sack(tp))
2479 tcp_set_ca_state(sk, TCP_CA_Open);
2480 return true;
2482 return false;
2485 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2486 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2487 * It computes the number of packets to send (sndcnt) based on packets newly
2488 * delivered:
2489 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2490 * cwnd reductions across a full RTT.
2491 * 2) If packets in flight is lower than ssthresh (such as due to excess
2492 * losses and/or application stalls), do not perform any further cwnd
2493 * reductions, but instead slow start up to ssthresh.
2495 static void tcp_init_cwnd_reduction(struct sock *sk)
2497 struct tcp_sock *tp = tcp_sk(sk);
2499 tp->high_seq = tp->snd_nxt;
2500 tp->tlp_high_seq = 0;
2501 tp->snd_cwnd_cnt = 0;
2502 tp->prior_cwnd = tp->snd_cwnd;
2503 tp->prr_delivered = 0;
2504 tp->prr_out = 0;
2505 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2506 tcp_ecn_queue_cwr(tp);
2509 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510 int fast_rexmit)
2512 struct tcp_sock *tp = tcp_sk(sk);
2513 int sndcnt = 0;
2514 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515 int newly_acked_sacked = prior_unsacked -
2516 (tp->packets_out - tp->sacked_out);
2518 tp->prr_delivered += newly_acked_sacked;
2519 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2520 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2521 tp->prior_cwnd - 1;
2522 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2523 } else {
2524 sndcnt = min_t(int, delta,
2525 max_t(int, tp->prr_delivered - tp->prr_out,
2526 newly_acked_sacked) + 1);
2529 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2530 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2533 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2535 struct tcp_sock *tp = tcp_sk(sk);
2537 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2539 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2540 tp->snd_cwnd = tp->snd_ssthresh;
2541 tp->snd_cwnd_stamp = tcp_time_stamp;
2543 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547 void tcp_enter_cwr(struct sock *sk)
2549 struct tcp_sock *tp = tcp_sk(sk);
2551 tp->prior_ssthresh = 0;
2552 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553 tp->undo_marker = 0;
2554 tcp_init_cwnd_reduction(sk);
2555 tcp_set_ca_state(sk, TCP_CA_CWR);
2559 static void tcp_try_keep_open(struct sock *sk)
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 int state = TCP_CA_Open;
2564 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565 state = TCP_CA_Disorder;
2567 if (inet_csk(sk)->icsk_ca_state != state) {
2568 tcp_set_ca_state(sk, state);
2569 tp->high_seq = tp->snd_nxt;
2573 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2575 struct tcp_sock *tp = tcp_sk(sk);
2577 tcp_verify_left_out(tp);
2579 if (!tcp_any_retrans_done(sk))
2580 tp->retrans_stamp = 0;
2582 if (flag & FLAG_ECE)
2583 tcp_enter_cwr(sk);
2585 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586 tcp_try_keep_open(sk);
2587 } else {
2588 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2592 static void tcp_mtup_probe_failed(struct sock *sk)
2594 struct inet_connection_sock *icsk = inet_csk(sk);
2596 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597 icsk->icsk_mtup.probe_size = 0;
2600 static void tcp_mtup_probe_success(struct sock *sk)
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct inet_connection_sock *icsk = inet_csk(sk);
2605 /* FIXME: breaks with very large cwnd */
2606 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607 tp->snd_cwnd = tp->snd_cwnd *
2608 tcp_mss_to_mtu(sk, tp->mss_cache) /
2609 icsk->icsk_mtup.probe_size;
2610 tp->snd_cwnd_cnt = 0;
2611 tp->snd_cwnd_stamp = tcp_time_stamp;
2612 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2614 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615 icsk->icsk_mtup.probe_size = 0;
2616 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2619 /* Do a simple retransmit without using the backoff mechanisms in
2620 * tcp_timer. This is used for path mtu discovery.
2621 * The socket is already locked here.
2623 void tcp_simple_retransmit(struct sock *sk)
2625 const struct inet_connection_sock *icsk = inet_csk(sk);
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 struct sk_buff *skb;
2628 unsigned int mss = tcp_current_mss(sk);
2629 u32 prior_lost = tp->lost_out;
2631 tcp_for_write_queue(skb, sk) {
2632 if (skb == tcp_send_head(sk))
2633 break;
2634 if (tcp_skb_seglen(skb) > mss &&
2635 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638 tp->retrans_out -= tcp_skb_pcount(skb);
2640 tcp_skb_mark_lost_uncond_verify(tp, skb);
2644 tcp_clear_retrans_hints_partial(tp);
2646 if (prior_lost == tp->lost_out)
2647 return;
2649 if (tcp_is_reno(tp))
2650 tcp_limit_reno_sacked(tp);
2652 tcp_verify_left_out(tp);
2654 /* Don't muck with the congestion window here.
2655 * Reason is that we do not increase amount of _data_
2656 * in network, but units changed and effective
2657 * cwnd/ssthresh really reduced now.
2659 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660 tp->high_seq = tp->snd_nxt;
2661 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662 tp->prior_ssthresh = 0;
2663 tp->undo_marker = 0;
2664 tcp_set_ca_state(sk, TCP_CA_Loss);
2666 tcp_xmit_retransmit_queue(sk);
2668 EXPORT_SYMBOL(tcp_simple_retransmit);
2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2672 struct tcp_sock *tp = tcp_sk(sk);
2673 int mib_idx;
2675 if (tcp_is_reno(tp))
2676 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677 else
2678 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2680 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2682 tp->prior_ssthresh = 0;
2683 tcp_init_undo(tp);
2685 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2686 if (!ece_ack)
2687 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688 tcp_init_cwnd_reduction(sk);
2690 tcp_set_ca_state(sk, TCP_CA_Recovery);
2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2698 struct tcp_sock *tp = tcp_sk(sk);
2699 bool recovered = !before(tp->snd_una, tp->high_seq);
2701 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2702 tcp_try_undo_loss(sk, false))
2703 return;
2705 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 /* Step 3.b. A timeout is spurious if not all data are
2707 * lost, i.e., never-retransmitted data are (s)acked.
2709 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2710 tcp_try_undo_loss(sk, true))
2711 return;
2713 if (after(tp->snd_nxt, tp->high_seq)) {
2714 if (flag & FLAG_DATA_SACKED || is_dupack)
2715 tp->frto = 0; /* Step 3.a. loss was real */
2716 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2717 tp->high_seq = tp->snd_nxt;
2718 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2719 TCP_NAGLE_OFF);
2720 if (after(tp->snd_nxt, tp->high_seq))
2721 return; /* Step 2.b */
2722 tp->frto = 0;
2726 if (recovered) {
2727 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2728 tcp_try_undo_recovery(sk);
2729 return;
2731 if (tcp_is_reno(tp)) {
2732 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2733 * delivered. Lower inflight to clock out (re)tranmissions.
2735 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2736 tcp_add_reno_sack(sk);
2737 else if (flag & FLAG_SND_UNA_ADVANCED)
2738 tcp_reset_reno_sack(tp);
2740 tcp_xmit_retransmit_queue(sk);
2743 /* Undo during fast recovery after partial ACK. */
2744 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2745 const int prior_unsacked)
2747 struct tcp_sock *tp = tcp_sk(sk);
2749 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2750 /* Plain luck! Hole if filled with delayed
2751 * packet, rather than with a retransmit.
2753 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2755 /* We are getting evidence that the reordering degree is higher
2756 * than we realized. If there are no retransmits out then we
2757 * can undo. Otherwise we clock out new packets but do not
2758 * mark more packets lost or retransmit more.
2760 if (tp->retrans_out) {
2761 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2762 return true;
2765 if (!tcp_any_retrans_done(sk))
2766 tp->retrans_stamp = 0;
2768 DBGUNDO(sk, "partial recovery");
2769 tcp_undo_cwnd_reduction(sk, true);
2770 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2771 tcp_try_keep_open(sk);
2772 return true;
2774 return false;
2777 /* Process an event, which can update packets-in-flight not trivially.
2778 * Main goal of this function is to calculate new estimate for left_out,
2779 * taking into account both packets sitting in receiver's buffer and
2780 * packets lost by network.
2782 * Besides that it does CWND reduction, when packet loss is detected
2783 * and changes state of machine.
2785 * It does _not_ decide what to send, it is made in function
2786 * tcp_xmit_retransmit_queue().
2788 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2789 const int prior_unsacked,
2790 bool is_dupack, int flag)
2792 struct inet_connection_sock *icsk = inet_csk(sk);
2793 struct tcp_sock *tp = tcp_sk(sk);
2794 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2795 (tcp_fackets_out(tp) > tp->reordering));
2796 int fast_rexmit = 0;
2798 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2799 tp->sacked_out = 0;
2800 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2801 tp->fackets_out = 0;
2803 /* Now state machine starts.
2804 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805 if (flag & FLAG_ECE)
2806 tp->prior_ssthresh = 0;
2808 /* B. In all the states check for reneging SACKs. */
2809 if (tcp_check_sack_reneging(sk, flag))
2810 return;
2812 /* C. Check consistency of the current state. */
2813 tcp_verify_left_out(tp);
2815 /* D. Check state exit conditions. State can be terminated
2816 * when high_seq is ACKed. */
2817 if (icsk->icsk_ca_state == TCP_CA_Open) {
2818 WARN_ON(tp->retrans_out != 0);
2819 tp->retrans_stamp = 0;
2820 } else if (!before(tp->snd_una, tp->high_seq)) {
2821 switch (icsk->icsk_ca_state) {
2822 case TCP_CA_CWR:
2823 /* CWR is to be held something *above* high_seq
2824 * is ACKed for CWR bit to reach receiver. */
2825 if (tp->snd_una != tp->high_seq) {
2826 tcp_end_cwnd_reduction(sk);
2827 tcp_set_ca_state(sk, TCP_CA_Open);
2829 break;
2831 case TCP_CA_Recovery:
2832 if (tcp_is_reno(tp))
2833 tcp_reset_reno_sack(tp);
2834 if (tcp_try_undo_recovery(sk))
2835 return;
2836 tcp_end_cwnd_reduction(sk);
2837 break;
2841 /* E. Process state. */
2842 switch (icsk->icsk_ca_state) {
2843 case TCP_CA_Recovery:
2844 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2845 if (tcp_is_reno(tp) && is_dupack)
2846 tcp_add_reno_sack(sk);
2847 } else {
2848 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2849 return;
2850 /* Partial ACK arrived. Force fast retransmit. */
2851 do_lost = tcp_is_reno(tp) ||
2852 tcp_fackets_out(tp) > tp->reordering;
2854 if (tcp_try_undo_dsack(sk)) {
2855 tcp_try_keep_open(sk);
2856 return;
2858 break;
2859 case TCP_CA_Loss:
2860 tcp_process_loss(sk, flag, is_dupack);
2861 if (icsk->icsk_ca_state != TCP_CA_Open)
2862 return;
2863 /* Fall through to processing in Open state. */
2864 default:
2865 if (tcp_is_reno(tp)) {
2866 if (flag & FLAG_SND_UNA_ADVANCED)
2867 tcp_reset_reno_sack(tp);
2868 if (is_dupack)
2869 tcp_add_reno_sack(sk);
2872 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2873 tcp_try_undo_dsack(sk);
2875 if (!tcp_time_to_recover(sk, flag)) {
2876 tcp_try_to_open(sk, flag, prior_unsacked);
2877 return;
2880 /* MTU probe failure: don't reduce cwnd */
2881 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882 icsk->icsk_mtup.probe_size &&
2883 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884 tcp_mtup_probe_failed(sk);
2885 /* Restores the reduction we did in tcp_mtup_probe() */
2886 tp->snd_cwnd++;
2887 tcp_simple_retransmit(sk);
2888 return;
2891 /* Otherwise enter Recovery state */
2892 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893 fast_rexmit = 1;
2896 if (do_lost)
2897 tcp_update_scoreboard(sk, fast_rexmit);
2898 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2899 tcp_xmit_retransmit_queue(sk);
2902 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2903 long seq_rtt_us, long sack_rtt_us)
2905 const struct tcp_sock *tp = tcp_sk(sk);
2907 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2908 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2909 * Karn's algorithm forbids taking RTT if some retransmitted data
2910 * is acked (RFC6298).
2912 if (flag & FLAG_RETRANS_DATA_ACKED)
2913 seq_rtt_us = -1L;
2915 if (seq_rtt_us < 0)
2916 seq_rtt_us = sack_rtt_us;
2918 /* RTTM Rule: A TSecr value received in a segment is used to
2919 * update the averaged RTT measurement only if the segment
2920 * acknowledges some new data, i.e., only if it advances the
2921 * left edge of the send window.
2922 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2924 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2925 flag & FLAG_ACKED)
2926 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2928 if (seq_rtt_us < 0)
2929 return false;
2931 tcp_rtt_estimator(sk, seq_rtt_us);
2932 tcp_set_rto(sk);
2934 /* RFC6298: only reset backoff on valid RTT measurement. */
2935 inet_csk(sk)->icsk_backoff = 0;
2936 return true;
2939 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2940 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2942 struct tcp_sock *tp = tcp_sk(sk);
2943 long seq_rtt_us = -1L;
2945 if (synack_stamp && !tp->total_retrans)
2946 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2948 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2949 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2951 if (!tp->srtt_us)
2952 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2955 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2957 const struct inet_connection_sock *icsk = inet_csk(sk);
2959 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2960 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2963 /* Restart timer after forward progress on connection.
2964 * RFC2988 recommends to restart timer to now+rto.
2966 void tcp_rearm_rto(struct sock *sk)
2968 const struct inet_connection_sock *icsk = inet_csk(sk);
2969 struct tcp_sock *tp = tcp_sk(sk);
2971 /* If the retrans timer is currently being used by Fast Open
2972 * for SYN-ACK retrans purpose, stay put.
2974 if (tp->fastopen_rsk)
2975 return;
2977 if (!tp->packets_out) {
2978 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2979 } else {
2980 u32 rto = inet_csk(sk)->icsk_rto;
2981 /* Offset the time elapsed after installing regular RTO */
2982 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2983 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2984 struct sk_buff *skb = tcp_write_queue_head(sk);
2985 const u32 rto_time_stamp =
2986 tcp_skb_timestamp(skb) + rto;
2987 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2988 /* delta may not be positive if the socket is locked
2989 * when the retrans timer fires and is rescheduled.
2991 if (delta > 0)
2992 rto = delta;
2994 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2995 TCP_RTO_MAX);
2999 /* This function is called when the delayed ER timer fires. TCP enters
3000 * fast recovery and performs fast-retransmit.
3002 void tcp_resume_early_retransmit(struct sock *sk)
3004 struct tcp_sock *tp = tcp_sk(sk);
3006 tcp_rearm_rto(sk);
3008 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3009 if (!tp->do_early_retrans)
3010 return;
3012 tcp_enter_recovery(sk, false);
3013 tcp_update_scoreboard(sk, 1);
3014 tcp_xmit_retransmit_queue(sk);
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3020 struct tcp_sock *tp = tcp_sk(sk);
3021 u32 packets_acked;
3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3025 packets_acked = tcp_skb_pcount(skb);
3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 return 0;
3028 packets_acked -= tcp_skb_pcount(skb);
3030 if (packets_acked) {
3031 BUG_ON(tcp_skb_pcount(skb) == 0);
3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3035 return packets_acked;
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 u32 prior_snd_una)
3041 const struct skb_shared_info *shinfo;
3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3045 return;
3047 shinfo = skb_shinfo(skb);
3048 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3049 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3050 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3053 /* Remove acknowledged frames from the retransmission queue. If our packet
3054 * is before the ack sequence we can discard it as it's confirmed to have
3055 * arrived at the other end.
3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3058 u32 prior_snd_una, long sack_rtt_us)
3060 const struct inet_connection_sock *icsk = inet_csk(sk);
3061 struct skb_mstamp first_ackt, last_ackt, now;
3062 struct tcp_sock *tp = tcp_sk(sk);
3063 u32 prior_sacked = tp->sacked_out;
3064 u32 reord = tp->packets_out;
3065 bool fully_acked = true;
3066 long ca_seq_rtt_us = -1L;
3067 long seq_rtt_us = -1L;
3068 struct sk_buff *skb;
3069 u32 pkts_acked = 0;
3070 bool rtt_update;
3071 int flag = 0;
3073 first_ackt.v64 = 0;
3075 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3076 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3077 u8 sacked = scb->sacked;
3078 u32 acked_pcount;
3080 tcp_ack_tstamp(sk, skb, prior_snd_una);
3082 /* Determine how many packets and what bytes were acked, tso and else */
3083 if (after(scb->end_seq, tp->snd_una)) {
3084 if (tcp_skb_pcount(skb) == 1 ||
3085 !after(tp->snd_una, scb->seq))
3086 break;
3088 acked_pcount = tcp_tso_acked(sk, skb);
3089 if (!acked_pcount)
3090 break;
3092 fully_acked = false;
3093 } else {
3094 /* Speedup tcp_unlink_write_queue() and next loop */
3095 prefetchw(skb->next);
3096 acked_pcount = tcp_skb_pcount(skb);
3099 if (unlikely(sacked & TCPCB_RETRANS)) {
3100 if (sacked & TCPCB_SACKED_RETRANS)
3101 tp->retrans_out -= acked_pcount;
3102 flag |= FLAG_RETRANS_DATA_ACKED;
3103 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3104 last_ackt = skb->skb_mstamp;
3105 WARN_ON_ONCE(last_ackt.v64 == 0);
3106 if (!first_ackt.v64)
3107 first_ackt = last_ackt;
3109 reord = min(pkts_acked, reord);
3110 if (!after(scb->end_seq, tp->high_seq))
3111 flag |= FLAG_ORIG_SACK_ACKED;
3114 if (sacked & TCPCB_SACKED_ACKED)
3115 tp->sacked_out -= acked_pcount;
3116 if (sacked & TCPCB_LOST)
3117 tp->lost_out -= acked_pcount;
3119 tp->packets_out -= acked_pcount;
3120 pkts_acked += acked_pcount;
3122 /* Initial outgoing SYN's get put onto the write_queue
3123 * just like anything else we transmit. It is not
3124 * true data, and if we misinform our callers that
3125 * this ACK acks real data, we will erroneously exit
3126 * connection startup slow start one packet too
3127 * quickly. This is severely frowned upon behavior.
3129 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3130 flag |= FLAG_DATA_ACKED;
3131 } else {
3132 flag |= FLAG_SYN_ACKED;
3133 tp->retrans_stamp = 0;
3136 if (!fully_acked)
3137 break;
3139 tcp_unlink_write_queue(skb, sk);
3140 sk_wmem_free_skb(sk, skb);
3141 if (unlikely(skb == tp->retransmit_skb_hint))
3142 tp->retransmit_skb_hint = NULL;
3143 if (unlikely(skb == tp->lost_skb_hint))
3144 tp->lost_skb_hint = NULL;
3147 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3148 tp->snd_up = tp->snd_una;
3150 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3151 flag |= FLAG_SACK_RENEGING;
3153 skb_mstamp_get(&now);
3154 if (likely(first_ackt.v64)) {
3155 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3156 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3159 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3161 if (flag & FLAG_ACKED) {
3162 const struct tcp_congestion_ops *ca_ops
3163 = inet_csk(sk)->icsk_ca_ops;
3165 tcp_rearm_rto(sk);
3166 if (unlikely(icsk->icsk_mtup.probe_size &&
3167 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3168 tcp_mtup_probe_success(sk);
3171 if (tcp_is_reno(tp)) {
3172 tcp_remove_reno_sacks(sk, pkts_acked);
3173 } else {
3174 int delta;
3176 /* Non-retransmitted hole got filled? That's reordering */
3177 if (reord < prior_fackets)
3178 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3180 delta = tcp_is_fack(tp) ? pkts_acked :
3181 prior_sacked - tp->sacked_out;
3182 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3185 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3187 if (ca_ops->pkts_acked) {
3188 long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us);
3189 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3192 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3193 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3194 /* Do not re-arm RTO if the sack RTT is measured from data sent
3195 * after when the head was last (re)transmitted. Otherwise the
3196 * timeout may continue to extend in loss recovery.
3198 tcp_rearm_rto(sk);
3201 #if FASTRETRANS_DEBUG > 0
3202 WARN_ON((int)tp->sacked_out < 0);
3203 WARN_ON((int)tp->lost_out < 0);
3204 WARN_ON((int)tp->retrans_out < 0);
3205 if (!tp->packets_out && tcp_is_sack(tp)) {
3206 icsk = inet_csk(sk);
3207 if (tp->lost_out) {
3208 pr_debug("Leak l=%u %d\n",
3209 tp->lost_out, icsk->icsk_ca_state);
3210 tp->lost_out = 0;
3212 if (tp->sacked_out) {
3213 pr_debug("Leak s=%u %d\n",
3214 tp->sacked_out, icsk->icsk_ca_state);
3215 tp->sacked_out = 0;
3217 if (tp->retrans_out) {
3218 pr_debug("Leak r=%u %d\n",
3219 tp->retrans_out, icsk->icsk_ca_state);
3220 tp->retrans_out = 0;
3223 #endif
3224 return flag;
3227 static void tcp_ack_probe(struct sock *sk)
3229 const struct tcp_sock *tp = tcp_sk(sk);
3230 struct inet_connection_sock *icsk = inet_csk(sk);
3232 /* Was it a usable window open? */
3234 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3235 icsk->icsk_backoff = 0;
3236 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3237 /* Socket must be waked up by subsequent tcp_data_snd_check().
3238 * This function is not for random using!
3240 } else {
3241 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3243 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3244 when, TCP_RTO_MAX);
3248 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3250 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3251 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3254 /* Decide wheather to run the increase function of congestion control. */
3255 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3257 if (tcp_in_cwnd_reduction(sk))
3258 return false;
3260 /* If reordering is high then always grow cwnd whenever data is
3261 * delivered regardless of its ordering. Otherwise stay conservative
3262 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3263 * new SACK or ECE mark may first advance cwnd here and later reduce
3264 * cwnd in tcp_fastretrans_alert() based on more states.
3266 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3267 return flag & FLAG_FORWARD_PROGRESS;
3269 return flag & FLAG_DATA_ACKED;
3272 /* Check that window update is acceptable.
3273 * The function assumes that snd_una<=ack<=snd_next.
3275 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3276 const u32 ack, const u32 ack_seq,
3277 const u32 nwin)
3279 return after(ack, tp->snd_una) ||
3280 after(ack_seq, tp->snd_wl1) ||
3281 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3284 /* If we update tp->snd_una, also update tp->bytes_acked */
3285 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3287 u32 delta = ack - tp->snd_una;
3289 u64_stats_update_begin(&tp->syncp);
3290 tp->bytes_acked += delta;
3291 u64_stats_update_end(&tp->syncp);
3292 tp->snd_una = ack;
3295 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3296 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3298 u32 delta = seq - tp->rcv_nxt;
3300 u64_stats_update_begin(&tp->syncp);
3301 tp->bytes_received += delta;
3302 u64_stats_update_end(&tp->syncp);
3303 tp->rcv_nxt = seq;
3306 /* Update our send window.
3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312 u32 ack_seq)
3314 struct tcp_sock *tp = tcp_sk(sk);
3315 int flag = 0;
3316 u32 nwin = ntohs(tcp_hdr(skb)->window);
3318 if (likely(!tcp_hdr(skb)->syn))
3319 nwin <<= tp->rx_opt.snd_wscale;
3321 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322 flag |= FLAG_WIN_UPDATE;
3323 tcp_update_wl(tp, ack_seq);
3325 if (tp->snd_wnd != nwin) {
3326 tp->snd_wnd = nwin;
3328 /* Note, it is the only place, where
3329 * fast path is recovered for sending TCP.
3331 tp->pred_flags = 0;
3332 tcp_fast_path_check(sk);
3334 if (nwin > tp->max_window) {
3335 tp->max_window = nwin;
3336 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3341 tcp_snd_una_update(tp, ack);
3343 return flag;
3346 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3347 u32 *last_oow_ack_time)
3349 if (*last_oow_ack_time) {
3350 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3352 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3353 NET_INC_STATS(net, mib_idx);
3354 return true; /* rate-limited: don't send yet! */
3358 *last_oow_ack_time = tcp_time_stamp;
3360 return false; /* not rate-limited: go ahead, send dupack now! */
3363 /* Return true if we're currently rate-limiting out-of-window ACKs and
3364 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3365 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3366 * attacks that send repeated SYNs or ACKs for the same connection. To
3367 * do this, we do not send a duplicate SYNACK or ACK if the remote
3368 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3370 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3371 int mib_idx, u32 *last_oow_ack_time)
3373 /* Data packets without SYNs are not likely part of an ACK loop. */
3374 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3375 !tcp_hdr(skb)->syn)
3376 return false;
3378 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3381 /* RFC 5961 7 [ACK Throttling] */
3382 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3384 /* unprotected vars, we dont care of overwrites */
3385 static u32 challenge_timestamp;
3386 static unsigned int challenge_count;
3387 struct tcp_sock *tp = tcp_sk(sk);
3388 u32 count, now;
3390 /* First check our per-socket dupack rate limit. */
3391 if (__tcp_oow_rate_limited(sock_net(sk),
3392 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3393 &tp->last_oow_ack_time))
3394 return;
3396 /* Then check host-wide RFC 5961 rate limit. */
3397 now = jiffies / HZ;
3398 if (now != challenge_timestamp) {
3399 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3401 challenge_timestamp = now;
3402 WRITE_ONCE(challenge_count, half +
3403 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3405 count = READ_ONCE(challenge_count);
3406 if (count > 0) {
3407 WRITE_ONCE(challenge_count, count - 1);
3408 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3409 tcp_send_ack(sk);
3413 static void tcp_store_ts_recent(struct tcp_sock *tp)
3415 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3416 tp->rx_opt.ts_recent_stamp = get_seconds();
3419 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3421 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3422 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3423 * extra check below makes sure this can only happen
3424 * for pure ACK frames. -DaveM
3426 * Not only, also it occurs for expired timestamps.
3429 if (tcp_paws_check(&tp->rx_opt, 0))
3430 tcp_store_ts_recent(tp);
3434 /* This routine deals with acks during a TLP episode.
3435 * We mark the end of a TLP episode on receiving TLP dupack or when
3436 * ack is after tlp_high_seq.
3437 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3439 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3441 struct tcp_sock *tp = tcp_sk(sk);
3443 if (before(ack, tp->tlp_high_seq))
3444 return;
3446 if (flag & FLAG_DSACKING_ACK) {
3447 /* This DSACK means original and TLP probe arrived; no loss */
3448 tp->tlp_high_seq = 0;
3449 } else if (after(ack, tp->tlp_high_seq)) {
3450 /* ACK advances: there was a loss, so reduce cwnd. Reset
3451 * tlp_high_seq in tcp_init_cwnd_reduction()
3453 tcp_init_cwnd_reduction(sk);
3454 tcp_set_ca_state(sk, TCP_CA_CWR);
3455 tcp_end_cwnd_reduction(sk);
3456 tcp_try_keep_open(sk);
3457 NET_INC_STATS_BH(sock_net(sk),
3458 LINUX_MIB_TCPLOSSPROBERECOVERY);
3459 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3460 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3461 /* Pure dupack: original and TLP probe arrived; no loss */
3462 tp->tlp_high_seq = 0;
3466 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3468 const struct inet_connection_sock *icsk = inet_csk(sk);
3470 if (icsk->icsk_ca_ops->in_ack_event)
3471 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3474 /* This routine deals with incoming acks, but not outgoing ones. */
3475 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3477 struct inet_connection_sock *icsk = inet_csk(sk);
3478 struct tcp_sock *tp = tcp_sk(sk);
3479 u32 prior_snd_una = tp->snd_una;
3480 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3481 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3482 bool is_dupack = false;
3483 u32 prior_fackets;
3484 int prior_packets = tp->packets_out;
3485 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3486 int acked = 0; /* Number of packets newly acked */
3487 long sack_rtt_us = -1L;
3489 /* We very likely will need to access write queue head. */
3490 prefetchw(sk->sk_write_queue.next);
3492 /* If the ack is older than previous acks
3493 * then we can probably ignore it.
3495 if (before(ack, prior_snd_una)) {
3496 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3497 if (before(ack, prior_snd_una - tp->max_window)) {
3498 tcp_send_challenge_ack(sk, skb);
3499 return -1;
3501 goto old_ack;
3504 /* If the ack includes data we haven't sent yet, discard
3505 * this segment (RFC793 Section 3.9).
3507 if (after(ack, tp->snd_nxt))
3508 goto invalid_ack;
3510 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3511 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3512 tcp_rearm_rto(sk);
3514 if (after(ack, prior_snd_una)) {
3515 flag |= FLAG_SND_UNA_ADVANCED;
3516 icsk->icsk_retransmits = 0;
3519 prior_fackets = tp->fackets_out;
3521 /* ts_recent update must be made after we are sure that the packet
3522 * is in window.
3524 if (flag & FLAG_UPDATE_TS_RECENT)
3525 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3527 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3528 /* Window is constant, pure forward advance.
3529 * No more checks are required.
3530 * Note, we use the fact that SND.UNA>=SND.WL2.
3532 tcp_update_wl(tp, ack_seq);
3533 tcp_snd_una_update(tp, ack);
3534 flag |= FLAG_WIN_UPDATE;
3536 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3538 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3539 } else {
3540 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3542 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3543 flag |= FLAG_DATA;
3544 else
3545 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3547 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3549 if (TCP_SKB_CB(skb)->sacked)
3550 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3551 &sack_rtt_us);
3553 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3554 flag |= FLAG_ECE;
3555 ack_ev_flags |= CA_ACK_ECE;
3558 if (flag & FLAG_WIN_UPDATE)
3559 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3561 tcp_in_ack_event(sk, ack_ev_flags);
3564 /* We passed data and got it acked, remove any soft error
3565 * log. Something worked...
3567 sk->sk_err_soft = 0;
3568 icsk->icsk_probes_out = 0;
3569 tp->rcv_tstamp = tcp_time_stamp;
3570 if (!prior_packets)
3571 goto no_queue;
3573 /* See if we can take anything off of the retransmit queue. */
3574 acked = tp->packets_out;
3575 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3576 sack_rtt_us);
3577 acked -= tp->packets_out;
3579 /* Advance cwnd if state allows */
3580 if (tcp_may_raise_cwnd(sk, flag))
3581 tcp_cong_avoid(sk, ack, acked);
3583 if (tcp_ack_is_dubious(sk, flag)) {
3584 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3585 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3586 is_dupack, flag);
3588 if (tp->tlp_high_seq)
3589 tcp_process_tlp_ack(sk, ack, flag);
3591 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3592 struct dst_entry *dst = __sk_dst_get(sk);
3593 if (dst)
3594 dst_confirm(dst);
3597 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3598 tcp_schedule_loss_probe(sk);
3599 tcp_update_pacing_rate(sk);
3600 return 1;
3602 no_queue:
3603 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3604 if (flag & FLAG_DSACKING_ACK)
3605 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3606 is_dupack, flag);
3607 /* If this ack opens up a zero window, clear backoff. It was
3608 * being used to time the probes, and is probably far higher than
3609 * it needs to be for normal retransmission.
3611 if (tcp_send_head(sk))
3612 tcp_ack_probe(sk);
3614 if (tp->tlp_high_seq)
3615 tcp_process_tlp_ack(sk, ack, flag);
3616 return 1;
3618 invalid_ack:
3619 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3620 return -1;
3622 old_ack:
3623 /* If data was SACKed, tag it and see if we should send more data.
3624 * If data was DSACKed, see if we can undo a cwnd reduction.
3626 if (TCP_SKB_CB(skb)->sacked) {
3627 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3628 &sack_rtt_us);
3629 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3630 is_dupack, flag);
3633 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3634 return 0;
3637 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3638 bool syn, struct tcp_fastopen_cookie *foc,
3639 bool exp_opt)
3641 /* Valid only in SYN or SYN-ACK with an even length. */
3642 if (!foc || !syn || len < 0 || (len & 1))
3643 return;
3645 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3646 len <= TCP_FASTOPEN_COOKIE_MAX)
3647 memcpy(foc->val, cookie, len);
3648 else if (len != 0)
3649 len = -1;
3650 foc->len = len;
3651 foc->exp = exp_opt;
3654 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3655 * But, this can also be called on packets in the established flow when
3656 * the fast version below fails.
3658 void tcp_parse_options(const struct sk_buff *skb,
3659 struct tcp_options_received *opt_rx, int estab,
3660 struct tcp_fastopen_cookie *foc)
3662 const unsigned char *ptr;
3663 const struct tcphdr *th = tcp_hdr(skb);
3664 int length = (th->doff * 4) - sizeof(struct tcphdr);
3666 ptr = (const unsigned char *)(th + 1);
3667 opt_rx->saw_tstamp = 0;
3669 while (length > 0) {
3670 int opcode = *ptr++;
3671 int opsize;
3673 switch (opcode) {
3674 case TCPOPT_EOL:
3675 return;
3676 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3677 length--;
3678 continue;
3679 default:
3680 opsize = *ptr++;
3681 if (opsize < 2) /* "silly options" */
3682 return;
3683 if (opsize > length)
3684 return; /* don't parse partial options */
3685 switch (opcode) {
3686 case TCPOPT_MSS:
3687 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3688 u16 in_mss = get_unaligned_be16(ptr);
3689 if (in_mss) {
3690 if (opt_rx->user_mss &&
3691 opt_rx->user_mss < in_mss)
3692 in_mss = opt_rx->user_mss;
3693 opt_rx->mss_clamp = in_mss;
3696 break;
3697 case TCPOPT_WINDOW:
3698 if (opsize == TCPOLEN_WINDOW && th->syn &&
3699 !estab && sysctl_tcp_window_scaling) {
3700 __u8 snd_wscale = *(__u8 *)ptr;
3701 opt_rx->wscale_ok = 1;
3702 if (snd_wscale > 14) {
3703 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3704 __func__,
3705 snd_wscale);
3706 snd_wscale = 14;
3708 opt_rx->snd_wscale = snd_wscale;
3710 break;
3711 case TCPOPT_TIMESTAMP:
3712 if ((opsize == TCPOLEN_TIMESTAMP) &&
3713 ((estab && opt_rx->tstamp_ok) ||
3714 (!estab && sysctl_tcp_timestamps))) {
3715 opt_rx->saw_tstamp = 1;
3716 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3717 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3719 break;
3720 case TCPOPT_SACK_PERM:
3721 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3722 !estab && sysctl_tcp_sack) {
3723 opt_rx->sack_ok = TCP_SACK_SEEN;
3724 tcp_sack_reset(opt_rx);
3726 break;
3728 case TCPOPT_SACK:
3729 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3730 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3731 opt_rx->sack_ok) {
3732 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3734 break;
3735 #ifdef CONFIG_TCP_MD5SIG
3736 case TCPOPT_MD5SIG:
3738 * The MD5 Hash has already been
3739 * checked (see tcp_v{4,6}_do_rcv()).
3741 break;
3742 #endif
3743 case TCPOPT_FASTOPEN:
3744 tcp_parse_fastopen_option(
3745 opsize - TCPOLEN_FASTOPEN_BASE,
3746 ptr, th->syn, foc, false);
3747 break;
3749 case TCPOPT_EXP:
3750 /* Fast Open option shares code 254 using a
3751 * 16 bits magic number.
3753 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3754 get_unaligned_be16(ptr) ==
3755 TCPOPT_FASTOPEN_MAGIC)
3756 tcp_parse_fastopen_option(opsize -
3757 TCPOLEN_EXP_FASTOPEN_BASE,
3758 ptr + 2, th->syn, foc, true);
3759 break;
3762 ptr += opsize-2;
3763 length -= opsize;
3767 EXPORT_SYMBOL(tcp_parse_options);
3769 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3771 const __be32 *ptr = (const __be32 *)(th + 1);
3773 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3774 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3775 tp->rx_opt.saw_tstamp = 1;
3776 ++ptr;
3777 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3778 ++ptr;
3779 if (*ptr)
3780 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3781 else
3782 tp->rx_opt.rcv_tsecr = 0;
3783 return true;
3785 return false;
3788 /* Fast parse options. This hopes to only see timestamps.
3789 * If it is wrong it falls back on tcp_parse_options().
3791 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3792 const struct tcphdr *th, struct tcp_sock *tp)
3794 /* In the spirit of fast parsing, compare doff directly to constant
3795 * values. Because equality is used, short doff can be ignored here.
3797 if (th->doff == (sizeof(*th) / 4)) {
3798 tp->rx_opt.saw_tstamp = 0;
3799 return false;
3800 } else if (tp->rx_opt.tstamp_ok &&
3801 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3802 if (tcp_parse_aligned_timestamp(tp, th))
3803 return true;
3806 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3807 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3808 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3810 return true;
3813 #ifdef CONFIG_TCP_MD5SIG
3815 * Parse MD5 Signature option
3817 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3819 int length = (th->doff << 2) - sizeof(*th);
3820 const u8 *ptr = (const u8 *)(th + 1);
3822 /* If the TCP option is too short, we can short cut */
3823 if (length < TCPOLEN_MD5SIG)
3824 return NULL;
3826 while (length > 0) {
3827 int opcode = *ptr++;
3828 int opsize;
3830 switch (opcode) {
3831 case TCPOPT_EOL:
3832 return NULL;
3833 case TCPOPT_NOP:
3834 length--;
3835 continue;
3836 default:
3837 opsize = *ptr++;
3838 if (opsize < 2 || opsize > length)
3839 return NULL;
3840 if (opcode == TCPOPT_MD5SIG)
3841 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3843 ptr += opsize - 2;
3844 length -= opsize;
3846 return NULL;
3848 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3849 #endif
3851 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3853 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3854 * it can pass through stack. So, the following predicate verifies that
3855 * this segment is not used for anything but congestion avoidance or
3856 * fast retransmit. Moreover, we even are able to eliminate most of such
3857 * second order effects, if we apply some small "replay" window (~RTO)
3858 * to timestamp space.
3860 * All these measures still do not guarantee that we reject wrapped ACKs
3861 * on networks with high bandwidth, when sequence space is recycled fastly,
3862 * but it guarantees that such events will be very rare and do not affect
3863 * connection seriously. This doesn't look nice, but alas, PAWS is really
3864 * buggy extension.
3866 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3867 * states that events when retransmit arrives after original data are rare.
3868 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3869 * the biggest problem on large power networks even with minor reordering.
3870 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3871 * up to bandwidth of 18Gigabit/sec. 8) ]
3874 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3876 const struct tcp_sock *tp = tcp_sk(sk);
3877 const struct tcphdr *th = tcp_hdr(skb);
3878 u32 seq = TCP_SKB_CB(skb)->seq;
3879 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3881 return (/* 1. Pure ACK with correct sequence number. */
3882 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3884 /* 2. ... and duplicate ACK. */
3885 ack == tp->snd_una &&
3887 /* 3. ... and does not update window. */
3888 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3890 /* 4. ... and sits in replay window. */
3891 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3894 static inline bool tcp_paws_discard(const struct sock *sk,
3895 const struct sk_buff *skb)
3897 const struct tcp_sock *tp = tcp_sk(sk);
3899 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3900 !tcp_disordered_ack(sk, skb);
3903 /* Check segment sequence number for validity.
3905 * Segment controls are considered valid, if the segment
3906 * fits to the window after truncation to the window. Acceptability
3907 * of data (and SYN, FIN, of course) is checked separately.
3908 * See tcp_data_queue(), for example.
3910 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3911 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3912 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3913 * (borrowed from freebsd)
3916 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3918 return !before(end_seq, tp->rcv_wup) &&
3919 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3922 /* When we get a reset we do this. */
3923 void tcp_reset(struct sock *sk)
3925 /* We want the right error as BSD sees it (and indeed as we do). */
3926 switch (sk->sk_state) {
3927 case TCP_SYN_SENT:
3928 sk->sk_err = ECONNREFUSED;
3929 break;
3930 case TCP_CLOSE_WAIT:
3931 sk->sk_err = EPIPE;
3932 break;
3933 case TCP_CLOSE:
3934 return;
3935 default:
3936 sk->sk_err = ECONNRESET;
3938 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3939 smp_wmb();
3941 if (!sock_flag(sk, SOCK_DEAD))
3942 sk->sk_error_report(sk);
3944 tcp_done(sk);
3948 * Process the FIN bit. This now behaves as it is supposed to work
3949 * and the FIN takes effect when it is validly part of sequence
3950 * space. Not before when we get holes.
3952 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3953 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3954 * TIME-WAIT)
3956 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3957 * close and we go into CLOSING (and later onto TIME-WAIT)
3959 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3961 static void tcp_fin(struct sock *sk)
3963 struct tcp_sock *tp = tcp_sk(sk);
3964 const struct dst_entry *dst;
3966 inet_csk_schedule_ack(sk);
3968 sk->sk_shutdown |= RCV_SHUTDOWN;
3969 sock_set_flag(sk, SOCK_DONE);
3971 switch (sk->sk_state) {
3972 case TCP_SYN_RECV:
3973 case TCP_ESTABLISHED:
3974 /* Move to CLOSE_WAIT */
3975 tcp_set_state(sk, TCP_CLOSE_WAIT);
3976 dst = __sk_dst_get(sk);
3977 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3978 inet_csk(sk)->icsk_ack.pingpong = 1;
3979 break;
3981 case TCP_CLOSE_WAIT:
3982 case TCP_CLOSING:
3983 /* Received a retransmission of the FIN, do
3984 * nothing.
3986 break;
3987 case TCP_LAST_ACK:
3988 /* RFC793: Remain in the LAST-ACK state. */
3989 break;
3991 case TCP_FIN_WAIT1:
3992 /* This case occurs when a simultaneous close
3993 * happens, we must ack the received FIN and
3994 * enter the CLOSING state.
3996 tcp_send_ack(sk);
3997 tcp_set_state(sk, TCP_CLOSING);
3998 break;
3999 case TCP_FIN_WAIT2:
4000 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4001 tcp_send_ack(sk);
4002 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4003 break;
4004 default:
4005 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4006 * cases we should never reach this piece of code.
4008 pr_err("%s: Impossible, sk->sk_state=%d\n",
4009 __func__, sk->sk_state);
4010 break;
4013 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4014 * Probably, we should reset in this case. For now drop them.
4016 __skb_queue_purge(&tp->out_of_order_queue);
4017 if (tcp_is_sack(tp))
4018 tcp_sack_reset(&tp->rx_opt);
4019 sk_mem_reclaim(sk);
4021 if (!sock_flag(sk, SOCK_DEAD)) {
4022 sk->sk_state_change(sk);
4024 /* Do not send POLL_HUP for half duplex close. */
4025 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4026 sk->sk_state == TCP_CLOSE)
4027 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4028 else
4029 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4033 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4034 u32 end_seq)
4036 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4037 if (before(seq, sp->start_seq))
4038 sp->start_seq = seq;
4039 if (after(end_seq, sp->end_seq))
4040 sp->end_seq = end_seq;
4041 return true;
4043 return false;
4046 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4048 struct tcp_sock *tp = tcp_sk(sk);
4050 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4051 int mib_idx;
4053 if (before(seq, tp->rcv_nxt))
4054 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4055 else
4056 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4058 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4060 tp->rx_opt.dsack = 1;
4061 tp->duplicate_sack[0].start_seq = seq;
4062 tp->duplicate_sack[0].end_seq = end_seq;
4066 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4068 struct tcp_sock *tp = tcp_sk(sk);
4070 if (!tp->rx_opt.dsack)
4071 tcp_dsack_set(sk, seq, end_seq);
4072 else
4073 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4076 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4078 struct tcp_sock *tp = tcp_sk(sk);
4080 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4081 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4082 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4083 tcp_enter_quickack_mode(sk);
4085 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4086 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4088 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4089 end_seq = tp->rcv_nxt;
4090 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4094 tcp_send_ack(sk);
4097 /* These routines update the SACK block as out-of-order packets arrive or
4098 * in-order packets close up the sequence space.
4100 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4102 int this_sack;
4103 struct tcp_sack_block *sp = &tp->selective_acks[0];
4104 struct tcp_sack_block *swalk = sp + 1;
4106 /* See if the recent change to the first SACK eats into
4107 * or hits the sequence space of other SACK blocks, if so coalesce.
4109 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4110 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4111 int i;
4113 /* Zap SWALK, by moving every further SACK up by one slot.
4114 * Decrease num_sacks.
4116 tp->rx_opt.num_sacks--;
4117 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4118 sp[i] = sp[i + 1];
4119 continue;
4121 this_sack++, swalk++;
4125 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4127 struct tcp_sock *tp = tcp_sk(sk);
4128 struct tcp_sack_block *sp = &tp->selective_acks[0];
4129 int cur_sacks = tp->rx_opt.num_sacks;
4130 int this_sack;
4132 if (!cur_sacks)
4133 goto new_sack;
4135 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4136 if (tcp_sack_extend(sp, seq, end_seq)) {
4137 /* Rotate this_sack to the first one. */
4138 for (; this_sack > 0; this_sack--, sp--)
4139 swap(*sp, *(sp - 1));
4140 if (cur_sacks > 1)
4141 tcp_sack_maybe_coalesce(tp);
4142 return;
4146 /* Could not find an adjacent existing SACK, build a new one,
4147 * put it at the front, and shift everyone else down. We
4148 * always know there is at least one SACK present already here.
4150 * If the sack array is full, forget about the last one.
4152 if (this_sack >= TCP_NUM_SACKS) {
4153 this_sack--;
4154 tp->rx_opt.num_sacks--;
4155 sp--;
4157 for (; this_sack > 0; this_sack--, sp--)
4158 *sp = *(sp - 1);
4160 new_sack:
4161 /* Build the new head SACK, and we're done. */
4162 sp->start_seq = seq;
4163 sp->end_seq = end_seq;
4164 tp->rx_opt.num_sacks++;
4167 /* RCV.NXT advances, some SACKs should be eaten. */
4169 static void tcp_sack_remove(struct tcp_sock *tp)
4171 struct tcp_sack_block *sp = &tp->selective_acks[0];
4172 int num_sacks = tp->rx_opt.num_sacks;
4173 int this_sack;
4175 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4176 if (skb_queue_empty(&tp->out_of_order_queue)) {
4177 tp->rx_opt.num_sacks = 0;
4178 return;
4181 for (this_sack = 0; this_sack < num_sacks;) {
4182 /* Check if the start of the sack is covered by RCV.NXT. */
4183 if (!before(tp->rcv_nxt, sp->start_seq)) {
4184 int i;
4186 /* RCV.NXT must cover all the block! */
4187 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4189 /* Zap this SACK, by moving forward any other SACKS. */
4190 for (i = this_sack+1; i < num_sacks; i++)
4191 tp->selective_acks[i-1] = tp->selective_acks[i];
4192 num_sacks--;
4193 continue;
4195 this_sack++;
4196 sp++;
4198 tp->rx_opt.num_sacks = num_sacks;
4202 * tcp_try_coalesce - try to merge skb to prior one
4203 * @sk: socket
4204 * @to: prior buffer
4205 * @from: buffer to add in queue
4206 * @fragstolen: pointer to boolean
4208 * Before queueing skb @from after @to, try to merge them
4209 * to reduce overall memory use and queue lengths, if cost is small.
4210 * Packets in ofo or receive queues can stay a long time.
4211 * Better try to coalesce them right now to avoid future collapses.
4212 * Returns true if caller should free @from instead of queueing it
4214 static bool tcp_try_coalesce(struct sock *sk,
4215 struct sk_buff *to,
4216 struct sk_buff *from,
4217 bool *fragstolen)
4219 int delta;
4221 *fragstolen = false;
4223 /* Its possible this segment overlaps with prior segment in queue */
4224 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4225 return false;
4227 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4228 return false;
4230 atomic_add(delta, &sk->sk_rmem_alloc);
4231 sk_mem_charge(sk, delta);
4232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4233 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4234 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4235 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4236 return true;
4239 /* This one checks to see if we can put data from the
4240 * out_of_order queue into the receive_queue.
4242 static void tcp_ofo_queue(struct sock *sk)
4244 struct tcp_sock *tp = tcp_sk(sk);
4245 __u32 dsack_high = tp->rcv_nxt;
4246 struct sk_buff *skb, *tail;
4247 bool fragstolen, eaten;
4249 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4250 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4251 break;
4253 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4254 __u32 dsack = dsack_high;
4255 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4256 dsack_high = TCP_SKB_CB(skb)->end_seq;
4257 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4260 __skb_unlink(skb, &tp->out_of_order_queue);
4261 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4262 SOCK_DEBUG(sk, "ofo packet was already received\n");
4263 __kfree_skb(skb);
4264 continue;
4266 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4267 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4268 TCP_SKB_CB(skb)->end_seq);
4270 tail = skb_peek_tail(&sk->sk_receive_queue);
4271 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4272 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4273 if (!eaten)
4274 __skb_queue_tail(&sk->sk_receive_queue, skb);
4275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4276 tcp_fin(sk);
4277 if (eaten)
4278 kfree_skb_partial(skb, fragstolen);
4282 static bool tcp_prune_ofo_queue(struct sock *sk);
4283 static int tcp_prune_queue(struct sock *sk);
4285 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4286 unsigned int size)
4288 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4289 !sk_rmem_schedule(sk, skb, size)) {
4291 if (tcp_prune_queue(sk) < 0)
4292 return -1;
4294 if (!sk_rmem_schedule(sk, skb, size)) {
4295 if (!tcp_prune_ofo_queue(sk))
4296 return -1;
4298 if (!sk_rmem_schedule(sk, skb, size))
4299 return -1;
4302 return 0;
4305 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4307 struct tcp_sock *tp = tcp_sk(sk);
4308 struct sk_buff *skb1;
4309 u32 seq, end_seq;
4311 tcp_ecn_check_ce(tp, skb);
4313 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4314 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4315 __kfree_skb(skb);
4316 return;
4319 /* Disable header prediction. */
4320 tp->pred_flags = 0;
4321 inet_csk_schedule_ack(sk);
4323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4324 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4325 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4327 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4328 if (!skb1) {
4329 /* Initial out of order segment, build 1 SACK. */
4330 if (tcp_is_sack(tp)) {
4331 tp->rx_opt.num_sacks = 1;
4332 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4333 tp->selective_acks[0].end_seq =
4334 TCP_SKB_CB(skb)->end_seq;
4336 __skb_queue_head(&tp->out_of_order_queue, skb);
4337 goto end;
4340 seq = TCP_SKB_CB(skb)->seq;
4341 end_seq = TCP_SKB_CB(skb)->end_seq;
4343 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4344 bool fragstolen;
4346 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4347 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4348 } else {
4349 tcp_grow_window(sk, skb);
4350 kfree_skb_partial(skb, fragstolen);
4351 skb = NULL;
4354 if (!tp->rx_opt.num_sacks ||
4355 tp->selective_acks[0].end_seq != seq)
4356 goto add_sack;
4358 /* Common case: data arrive in order after hole. */
4359 tp->selective_acks[0].end_seq = end_seq;
4360 goto end;
4363 /* Find place to insert this segment. */
4364 while (1) {
4365 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4366 break;
4367 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4368 skb1 = NULL;
4369 break;
4371 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4374 /* Do skb overlap to previous one? */
4375 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4376 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4377 /* All the bits are present. Drop. */
4378 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4379 __kfree_skb(skb);
4380 skb = NULL;
4381 tcp_dsack_set(sk, seq, end_seq);
4382 goto add_sack;
4384 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4385 /* Partial overlap. */
4386 tcp_dsack_set(sk, seq,
4387 TCP_SKB_CB(skb1)->end_seq);
4388 } else {
4389 if (skb_queue_is_first(&tp->out_of_order_queue,
4390 skb1))
4391 skb1 = NULL;
4392 else
4393 skb1 = skb_queue_prev(
4394 &tp->out_of_order_queue,
4395 skb1);
4398 if (!skb1)
4399 __skb_queue_head(&tp->out_of_order_queue, skb);
4400 else
4401 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4403 /* And clean segments covered by new one as whole. */
4404 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4405 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4407 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4408 break;
4409 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4410 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4411 end_seq);
4412 break;
4414 __skb_unlink(skb1, &tp->out_of_order_queue);
4415 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4416 TCP_SKB_CB(skb1)->end_seq);
4417 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4418 __kfree_skb(skb1);
4421 add_sack:
4422 if (tcp_is_sack(tp))
4423 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4424 end:
4425 if (skb) {
4426 tcp_grow_window(sk, skb);
4427 skb_set_owner_r(skb, sk);
4431 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4432 bool *fragstolen)
4434 int eaten;
4435 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4437 __skb_pull(skb, hdrlen);
4438 eaten = (tail &&
4439 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4440 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4441 if (!eaten) {
4442 __skb_queue_tail(&sk->sk_receive_queue, skb);
4443 skb_set_owner_r(skb, sk);
4445 return eaten;
4448 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4450 struct sk_buff *skb;
4451 int err = -ENOMEM;
4452 int data_len = 0;
4453 bool fragstolen;
4455 if (size == 0)
4456 return 0;
4458 if (size > PAGE_SIZE) {
4459 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4461 data_len = npages << PAGE_SHIFT;
4462 size = data_len + (size & ~PAGE_MASK);
4464 skb = alloc_skb_with_frags(size - data_len, data_len,
4465 PAGE_ALLOC_COSTLY_ORDER,
4466 &err, sk->sk_allocation);
4467 if (!skb)
4468 goto err;
4470 skb_put(skb, size - data_len);
4471 skb->data_len = data_len;
4472 skb->len = size;
4474 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4475 goto err_free;
4477 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4478 if (err)
4479 goto err_free;
4481 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4482 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4483 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4485 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4486 WARN_ON_ONCE(fragstolen); /* should not happen */
4487 __kfree_skb(skb);
4489 return size;
4491 err_free:
4492 kfree_skb(skb);
4493 err:
4494 return err;
4498 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4500 struct tcp_sock *tp = tcp_sk(sk);
4501 int eaten = -1;
4502 bool fragstolen = false;
4504 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4505 goto drop;
4507 skb_dst_drop(skb);
4508 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4510 tcp_ecn_accept_cwr(tp, skb);
4512 tp->rx_opt.dsack = 0;
4514 /* Queue data for delivery to the user.
4515 * Packets in sequence go to the receive queue.
4516 * Out of sequence packets to the out_of_order_queue.
4518 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4519 if (tcp_receive_window(tp) == 0)
4520 goto out_of_window;
4522 /* Ok. In sequence. In window. */
4523 if (tp->ucopy.task == current &&
4524 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4525 sock_owned_by_user(sk) && !tp->urg_data) {
4526 int chunk = min_t(unsigned int, skb->len,
4527 tp->ucopy.len);
4529 __set_current_state(TASK_RUNNING);
4531 local_bh_enable();
4532 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4533 tp->ucopy.len -= chunk;
4534 tp->copied_seq += chunk;
4535 eaten = (chunk == skb->len);
4536 tcp_rcv_space_adjust(sk);
4538 local_bh_disable();
4541 if (eaten <= 0) {
4542 queue_and_out:
4543 if (eaten < 0 &&
4544 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4545 goto drop;
4547 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4549 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4550 if (skb->len)
4551 tcp_event_data_recv(sk, skb);
4552 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4553 tcp_fin(sk);
4555 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4556 tcp_ofo_queue(sk);
4558 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4559 * gap in queue is filled.
4561 if (skb_queue_empty(&tp->out_of_order_queue))
4562 inet_csk(sk)->icsk_ack.pingpong = 0;
4565 if (tp->rx_opt.num_sacks)
4566 tcp_sack_remove(tp);
4568 tcp_fast_path_check(sk);
4570 if (eaten > 0)
4571 kfree_skb_partial(skb, fragstolen);
4572 if (!sock_flag(sk, SOCK_DEAD))
4573 sk->sk_data_ready(sk);
4574 return;
4577 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4578 /* A retransmit, 2nd most common case. Force an immediate ack. */
4579 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4580 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4582 out_of_window:
4583 tcp_enter_quickack_mode(sk);
4584 inet_csk_schedule_ack(sk);
4585 drop:
4586 __kfree_skb(skb);
4587 return;
4590 /* Out of window. F.e. zero window probe. */
4591 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4592 goto out_of_window;
4594 tcp_enter_quickack_mode(sk);
4596 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4597 /* Partial packet, seq < rcv_next < end_seq */
4598 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4599 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4600 TCP_SKB_CB(skb)->end_seq);
4602 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4604 /* If window is closed, drop tail of packet. But after
4605 * remembering D-SACK for its head made in previous line.
4607 if (!tcp_receive_window(tp))
4608 goto out_of_window;
4609 goto queue_and_out;
4612 tcp_data_queue_ofo(sk, skb);
4615 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4616 struct sk_buff_head *list)
4618 struct sk_buff *next = NULL;
4620 if (!skb_queue_is_last(list, skb))
4621 next = skb_queue_next(list, skb);
4623 __skb_unlink(skb, list);
4624 __kfree_skb(skb);
4625 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4627 return next;
4630 /* Collapse contiguous sequence of skbs head..tail with
4631 * sequence numbers start..end.
4633 * If tail is NULL, this means until the end of the list.
4635 * Segments with FIN/SYN are not collapsed (only because this
4636 * simplifies code)
4638 static void
4639 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4640 struct sk_buff *head, struct sk_buff *tail,
4641 u32 start, u32 end)
4643 struct sk_buff *skb, *n;
4644 bool end_of_skbs;
4646 /* First, check that queue is collapsible and find
4647 * the point where collapsing can be useful. */
4648 skb = head;
4649 restart:
4650 end_of_skbs = true;
4651 skb_queue_walk_from_safe(list, skb, n) {
4652 if (skb == tail)
4653 break;
4654 /* No new bits? It is possible on ofo queue. */
4655 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4656 skb = tcp_collapse_one(sk, skb, list);
4657 if (!skb)
4658 break;
4659 goto restart;
4662 /* The first skb to collapse is:
4663 * - not SYN/FIN and
4664 * - bloated or contains data before "start" or
4665 * overlaps to the next one.
4667 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4668 (tcp_win_from_space(skb->truesize) > skb->len ||
4669 before(TCP_SKB_CB(skb)->seq, start))) {
4670 end_of_skbs = false;
4671 break;
4674 if (!skb_queue_is_last(list, skb)) {
4675 struct sk_buff *next = skb_queue_next(list, skb);
4676 if (next != tail &&
4677 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4678 end_of_skbs = false;
4679 break;
4683 /* Decided to skip this, advance start seq. */
4684 start = TCP_SKB_CB(skb)->end_seq;
4686 if (end_of_skbs ||
4687 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4688 return;
4690 while (before(start, end)) {
4691 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4692 struct sk_buff *nskb;
4694 nskb = alloc_skb(copy, GFP_ATOMIC);
4695 if (!nskb)
4696 return;
4698 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4699 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4700 __skb_queue_before(list, skb, nskb);
4701 skb_set_owner_r(nskb, sk);
4703 /* Copy data, releasing collapsed skbs. */
4704 while (copy > 0) {
4705 int offset = start - TCP_SKB_CB(skb)->seq;
4706 int size = TCP_SKB_CB(skb)->end_seq - start;
4708 BUG_ON(offset < 0);
4709 if (size > 0) {
4710 size = min(copy, size);
4711 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4712 BUG();
4713 TCP_SKB_CB(nskb)->end_seq += size;
4714 copy -= size;
4715 start += size;
4717 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4718 skb = tcp_collapse_one(sk, skb, list);
4719 if (!skb ||
4720 skb == tail ||
4721 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4722 return;
4728 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4729 * and tcp_collapse() them until all the queue is collapsed.
4731 static void tcp_collapse_ofo_queue(struct sock *sk)
4733 struct tcp_sock *tp = tcp_sk(sk);
4734 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4735 struct sk_buff *head;
4736 u32 start, end;
4738 if (!skb)
4739 return;
4741 start = TCP_SKB_CB(skb)->seq;
4742 end = TCP_SKB_CB(skb)->end_seq;
4743 head = skb;
4745 for (;;) {
4746 struct sk_buff *next = NULL;
4748 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4749 next = skb_queue_next(&tp->out_of_order_queue, skb);
4750 skb = next;
4752 /* Segment is terminated when we see gap or when
4753 * we are at the end of all the queue. */
4754 if (!skb ||
4755 after(TCP_SKB_CB(skb)->seq, end) ||
4756 before(TCP_SKB_CB(skb)->end_seq, start)) {
4757 tcp_collapse(sk, &tp->out_of_order_queue,
4758 head, skb, start, end);
4759 head = skb;
4760 if (!skb)
4761 break;
4762 /* Start new segment */
4763 start = TCP_SKB_CB(skb)->seq;
4764 end = TCP_SKB_CB(skb)->end_seq;
4765 } else {
4766 if (before(TCP_SKB_CB(skb)->seq, start))
4767 start = TCP_SKB_CB(skb)->seq;
4768 if (after(TCP_SKB_CB(skb)->end_seq, end))
4769 end = TCP_SKB_CB(skb)->end_seq;
4775 * Purge the out-of-order queue.
4776 * Return true if queue was pruned.
4778 static bool tcp_prune_ofo_queue(struct sock *sk)
4780 struct tcp_sock *tp = tcp_sk(sk);
4781 bool res = false;
4783 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4784 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4785 __skb_queue_purge(&tp->out_of_order_queue);
4787 /* Reset SACK state. A conforming SACK implementation will
4788 * do the same at a timeout based retransmit. When a connection
4789 * is in a sad state like this, we care only about integrity
4790 * of the connection not performance.
4792 if (tp->rx_opt.sack_ok)
4793 tcp_sack_reset(&tp->rx_opt);
4794 sk_mem_reclaim(sk);
4795 res = true;
4797 return res;
4800 /* Reduce allocated memory if we can, trying to get
4801 * the socket within its memory limits again.
4803 * Return less than zero if we should start dropping frames
4804 * until the socket owning process reads some of the data
4805 * to stabilize the situation.
4807 static int tcp_prune_queue(struct sock *sk)
4809 struct tcp_sock *tp = tcp_sk(sk);
4811 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4813 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4815 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4816 tcp_clamp_window(sk);
4817 else if (sk_under_memory_pressure(sk))
4818 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4820 tcp_collapse_ofo_queue(sk);
4821 if (!skb_queue_empty(&sk->sk_receive_queue))
4822 tcp_collapse(sk, &sk->sk_receive_queue,
4823 skb_peek(&sk->sk_receive_queue),
4824 NULL,
4825 tp->copied_seq, tp->rcv_nxt);
4826 sk_mem_reclaim(sk);
4828 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4829 return 0;
4831 /* Collapsing did not help, destructive actions follow.
4832 * This must not ever occur. */
4834 tcp_prune_ofo_queue(sk);
4836 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4837 return 0;
4839 /* If we are really being abused, tell the caller to silently
4840 * drop receive data on the floor. It will get retransmitted
4841 * and hopefully then we'll have sufficient space.
4843 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4845 /* Massive buffer overcommit. */
4846 tp->pred_flags = 0;
4847 return -1;
4850 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4852 const struct tcp_sock *tp = tcp_sk(sk);
4854 /* If the user specified a specific send buffer setting, do
4855 * not modify it.
4857 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4858 return false;
4860 /* If we are under global TCP memory pressure, do not expand. */
4861 if (sk_under_memory_pressure(sk))
4862 return false;
4864 /* If we are under soft global TCP memory pressure, do not expand. */
4865 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4866 return false;
4868 /* If we filled the congestion window, do not expand. */
4869 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4870 return false;
4872 return true;
4875 /* When incoming ACK allowed to free some skb from write_queue,
4876 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4877 * on the exit from tcp input handler.
4879 * PROBLEM: sndbuf expansion does not work well with largesend.
4881 static void tcp_new_space(struct sock *sk)
4883 struct tcp_sock *tp = tcp_sk(sk);
4885 if (tcp_should_expand_sndbuf(sk)) {
4886 tcp_sndbuf_expand(sk);
4887 tp->snd_cwnd_stamp = tcp_time_stamp;
4890 sk->sk_write_space(sk);
4893 static void tcp_check_space(struct sock *sk)
4895 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4896 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4897 /* pairs with tcp_poll() */
4898 smp_mb__after_atomic();
4899 if (sk->sk_socket &&
4900 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4901 tcp_new_space(sk);
4905 static inline void tcp_data_snd_check(struct sock *sk)
4907 tcp_push_pending_frames(sk);
4908 tcp_check_space(sk);
4912 * Check if sending an ack is needed.
4914 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4916 struct tcp_sock *tp = tcp_sk(sk);
4918 /* More than one full frame received... */
4919 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4920 /* ... and right edge of window advances far enough.
4921 * (tcp_recvmsg() will send ACK otherwise). Or...
4923 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4924 /* We ACK each frame or... */
4925 tcp_in_quickack_mode(sk) ||
4926 /* We have out of order data. */
4927 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4928 /* Then ack it now */
4929 tcp_send_ack(sk);
4930 } else {
4931 /* Else, send delayed ack. */
4932 tcp_send_delayed_ack(sk);
4936 static inline void tcp_ack_snd_check(struct sock *sk)
4938 if (!inet_csk_ack_scheduled(sk)) {
4939 /* We sent a data segment already. */
4940 return;
4942 __tcp_ack_snd_check(sk, 1);
4946 * This routine is only called when we have urgent data
4947 * signaled. Its the 'slow' part of tcp_urg. It could be
4948 * moved inline now as tcp_urg is only called from one
4949 * place. We handle URGent data wrong. We have to - as
4950 * BSD still doesn't use the correction from RFC961.
4951 * For 1003.1g we should support a new option TCP_STDURG to permit
4952 * either form (or just set the sysctl tcp_stdurg).
4955 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4957 struct tcp_sock *tp = tcp_sk(sk);
4958 u32 ptr = ntohs(th->urg_ptr);
4960 if (ptr && !sysctl_tcp_stdurg)
4961 ptr--;
4962 ptr += ntohl(th->seq);
4964 /* Ignore urgent data that we've already seen and read. */
4965 if (after(tp->copied_seq, ptr))
4966 return;
4968 /* Do not replay urg ptr.
4970 * NOTE: interesting situation not covered by specs.
4971 * Misbehaving sender may send urg ptr, pointing to segment,
4972 * which we already have in ofo queue. We are not able to fetch
4973 * such data and will stay in TCP_URG_NOTYET until will be eaten
4974 * by recvmsg(). Seems, we are not obliged to handle such wicked
4975 * situations. But it is worth to think about possibility of some
4976 * DoSes using some hypothetical application level deadlock.
4978 if (before(ptr, tp->rcv_nxt))
4979 return;
4981 /* Do we already have a newer (or duplicate) urgent pointer? */
4982 if (tp->urg_data && !after(ptr, tp->urg_seq))
4983 return;
4985 /* Tell the world about our new urgent pointer. */
4986 sk_send_sigurg(sk);
4988 /* We may be adding urgent data when the last byte read was
4989 * urgent. To do this requires some care. We cannot just ignore
4990 * tp->copied_seq since we would read the last urgent byte again
4991 * as data, nor can we alter copied_seq until this data arrives
4992 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4994 * NOTE. Double Dutch. Rendering to plain English: author of comment
4995 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4996 * and expect that both A and B disappear from stream. This is _wrong_.
4997 * Though this happens in BSD with high probability, this is occasional.
4998 * Any application relying on this is buggy. Note also, that fix "works"
4999 * only in this artificial test. Insert some normal data between A and B and we will
5000 * decline of BSD again. Verdict: it is better to remove to trap
5001 * buggy users.
5003 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5004 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5005 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5006 tp->copied_seq++;
5007 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5008 __skb_unlink(skb, &sk->sk_receive_queue);
5009 __kfree_skb(skb);
5013 tp->urg_data = TCP_URG_NOTYET;
5014 tp->urg_seq = ptr;
5016 /* Disable header prediction. */
5017 tp->pred_flags = 0;
5020 /* This is the 'fast' part of urgent handling. */
5021 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5023 struct tcp_sock *tp = tcp_sk(sk);
5025 /* Check if we get a new urgent pointer - normally not. */
5026 if (th->urg)
5027 tcp_check_urg(sk, th);
5029 /* Do we wait for any urgent data? - normally not... */
5030 if (tp->urg_data == TCP_URG_NOTYET) {
5031 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5032 th->syn;
5034 /* Is the urgent pointer pointing into this packet? */
5035 if (ptr < skb->len) {
5036 u8 tmp;
5037 if (skb_copy_bits(skb, ptr, &tmp, 1))
5038 BUG();
5039 tp->urg_data = TCP_URG_VALID | tmp;
5040 if (!sock_flag(sk, SOCK_DEAD))
5041 sk->sk_data_ready(sk);
5046 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5048 struct tcp_sock *tp = tcp_sk(sk);
5049 int chunk = skb->len - hlen;
5050 int err;
5052 local_bh_enable();
5053 if (skb_csum_unnecessary(skb))
5054 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5055 else
5056 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5058 if (!err) {
5059 tp->ucopy.len -= chunk;
5060 tp->copied_seq += chunk;
5061 tcp_rcv_space_adjust(sk);
5064 local_bh_disable();
5065 return err;
5068 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5069 struct sk_buff *skb)
5071 __sum16 result;
5073 if (sock_owned_by_user(sk)) {
5074 local_bh_enable();
5075 result = __tcp_checksum_complete(skb);
5076 local_bh_disable();
5077 } else {
5078 result = __tcp_checksum_complete(skb);
5080 return result;
5083 static inline bool tcp_checksum_complete_user(struct sock *sk,
5084 struct sk_buff *skb)
5086 return !skb_csum_unnecessary(skb) &&
5087 __tcp_checksum_complete_user(sk, skb);
5090 /* Does PAWS and seqno based validation of an incoming segment, flags will
5091 * play significant role here.
5093 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5094 const struct tcphdr *th, int syn_inerr)
5096 struct tcp_sock *tp = tcp_sk(sk);
5098 /* RFC1323: H1. Apply PAWS check first. */
5099 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5100 tcp_paws_discard(sk, skb)) {
5101 if (!th->rst) {
5102 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5103 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5104 LINUX_MIB_TCPACKSKIPPEDPAWS,
5105 &tp->last_oow_ack_time))
5106 tcp_send_dupack(sk, skb);
5107 goto discard;
5109 /* Reset is accepted even if it did not pass PAWS. */
5112 /* Step 1: check sequence number */
5113 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5114 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5115 * (RST) segments are validated by checking their SEQ-fields."
5116 * And page 69: "If an incoming segment is not acceptable,
5117 * an acknowledgment should be sent in reply (unless the RST
5118 * bit is set, if so drop the segment and return)".
5120 if (!th->rst) {
5121 if (th->syn)
5122 goto syn_challenge;
5123 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5124 LINUX_MIB_TCPACKSKIPPEDSEQ,
5125 &tp->last_oow_ack_time))
5126 tcp_send_dupack(sk, skb);
5128 goto discard;
5131 /* Step 2: check RST bit */
5132 if (th->rst) {
5133 /* RFC 5961 3.2 :
5134 * If sequence number exactly matches RCV.NXT, then
5135 * RESET the connection
5136 * else
5137 * Send a challenge ACK
5139 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5140 tcp_reset(sk);
5141 else
5142 tcp_send_challenge_ack(sk, skb);
5143 goto discard;
5146 /* step 3: check security and precedence [ignored] */
5148 /* step 4: Check for a SYN
5149 * RFC 5961 4.2 : Send a challenge ack
5151 if (th->syn) {
5152 syn_challenge:
5153 if (syn_inerr)
5154 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5155 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5156 tcp_send_challenge_ack(sk, skb);
5157 goto discard;
5160 return true;
5162 discard:
5163 __kfree_skb(skb);
5164 return false;
5168 * TCP receive function for the ESTABLISHED state.
5170 * It is split into a fast path and a slow path. The fast path is
5171 * disabled when:
5172 * - A zero window was announced from us - zero window probing
5173 * is only handled properly in the slow path.
5174 * - Out of order segments arrived.
5175 * - Urgent data is expected.
5176 * - There is no buffer space left
5177 * - Unexpected TCP flags/window values/header lengths are received
5178 * (detected by checking the TCP header against pred_flags)
5179 * - Data is sent in both directions. Fast path only supports pure senders
5180 * or pure receivers (this means either the sequence number or the ack
5181 * value must stay constant)
5182 * - Unexpected TCP option.
5184 * When these conditions are not satisfied it drops into a standard
5185 * receive procedure patterned after RFC793 to handle all cases.
5186 * The first three cases are guaranteed by proper pred_flags setting,
5187 * the rest is checked inline. Fast processing is turned on in
5188 * tcp_data_queue when everything is OK.
5190 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5191 const struct tcphdr *th, unsigned int len)
5193 struct tcp_sock *tp = tcp_sk(sk);
5195 if (unlikely(!sk->sk_rx_dst))
5196 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5198 * Header prediction.
5199 * The code loosely follows the one in the famous
5200 * "30 instruction TCP receive" Van Jacobson mail.
5202 * Van's trick is to deposit buffers into socket queue
5203 * on a device interrupt, to call tcp_recv function
5204 * on the receive process context and checksum and copy
5205 * the buffer to user space. smart...
5207 * Our current scheme is not silly either but we take the
5208 * extra cost of the net_bh soft interrupt processing...
5209 * We do checksum and copy also but from device to kernel.
5212 tp->rx_opt.saw_tstamp = 0;
5214 /* pred_flags is 0xS?10 << 16 + snd_wnd
5215 * if header_prediction is to be made
5216 * 'S' will always be tp->tcp_header_len >> 2
5217 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5218 * turn it off (when there are holes in the receive
5219 * space for instance)
5220 * PSH flag is ignored.
5223 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5224 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5225 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5226 int tcp_header_len = tp->tcp_header_len;
5228 /* Timestamp header prediction: tcp_header_len
5229 * is automatically equal to th->doff*4 due to pred_flags
5230 * match.
5233 /* Check timestamp */
5234 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5235 /* No? Slow path! */
5236 if (!tcp_parse_aligned_timestamp(tp, th))
5237 goto slow_path;
5239 /* If PAWS failed, check it more carefully in slow path */
5240 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5241 goto slow_path;
5243 /* DO NOT update ts_recent here, if checksum fails
5244 * and timestamp was corrupted part, it will result
5245 * in a hung connection since we will drop all
5246 * future packets due to the PAWS test.
5250 if (len <= tcp_header_len) {
5251 /* Bulk data transfer: sender */
5252 if (len == tcp_header_len) {
5253 /* Predicted packet is in window by definition.
5254 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5255 * Hence, check seq<=rcv_wup reduces to:
5257 if (tcp_header_len ==
5258 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5259 tp->rcv_nxt == tp->rcv_wup)
5260 tcp_store_ts_recent(tp);
5262 /* We know that such packets are checksummed
5263 * on entry.
5265 tcp_ack(sk, skb, 0);
5266 __kfree_skb(skb);
5267 tcp_data_snd_check(sk);
5268 return;
5269 } else { /* Header too small */
5270 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5271 goto discard;
5273 } else {
5274 int eaten = 0;
5275 bool fragstolen = false;
5277 if (tp->ucopy.task == current &&
5278 tp->copied_seq == tp->rcv_nxt &&
5279 len - tcp_header_len <= tp->ucopy.len &&
5280 sock_owned_by_user(sk)) {
5281 __set_current_state(TASK_RUNNING);
5283 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5284 /* Predicted packet is in window by definition.
5285 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5286 * Hence, check seq<=rcv_wup reduces to:
5288 if (tcp_header_len ==
5289 (sizeof(struct tcphdr) +
5290 TCPOLEN_TSTAMP_ALIGNED) &&
5291 tp->rcv_nxt == tp->rcv_wup)
5292 tcp_store_ts_recent(tp);
5294 tcp_rcv_rtt_measure_ts(sk, skb);
5296 __skb_pull(skb, tcp_header_len);
5297 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5298 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5299 eaten = 1;
5302 if (!eaten) {
5303 if (tcp_checksum_complete_user(sk, skb))
5304 goto csum_error;
5306 if ((int)skb->truesize > sk->sk_forward_alloc)
5307 goto step5;
5309 /* Predicted packet is in window by definition.
5310 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5311 * Hence, check seq<=rcv_wup reduces to:
5313 if (tcp_header_len ==
5314 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5315 tp->rcv_nxt == tp->rcv_wup)
5316 tcp_store_ts_recent(tp);
5318 tcp_rcv_rtt_measure_ts(sk, skb);
5320 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5322 /* Bulk data transfer: receiver */
5323 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5324 &fragstolen);
5327 tcp_event_data_recv(sk, skb);
5329 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5330 /* Well, only one small jumplet in fast path... */
5331 tcp_ack(sk, skb, FLAG_DATA);
5332 tcp_data_snd_check(sk);
5333 if (!inet_csk_ack_scheduled(sk))
5334 goto no_ack;
5337 __tcp_ack_snd_check(sk, 0);
5338 no_ack:
5339 if (eaten)
5340 kfree_skb_partial(skb, fragstolen);
5341 sk->sk_data_ready(sk);
5342 return;
5346 slow_path:
5347 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5348 goto csum_error;
5350 if (!th->ack && !th->rst && !th->syn)
5351 goto discard;
5354 * Standard slow path.
5357 if (!tcp_validate_incoming(sk, skb, th, 1))
5358 return;
5360 step5:
5361 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5362 goto discard;
5364 tcp_rcv_rtt_measure_ts(sk, skb);
5366 /* Process urgent data. */
5367 tcp_urg(sk, skb, th);
5369 /* step 7: process the segment text */
5370 tcp_data_queue(sk, skb);
5372 tcp_data_snd_check(sk);
5373 tcp_ack_snd_check(sk);
5374 return;
5376 csum_error:
5377 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5378 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5380 discard:
5381 __kfree_skb(skb);
5383 EXPORT_SYMBOL(tcp_rcv_established);
5385 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5387 struct tcp_sock *tp = tcp_sk(sk);
5388 struct inet_connection_sock *icsk = inet_csk(sk);
5390 tcp_set_state(sk, TCP_ESTABLISHED);
5392 if (skb) {
5393 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5394 security_inet_conn_established(sk, skb);
5397 /* Make sure socket is routed, for correct metrics. */
5398 icsk->icsk_af_ops->rebuild_header(sk);
5400 tcp_init_metrics(sk);
5402 tcp_init_congestion_control(sk);
5404 /* Prevent spurious tcp_cwnd_restart() on first data
5405 * packet.
5407 tp->lsndtime = tcp_time_stamp;
5409 tcp_init_buffer_space(sk);
5411 if (sock_flag(sk, SOCK_KEEPOPEN))
5412 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5414 if (!tp->rx_opt.snd_wscale)
5415 __tcp_fast_path_on(tp, tp->snd_wnd);
5416 else
5417 tp->pred_flags = 0;
5419 if (!sock_flag(sk, SOCK_DEAD)) {
5420 sk->sk_state_change(sk);
5421 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5425 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5426 struct tcp_fastopen_cookie *cookie)
5428 struct tcp_sock *tp = tcp_sk(sk);
5429 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5430 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5431 bool syn_drop = false;
5433 if (mss == tp->rx_opt.user_mss) {
5434 struct tcp_options_received opt;
5436 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5437 tcp_clear_options(&opt);
5438 opt.user_mss = opt.mss_clamp = 0;
5439 tcp_parse_options(synack, &opt, 0, NULL);
5440 mss = opt.mss_clamp;
5443 if (!tp->syn_fastopen) {
5444 /* Ignore an unsolicited cookie */
5445 cookie->len = -1;
5446 } else if (tp->total_retrans) {
5447 /* SYN timed out and the SYN-ACK neither has a cookie nor
5448 * acknowledges data. Presumably the remote received only
5449 * the retransmitted (regular) SYNs: either the original
5450 * SYN-data or the corresponding SYN-ACK was dropped.
5452 syn_drop = (cookie->len < 0 && data);
5453 } else if (cookie->len < 0 && !tp->syn_data) {
5454 /* We requested a cookie but didn't get it. If we did not use
5455 * the (old) exp opt format then try so next time (try_exp=1).
5456 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5458 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5461 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5463 if (data) { /* Retransmit unacked data in SYN */
5464 tcp_for_write_queue_from(data, sk) {
5465 if (data == tcp_send_head(sk) ||
5466 __tcp_retransmit_skb(sk, data))
5467 break;
5469 tcp_rearm_rto(sk);
5470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5471 return true;
5473 tp->syn_data_acked = tp->syn_data;
5474 if (tp->syn_data_acked)
5475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5476 return false;
5479 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5480 const struct tcphdr *th, unsigned int len)
5482 struct inet_connection_sock *icsk = inet_csk(sk);
5483 struct tcp_sock *tp = tcp_sk(sk);
5484 struct tcp_fastopen_cookie foc = { .len = -1 };
5485 int saved_clamp = tp->rx_opt.mss_clamp;
5487 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5488 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5489 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5491 if (th->ack) {
5492 /* rfc793:
5493 * "If the state is SYN-SENT then
5494 * first check the ACK bit
5495 * If the ACK bit is set
5496 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5497 * a reset (unless the RST bit is set, if so drop
5498 * the segment and return)"
5500 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5501 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5502 goto reset_and_undo;
5504 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5505 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5506 tcp_time_stamp)) {
5507 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5508 goto reset_and_undo;
5511 /* Now ACK is acceptable.
5513 * "If the RST bit is set
5514 * If the ACK was acceptable then signal the user "error:
5515 * connection reset", drop the segment, enter CLOSED state,
5516 * delete TCB, and return."
5519 if (th->rst) {
5520 tcp_reset(sk);
5521 goto discard;
5524 /* rfc793:
5525 * "fifth, if neither of the SYN or RST bits is set then
5526 * drop the segment and return."
5528 * See note below!
5529 * --ANK(990513)
5531 if (!th->syn)
5532 goto discard_and_undo;
5534 /* rfc793:
5535 * "If the SYN bit is on ...
5536 * are acceptable then ...
5537 * (our SYN has been ACKed), change the connection
5538 * state to ESTABLISHED..."
5541 tcp_ecn_rcv_synack(tp, th);
5543 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5544 tcp_ack(sk, skb, FLAG_SLOWPATH);
5546 /* Ok.. it's good. Set up sequence numbers and
5547 * move to established.
5549 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5550 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5552 /* RFC1323: The window in SYN & SYN/ACK segments is
5553 * never scaled.
5555 tp->snd_wnd = ntohs(th->window);
5557 if (!tp->rx_opt.wscale_ok) {
5558 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5559 tp->window_clamp = min(tp->window_clamp, 65535U);
5562 if (tp->rx_opt.saw_tstamp) {
5563 tp->rx_opt.tstamp_ok = 1;
5564 tp->tcp_header_len =
5565 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5566 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5567 tcp_store_ts_recent(tp);
5568 } else {
5569 tp->tcp_header_len = sizeof(struct tcphdr);
5572 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5573 tcp_enable_fack(tp);
5575 tcp_mtup_init(sk);
5576 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5577 tcp_initialize_rcv_mss(sk);
5579 /* Remember, tcp_poll() does not lock socket!
5580 * Change state from SYN-SENT only after copied_seq
5581 * is initialized. */
5582 tp->copied_seq = tp->rcv_nxt;
5584 smp_mb();
5586 tcp_finish_connect(sk, skb);
5588 if ((tp->syn_fastopen || tp->syn_data) &&
5589 tcp_rcv_fastopen_synack(sk, skb, &foc))
5590 return -1;
5592 if (sk->sk_write_pending ||
5593 icsk->icsk_accept_queue.rskq_defer_accept ||
5594 icsk->icsk_ack.pingpong) {
5595 /* Save one ACK. Data will be ready after
5596 * several ticks, if write_pending is set.
5598 * It may be deleted, but with this feature tcpdumps
5599 * look so _wonderfully_ clever, that I was not able
5600 * to stand against the temptation 8) --ANK
5602 inet_csk_schedule_ack(sk);
5603 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5604 tcp_enter_quickack_mode(sk);
5605 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5606 TCP_DELACK_MAX, TCP_RTO_MAX);
5608 discard:
5609 __kfree_skb(skb);
5610 return 0;
5611 } else {
5612 tcp_send_ack(sk);
5614 return -1;
5617 /* No ACK in the segment */
5619 if (th->rst) {
5620 /* rfc793:
5621 * "If the RST bit is set
5623 * Otherwise (no ACK) drop the segment and return."
5626 goto discard_and_undo;
5629 /* PAWS check. */
5630 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5631 tcp_paws_reject(&tp->rx_opt, 0))
5632 goto discard_and_undo;
5634 if (th->syn) {
5635 /* We see SYN without ACK. It is attempt of
5636 * simultaneous connect with crossed SYNs.
5637 * Particularly, it can be connect to self.
5639 tcp_set_state(sk, TCP_SYN_RECV);
5641 if (tp->rx_opt.saw_tstamp) {
5642 tp->rx_opt.tstamp_ok = 1;
5643 tcp_store_ts_recent(tp);
5644 tp->tcp_header_len =
5645 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5646 } else {
5647 tp->tcp_header_len = sizeof(struct tcphdr);
5650 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5651 tp->copied_seq = tp->rcv_nxt;
5652 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5654 /* RFC1323: The window in SYN & SYN/ACK segments is
5655 * never scaled.
5657 tp->snd_wnd = ntohs(th->window);
5658 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5659 tp->max_window = tp->snd_wnd;
5661 tcp_ecn_rcv_syn(tp, th);
5663 tcp_mtup_init(sk);
5664 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5665 tcp_initialize_rcv_mss(sk);
5667 tcp_send_synack(sk);
5668 #if 0
5669 /* Note, we could accept data and URG from this segment.
5670 * There are no obstacles to make this (except that we must
5671 * either change tcp_recvmsg() to prevent it from returning data
5672 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5674 * However, if we ignore data in ACKless segments sometimes,
5675 * we have no reasons to accept it sometimes.
5676 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5677 * is not flawless. So, discard packet for sanity.
5678 * Uncomment this return to process the data.
5680 return -1;
5681 #else
5682 goto discard;
5683 #endif
5685 /* "fifth, if neither of the SYN or RST bits is set then
5686 * drop the segment and return."
5689 discard_and_undo:
5690 tcp_clear_options(&tp->rx_opt);
5691 tp->rx_opt.mss_clamp = saved_clamp;
5692 goto discard;
5694 reset_and_undo:
5695 tcp_clear_options(&tp->rx_opt);
5696 tp->rx_opt.mss_clamp = saved_clamp;
5697 return 1;
5701 * This function implements the receiving procedure of RFC 793 for
5702 * all states except ESTABLISHED and TIME_WAIT.
5703 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5704 * address independent.
5707 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5708 const struct tcphdr *th, unsigned int len)
5710 struct tcp_sock *tp = tcp_sk(sk);
5711 struct inet_connection_sock *icsk = inet_csk(sk);
5712 struct request_sock *req;
5713 int queued = 0;
5714 bool acceptable;
5715 u32 synack_stamp;
5717 tp->rx_opt.saw_tstamp = 0;
5719 switch (sk->sk_state) {
5720 case TCP_CLOSE:
5721 goto discard;
5723 case TCP_LISTEN:
5724 if (th->ack)
5725 return 1;
5727 if (th->rst)
5728 goto discard;
5730 if (th->syn) {
5731 if (th->fin)
5732 goto discard;
5733 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5734 return 1;
5736 /* Now we have several options: In theory there is
5737 * nothing else in the frame. KA9Q has an option to
5738 * send data with the syn, BSD accepts data with the
5739 * syn up to the [to be] advertised window and
5740 * Solaris 2.1 gives you a protocol error. For now
5741 * we just ignore it, that fits the spec precisely
5742 * and avoids incompatibilities. It would be nice in
5743 * future to drop through and process the data.
5745 * Now that TTCP is starting to be used we ought to
5746 * queue this data.
5747 * But, this leaves one open to an easy denial of
5748 * service attack, and SYN cookies can't defend
5749 * against this problem. So, we drop the data
5750 * in the interest of security over speed unless
5751 * it's still in use.
5753 kfree_skb(skb);
5754 return 0;
5756 goto discard;
5758 case TCP_SYN_SENT:
5759 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5760 if (queued >= 0)
5761 return queued;
5763 /* Do step6 onward by hand. */
5764 tcp_urg(sk, skb, th);
5765 __kfree_skb(skb);
5766 tcp_data_snd_check(sk);
5767 return 0;
5770 req = tp->fastopen_rsk;
5771 if (req) {
5772 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5773 sk->sk_state != TCP_FIN_WAIT1);
5775 if (!tcp_check_req(sk, skb, req, true))
5776 goto discard;
5779 if (!th->ack && !th->rst && !th->syn)
5780 goto discard;
5782 if (!tcp_validate_incoming(sk, skb, th, 0))
5783 return 0;
5785 /* step 5: check the ACK field */
5786 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5787 FLAG_UPDATE_TS_RECENT) > 0;
5789 switch (sk->sk_state) {
5790 case TCP_SYN_RECV:
5791 if (!acceptable)
5792 return 1;
5794 /* Once we leave TCP_SYN_RECV, we no longer need req
5795 * so release it.
5797 if (req) {
5798 synack_stamp = tcp_rsk(req)->snt_synack;
5799 tp->total_retrans = req->num_retrans;
5800 reqsk_fastopen_remove(sk, req, false);
5801 } else {
5802 synack_stamp = tp->lsndtime;
5803 /* Make sure socket is routed, for correct metrics. */
5804 icsk->icsk_af_ops->rebuild_header(sk);
5805 tcp_init_congestion_control(sk);
5807 tcp_mtup_init(sk);
5808 tp->copied_seq = tp->rcv_nxt;
5809 tcp_init_buffer_space(sk);
5811 smp_mb();
5812 tcp_set_state(sk, TCP_ESTABLISHED);
5813 sk->sk_state_change(sk);
5815 /* Note, that this wakeup is only for marginal crossed SYN case.
5816 * Passively open sockets are not waked up, because
5817 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5819 if (sk->sk_socket)
5820 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5822 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5823 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5824 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5825 tcp_synack_rtt_meas(sk, synack_stamp);
5827 if (tp->rx_opt.tstamp_ok)
5828 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5830 if (req) {
5831 /* Re-arm the timer because data may have been sent out.
5832 * This is similar to the regular data transmission case
5833 * when new data has just been ack'ed.
5835 * (TFO) - we could try to be more aggressive and
5836 * retransmitting any data sooner based on when they
5837 * are sent out.
5839 tcp_rearm_rto(sk);
5840 } else
5841 tcp_init_metrics(sk);
5843 tcp_update_pacing_rate(sk);
5845 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5846 tp->lsndtime = tcp_time_stamp;
5848 tcp_initialize_rcv_mss(sk);
5849 tcp_fast_path_on(tp);
5850 break;
5852 case TCP_FIN_WAIT1: {
5853 struct dst_entry *dst;
5854 int tmo;
5856 /* If we enter the TCP_FIN_WAIT1 state and we are a
5857 * Fast Open socket and this is the first acceptable
5858 * ACK we have received, this would have acknowledged
5859 * our SYNACK so stop the SYNACK timer.
5861 if (req) {
5862 /* Return RST if ack_seq is invalid.
5863 * Note that RFC793 only says to generate a
5864 * DUPACK for it but for TCP Fast Open it seems
5865 * better to treat this case like TCP_SYN_RECV
5866 * above.
5868 if (!acceptable)
5869 return 1;
5870 /* We no longer need the request sock. */
5871 reqsk_fastopen_remove(sk, req, false);
5872 tcp_rearm_rto(sk);
5874 if (tp->snd_una != tp->write_seq)
5875 break;
5877 tcp_set_state(sk, TCP_FIN_WAIT2);
5878 sk->sk_shutdown |= SEND_SHUTDOWN;
5880 dst = __sk_dst_get(sk);
5881 if (dst)
5882 dst_confirm(dst);
5884 if (!sock_flag(sk, SOCK_DEAD)) {
5885 /* Wake up lingering close() */
5886 sk->sk_state_change(sk);
5887 break;
5890 if (tp->linger2 < 0 ||
5891 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5892 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5893 tcp_done(sk);
5894 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5895 return 1;
5898 tmo = tcp_fin_time(sk);
5899 if (tmo > TCP_TIMEWAIT_LEN) {
5900 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5901 } else if (th->fin || sock_owned_by_user(sk)) {
5902 /* Bad case. We could lose such FIN otherwise.
5903 * It is not a big problem, but it looks confusing
5904 * and not so rare event. We still can lose it now,
5905 * if it spins in bh_lock_sock(), but it is really
5906 * marginal case.
5908 inet_csk_reset_keepalive_timer(sk, tmo);
5909 } else {
5910 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5911 goto discard;
5913 break;
5916 case TCP_CLOSING:
5917 if (tp->snd_una == tp->write_seq) {
5918 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5919 goto discard;
5921 break;
5923 case TCP_LAST_ACK:
5924 if (tp->snd_una == tp->write_seq) {
5925 tcp_update_metrics(sk);
5926 tcp_done(sk);
5927 goto discard;
5929 break;
5932 /* step 6: check the URG bit */
5933 tcp_urg(sk, skb, th);
5935 /* step 7: process the segment text */
5936 switch (sk->sk_state) {
5937 case TCP_CLOSE_WAIT:
5938 case TCP_CLOSING:
5939 case TCP_LAST_ACK:
5940 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5941 break;
5942 case TCP_FIN_WAIT1:
5943 case TCP_FIN_WAIT2:
5944 /* RFC 793 says to queue data in these states,
5945 * RFC 1122 says we MUST send a reset.
5946 * BSD 4.4 also does reset.
5948 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5949 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5950 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5951 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5952 tcp_reset(sk);
5953 return 1;
5956 /* Fall through */
5957 case TCP_ESTABLISHED:
5958 tcp_data_queue(sk, skb);
5959 queued = 1;
5960 break;
5963 /* tcp_data could move socket to TIME-WAIT */
5964 if (sk->sk_state != TCP_CLOSE) {
5965 tcp_data_snd_check(sk);
5966 tcp_ack_snd_check(sk);
5969 if (!queued) {
5970 discard:
5971 __kfree_skb(skb);
5973 return 0;
5975 EXPORT_SYMBOL(tcp_rcv_state_process);
5977 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5979 struct inet_request_sock *ireq = inet_rsk(req);
5981 if (family == AF_INET)
5982 net_dbg_ratelimited("drop open request from %pI4/%u\n",
5983 &ireq->ir_rmt_addr, port);
5984 #if IS_ENABLED(CONFIG_IPV6)
5985 else if (family == AF_INET6)
5986 net_dbg_ratelimited("drop open request from %pI6/%u\n",
5987 &ireq->ir_v6_rmt_addr, port);
5988 #endif
5991 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5993 * If we receive a SYN packet with these bits set, it means a
5994 * network is playing bad games with TOS bits. In order to
5995 * avoid possible false congestion notifications, we disable
5996 * TCP ECN negotiation.
5998 * Exception: tcp_ca wants ECN. This is required for DCTCP
5999 * congestion control: Linux DCTCP asserts ECT on all packets,
6000 * including SYN, which is most optimal solution; however,
6001 * others, such as FreeBSD do not.
6003 static void tcp_ecn_create_request(struct request_sock *req,
6004 const struct sk_buff *skb,
6005 const struct sock *listen_sk,
6006 const struct dst_entry *dst)
6008 const struct tcphdr *th = tcp_hdr(skb);
6009 const struct net *net = sock_net(listen_sk);
6010 bool th_ecn = th->ece && th->cwr;
6011 bool ect, ecn_ok;
6013 if (!th_ecn)
6014 return;
6016 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6017 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
6019 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
6020 inet_rsk(req)->ecn_ok = 1;
6023 static void tcp_openreq_init(struct request_sock *req,
6024 const struct tcp_options_received *rx_opt,
6025 struct sk_buff *skb, const struct sock *sk)
6027 struct inet_request_sock *ireq = inet_rsk(req);
6029 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6030 req->cookie_ts = 0;
6031 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6032 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6033 tcp_rsk(req)->snt_synack = tcp_time_stamp;
6034 tcp_rsk(req)->last_oow_ack_time = 0;
6035 req->mss = rx_opt->mss_clamp;
6036 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6037 ireq->tstamp_ok = rx_opt->tstamp_ok;
6038 ireq->sack_ok = rx_opt->sack_ok;
6039 ireq->snd_wscale = rx_opt->snd_wscale;
6040 ireq->wscale_ok = rx_opt->wscale_ok;
6041 ireq->acked = 0;
6042 ireq->ecn_ok = 0;
6043 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6044 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6045 ireq->ir_mark = inet_request_mark(sk, skb);
6048 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6049 struct sock *sk_listener)
6051 struct request_sock *req = reqsk_alloc(ops, sk_listener);
6053 if (req) {
6054 struct inet_request_sock *ireq = inet_rsk(req);
6056 kmemcheck_annotate_bitfield(ireq, flags);
6057 ireq->opt = NULL;
6058 atomic64_set(&ireq->ir_cookie, 0);
6059 ireq->ireq_state = TCP_NEW_SYN_RECV;
6060 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6061 ireq->ireq_family = sk_listener->sk_family;
6064 return req;
6066 EXPORT_SYMBOL(inet_reqsk_alloc);
6069 * Return true if a syncookie should be sent
6071 static bool tcp_syn_flood_action(struct sock *sk,
6072 const struct sk_buff *skb,
6073 const char *proto)
6075 const char *msg = "Dropping request";
6076 bool want_cookie = false;
6077 struct listen_sock *lopt;
6079 #ifdef CONFIG_SYN_COOKIES
6080 if (sysctl_tcp_syncookies) {
6081 msg = "Sending cookies";
6082 want_cookie = true;
6083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6084 } else
6085 #endif
6086 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6088 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6089 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6090 lopt->synflood_warned = 1;
6091 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6092 proto, ntohs(tcp_hdr(skb)->dest), msg);
6094 return want_cookie;
6097 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6098 const struct tcp_request_sock_ops *af_ops,
6099 struct sock *sk, struct sk_buff *skb)
6101 struct tcp_options_received tmp_opt;
6102 struct request_sock *req;
6103 struct tcp_sock *tp = tcp_sk(sk);
6104 struct dst_entry *dst = NULL;
6105 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6106 bool want_cookie = false, fastopen;
6107 struct flowi fl;
6108 struct tcp_fastopen_cookie foc = { .len = -1 };
6109 int err;
6112 /* TW buckets are converted to open requests without
6113 * limitations, they conserve resources and peer is
6114 * evidently real one.
6116 if ((sysctl_tcp_syncookies == 2 ||
6117 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6118 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6119 if (!want_cookie)
6120 goto drop;
6124 /* Accept backlog is full. If we have already queued enough
6125 * of warm entries in syn queue, drop request. It is better than
6126 * clogging syn queue with openreqs with exponentially increasing
6127 * timeout.
6129 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6130 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6131 goto drop;
6134 req = inet_reqsk_alloc(rsk_ops, sk);
6135 if (!req)
6136 goto drop;
6138 tcp_rsk(req)->af_specific = af_ops;
6140 tcp_clear_options(&tmp_opt);
6141 tmp_opt.mss_clamp = af_ops->mss_clamp;
6142 tmp_opt.user_mss = tp->rx_opt.user_mss;
6143 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6145 if (want_cookie && !tmp_opt.saw_tstamp)
6146 tcp_clear_options(&tmp_opt);
6148 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6149 tcp_openreq_init(req, &tmp_opt, skb, sk);
6151 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6152 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6154 af_ops->init_req(req, sk, skb);
6156 if (security_inet_conn_request(sk, skb, req))
6157 goto drop_and_free;
6159 if (!want_cookie && !isn) {
6160 /* VJ's idea. We save last timestamp seen
6161 * from the destination in peer table, when entering
6162 * state TIME-WAIT, and check against it before
6163 * accepting new connection request.
6165 * If "isn" is not zero, this request hit alive
6166 * timewait bucket, so that all the necessary checks
6167 * are made in the function processing timewait state.
6169 if (tcp_death_row.sysctl_tw_recycle) {
6170 bool strict;
6172 dst = af_ops->route_req(sk, &fl, req, &strict);
6174 if (dst && strict &&
6175 !tcp_peer_is_proven(req, dst, true,
6176 tmp_opt.saw_tstamp)) {
6177 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6178 goto drop_and_release;
6181 /* Kill the following clause, if you dislike this way. */
6182 else if (!sysctl_tcp_syncookies &&
6183 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6184 (sysctl_max_syn_backlog >> 2)) &&
6185 !tcp_peer_is_proven(req, dst, false,
6186 tmp_opt.saw_tstamp)) {
6187 /* Without syncookies last quarter of
6188 * backlog is filled with destinations,
6189 * proven to be alive.
6190 * It means that we continue to communicate
6191 * to destinations, already remembered
6192 * to the moment of synflood.
6194 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6195 rsk_ops->family);
6196 goto drop_and_release;
6199 isn = af_ops->init_seq(skb);
6201 if (!dst) {
6202 dst = af_ops->route_req(sk, &fl, req, NULL);
6203 if (!dst)
6204 goto drop_and_free;
6207 tcp_ecn_create_request(req, skb, sk, dst);
6209 if (want_cookie) {
6210 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6211 req->cookie_ts = tmp_opt.tstamp_ok;
6212 if (!tmp_opt.tstamp_ok)
6213 inet_rsk(req)->ecn_ok = 0;
6216 tcp_rsk(req)->snt_isn = isn;
6217 tcp_openreq_init_rwin(req, sk, dst);
6218 fastopen = !want_cookie &&
6219 tcp_try_fastopen(sk, skb, req, &foc, dst);
6220 err = af_ops->send_synack(sk, dst, &fl, req,
6221 skb_get_queue_mapping(skb), &foc);
6222 if (!fastopen) {
6223 if (err || want_cookie)
6224 goto drop_and_free;
6226 tcp_rsk(req)->tfo_listener = false;
6227 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6230 return 0;
6232 drop_and_release:
6233 dst_release(dst);
6234 drop_and_free:
6235 reqsk_free(req);
6236 drop:
6237 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6238 return 0;
6240 EXPORT_SYMBOL(tcp_conn_request);