gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / net / ipv4 / udp.c
blob031752efe1ab6f01d66cc6d665c534419c2a92ef
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2),
142 unsigned int log)
144 struct sock *sk2;
145 struct hlist_nulls_node *node;
146 kuid_t uid = sock_i_uid(sk);
148 sk_nulls_for_each(sk2, node, &hslot->head) {
149 if (net_eq(sock_net(sk2), net) &&
150 sk2 != sk &&
151 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 (!sk2->sk_reuse || !sk->sk_reuse) &&
153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 !uid_eq(uid, sock_i_uid(sk2))) &&
157 saddr_comp(sk, sk2)) {
158 if (!bitmap)
159 return 1;
160 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 return 0;
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 struct udp_hslot *hslot2,
172 struct sock *sk,
173 int (*saddr_comp)(const struct sock *sk1,
174 const struct sock *sk2))
176 struct sock *sk2;
177 struct hlist_nulls_node *node;
178 kuid_t uid = sock_i_uid(sk);
179 int res = 0;
181 spin_lock(&hslot2->lock);
182 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 if (net_eq(sock_net(sk2), net) &&
184 sk2 != sk &&
185 (udp_sk(sk2)->udp_port_hash == num) &&
186 (!sk2->sk_reuse || !sk->sk_reuse) &&
187 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 !uid_eq(uid, sock_i_uid(sk2))) &&
191 saddr_comp(sk, sk2)) {
192 res = 1;
193 break;
196 spin_unlock(&hslot2->lock);
197 return res;
201 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
203 * @sk: socket struct in question
204 * @snum: port number to look up
205 * @saddr_comp: AF-dependent comparison of bound local IP addresses
206 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207 * with NULL address
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 int (*saddr_comp)(const struct sock *sk1,
211 const struct sock *sk2),
212 unsigned int hash2_nulladdr)
214 struct udp_hslot *hslot, *hslot2;
215 struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 int error = 1;
217 struct net *net = sock_net(sk);
219 if (!snum) {
220 int low, high, remaining;
221 unsigned int rand;
222 unsigned short first, last;
223 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
225 inet_get_local_port_range(net, &low, &high);
226 remaining = (high - low) + 1;
228 rand = prandom_u32();
229 first = reciprocal_scale(rand, remaining) + low;
231 * force rand to be an odd multiple of UDP_HTABLE_SIZE
233 rand = (rand | 1) * (udptable->mask + 1);
234 last = first + udptable->mask + 1;
235 do {
236 hslot = udp_hashslot(udptable, net, first);
237 bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 spin_lock_bh(&hslot->lock);
239 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 saddr_comp, udptable->log);
242 snum = first;
244 * Iterate on all possible values of snum for this hash.
245 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 * give us randomization and full range coverage.
248 do {
249 if (low <= snum && snum <= high &&
250 !test_bit(snum >> udptable->log, bitmap) &&
251 !inet_is_local_reserved_port(net, snum))
252 goto found;
253 snum += rand;
254 } while (snum != first);
255 spin_unlock_bh(&hslot->lock);
256 } while (++first != last);
257 goto fail;
258 } else {
259 hslot = udp_hashslot(udptable, net, snum);
260 spin_lock_bh(&hslot->lock);
261 if (hslot->count > 10) {
262 int exist;
263 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
265 slot2 &= udptable->mask;
266 hash2_nulladdr &= udptable->mask;
268 hslot2 = udp_hashslot2(udptable, slot2);
269 if (hslot->count < hslot2->count)
270 goto scan_primary_hash;
272 exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 sk, saddr_comp);
274 if (!exist && (hash2_nulladdr != slot2)) {
275 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 sk, saddr_comp);
279 if (exist)
280 goto fail_unlock;
281 else
282 goto found;
284 scan_primary_hash:
285 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 saddr_comp, 0))
287 goto fail_unlock;
289 found:
290 inet_sk(sk)->inet_num = snum;
291 udp_sk(sk)->udp_port_hash = snum;
292 udp_sk(sk)->udp_portaddr_hash ^= snum;
293 if (sk_unhashed(sk)) {
294 sk_nulls_add_node_rcu(sk, &hslot->head);
295 hslot->count++;
296 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
298 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 spin_lock(&hslot2->lock);
300 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 &hslot2->head);
302 hslot2->count++;
303 spin_unlock(&hslot2->lock);
305 error = 0;
306 fail_unlock:
307 spin_unlock_bh(&hslot->lock);
308 fail:
309 return error;
311 EXPORT_SYMBOL(udp_lib_get_port);
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
315 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
317 return (!ipv6_only_sock(sk2) &&
318 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 unsigned int port)
325 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
330 unsigned int hash2_nulladdr =
331 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 unsigned int hash2_partial =
333 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
335 /* precompute partial secondary hash */
336 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
340 static inline int compute_score(struct sock *sk, struct net *net,
341 __be32 saddr, unsigned short hnum, __be16 sport,
342 __be32 daddr, __be16 dport, int dif)
344 int score;
345 struct inet_sock *inet;
347 if (!net_eq(sock_net(sk), net) ||
348 udp_sk(sk)->udp_port_hash != hnum ||
349 ipv6_only_sock(sk))
350 return -1;
352 score = (sk->sk_family == PF_INET) ? 2 : 1;
353 inet = inet_sk(sk);
355 if (inet->inet_rcv_saddr) {
356 if (inet->inet_rcv_saddr != daddr)
357 return -1;
358 score += 4;
361 if (inet->inet_daddr) {
362 if (inet->inet_daddr != saddr)
363 return -1;
364 score += 4;
367 if (inet->inet_dport) {
368 if (inet->inet_dport != sport)
369 return -1;
370 score += 4;
373 if (sk->sk_bound_dev_if) {
374 if (sk->sk_bound_dev_if != dif)
375 return -1;
376 score += 4;
379 return score;
383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 __be32 saddr, __be16 sport,
387 __be32 daddr, unsigned int hnum, int dif)
389 int score;
390 struct inet_sock *inet;
392 if (!net_eq(sock_net(sk), net) ||
393 ipv6_only_sock(sk))
394 return -1;
396 inet = inet_sk(sk);
398 if (inet->inet_rcv_saddr != daddr ||
399 inet->inet_num != hnum)
400 return -1;
402 score = (sk->sk_family == PF_INET) ? 2 : 1;
404 if (inet->inet_daddr) {
405 if (inet->inet_daddr != saddr)
406 return -1;
407 score += 4;
410 if (inet->inet_dport) {
411 if (inet->inet_dport != sport)
412 return -1;
413 score += 4;
416 if (sk->sk_bound_dev_if) {
417 if (sk->sk_bound_dev_if != dif)
418 return -1;
419 score += 4;
422 return score;
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 const __u16 lport, const __be32 faddr,
427 const __be16 fport)
429 static u32 udp_ehash_secret __read_mostly;
431 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
433 return __inet_ehashfn(laddr, lport, faddr, fport,
434 udp_ehash_secret + net_hash_mix(net));
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 __be32 saddr, __be16 sport,
440 __be32 daddr, unsigned int hnum, int dif,
441 struct udp_hslot *hslot2, unsigned int slot2)
443 struct sock *sk, *result;
444 struct hlist_nulls_node *node;
445 int score, badness, matches = 0, reuseport = 0;
446 u32 hash = 0;
448 begin:
449 result = NULL;
450 badness = 0;
451 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 score = compute_score2(sk, net, saddr, sport,
453 daddr, hnum, dif);
454 if (score > badness) {
455 result = sk;
456 badness = score;
457 reuseport = sk->sk_reuseport;
458 if (reuseport) {
459 hash = udp_ehashfn(net, daddr, hnum,
460 saddr, sport);
461 matches = 1;
463 } else if (score == badness && reuseport) {
464 matches++;
465 if (reciprocal_scale(hash, matches) == 0)
466 result = sk;
467 hash = next_pseudo_random32(hash);
471 * if the nulls value we got at the end of this lookup is
472 * not the expected one, we must restart lookup.
473 * We probably met an item that was moved to another chain.
475 if (get_nulls_value(node) != slot2)
476 goto begin;
477 if (result) {
478 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 result = NULL;
480 else if (unlikely(compute_score2(result, net, saddr, sport,
481 daddr, hnum, dif) < badness)) {
482 sock_put(result);
483 goto begin;
486 return result;
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 __be16 sport, __be32 daddr, __be16 dport,
494 int dif, struct udp_table *udptable)
496 struct sock *sk, *result;
497 struct hlist_nulls_node *node;
498 unsigned short hnum = ntohs(dport);
499 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 int score, badness, matches = 0, reuseport = 0;
502 u32 hash = 0;
504 rcu_read_lock();
505 if (hslot->count > 10) {
506 hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 slot2 = hash2 & udptable->mask;
508 hslot2 = &udptable->hash2[slot2];
509 if (hslot->count < hslot2->count)
510 goto begin;
512 result = udp4_lib_lookup2(net, saddr, sport,
513 daddr, hnum, dif,
514 hslot2, slot2);
515 if (!result) {
516 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 slot2 = hash2 & udptable->mask;
518 hslot2 = &udptable->hash2[slot2];
519 if (hslot->count < hslot2->count)
520 goto begin;
522 result = udp4_lib_lookup2(net, saddr, sport,
523 htonl(INADDR_ANY), hnum, dif,
524 hslot2, slot2);
526 rcu_read_unlock();
527 return result;
529 begin:
530 result = NULL;
531 badness = 0;
532 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 score = compute_score(sk, net, saddr, hnum, sport,
534 daddr, dport, dif);
535 if (score > badness) {
536 result = sk;
537 badness = score;
538 reuseport = sk->sk_reuseport;
539 if (reuseport) {
540 hash = udp_ehashfn(net, daddr, hnum,
541 saddr, sport);
542 matches = 1;
544 } else if (score == badness && reuseport) {
545 matches++;
546 if (reciprocal_scale(hash, matches) == 0)
547 result = sk;
548 hash = next_pseudo_random32(hash);
552 * if the nulls value we got at the end of this lookup is
553 * not the expected one, we must restart lookup.
554 * We probably met an item that was moved to another chain.
556 if (get_nulls_value(node) != slot)
557 goto begin;
559 if (result) {
560 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 result = NULL;
562 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 daddr, dport, dif) < badness)) {
564 sock_put(result);
565 goto begin;
568 rcu_read_unlock();
569 return result;
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 __be16 sport, __be16 dport,
575 struct udp_table *udptable)
577 const struct iphdr *iph = ip_hdr(skb);
579 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 iph->daddr, dport, inet_iif(skb),
581 udptable);
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 __be32 daddr, __be16 dport, int dif)
587 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 __be16 loc_port, __be32 loc_addr,
593 __be16 rmt_port, __be32 rmt_addr,
594 int dif, unsigned short hnum)
596 struct inet_sock *inet = inet_sk(sk);
598 if (!net_eq(sock_net(sk), net) ||
599 udp_sk(sk)->udp_port_hash != hnum ||
600 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 ipv6_only_sock(sk) ||
604 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 return false;
606 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 return false;
608 return true;
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition. If err < 0 then the socket should
614 * be closed and the error returned to the user. If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header. We need
619 * to find the appropriate port.
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
624 struct inet_sock *inet;
625 const struct iphdr *iph = (const struct iphdr *)skb->data;
626 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 const int type = icmp_hdr(skb)->type;
628 const int code = icmp_hdr(skb)->code;
629 struct sock *sk;
630 int harderr;
631 int err;
632 struct net *net = dev_net(skb->dev);
634 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 if (!sk) {
637 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 return; /* No socket for error */
641 err = 0;
642 harderr = 0;
643 inet = inet_sk(sk);
645 switch (type) {
646 default:
647 case ICMP_TIME_EXCEEDED:
648 err = EHOSTUNREACH;
649 break;
650 case ICMP_SOURCE_QUENCH:
651 goto out;
652 case ICMP_PARAMETERPROB:
653 err = EPROTO;
654 harderr = 1;
655 break;
656 case ICMP_DEST_UNREACH:
657 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 ipv4_sk_update_pmtu(skb, sk, info);
659 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 err = EMSGSIZE;
661 harderr = 1;
662 break;
664 goto out;
666 err = EHOSTUNREACH;
667 if (code <= NR_ICMP_UNREACH) {
668 harderr = icmp_err_convert[code].fatal;
669 err = icmp_err_convert[code].errno;
671 break;
672 case ICMP_REDIRECT:
673 ipv4_sk_redirect(skb, sk);
674 goto out;
678 * RFC1122: OK. Passes ICMP errors back to application, as per
679 * 4.1.3.3.
681 if (!inet->recverr) {
682 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 goto out;
684 } else
685 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
687 sk->sk_err = err;
688 sk->sk_error_report(sk);
689 out:
690 sock_put(sk);
693 void udp_err(struct sk_buff *skb, u32 info)
695 __udp4_lib_err(skb, info, &udp_table);
699 * Throw away all pending data and cancel the corking. Socket is locked.
701 void udp_flush_pending_frames(struct sock *sk)
703 struct udp_sock *up = udp_sk(sk);
705 if (up->pending) {
706 up->len = 0;
707 up->pending = 0;
708 ip_flush_pending_frames(sk);
711 EXPORT_SYMBOL(udp_flush_pending_frames);
714 * udp4_hwcsum - handle outgoing HW checksumming
715 * @skb: sk_buff containing the filled-in UDP header
716 * (checksum field must be zeroed out)
717 * @src: source IP address
718 * @dst: destination IP address
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
722 struct udphdr *uh = udp_hdr(skb);
723 int offset = skb_transport_offset(skb);
724 int len = skb->len - offset;
725 int hlen = len;
726 __wsum csum = 0;
728 if (!skb_has_frag_list(skb)) {
730 * Only one fragment on the socket.
732 skb->csum_start = skb_transport_header(skb) - skb->head;
733 skb->csum_offset = offsetof(struct udphdr, check);
734 uh->check = ~csum_tcpudp_magic(src, dst, len,
735 IPPROTO_UDP, 0);
736 } else {
737 struct sk_buff *frags;
740 * HW-checksum won't work as there are two or more
741 * fragments on the socket so that all csums of sk_buffs
742 * should be together
744 skb_walk_frags(skb, frags) {
745 csum = csum_add(csum, frags->csum);
746 hlen -= frags->len;
749 csum = skb_checksum(skb, offset, hlen, csum);
750 skb->ip_summed = CHECKSUM_NONE;
752 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 if (uh->check == 0)
754 uh->check = CSUM_MANGLED_0;
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760 * for the simple case like when setting the checksum for a UDP tunnel.
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 __be32 saddr, __be32 daddr, int len)
765 struct udphdr *uh = udp_hdr(skb);
767 if (nocheck)
768 uh->check = 0;
769 else if (skb_is_gso(skb))
770 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
774 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
776 skb->ip_summed = CHECKSUM_PARTIAL;
777 skb->csum_start = skb_transport_header(skb) - skb->head;
778 skb->csum_offset = offsetof(struct udphdr, check);
779 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 } else {
781 __wsum csum;
783 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
785 uh->check = 0;
786 csum = skb_checksum(skb, 0, len, 0);
787 uh->check = udp_v4_check(len, saddr, daddr, csum);
788 if (uh->check == 0)
789 uh->check = CSUM_MANGLED_0;
791 skb->ip_summed = CHECKSUM_UNNECESSARY;
794 EXPORT_SYMBOL(udp_set_csum);
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
798 struct sock *sk = skb->sk;
799 struct inet_sock *inet = inet_sk(sk);
800 struct udphdr *uh;
801 int err = 0;
802 int is_udplite = IS_UDPLITE(sk);
803 int offset = skb_transport_offset(skb);
804 int len = skb->len - offset;
805 __wsum csum = 0;
808 * Create a UDP header
810 uh = udp_hdr(skb);
811 uh->source = inet->inet_sport;
812 uh->dest = fl4->fl4_dport;
813 uh->len = htons(len);
814 uh->check = 0;
816 if (is_udplite) /* UDP-Lite */
817 csum = udplite_csum(skb);
819 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
821 skb->ip_summed = CHECKSUM_NONE;
822 goto send;
824 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
826 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 goto send;
829 } else
830 csum = udp_csum(skb);
832 /* add protocol-dependent pseudo-header */
833 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 sk->sk_protocol, csum);
835 if (uh->check == 0)
836 uh->check = CSUM_MANGLED_0;
838 send:
839 err = ip_send_skb(sock_net(sk), skb);
840 if (err) {
841 if (err == -ENOBUFS && !inet->recverr) {
842 UDP_INC_STATS_USER(sock_net(sk),
843 UDP_MIB_SNDBUFERRORS, is_udplite);
844 err = 0;
846 } else
847 UDP_INC_STATS_USER(sock_net(sk),
848 UDP_MIB_OUTDATAGRAMS, is_udplite);
849 return err;
853 * Push out all pending data as one UDP datagram. Socket is locked.
855 int udp_push_pending_frames(struct sock *sk)
857 struct udp_sock *up = udp_sk(sk);
858 struct inet_sock *inet = inet_sk(sk);
859 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 struct sk_buff *skb;
861 int err = 0;
863 skb = ip_finish_skb(sk, fl4);
864 if (!skb)
865 goto out;
867 err = udp_send_skb(skb, fl4);
869 out:
870 up->len = 0;
871 up->pending = 0;
872 return err;
874 EXPORT_SYMBOL(udp_push_pending_frames);
876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
878 struct inet_sock *inet = inet_sk(sk);
879 struct udp_sock *up = udp_sk(sk);
880 struct flowi4 fl4_stack;
881 struct flowi4 *fl4;
882 int ulen = len;
883 struct ipcm_cookie ipc;
884 struct rtable *rt = NULL;
885 int free = 0;
886 int connected = 0;
887 __be32 daddr, faddr, saddr;
888 __be16 dport;
889 u8 tos;
890 int err, is_udplite = IS_UDPLITE(sk);
891 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 struct sk_buff *skb;
894 struct ip_options_data opt_copy;
896 if (len > 0xFFFF)
897 return -EMSGSIZE;
900 * Check the flags.
903 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 return -EOPNOTSUPP;
906 ipc.opt = NULL;
907 ipc.tx_flags = 0;
908 ipc.ttl = 0;
909 ipc.tos = -1;
911 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
913 fl4 = &inet->cork.fl.u.ip4;
914 if (up->pending) {
916 * There are pending frames.
917 * The socket lock must be held while it's corked.
919 lock_sock(sk);
920 if (likely(up->pending)) {
921 if (unlikely(up->pending != AF_INET)) {
922 release_sock(sk);
923 return -EINVAL;
925 goto do_append_data;
927 release_sock(sk);
929 ulen += sizeof(struct udphdr);
932 * Get and verify the address.
934 if (msg->msg_name) {
935 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 if (msg->msg_namelen < sizeof(*usin))
937 return -EINVAL;
938 if (usin->sin_family != AF_INET) {
939 if (usin->sin_family != AF_UNSPEC)
940 return -EAFNOSUPPORT;
943 daddr = usin->sin_addr.s_addr;
944 dport = usin->sin_port;
945 if (dport == 0)
946 return -EINVAL;
947 } else {
948 if (sk->sk_state != TCP_ESTABLISHED)
949 return -EDESTADDRREQ;
950 daddr = inet->inet_daddr;
951 dport = inet->inet_dport;
952 /* Open fast path for connected socket.
953 Route will not be used, if at least one option is set.
955 connected = 1;
957 ipc.addr = inet->inet_saddr;
959 ipc.oif = sk->sk_bound_dev_if;
961 sock_tx_timestamp(sk, &ipc.tx_flags);
963 if (msg->msg_controllen) {
964 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 sk->sk_family == AF_INET6);
966 if (unlikely(err)) {
967 kfree(ipc.opt);
968 return err;
970 if (ipc.opt)
971 free = 1;
972 connected = 0;
974 if (!ipc.opt) {
975 struct ip_options_rcu *inet_opt;
977 rcu_read_lock();
978 inet_opt = rcu_dereference(inet->inet_opt);
979 if (inet_opt) {
980 memcpy(&opt_copy, inet_opt,
981 sizeof(*inet_opt) + inet_opt->opt.optlen);
982 ipc.opt = &opt_copy.opt;
984 rcu_read_unlock();
987 saddr = ipc.addr;
988 ipc.addr = faddr = daddr;
990 if (ipc.opt && ipc.opt->opt.srr) {
991 if (!daddr)
992 return -EINVAL;
993 faddr = ipc.opt->opt.faddr;
994 connected = 0;
996 tos = get_rttos(&ipc, inet);
997 if (sock_flag(sk, SOCK_LOCALROUTE) ||
998 (msg->msg_flags & MSG_DONTROUTE) ||
999 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1000 tos |= RTO_ONLINK;
1001 connected = 0;
1004 if (ipv4_is_multicast(daddr)) {
1005 if (!ipc.oif)
1006 ipc.oif = inet->mc_index;
1007 if (!saddr)
1008 saddr = inet->mc_addr;
1009 connected = 0;
1010 } else if (!ipc.oif)
1011 ipc.oif = inet->uc_index;
1013 if (connected)
1014 rt = (struct rtable *)sk_dst_check(sk, 0);
1016 if (!rt) {
1017 struct net *net = sock_net(sk);
1019 fl4 = &fl4_stack;
1020 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1021 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1022 inet_sk_flowi_flags(sk),
1023 faddr, saddr, dport, inet->inet_sport);
1025 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1026 rt = ip_route_output_flow(net, fl4, sk);
1027 if (IS_ERR(rt)) {
1028 err = PTR_ERR(rt);
1029 rt = NULL;
1030 if (err == -ENETUNREACH)
1031 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1032 goto out;
1035 err = -EACCES;
1036 if ((rt->rt_flags & RTCF_BROADCAST) &&
1037 !sock_flag(sk, SOCK_BROADCAST))
1038 goto out;
1039 if (connected)
1040 sk_dst_set(sk, dst_clone(&rt->dst));
1043 if (msg->msg_flags&MSG_CONFIRM)
1044 goto do_confirm;
1045 back_from_confirm:
1047 saddr = fl4->saddr;
1048 if (!ipc.addr)
1049 daddr = ipc.addr = fl4->daddr;
1051 /* Lockless fast path for the non-corking case. */
1052 if (!corkreq) {
1053 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1054 sizeof(struct udphdr), &ipc, &rt,
1055 msg->msg_flags);
1056 err = PTR_ERR(skb);
1057 if (!IS_ERR_OR_NULL(skb))
1058 err = udp_send_skb(skb, fl4);
1059 goto out;
1062 lock_sock(sk);
1063 if (unlikely(up->pending)) {
1064 /* The socket is already corked while preparing it. */
1065 /* ... which is an evident application bug. --ANK */
1066 release_sock(sk);
1068 net_dbg_ratelimited("cork app bug 2\n");
1069 err = -EINVAL;
1070 goto out;
1073 * Now cork the socket to pend data.
1075 fl4 = &inet->cork.fl.u.ip4;
1076 fl4->daddr = daddr;
1077 fl4->saddr = saddr;
1078 fl4->fl4_dport = dport;
1079 fl4->fl4_sport = inet->inet_sport;
1080 up->pending = AF_INET;
1082 do_append_data:
1083 up->len += ulen;
1084 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1085 sizeof(struct udphdr), &ipc, &rt,
1086 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1087 if (err)
1088 udp_flush_pending_frames(sk);
1089 else if (!corkreq)
1090 err = udp_push_pending_frames(sk);
1091 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1092 up->pending = 0;
1093 release_sock(sk);
1095 out:
1096 ip_rt_put(rt);
1097 if (free)
1098 kfree(ipc.opt);
1099 if (!err)
1100 return len;
1102 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1103 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1104 * we don't have a good statistic (IpOutDiscards but it can be too many
1105 * things). We could add another new stat but at least for now that
1106 * seems like overkill.
1108 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1109 UDP_INC_STATS_USER(sock_net(sk),
1110 UDP_MIB_SNDBUFERRORS, is_udplite);
1112 return err;
1114 do_confirm:
1115 dst_confirm(&rt->dst);
1116 if (!(msg->msg_flags&MSG_PROBE) || len)
1117 goto back_from_confirm;
1118 err = 0;
1119 goto out;
1121 EXPORT_SYMBOL(udp_sendmsg);
1123 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1124 size_t size, int flags)
1126 struct inet_sock *inet = inet_sk(sk);
1127 struct udp_sock *up = udp_sk(sk);
1128 int ret;
1130 if (flags & MSG_SENDPAGE_NOTLAST)
1131 flags |= MSG_MORE;
1133 if (!up->pending) {
1134 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1136 /* Call udp_sendmsg to specify destination address which
1137 * sendpage interface can't pass.
1138 * This will succeed only when the socket is connected.
1140 ret = udp_sendmsg(sk, &msg, 0);
1141 if (ret < 0)
1142 return ret;
1145 lock_sock(sk);
1147 if (unlikely(!up->pending)) {
1148 release_sock(sk);
1150 net_dbg_ratelimited("udp cork app bug 3\n");
1151 return -EINVAL;
1154 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1155 page, offset, size, flags);
1156 if (ret == -EOPNOTSUPP) {
1157 release_sock(sk);
1158 return sock_no_sendpage(sk->sk_socket, page, offset,
1159 size, flags);
1161 if (ret < 0) {
1162 udp_flush_pending_frames(sk);
1163 goto out;
1166 up->len += size;
1167 if (!(up->corkflag || (flags&MSG_MORE)))
1168 ret = udp_push_pending_frames(sk);
1169 if (!ret)
1170 ret = size;
1171 out:
1172 release_sock(sk);
1173 return ret;
1177 * first_packet_length - return length of first packet in receive queue
1178 * @sk: socket
1180 * Drops all bad checksum frames, until a valid one is found.
1181 * Returns the length of found skb, or 0 if none is found.
1183 static unsigned int first_packet_length(struct sock *sk)
1185 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1186 struct sk_buff *skb;
1187 unsigned int res;
1189 __skb_queue_head_init(&list_kill);
1191 spin_lock_bh(&rcvq->lock);
1192 while ((skb = skb_peek(rcvq)) != NULL &&
1193 udp_lib_checksum_complete(skb)) {
1194 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1195 IS_UDPLITE(sk));
1196 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1197 IS_UDPLITE(sk));
1198 atomic_inc(&sk->sk_drops);
1199 __skb_unlink(skb, rcvq);
1200 __skb_queue_tail(&list_kill, skb);
1202 res = skb ? skb->len : 0;
1203 spin_unlock_bh(&rcvq->lock);
1205 if (!skb_queue_empty(&list_kill)) {
1206 bool slow = lock_sock_fast(sk);
1208 __skb_queue_purge(&list_kill);
1209 sk_mem_reclaim_partial(sk);
1210 unlock_sock_fast(sk, slow);
1212 return res;
1216 * IOCTL requests applicable to the UDP protocol
1219 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1221 switch (cmd) {
1222 case SIOCOUTQ:
1224 int amount = sk_wmem_alloc_get(sk);
1226 return put_user(amount, (int __user *)arg);
1229 case SIOCINQ:
1231 unsigned int amount = first_packet_length(sk);
1233 if (amount)
1235 * We will only return the amount
1236 * of this packet since that is all
1237 * that will be read.
1239 amount -= sizeof(struct udphdr);
1241 return put_user(amount, (int __user *)arg);
1244 default:
1245 return -ENOIOCTLCMD;
1248 return 0;
1250 EXPORT_SYMBOL(udp_ioctl);
1253 * This should be easy, if there is something there we
1254 * return it, otherwise we block.
1257 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1258 int flags, int *addr_len)
1260 struct inet_sock *inet = inet_sk(sk);
1261 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1262 struct sk_buff *skb;
1263 unsigned int ulen, copied;
1264 int peeked, off = 0;
1265 int err;
1266 int is_udplite = IS_UDPLITE(sk);
1267 bool slow;
1269 if (flags & MSG_ERRQUEUE)
1270 return ip_recv_error(sk, msg, len, addr_len);
1272 try_again:
1273 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1274 &peeked, &off, &err);
1275 if (!skb)
1276 goto out;
1278 ulen = skb->len - sizeof(struct udphdr);
1279 copied = len;
1280 if (copied > ulen)
1281 copied = ulen;
1282 else if (copied < ulen)
1283 msg->msg_flags |= MSG_TRUNC;
1286 * If checksum is needed at all, try to do it while copying the
1287 * data. If the data is truncated, or if we only want a partial
1288 * coverage checksum (UDP-Lite), do it before the copy.
1291 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1292 if (udp_lib_checksum_complete(skb))
1293 goto csum_copy_err;
1296 if (skb_csum_unnecessary(skb))
1297 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1298 msg, copied);
1299 else {
1300 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1301 msg);
1303 if (err == -EINVAL)
1304 goto csum_copy_err;
1307 if (unlikely(err)) {
1308 trace_kfree_skb(skb, udp_recvmsg);
1309 if (!peeked) {
1310 atomic_inc(&sk->sk_drops);
1311 UDP_INC_STATS_USER(sock_net(sk),
1312 UDP_MIB_INERRORS, is_udplite);
1314 goto out_free;
1317 if (!peeked)
1318 UDP_INC_STATS_USER(sock_net(sk),
1319 UDP_MIB_INDATAGRAMS, is_udplite);
1321 sock_recv_ts_and_drops(msg, sk, skb);
1323 /* Copy the address. */
1324 if (sin) {
1325 sin->sin_family = AF_INET;
1326 sin->sin_port = udp_hdr(skb)->source;
1327 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1328 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1329 *addr_len = sizeof(*sin);
1331 if (inet->cmsg_flags)
1332 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1334 err = copied;
1335 if (flags & MSG_TRUNC)
1336 err = ulen;
1338 out_free:
1339 skb_free_datagram_locked(sk, skb);
1340 out:
1341 return err;
1343 csum_copy_err:
1344 slow = lock_sock_fast(sk);
1345 if (!skb_kill_datagram(sk, skb, flags)) {
1346 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1347 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1349 unlock_sock_fast(sk, slow);
1351 /* starting over for a new packet, but check if we need to yield */
1352 cond_resched();
1353 msg->msg_flags &= ~MSG_TRUNC;
1354 goto try_again;
1357 int udp_disconnect(struct sock *sk, int flags)
1359 struct inet_sock *inet = inet_sk(sk);
1361 * 1003.1g - break association.
1364 sk->sk_state = TCP_CLOSE;
1365 inet->inet_daddr = 0;
1366 inet->inet_dport = 0;
1367 sock_rps_reset_rxhash(sk);
1368 sk->sk_bound_dev_if = 0;
1369 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1370 inet_reset_saddr(sk);
1372 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1373 sk->sk_prot->unhash(sk);
1374 inet->inet_sport = 0;
1376 sk_dst_reset(sk);
1377 return 0;
1379 EXPORT_SYMBOL(udp_disconnect);
1381 void udp_lib_unhash(struct sock *sk)
1383 if (sk_hashed(sk)) {
1384 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1385 struct udp_hslot *hslot, *hslot2;
1387 hslot = udp_hashslot(udptable, sock_net(sk),
1388 udp_sk(sk)->udp_port_hash);
1389 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1391 spin_lock_bh(&hslot->lock);
1392 if (sk_nulls_del_node_init_rcu(sk)) {
1393 hslot->count--;
1394 inet_sk(sk)->inet_num = 0;
1395 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1397 spin_lock(&hslot2->lock);
1398 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1399 hslot2->count--;
1400 spin_unlock(&hslot2->lock);
1402 spin_unlock_bh(&hslot->lock);
1405 EXPORT_SYMBOL(udp_lib_unhash);
1408 * inet_rcv_saddr was changed, we must rehash secondary hash
1410 void udp_lib_rehash(struct sock *sk, u16 newhash)
1412 if (sk_hashed(sk)) {
1413 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1414 struct udp_hslot *hslot, *hslot2, *nhslot2;
1416 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1417 nhslot2 = udp_hashslot2(udptable, newhash);
1418 udp_sk(sk)->udp_portaddr_hash = newhash;
1419 if (hslot2 != nhslot2) {
1420 hslot = udp_hashslot(udptable, sock_net(sk),
1421 udp_sk(sk)->udp_port_hash);
1422 /* we must lock primary chain too */
1423 spin_lock_bh(&hslot->lock);
1425 spin_lock(&hslot2->lock);
1426 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1427 hslot2->count--;
1428 spin_unlock(&hslot2->lock);
1430 spin_lock(&nhslot2->lock);
1431 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1432 &nhslot2->head);
1433 nhslot2->count++;
1434 spin_unlock(&nhslot2->lock);
1436 spin_unlock_bh(&hslot->lock);
1440 EXPORT_SYMBOL(udp_lib_rehash);
1442 static void udp_v4_rehash(struct sock *sk)
1444 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1445 inet_sk(sk)->inet_rcv_saddr,
1446 inet_sk(sk)->inet_num);
1447 udp_lib_rehash(sk, new_hash);
1450 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1452 int rc;
1454 if (inet_sk(sk)->inet_daddr) {
1455 sock_rps_save_rxhash(sk, skb);
1456 sk_mark_napi_id(sk, skb);
1457 sk_incoming_cpu_update(sk);
1460 rc = sock_queue_rcv_skb(sk, skb);
1461 if (rc < 0) {
1462 int is_udplite = IS_UDPLITE(sk);
1464 /* Note that an ENOMEM error is charged twice */
1465 if (rc == -ENOMEM)
1466 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1467 is_udplite);
1468 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1469 kfree_skb(skb);
1470 trace_udp_fail_queue_rcv_skb(rc, sk);
1471 return -1;
1474 return 0;
1478 static struct static_key udp_encap_needed __read_mostly;
1479 void udp_encap_enable(void)
1481 if (!static_key_enabled(&udp_encap_needed))
1482 static_key_slow_inc(&udp_encap_needed);
1484 EXPORT_SYMBOL(udp_encap_enable);
1486 /* returns:
1487 * -1: error
1488 * 0: success
1489 * >0: "udp encap" protocol resubmission
1491 * Note that in the success and error cases, the skb is assumed to
1492 * have either been requeued or freed.
1494 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1496 struct udp_sock *up = udp_sk(sk);
1497 int rc;
1498 int is_udplite = IS_UDPLITE(sk);
1501 * Charge it to the socket, dropping if the queue is full.
1503 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1504 goto drop;
1505 nf_reset(skb);
1507 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1508 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1511 * This is an encapsulation socket so pass the skb to
1512 * the socket's udp_encap_rcv() hook. Otherwise, just
1513 * fall through and pass this up the UDP socket.
1514 * up->encap_rcv() returns the following value:
1515 * =0 if skb was successfully passed to the encap
1516 * handler or was discarded by it.
1517 * >0 if skb should be passed on to UDP.
1518 * <0 if skb should be resubmitted as proto -N
1521 /* if we're overly short, let UDP handle it */
1522 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1523 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1524 int ret;
1526 /* Verify checksum before giving to encap */
1527 if (udp_lib_checksum_complete(skb))
1528 goto csum_error;
1530 ret = encap_rcv(sk, skb);
1531 if (ret <= 0) {
1532 UDP_INC_STATS_BH(sock_net(sk),
1533 UDP_MIB_INDATAGRAMS,
1534 is_udplite);
1535 return -ret;
1539 /* FALLTHROUGH -- it's a UDP Packet */
1543 * UDP-Lite specific tests, ignored on UDP sockets
1545 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1548 * MIB statistics other than incrementing the error count are
1549 * disabled for the following two types of errors: these depend
1550 * on the application settings, not on the functioning of the
1551 * protocol stack as such.
1553 * RFC 3828 here recommends (sec 3.3): "There should also be a
1554 * way ... to ... at least let the receiving application block
1555 * delivery of packets with coverage values less than a value
1556 * provided by the application."
1558 if (up->pcrlen == 0) { /* full coverage was set */
1559 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1560 UDP_SKB_CB(skb)->cscov, skb->len);
1561 goto drop;
1563 /* The next case involves violating the min. coverage requested
1564 * by the receiver. This is subtle: if receiver wants x and x is
1565 * greater than the buffersize/MTU then receiver will complain
1566 * that it wants x while sender emits packets of smaller size y.
1567 * Therefore the above ...()->partial_cov statement is essential.
1569 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1570 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1571 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1572 goto drop;
1576 if (rcu_access_pointer(sk->sk_filter) &&
1577 udp_lib_checksum_complete(skb))
1578 goto csum_error;
1580 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1581 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1582 is_udplite);
1583 goto drop;
1586 rc = 0;
1588 ipv4_pktinfo_prepare(sk, skb);
1589 bh_lock_sock(sk);
1590 if (!sock_owned_by_user(sk))
1591 rc = __udp_queue_rcv_skb(sk, skb);
1592 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1593 bh_unlock_sock(sk);
1594 goto drop;
1596 bh_unlock_sock(sk);
1598 return rc;
1600 csum_error:
1601 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1602 drop:
1603 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1604 atomic_inc(&sk->sk_drops);
1605 kfree_skb(skb);
1606 return -1;
1609 static void flush_stack(struct sock **stack, unsigned int count,
1610 struct sk_buff *skb, unsigned int final)
1612 unsigned int i;
1613 struct sk_buff *skb1 = NULL;
1614 struct sock *sk;
1616 for (i = 0; i < count; i++) {
1617 sk = stack[i];
1618 if (likely(!skb1))
1619 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1621 if (!skb1) {
1622 atomic_inc(&sk->sk_drops);
1623 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1624 IS_UDPLITE(sk));
1625 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1626 IS_UDPLITE(sk));
1629 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1630 skb1 = NULL;
1632 sock_put(sk);
1634 if (unlikely(skb1))
1635 kfree_skb(skb1);
1638 /* For TCP sockets, sk_rx_dst is protected by socket lock
1639 * For UDP, we use xchg() to guard against concurrent changes.
1641 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1643 struct dst_entry *old;
1645 dst_hold(dst);
1646 old = xchg(&sk->sk_rx_dst, dst);
1647 dst_release(old);
1651 * Multicasts and broadcasts go to each listener.
1653 * Note: called only from the BH handler context.
1655 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1656 struct udphdr *uh,
1657 __be32 saddr, __be32 daddr,
1658 struct udp_table *udptable,
1659 int proto)
1661 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1662 struct hlist_nulls_node *node;
1663 unsigned short hnum = ntohs(uh->dest);
1664 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1665 int dif = skb->dev->ifindex;
1666 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1667 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1668 bool inner_flushed = false;
1670 if (use_hash2) {
1671 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1672 udp_table.mask;
1673 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1674 start_lookup:
1675 hslot = &udp_table.hash2[hash2];
1676 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1679 spin_lock(&hslot->lock);
1680 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1681 if (__udp_is_mcast_sock(net, sk,
1682 uh->dest, daddr,
1683 uh->source, saddr,
1684 dif, hnum)) {
1685 if (unlikely(count == ARRAY_SIZE(stack))) {
1686 flush_stack(stack, count, skb, ~0);
1687 inner_flushed = true;
1688 count = 0;
1690 stack[count++] = sk;
1691 sock_hold(sk);
1695 spin_unlock(&hslot->lock);
1697 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1698 if (use_hash2 && hash2 != hash2_any) {
1699 hash2 = hash2_any;
1700 goto start_lookup;
1704 * do the slow work with no lock held
1706 if (count) {
1707 flush_stack(stack, count, skb, count - 1);
1708 } else {
1709 if (!inner_flushed)
1710 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1711 proto == IPPROTO_UDPLITE);
1712 consume_skb(skb);
1714 return 0;
1717 /* Initialize UDP checksum. If exited with zero value (success),
1718 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1719 * Otherwise, csum completion requires chacksumming packet body,
1720 * including udp header and folding it to skb->csum.
1722 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1723 int proto)
1725 int err;
1727 UDP_SKB_CB(skb)->partial_cov = 0;
1728 UDP_SKB_CB(skb)->cscov = skb->len;
1730 if (proto == IPPROTO_UDPLITE) {
1731 err = udplite_checksum_init(skb, uh);
1732 if (err)
1733 return err;
1736 return skb_checksum_init_zero_check(skb, proto, uh->check,
1737 inet_compute_pseudo);
1741 * All we need to do is get the socket, and then do a checksum.
1744 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1745 int proto)
1747 struct sock *sk;
1748 struct udphdr *uh;
1749 unsigned short ulen;
1750 struct rtable *rt = skb_rtable(skb);
1751 __be32 saddr, daddr;
1752 struct net *net = dev_net(skb->dev);
1755 * Validate the packet.
1757 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1758 goto drop; /* No space for header. */
1760 uh = udp_hdr(skb);
1761 ulen = ntohs(uh->len);
1762 saddr = ip_hdr(skb)->saddr;
1763 daddr = ip_hdr(skb)->daddr;
1765 if (ulen > skb->len)
1766 goto short_packet;
1768 if (proto == IPPROTO_UDP) {
1769 /* UDP validates ulen. */
1770 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1771 goto short_packet;
1772 uh = udp_hdr(skb);
1775 if (udp4_csum_init(skb, uh, proto))
1776 goto csum_error;
1778 sk = skb_steal_sock(skb);
1779 if (sk) {
1780 struct dst_entry *dst = skb_dst(skb);
1781 int ret;
1783 if (unlikely(sk->sk_rx_dst != dst))
1784 udp_sk_rx_dst_set(sk, dst);
1786 ret = udp_queue_rcv_skb(sk, skb);
1787 sock_put(sk);
1788 /* a return value > 0 means to resubmit the input, but
1789 * it wants the return to be -protocol, or 0
1791 if (ret > 0)
1792 return -ret;
1793 return 0;
1796 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1797 return __udp4_lib_mcast_deliver(net, skb, uh,
1798 saddr, daddr, udptable, proto);
1800 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1801 if (sk) {
1802 int ret;
1804 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1805 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1806 inet_compute_pseudo);
1808 ret = udp_queue_rcv_skb(sk, skb);
1809 sock_put(sk);
1811 /* a return value > 0 means to resubmit the input, but
1812 * it wants the return to be -protocol, or 0
1814 if (ret > 0)
1815 return -ret;
1816 return 0;
1819 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1820 goto drop;
1821 nf_reset(skb);
1823 /* No socket. Drop packet silently, if checksum is wrong */
1824 if (udp_lib_checksum_complete(skb))
1825 goto csum_error;
1827 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1828 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1831 * Hmm. We got an UDP packet to a port to which we
1832 * don't wanna listen. Ignore it.
1834 kfree_skb(skb);
1835 return 0;
1837 short_packet:
1838 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1839 proto == IPPROTO_UDPLITE ? "Lite" : "",
1840 &saddr, ntohs(uh->source),
1841 ulen, skb->len,
1842 &daddr, ntohs(uh->dest));
1843 goto drop;
1845 csum_error:
1847 * RFC1122: OK. Discards the bad packet silently (as far as
1848 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1850 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1851 proto == IPPROTO_UDPLITE ? "Lite" : "",
1852 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1853 ulen);
1854 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1855 drop:
1856 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1857 kfree_skb(skb);
1858 return 0;
1861 /* We can only early demux multicast if there is a single matching socket.
1862 * If more than one socket found returns NULL
1864 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1865 __be16 loc_port, __be32 loc_addr,
1866 __be16 rmt_port, __be32 rmt_addr,
1867 int dif)
1869 struct sock *sk, *result;
1870 struct hlist_nulls_node *node;
1871 unsigned short hnum = ntohs(loc_port);
1872 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1873 struct udp_hslot *hslot = &udp_table.hash[slot];
1875 /* Do not bother scanning a too big list */
1876 if (hslot->count > 10)
1877 return NULL;
1879 rcu_read_lock();
1880 begin:
1881 count = 0;
1882 result = NULL;
1883 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1884 if (__udp_is_mcast_sock(net, sk,
1885 loc_port, loc_addr,
1886 rmt_port, rmt_addr,
1887 dif, hnum)) {
1888 result = sk;
1889 ++count;
1893 * if the nulls value we got at the end of this lookup is
1894 * not the expected one, we must restart lookup.
1895 * We probably met an item that was moved to another chain.
1897 if (get_nulls_value(node) != slot)
1898 goto begin;
1900 if (result) {
1901 if (count != 1 ||
1902 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1903 result = NULL;
1904 else if (unlikely(!__udp_is_mcast_sock(net, result,
1905 loc_port, loc_addr,
1906 rmt_port, rmt_addr,
1907 dif, hnum))) {
1908 sock_put(result);
1909 result = NULL;
1912 rcu_read_unlock();
1913 return result;
1916 /* For unicast we should only early demux connected sockets or we can
1917 * break forwarding setups. The chains here can be long so only check
1918 * if the first socket is an exact match and if not move on.
1920 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1921 __be16 loc_port, __be32 loc_addr,
1922 __be16 rmt_port, __be32 rmt_addr,
1923 int dif)
1925 struct sock *sk, *result;
1926 struct hlist_nulls_node *node;
1927 unsigned short hnum = ntohs(loc_port);
1928 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1929 unsigned int slot2 = hash2 & udp_table.mask;
1930 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1931 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1932 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1934 rcu_read_lock();
1935 result = NULL;
1936 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1937 if (INET_MATCH(sk, net, acookie,
1938 rmt_addr, loc_addr, ports, dif))
1939 result = sk;
1940 /* Only check first socket in chain */
1941 break;
1944 if (result) {
1945 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1946 result = NULL;
1947 else if (unlikely(!INET_MATCH(sk, net, acookie,
1948 rmt_addr, loc_addr,
1949 ports, dif))) {
1950 sock_put(result);
1951 result = NULL;
1954 rcu_read_unlock();
1955 return result;
1958 void udp_v4_early_demux(struct sk_buff *skb)
1960 struct net *net = dev_net(skb->dev);
1961 const struct iphdr *iph;
1962 const struct udphdr *uh;
1963 struct sock *sk;
1964 struct dst_entry *dst;
1965 int dif = skb->dev->ifindex;
1966 int ours;
1968 /* validate the packet */
1969 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1970 return;
1972 iph = ip_hdr(skb);
1973 uh = udp_hdr(skb);
1975 if (skb->pkt_type == PACKET_BROADCAST ||
1976 skb->pkt_type == PACKET_MULTICAST) {
1977 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1979 if (!in_dev)
1980 return;
1982 /* we are supposed to accept bcast packets */
1983 if (skb->pkt_type == PACKET_MULTICAST) {
1984 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1985 iph->protocol);
1986 if (!ours)
1987 return;
1990 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1991 uh->source, iph->saddr, dif);
1992 } else if (skb->pkt_type == PACKET_HOST) {
1993 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1994 uh->source, iph->saddr, dif);
1995 } else {
1996 return;
1999 if (!sk)
2000 return;
2002 skb->sk = sk;
2003 skb->destructor = sock_efree;
2004 dst = READ_ONCE(sk->sk_rx_dst);
2006 if (dst)
2007 dst = dst_check(dst, 0);
2008 if (dst) {
2009 /* DST_NOCACHE can not be used without taking a reference */
2010 if (dst->flags & DST_NOCACHE) {
2011 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2012 skb_dst_set(skb, dst);
2013 } else {
2014 skb_dst_set_noref(skb, dst);
2019 int udp_rcv(struct sk_buff *skb)
2021 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2024 void udp_destroy_sock(struct sock *sk)
2026 struct udp_sock *up = udp_sk(sk);
2027 bool slow = lock_sock_fast(sk);
2028 udp_flush_pending_frames(sk);
2029 unlock_sock_fast(sk, slow);
2030 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2031 void (*encap_destroy)(struct sock *sk);
2032 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2033 if (encap_destroy)
2034 encap_destroy(sk);
2039 * Socket option code for UDP
2041 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2042 char __user *optval, unsigned int optlen,
2043 int (*push_pending_frames)(struct sock *))
2045 struct udp_sock *up = udp_sk(sk);
2046 int val, valbool;
2047 int err = 0;
2048 int is_udplite = IS_UDPLITE(sk);
2050 if (optlen < sizeof(int))
2051 return -EINVAL;
2053 if (get_user(val, (int __user *)optval))
2054 return -EFAULT;
2056 valbool = val ? 1 : 0;
2058 switch (optname) {
2059 case UDP_CORK:
2060 if (val != 0) {
2061 up->corkflag = 1;
2062 } else {
2063 up->corkflag = 0;
2064 lock_sock(sk);
2065 push_pending_frames(sk);
2066 release_sock(sk);
2068 break;
2070 case UDP_ENCAP:
2071 switch (val) {
2072 case 0:
2073 case UDP_ENCAP_ESPINUDP:
2074 case UDP_ENCAP_ESPINUDP_NON_IKE:
2075 up->encap_rcv = xfrm4_udp_encap_rcv;
2076 /* FALLTHROUGH */
2077 case UDP_ENCAP_L2TPINUDP:
2078 up->encap_type = val;
2079 udp_encap_enable();
2080 break;
2081 default:
2082 err = -ENOPROTOOPT;
2083 break;
2085 break;
2087 case UDP_NO_CHECK6_TX:
2088 up->no_check6_tx = valbool;
2089 break;
2091 case UDP_NO_CHECK6_RX:
2092 up->no_check6_rx = valbool;
2093 break;
2096 * UDP-Lite's partial checksum coverage (RFC 3828).
2098 /* The sender sets actual checksum coverage length via this option.
2099 * The case coverage > packet length is handled by send module. */
2100 case UDPLITE_SEND_CSCOV:
2101 if (!is_udplite) /* Disable the option on UDP sockets */
2102 return -ENOPROTOOPT;
2103 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2104 val = 8;
2105 else if (val > USHRT_MAX)
2106 val = USHRT_MAX;
2107 up->pcslen = val;
2108 up->pcflag |= UDPLITE_SEND_CC;
2109 break;
2111 /* The receiver specifies a minimum checksum coverage value. To make
2112 * sense, this should be set to at least 8 (as done below). If zero is
2113 * used, this again means full checksum coverage. */
2114 case UDPLITE_RECV_CSCOV:
2115 if (!is_udplite) /* Disable the option on UDP sockets */
2116 return -ENOPROTOOPT;
2117 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2118 val = 8;
2119 else if (val > USHRT_MAX)
2120 val = USHRT_MAX;
2121 up->pcrlen = val;
2122 up->pcflag |= UDPLITE_RECV_CC;
2123 break;
2125 default:
2126 err = -ENOPROTOOPT;
2127 break;
2130 return err;
2132 EXPORT_SYMBOL(udp_lib_setsockopt);
2134 int udp_setsockopt(struct sock *sk, int level, int optname,
2135 char __user *optval, unsigned int optlen)
2137 if (level == SOL_UDP || level == SOL_UDPLITE)
2138 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2139 udp_push_pending_frames);
2140 return ip_setsockopt(sk, level, optname, optval, optlen);
2143 #ifdef CONFIG_COMPAT
2144 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2145 char __user *optval, unsigned int optlen)
2147 if (level == SOL_UDP || level == SOL_UDPLITE)
2148 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2149 udp_push_pending_frames);
2150 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2152 #endif
2154 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2155 char __user *optval, int __user *optlen)
2157 struct udp_sock *up = udp_sk(sk);
2158 int val, len;
2160 if (get_user(len, optlen))
2161 return -EFAULT;
2163 len = min_t(unsigned int, len, sizeof(int));
2165 if (len < 0)
2166 return -EINVAL;
2168 switch (optname) {
2169 case UDP_CORK:
2170 val = up->corkflag;
2171 break;
2173 case UDP_ENCAP:
2174 val = up->encap_type;
2175 break;
2177 case UDP_NO_CHECK6_TX:
2178 val = up->no_check6_tx;
2179 break;
2181 case UDP_NO_CHECK6_RX:
2182 val = up->no_check6_rx;
2183 break;
2185 /* The following two cannot be changed on UDP sockets, the return is
2186 * always 0 (which corresponds to the full checksum coverage of UDP). */
2187 case UDPLITE_SEND_CSCOV:
2188 val = up->pcslen;
2189 break;
2191 case UDPLITE_RECV_CSCOV:
2192 val = up->pcrlen;
2193 break;
2195 default:
2196 return -ENOPROTOOPT;
2199 if (put_user(len, optlen))
2200 return -EFAULT;
2201 if (copy_to_user(optval, &val, len))
2202 return -EFAULT;
2203 return 0;
2205 EXPORT_SYMBOL(udp_lib_getsockopt);
2207 int udp_getsockopt(struct sock *sk, int level, int optname,
2208 char __user *optval, int __user *optlen)
2210 if (level == SOL_UDP || level == SOL_UDPLITE)
2211 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2212 return ip_getsockopt(sk, level, optname, optval, optlen);
2215 #ifdef CONFIG_COMPAT
2216 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2217 char __user *optval, int __user *optlen)
2219 if (level == SOL_UDP || level == SOL_UDPLITE)
2220 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2221 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2223 #endif
2225 * udp_poll - wait for a UDP event.
2226 * @file - file struct
2227 * @sock - socket
2228 * @wait - poll table
2230 * This is same as datagram poll, except for the special case of
2231 * blocking sockets. If application is using a blocking fd
2232 * and a packet with checksum error is in the queue;
2233 * then it could get return from select indicating data available
2234 * but then block when reading it. Add special case code
2235 * to work around these arguably broken applications.
2237 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2239 unsigned int mask = datagram_poll(file, sock, wait);
2240 struct sock *sk = sock->sk;
2242 sock_rps_record_flow(sk);
2244 /* Check for false positives due to checksum errors */
2245 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2246 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2247 mask &= ~(POLLIN | POLLRDNORM);
2249 return mask;
2252 EXPORT_SYMBOL(udp_poll);
2254 struct proto udp_prot = {
2255 .name = "UDP",
2256 .owner = THIS_MODULE,
2257 .close = udp_lib_close,
2258 .connect = ip4_datagram_connect,
2259 .disconnect = udp_disconnect,
2260 .ioctl = udp_ioctl,
2261 .destroy = udp_destroy_sock,
2262 .setsockopt = udp_setsockopt,
2263 .getsockopt = udp_getsockopt,
2264 .sendmsg = udp_sendmsg,
2265 .recvmsg = udp_recvmsg,
2266 .sendpage = udp_sendpage,
2267 .backlog_rcv = __udp_queue_rcv_skb,
2268 .release_cb = ip4_datagram_release_cb,
2269 .hash = udp_lib_hash,
2270 .unhash = udp_lib_unhash,
2271 .rehash = udp_v4_rehash,
2272 .get_port = udp_v4_get_port,
2273 .memory_allocated = &udp_memory_allocated,
2274 .sysctl_mem = sysctl_udp_mem,
2275 .sysctl_wmem = &sysctl_udp_wmem_min,
2276 .sysctl_rmem = &sysctl_udp_rmem_min,
2277 .obj_size = sizeof(struct udp_sock),
2278 .slab_flags = SLAB_DESTROY_BY_RCU,
2279 .h.udp_table = &udp_table,
2280 #ifdef CONFIG_COMPAT
2281 .compat_setsockopt = compat_udp_setsockopt,
2282 .compat_getsockopt = compat_udp_getsockopt,
2283 #endif
2284 .clear_sk = sk_prot_clear_portaddr_nulls,
2286 EXPORT_SYMBOL(udp_prot);
2288 /* ------------------------------------------------------------------------ */
2289 #ifdef CONFIG_PROC_FS
2291 static struct sock *udp_get_first(struct seq_file *seq, int start)
2293 struct sock *sk;
2294 struct udp_iter_state *state = seq->private;
2295 struct net *net = seq_file_net(seq);
2297 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2298 ++state->bucket) {
2299 struct hlist_nulls_node *node;
2300 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2302 if (hlist_nulls_empty(&hslot->head))
2303 continue;
2305 spin_lock_bh(&hslot->lock);
2306 sk_nulls_for_each(sk, node, &hslot->head) {
2307 if (!net_eq(sock_net(sk), net))
2308 continue;
2309 if (sk->sk_family == state->family)
2310 goto found;
2312 spin_unlock_bh(&hslot->lock);
2314 sk = NULL;
2315 found:
2316 return sk;
2319 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2321 struct udp_iter_state *state = seq->private;
2322 struct net *net = seq_file_net(seq);
2324 do {
2325 sk = sk_nulls_next(sk);
2326 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2328 if (!sk) {
2329 if (state->bucket <= state->udp_table->mask)
2330 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2331 return udp_get_first(seq, state->bucket + 1);
2333 return sk;
2336 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2338 struct sock *sk = udp_get_first(seq, 0);
2340 if (sk)
2341 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2342 --pos;
2343 return pos ? NULL : sk;
2346 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2348 struct udp_iter_state *state = seq->private;
2349 state->bucket = MAX_UDP_PORTS;
2351 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2354 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2356 struct sock *sk;
2358 if (v == SEQ_START_TOKEN)
2359 sk = udp_get_idx(seq, 0);
2360 else
2361 sk = udp_get_next(seq, v);
2363 ++*pos;
2364 return sk;
2367 static void udp_seq_stop(struct seq_file *seq, void *v)
2369 struct udp_iter_state *state = seq->private;
2371 if (state->bucket <= state->udp_table->mask)
2372 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2375 int udp_seq_open(struct inode *inode, struct file *file)
2377 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2378 struct udp_iter_state *s;
2379 int err;
2381 err = seq_open_net(inode, file, &afinfo->seq_ops,
2382 sizeof(struct udp_iter_state));
2383 if (err < 0)
2384 return err;
2386 s = ((struct seq_file *)file->private_data)->private;
2387 s->family = afinfo->family;
2388 s->udp_table = afinfo->udp_table;
2389 return err;
2391 EXPORT_SYMBOL(udp_seq_open);
2393 /* ------------------------------------------------------------------------ */
2394 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2396 struct proc_dir_entry *p;
2397 int rc = 0;
2399 afinfo->seq_ops.start = udp_seq_start;
2400 afinfo->seq_ops.next = udp_seq_next;
2401 afinfo->seq_ops.stop = udp_seq_stop;
2403 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2404 afinfo->seq_fops, afinfo);
2405 if (!p)
2406 rc = -ENOMEM;
2407 return rc;
2409 EXPORT_SYMBOL(udp_proc_register);
2411 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2413 remove_proc_entry(afinfo->name, net->proc_net);
2415 EXPORT_SYMBOL(udp_proc_unregister);
2417 /* ------------------------------------------------------------------------ */
2418 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2419 int bucket)
2421 struct inet_sock *inet = inet_sk(sp);
2422 __be32 dest = inet->inet_daddr;
2423 __be32 src = inet->inet_rcv_saddr;
2424 __u16 destp = ntohs(inet->inet_dport);
2425 __u16 srcp = ntohs(inet->inet_sport);
2427 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2428 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2429 bucket, src, srcp, dest, destp, sp->sk_state,
2430 sk_wmem_alloc_get(sp),
2431 sk_rmem_alloc_get(sp),
2432 0, 0L, 0,
2433 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2434 0, sock_i_ino(sp),
2435 atomic_read(&sp->sk_refcnt), sp,
2436 atomic_read(&sp->sk_drops));
2439 int udp4_seq_show(struct seq_file *seq, void *v)
2441 seq_setwidth(seq, 127);
2442 if (v == SEQ_START_TOKEN)
2443 seq_puts(seq, " sl local_address rem_address st tx_queue "
2444 "rx_queue tr tm->when retrnsmt uid timeout "
2445 "inode ref pointer drops");
2446 else {
2447 struct udp_iter_state *state = seq->private;
2449 udp4_format_sock(v, seq, state->bucket);
2451 seq_pad(seq, '\n');
2452 return 0;
2455 static const struct file_operations udp_afinfo_seq_fops = {
2456 .owner = THIS_MODULE,
2457 .open = udp_seq_open,
2458 .read = seq_read,
2459 .llseek = seq_lseek,
2460 .release = seq_release_net
2463 /* ------------------------------------------------------------------------ */
2464 static struct udp_seq_afinfo udp4_seq_afinfo = {
2465 .name = "udp",
2466 .family = AF_INET,
2467 .udp_table = &udp_table,
2468 .seq_fops = &udp_afinfo_seq_fops,
2469 .seq_ops = {
2470 .show = udp4_seq_show,
2474 static int __net_init udp4_proc_init_net(struct net *net)
2476 return udp_proc_register(net, &udp4_seq_afinfo);
2479 static void __net_exit udp4_proc_exit_net(struct net *net)
2481 udp_proc_unregister(net, &udp4_seq_afinfo);
2484 static struct pernet_operations udp4_net_ops = {
2485 .init = udp4_proc_init_net,
2486 .exit = udp4_proc_exit_net,
2489 int __init udp4_proc_init(void)
2491 return register_pernet_subsys(&udp4_net_ops);
2494 void udp4_proc_exit(void)
2496 unregister_pernet_subsys(&udp4_net_ops);
2498 #endif /* CONFIG_PROC_FS */
2500 static __initdata unsigned long uhash_entries;
2501 static int __init set_uhash_entries(char *str)
2503 ssize_t ret;
2505 if (!str)
2506 return 0;
2508 ret = kstrtoul(str, 0, &uhash_entries);
2509 if (ret)
2510 return 0;
2512 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2513 uhash_entries = UDP_HTABLE_SIZE_MIN;
2514 return 1;
2516 __setup("uhash_entries=", set_uhash_entries);
2518 void __init udp_table_init(struct udp_table *table, const char *name)
2520 unsigned int i;
2522 table->hash = alloc_large_system_hash(name,
2523 2 * sizeof(struct udp_hslot),
2524 uhash_entries,
2525 21, /* one slot per 2 MB */
2527 &table->log,
2528 &table->mask,
2529 UDP_HTABLE_SIZE_MIN,
2530 64 * 1024);
2532 table->hash2 = table->hash + (table->mask + 1);
2533 for (i = 0; i <= table->mask; i++) {
2534 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2535 table->hash[i].count = 0;
2536 spin_lock_init(&table->hash[i].lock);
2538 for (i = 0; i <= table->mask; i++) {
2539 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2540 table->hash2[i].count = 0;
2541 spin_lock_init(&table->hash2[i].lock);
2545 u32 udp_flow_hashrnd(void)
2547 static u32 hashrnd __read_mostly;
2549 net_get_random_once(&hashrnd, sizeof(hashrnd));
2551 return hashrnd;
2553 EXPORT_SYMBOL(udp_flow_hashrnd);
2555 void __init udp_init(void)
2557 unsigned long limit;
2559 udp_table_init(&udp_table, "UDP");
2560 limit = nr_free_buffer_pages() / 8;
2561 limit = max(limit, 128UL);
2562 sysctl_udp_mem[0] = limit / 4 * 3;
2563 sysctl_udp_mem[1] = limit;
2564 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2566 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2567 sysctl_udp_wmem_min = SK_MEM_QUANTUM;