Linux 2.6.25.3
[linux/fpc-iii.git] / arch / arm / mm / copypage-v4mc.c
blobded0e96d069d01994786f0afa39fe6734f513b50
1 /*
2 * linux/arch/arm/lib/copypage-armv4mc.S
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This handles the mini data cache, as found on SA11x0 and XScale
11 * processors. When we copy a user page page, we map it in such a way
12 * that accesses to this page will not touch the main data cache, but
13 * will be cached in the mini data cache. This prevents us thrashing
14 * the main data cache on page faults.
16 #include <linux/init.h>
17 #include <linux/mm.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21 #include <asm/tlbflush.h>
22 #include <asm/cacheflush.h>
24 #include "mm.h"
27 * 0xffff8000 to 0xffffffff is reserved for any ARM architecture
28 * specific hacks for copying pages efficiently.
30 #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
31 L_PTE_CACHEABLE)
33 static DEFINE_SPINLOCK(minicache_lock);
36 * ARMv4 mini-dcache optimised copy_user_page
38 * We flush the destination cache lines just before we write the data into the
39 * corresponding address. Since the Dcache is read-allocate, this removes the
40 * Dcache aliasing issue. The writes will be forwarded to the write buffer,
41 * and merged as appropriate.
43 * Note: We rely on all ARMv4 processors implementing the "invalidate D line"
44 * instruction. If your processor does not supply this, you have to write your
45 * own copy_user_page that does the right thing.
47 static void __attribute__((naked))
48 mc_copy_user_page(void *from, void *to)
50 asm volatile(
51 "stmfd sp!, {r4, lr} @ 2\n\
52 mov r4, %2 @ 1\n\
53 ldmia %0!, {r2, r3, ip, lr} @ 4\n\
54 1: mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
55 stmia %1!, {r2, r3, ip, lr} @ 4\n\
56 ldmia %0!, {r2, r3, ip, lr} @ 4+1\n\
57 stmia %1!, {r2, r3, ip, lr} @ 4\n\
58 ldmia %0!, {r2, r3, ip, lr} @ 4\n\
59 mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
60 stmia %1!, {r2, r3, ip, lr} @ 4\n\
61 ldmia %0!, {r2, r3, ip, lr} @ 4\n\
62 subs r4, r4, #1 @ 1\n\
63 stmia %1!, {r2, r3, ip, lr} @ 4\n\
64 ldmneia %0!, {r2, r3, ip, lr} @ 4\n\
65 bne 1b @ 1\n\
66 ldmfd sp!, {r4, pc} @ 3"
68 : "r" (from), "r" (to), "I" (PAGE_SIZE / 64));
71 void v4_mc_copy_user_page(void *kto, const void *kfrom, unsigned long vaddr)
73 struct page *page = virt_to_page(kfrom);
75 if (test_and_clear_bit(PG_dcache_dirty, &page->flags))
76 __flush_dcache_page(page_mapping(page), page);
78 spin_lock(&minicache_lock);
80 set_pte_ext(TOP_PTE(0xffff8000), pfn_pte(__pa(kfrom) >> PAGE_SHIFT, minicache_pgprot), 0);
81 flush_tlb_kernel_page(0xffff8000);
83 mc_copy_user_page((void *)0xffff8000, kto);
85 spin_unlock(&minicache_lock);
89 * ARMv4 optimised clear_user_page
91 void __attribute__((naked))
92 v4_mc_clear_user_page(void *kaddr, unsigned long vaddr)
94 asm volatile(
95 "str lr, [sp, #-4]!\n\
96 mov r1, %0 @ 1\n\
97 mov r2, #0 @ 1\n\
98 mov r3, #0 @ 1\n\
99 mov ip, #0 @ 1\n\
100 mov lr, #0 @ 1\n\
101 1: mcr p15, 0, r0, c7, c6, 1 @ 1 invalidate D line\n\
102 stmia r0!, {r2, r3, ip, lr} @ 4\n\
103 stmia r0!, {r2, r3, ip, lr} @ 4\n\
104 mcr p15, 0, r0, c7, c6, 1 @ 1 invalidate D line\n\
105 stmia r0!, {r2, r3, ip, lr} @ 4\n\
106 stmia r0!, {r2, r3, ip, lr} @ 4\n\
107 subs r1, r1, #1 @ 1\n\
108 bne 1b @ 1\n\
109 ldr pc, [sp], #4"
111 : "I" (PAGE_SIZE / 64));
114 struct cpu_user_fns v4_mc_user_fns __initdata = {
115 .cpu_clear_user_page = v4_mc_clear_user_page,
116 .cpu_copy_user_page = v4_mc_copy_user_page,