Linux 2.6.25.3
[linux/fpc-iii.git] / arch / ia64 / pci / pci.c
blob53d0a8ee35d75cbdd252d4899403713db1846767
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
23 #include <asm/machvec.h>
24 #include <asm/page.h>
25 #include <asm/system.h>
26 #include <asm/io.h>
27 #include <asm/sal.h>
28 #include <asm/smp.h>
29 #include <asm/irq.h>
30 #include <asm/hw_irq.h>
33 * Low-level SAL-based PCI configuration access functions. Note that SAL
34 * calls are already serialized (via sal_lock), so we don't need another
35 * synchronization mechanism here.
38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
39 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 /* SAL 3.2 adds support for extended config space. */
43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
44 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
47 int reg, int len, u32 *value)
49 u64 addr, data = 0;
50 int mode, result;
52 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
53 return -EINVAL;
55 if ((seg | reg) <= 255) {
56 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
57 mode = 0;
58 } else {
59 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
60 mode = 1;
62 result = ia64_sal_pci_config_read(addr, mode, len, &data);
63 if (result != 0)
64 return -EINVAL;
66 *value = (u32) data;
67 return 0;
70 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
71 int reg, int len, u32 value)
73 u64 addr;
74 int mode, result;
76 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
77 return -EINVAL;
79 if ((seg | reg) <= 255) {
80 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
81 mode = 0;
82 } else {
83 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
84 mode = 1;
86 result = ia64_sal_pci_config_write(addr, mode, len, value);
87 if (result != 0)
88 return -EINVAL;
89 return 0;
92 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
93 int size, u32 *value)
95 return raw_pci_read(pci_domain_nr(bus), bus->number,
96 devfn, where, size, value);
99 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
100 int size, u32 value)
102 return raw_pci_write(pci_domain_nr(bus), bus->number,
103 devfn, where, size, value);
106 struct pci_ops pci_root_ops = {
107 .read = pci_read,
108 .write = pci_write,
111 /* Called by ACPI when it finds a new root bus. */
113 static struct pci_controller * __devinit
114 alloc_pci_controller (int seg)
116 struct pci_controller *controller;
118 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
119 if (!controller)
120 return NULL;
122 controller->segment = seg;
123 controller->node = -1;
124 return controller;
127 struct pci_root_info {
128 struct pci_controller *controller;
129 char *name;
132 static unsigned int
133 new_space (u64 phys_base, int sparse)
135 u64 mmio_base;
136 int i;
138 if (phys_base == 0)
139 return 0; /* legacy I/O port space */
141 mmio_base = (u64) ioremap(phys_base, 0);
142 for (i = 0; i < num_io_spaces; i++)
143 if (io_space[i].mmio_base == mmio_base &&
144 io_space[i].sparse == sparse)
145 return i;
147 if (num_io_spaces == MAX_IO_SPACES) {
148 printk(KERN_ERR "PCI: Too many IO port spaces "
149 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
150 return ~0;
153 i = num_io_spaces++;
154 io_space[i].mmio_base = mmio_base;
155 io_space[i].sparse = sparse;
157 return i;
160 static u64 __devinit
161 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
163 struct resource *resource;
164 char *name;
165 u64 base, min, max, base_port;
166 unsigned int sparse = 0, space_nr, len;
168 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
169 if (!resource) {
170 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
171 info->name);
172 goto out;
175 len = strlen(info->name) + 32;
176 name = kzalloc(len, GFP_KERNEL);
177 if (!name) {
178 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
179 info->name);
180 goto free_resource;
183 min = addr->minimum;
184 max = min + addr->address_length - 1;
185 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
186 sparse = 1;
188 space_nr = new_space(addr->translation_offset, sparse);
189 if (space_nr == ~0)
190 goto free_name;
192 base = __pa(io_space[space_nr].mmio_base);
193 base_port = IO_SPACE_BASE(space_nr);
194 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
195 base_port + min, base_port + max);
198 * The SDM guarantees the legacy 0-64K space is sparse, but if the
199 * mapping is done by the processor (not the bridge), ACPI may not
200 * mark it as sparse.
202 if (space_nr == 0)
203 sparse = 1;
205 resource->name = name;
206 resource->flags = IORESOURCE_MEM;
207 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
208 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
209 insert_resource(&iomem_resource, resource);
211 return base_port;
213 free_name:
214 kfree(name);
215 free_resource:
216 kfree(resource);
217 out:
218 return ~0;
221 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
222 struct acpi_resource_address64 *addr)
224 acpi_status status;
227 * We're only interested in _CRS descriptors that are
228 * - address space descriptors for memory or I/O space
229 * - non-zero size
230 * - producers, i.e., the address space is routed downstream,
231 * not consumed by the bridge itself
233 status = acpi_resource_to_address64(resource, addr);
234 if (ACPI_SUCCESS(status) &&
235 (addr->resource_type == ACPI_MEMORY_RANGE ||
236 addr->resource_type == ACPI_IO_RANGE) &&
237 addr->address_length &&
238 addr->producer_consumer == ACPI_PRODUCER)
239 return AE_OK;
241 return AE_ERROR;
244 static acpi_status __devinit
245 count_window (struct acpi_resource *resource, void *data)
247 unsigned int *windows = (unsigned int *) data;
248 struct acpi_resource_address64 addr;
249 acpi_status status;
251 status = resource_to_window(resource, &addr);
252 if (ACPI_SUCCESS(status))
253 (*windows)++;
255 return AE_OK;
258 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
260 struct pci_root_info *info = data;
261 struct pci_window *window;
262 struct acpi_resource_address64 addr;
263 acpi_status status;
264 unsigned long flags, offset = 0;
265 struct resource *root;
267 /* Return AE_OK for non-window resources to keep scanning for more */
268 status = resource_to_window(res, &addr);
269 if (!ACPI_SUCCESS(status))
270 return AE_OK;
272 if (addr.resource_type == ACPI_MEMORY_RANGE) {
273 flags = IORESOURCE_MEM;
274 root = &iomem_resource;
275 offset = addr.translation_offset;
276 } else if (addr.resource_type == ACPI_IO_RANGE) {
277 flags = IORESOURCE_IO;
278 root = &ioport_resource;
279 offset = add_io_space(info, &addr);
280 if (offset == ~0)
281 return AE_OK;
282 } else
283 return AE_OK;
285 window = &info->controller->window[info->controller->windows++];
286 window->resource.name = info->name;
287 window->resource.flags = flags;
288 window->resource.start = addr.minimum + offset;
289 window->resource.end = window->resource.start + addr.address_length - 1;
290 window->resource.child = NULL;
291 window->offset = offset;
293 if (insert_resource(root, &window->resource)) {
294 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
295 window->resource.start, window->resource.end,
296 root->name, info->name);
299 return AE_OK;
302 static void __devinit
303 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
305 int i, j;
307 j = 0;
308 for (i = 0; i < ctrl->windows; i++) {
309 struct resource *res = &ctrl->window[i].resource;
310 /* HP's firmware has a hack to work around a Windows bug.
311 * Ignore these tiny memory ranges */
312 if ((res->flags & IORESOURCE_MEM) &&
313 (res->end - res->start < 16))
314 continue;
315 if (j >= PCI_BUS_NUM_RESOURCES) {
316 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
317 res->end, res->flags);
318 continue;
320 bus->resource[j++] = res;
324 struct pci_bus * __devinit
325 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
327 struct pci_root_info info;
328 struct pci_controller *controller;
329 unsigned int windows = 0;
330 struct pci_bus *pbus;
331 char *name;
332 int pxm;
334 controller = alloc_pci_controller(domain);
335 if (!controller)
336 goto out1;
338 controller->acpi_handle = device->handle;
340 pxm = acpi_get_pxm(controller->acpi_handle);
341 #ifdef CONFIG_NUMA
342 if (pxm >= 0)
343 controller->node = pxm_to_node(pxm);
344 #endif
346 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
347 &windows);
348 if (windows) {
349 controller->window =
350 kmalloc_node(sizeof(*controller->window) * windows,
351 GFP_KERNEL, controller->node);
352 if (!controller->window)
353 goto out2;
356 name = kmalloc(16, GFP_KERNEL);
357 if (!name)
358 goto out3;
360 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
361 info.controller = controller;
362 info.name = name;
363 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
364 &info);
366 * See arch/x86/pci/acpi.c.
367 * The desired pci bus might already be scanned in a quirk. We
368 * should handle the case here, but it appears that IA64 hasn't
369 * such quirk. So we just ignore the case now.
371 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
372 if (pbus)
373 pcibios_setup_root_windows(pbus, controller);
375 return pbus;
377 out3:
378 kfree(controller->window);
379 out2:
380 kfree(controller);
381 out1:
382 return NULL;
385 void pcibios_resource_to_bus(struct pci_dev *dev,
386 struct pci_bus_region *region, struct resource *res)
388 struct pci_controller *controller = PCI_CONTROLLER(dev);
389 unsigned long offset = 0;
390 int i;
392 for (i = 0; i < controller->windows; i++) {
393 struct pci_window *window = &controller->window[i];
394 if (!(window->resource.flags & res->flags))
395 continue;
396 if (window->resource.start > res->start)
397 continue;
398 if (window->resource.end < res->end)
399 continue;
400 offset = window->offset;
401 break;
404 region->start = res->start - offset;
405 region->end = res->end - offset;
407 EXPORT_SYMBOL(pcibios_resource_to_bus);
409 void pcibios_bus_to_resource(struct pci_dev *dev,
410 struct resource *res, struct pci_bus_region *region)
412 struct pci_controller *controller = PCI_CONTROLLER(dev);
413 unsigned long offset = 0;
414 int i;
416 for (i = 0; i < controller->windows; i++) {
417 struct pci_window *window = &controller->window[i];
418 if (!(window->resource.flags & res->flags))
419 continue;
420 if (window->resource.start - window->offset > region->start)
421 continue;
422 if (window->resource.end - window->offset < region->end)
423 continue;
424 offset = window->offset;
425 break;
428 res->start = region->start + offset;
429 res->end = region->end + offset;
431 EXPORT_SYMBOL(pcibios_bus_to_resource);
433 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
435 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
436 struct resource *devr = &dev->resource[idx];
438 if (!dev->bus)
439 return 0;
440 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
441 struct resource *busr = dev->bus->resource[i];
443 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
444 continue;
445 if ((devr->start) && (devr->start >= busr->start) &&
446 (devr->end <= busr->end))
447 return 1;
449 return 0;
452 static void __devinit
453 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
455 struct pci_bus_region region;
456 int i;
458 for (i = start; i < limit; i++) {
459 if (!dev->resource[i].flags)
460 continue;
461 region.start = dev->resource[i].start;
462 region.end = dev->resource[i].end;
463 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
464 if ((is_valid_resource(dev, i)))
465 pci_claim_resource(dev, i);
469 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
471 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
473 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
475 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
477 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
481 * Called after each bus is probed, but before its children are examined.
483 void __devinit
484 pcibios_fixup_bus (struct pci_bus *b)
486 struct pci_dev *dev;
488 if (b->self) {
489 pci_read_bridge_bases(b);
490 pcibios_fixup_bridge_resources(b->self);
492 list_for_each_entry(dev, &b->devices, bus_list)
493 pcibios_fixup_device_resources(dev);
494 platform_pci_fixup_bus(b);
496 return;
499 void __devinit
500 pcibios_update_irq (struct pci_dev *dev, int irq)
502 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
504 /* ??? FIXME -- record old value for shutdown. */
507 static inline int
508 pcibios_enable_resources (struct pci_dev *dev, int mask)
510 u16 cmd, old_cmd;
511 int idx;
512 struct resource *r;
513 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
515 if (!dev)
516 return -EINVAL;
518 pci_read_config_word(dev, PCI_COMMAND, &cmd);
519 old_cmd = cmd;
520 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
521 /* Only set up the desired resources. */
522 if (!(mask & (1 << idx)))
523 continue;
525 r = &dev->resource[idx];
526 if (!(r->flags & type_mask))
527 continue;
528 if ((idx == PCI_ROM_RESOURCE) &&
529 (!(r->flags & IORESOURCE_ROM_ENABLE)))
530 continue;
531 if (!r->start && r->end) {
532 printk(KERN_ERR
533 "PCI: Device %s not available because of resource collisions\n",
534 pci_name(dev));
535 return -EINVAL;
537 if (r->flags & IORESOURCE_IO)
538 cmd |= PCI_COMMAND_IO;
539 if (r->flags & IORESOURCE_MEM)
540 cmd |= PCI_COMMAND_MEMORY;
542 if (cmd != old_cmd) {
543 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
544 pci_write_config_word(dev, PCI_COMMAND, cmd);
546 return 0;
550 pcibios_enable_device (struct pci_dev *dev, int mask)
552 int ret;
554 ret = pcibios_enable_resources(dev, mask);
555 if (ret < 0)
556 return ret;
558 if (!dev->msi_enabled)
559 return acpi_pci_irq_enable(dev);
560 return 0;
563 void
564 pcibios_disable_device (struct pci_dev *dev)
566 BUG_ON(atomic_read(&dev->enable_cnt));
567 if (!dev->msi_enabled)
568 acpi_pci_irq_disable(dev);
571 void
572 pcibios_align_resource (void *data, struct resource *res,
573 resource_size_t size, resource_size_t align)
578 * PCI BIOS setup, always defaults to SAL interface
580 char * __devinit
581 pcibios_setup (char *str)
583 return str;
587 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
588 enum pci_mmap_state mmap_state, int write_combine)
590 unsigned long size = vma->vm_end - vma->vm_start;
591 pgprot_t prot;
594 * I/O space cannot be accessed via normal processor loads and
595 * stores on this platform.
597 if (mmap_state == pci_mmap_io)
599 * XXX we could relax this for I/O spaces for which ACPI
600 * indicates that the space is 1-to-1 mapped. But at the
601 * moment, we don't support multiple PCI address spaces and
602 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
604 return -EINVAL;
606 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
607 return -EINVAL;
609 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
610 vma->vm_page_prot);
613 * If the user requested WC, the kernel uses UC or WC for this region,
614 * and the chipset supports WC, we can use WC. Otherwise, we have to
615 * use the same attribute the kernel uses.
617 if (write_combine &&
618 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
619 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
620 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
621 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
622 else
623 vma->vm_page_prot = prot;
625 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
626 vma->vm_end - vma->vm_start, vma->vm_page_prot))
627 return -EAGAIN;
629 return 0;
633 * ia64_pci_get_legacy_mem - generic legacy mem routine
634 * @bus: bus to get legacy memory base address for
636 * Find the base of legacy memory for @bus. This is typically the first
637 * megabyte of bus address space for @bus or is simply 0 on platforms whose
638 * chipsets support legacy I/O and memory routing. Returns the base address
639 * or an error pointer if an error occurred.
641 * This is the ia64 generic version of this routine. Other platforms
642 * are free to override it with a machine vector.
644 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
646 return (char *)__IA64_UNCACHED_OFFSET;
650 * pci_mmap_legacy_page_range - map legacy memory space to userland
651 * @bus: bus whose legacy space we're mapping
652 * @vma: vma passed in by mmap
654 * Map legacy memory space for this device back to userspace using a machine
655 * vector to get the base address.
658 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
660 unsigned long size = vma->vm_end - vma->vm_start;
661 pgprot_t prot;
662 char *addr;
665 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
666 * for more details.
668 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
669 return -EINVAL;
670 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
671 vma->vm_page_prot);
673 addr = pci_get_legacy_mem(bus);
674 if (IS_ERR(addr))
675 return PTR_ERR(addr);
677 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
678 vma->vm_page_prot = prot;
680 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
681 size, vma->vm_page_prot))
682 return -EAGAIN;
684 return 0;
688 * ia64_pci_legacy_read - read from legacy I/O space
689 * @bus: bus to read
690 * @port: legacy port value
691 * @val: caller allocated storage for returned value
692 * @size: number of bytes to read
694 * Simply reads @size bytes from @port and puts the result in @val.
696 * Again, this (and the write routine) are generic versions that can be
697 * overridden by the platform. This is necessary on platforms that don't
698 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
700 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
702 int ret = size;
704 switch (size) {
705 case 1:
706 *val = inb(port);
707 break;
708 case 2:
709 *val = inw(port);
710 break;
711 case 4:
712 *val = inl(port);
713 break;
714 default:
715 ret = -EINVAL;
716 break;
719 return ret;
723 * ia64_pci_legacy_write - perform a legacy I/O write
724 * @bus: bus pointer
725 * @port: port to write
726 * @val: value to write
727 * @size: number of bytes to write from @val
729 * Simply writes @size bytes of @val to @port.
731 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
733 int ret = size;
735 switch (size) {
736 case 1:
737 outb(val, port);
738 break;
739 case 2:
740 outw(val, port);
741 break;
742 case 4:
743 outl(val, port);
744 break;
745 default:
746 ret = -EINVAL;
747 break;
750 return ret;
753 /* It's defined in drivers/pci/pci.c */
754 extern u8 pci_cache_line_size;
757 * set_pci_cacheline_size - determine cacheline size for PCI devices
759 * We want to use the line-size of the outer-most cache. We assume
760 * that this line-size is the same for all CPUs.
762 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
764 static void __init set_pci_cacheline_size(void)
766 u64 levels, unique_caches;
767 s64 status;
768 pal_cache_config_info_t cci;
770 status = ia64_pal_cache_summary(&levels, &unique_caches);
771 if (status != 0) {
772 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
773 "(status=%ld)\n", __func__, status);
774 return;
777 status = ia64_pal_cache_config_info(levels - 1,
778 /* cache_type (data_or_unified)= */ 2, &cci);
779 if (status != 0) {
780 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
781 "(status=%ld)\n", __func__, status);
782 return;
784 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
787 static int __init pcibios_init(void)
789 set_pci_cacheline_size();
790 return 0;
793 subsys_initcall(pcibios_init);