Linux 2.6.25.3
[linux/fpc-iii.git] / arch / powerpc / kernel / kprobes.c
blobc176c513566b3c1a179661bae346142fa5cd4bd0
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
45 int ret = 0;
46 kprobe_opcode_t insn = *p->addr;
48 if ((unsigned long)p->addr & 0x03) {
49 printk("Attempt to register kprobe at an unaligned address\n");
50 ret = -EINVAL;
51 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
52 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
53 ret = -EINVAL;
56 /* insn must be on a special executable page on ppc64 */
57 if (!ret) {
58 p->ainsn.insn = get_insn_slot();
59 if (!p->ainsn.insn)
60 ret = -ENOMEM;
63 if (!ret) {
64 memcpy(p->ainsn.insn, p->addr,
65 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
66 p->opcode = *p->addr;
67 flush_icache_range((unsigned long)p->ainsn.insn,
68 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
71 p->ainsn.boostable = 0;
72 return ret;
75 void __kprobes arch_arm_kprobe(struct kprobe *p)
77 *p->addr = BREAKPOINT_INSTRUCTION;
78 flush_icache_range((unsigned long) p->addr,
79 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
82 void __kprobes arch_disarm_kprobe(struct kprobe *p)
84 *p->addr = p->opcode;
85 flush_icache_range((unsigned long) p->addr,
86 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
89 void __kprobes arch_remove_kprobe(struct kprobe *p)
91 mutex_lock(&kprobe_mutex);
92 free_insn_slot(p->ainsn.insn, 0);
93 mutex_unlock(&kprobe_mutex);
96 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
98 regs->msr |= MSR_SE;
101 * On powerpc we should single step on the original
102 * instruction even if the probed insn is a trap
103 * variant as values in regs could play a part in
104 * if the trap is taken or not
106 regs->nip = (unsigned long)p->ainsn.insn;
109 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
111 kcb->prev_kprobe.kp = kprobe_running();
112 kcb->prev_kprobe.status = kcb->kprobe_status;
113 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
116 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
118 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
119 kcb->kprobe_status = kcb->prev_kprobe.status;
120 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
123 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
124 struct kprobe_ctlblk *kcb)
126 __get_cpu_var(current_kprobe) = p;
127 kcb->kprobe_saved_msr = regs->msr;
130 /* Called with kretprobe_lock held */
131 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
132 struct pt_regs *regs)
134 ri->ret_addr = (kprobe_opcode_t *)regs->link;
136 /* Replace the return addr with trampoline addr */
137 regs->link = (unsigned long)kretprobe_trampoline;
140 static int __kprobes kprobe_handler(struct pt_regs *regs)
142 struct kprobe *p;
143 int ret = 0;
144 unsigned int *addr = (unsigned int *)regs->nip;
145 struct kprobe_ctlblk *kcb;
148 * We don't want to be preempted for the entire
149 * duration of kprobe processing
151 preempt_disable();
152 kcb = get_kprobe_ctlblk();
154 /* Check we're not actually recursing */
155 if (kprobe_running()) {
156 p = get_kprobe(addr);
157 if (p) {
158 kprobe_opcode_t insn = *p->ainsn.insn;
159 if (kcb->kprobe_status == KPROBE_HIT_SS &&
160 is_trap(insn)) {
161 regs->msr &= ~MSR_SE;
162 regs->msr |= kcb->kprobe_saved_msr;
163 goto no_kprobe;
165 /* We have reentered the kprobe_handler(), since
166 * another probe was hit while within the handler.
167 * We here save the original kprobes variables and
168 * just single step on the instruction of the new probe
169 * without calling any user handlers.
171 save_previous_kprobe(kcb);
172 set_current_kprobe(p, regs, kcb);
173 kcb->kprobe_saved_msr = regs->msr;
174 kprobes_inc_nmissed_count(p);
175 prepare_singlestep(p, regs);
176 kcb->kprobe_status = KPROBE_REENTER;
177 return 1;
178 } else {
179 if (*addr != BREAKPOINT_INSTRUCTION) {
180 /* If trap variant, then it belongs not to us */
181 kprobe_opcode_t cur_insn = *addr;
182 if (is_trap(cur_insn))
183 goto no_kprobe;
184 /* The breakpoint instruction was removed by
185 * another cpu right after we hit, no further
186 * handling of this interrupt is appropriate
188 ret = 1;
189 goto no_kprobe;
191 p = __get_cpu_var(current_kprobe);
192 if (p->break_handler && p->break_handler(p, regs)) {
193 goto ss_probe;
196 goto no_kprobe;
199 p = get_kprobe(addr);
200 if (!p) {
201 if (*addr != BREAKPOINT_INSTRUCTION) {
203 * PowerPC has multiple variants of the "trap"
204 * instruction. If the current instruction is a
205 * trap variant, it could belong to someone else
207 kprobe_opcode_t cur_insn = *addr;
208 if (is_trap(cur_insn))
209 goto no_kprobe;
211 * The breakpoint instruction was removed right
212 * after we hit it. Another cpu has removed
213 * either a probepoint or a debugger breakpoint
214 * at this address. In either case, no further
215 * handling of this interrupt is appropriate.
217 ret = 1;
219 /* Not one of ours: let kernel handle it */
220 goto no_kprobe;
223 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
224 set_current_kprobe(p, regs, kcb);
225 if (p->pre_handler && p->pre_handler(p, regs))
226 /* handler has already set things up, so skip ss setup */
227 return 1;
229 ss_probe:
230 if (p->ainsn.boostable >= 0) {
231 unsigned int insn = *p->ainsn.insn;
233 /* regs->nip is also adjusted if emulate_step returns 1 */
234 ret = emulate_step(regs, insn);
235 if (ret > 0) {
237 * Once this instruction has been boosted
238 * successfully, set the boostable flag
240 if (unlikely(p->ainsn.boostable == 0))
241 p->ainsn.boostable = 1;
243 if (p->post_handler)
244 p->post_handler(p, regs, 0);
246 kcb->kprobe_status = KPROBE_HIT_SSDONE;
247 reset_current_kprobe();
248 preempt_enable_no_resched();
249 return 1;
250 } else if (ret < 0) {
252 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
253 * So, we should never get here... but, its still
254 * good to catch them, just in case...
256 printk("Can't step on instruction %x\n", insn);
257 BUG();
258 } else if (ret == 0)
259 /* This instruction can't be boosted */
260 p->ainsn.boostable = -1;
262 prepare_singlestep(p, regs);
263 kcb->kprobe_status = KPROBE_HIT_SS;
264 return 1;
266 no_kprobe:
267 preempt_enable_no_resched();
268 return ret;
272 * Function return probe trampoline:
273 * - init_kprobes() establishes a probepoint here
274 * - When the probed function returns, this probe
275 * causes the handlers to fire
277 static void __used kretprobe_trampoline_holder(void)
279 asm volatile(".global kretprobe_trampoline\n"
280 "kretprobe_trampoline:\n"
281 "nop\n");
285 * Called when the probe at kretprobe trampoline is hit
287 static int __kprobes trampoline_probe_handler(struct kprobe *p,
288 struct pt_regs *regs)
290 struct kretprobe_instance *ri = NULL;
291 struct hlist_head *head, empty_rp;
292 struct hlist_node *node, *tmp;
293 unsigned long flags, orig_ret_address = 0;
294 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
296 INIT_HLIST_HEAD(&empty_rp);
297 spin_lock_irqsave(&kretprobe_lock, flags);
298 head = kretprobe_inst_table_head(current);
301 * It is possible to have multiple instances associated with a given
302 * task either because an multiple functions in the call path
303 * have a return probe installed on them, and/or more then one return
304 * return probe was registered for a target function.
306 * We can handle this because:
307 * - instances are always inserted at the head of the list
308 * - when multiple return probes are registered for the same
309 * function, the first instance's ret_addr will point to the
310 * real return address, and all the rest will point to
311 * kretprobe_trampoline
313 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
314 if (ri->task != current)
315 /* another task is sharing our hash bucket */
316 continue;
318 if (ri->rp && ri->rp->handler)
319 ri->rp->handler(ri, regs);
321 orig_ret_address = (unsigned long)ri->ret_addr;
322 recycle_rp_inst(ri, &empty_rp);
324 if (orig_ret_address != trampoline_address)
326 * This is the real return address. Any other
327 * instances associated with this task are for
328 * other calls deeper on the call stack
330 break;
333 kretprobe_assert(ri, orig_ret_address, trampoline_address);
334 regs->nip = orig_ret_address;
336 reset_current_kprobe();
337 spin_unlock_irqrestore(&kretprobe_lock, flags);
338 preempt_enable_no_resched();
340 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
341 hlist_del(&ri->hlist);
342 kfree(ri);
345 * By returning a non-zero value, we are telling
346 * kprobe_handler() that we don't want the post_handler
347 * to run (and have re-enabled preemption)
349 return 1;
353 * Called after single-stepping. p->addr is the address of the
354 * instruction whose first byte has been replaced by the "breakpoint"
355 * instruction. To avoid the SMP problems that can occur when we
356 * temporarily put back the original opcode to single-step, we
357 * single-stepped a copy of the instruction. The address of this
358 * copy is p->ainsn.insn.
360 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
362 int ret;
363 unsigned int insn = *p->ainsn.insn;
365 regs->nip = (unsigned long)p->addr;
366 ret = emulate_step(regs, insn);
367 if (ret == 0)
368 regs->nip = (unsigned long)p->addr + 4;
371 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
373 struct kprobe *cur = kprobe_running();
374 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376 if (!cur)
377 return 0;
379 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
380 kcb->kprobe_status = KPROBE_HIT_SSDONE;
381 cur->post_handler(cur, regs, 0);
384 resume_execution(cur, regs);
385 regs->msr |= kcb->kprobe_saved_msr;
387 /*Restore back the original saved kprobes variables and continue. */
388 if (kcb->kprobe_status == KPROBE_REENTER) {
389 restore_previous_kprobe(kcb);
390 goto out;
392 reset_current_kprobe();
393 out:
394 preempt_enable_no_resched();
397 * if somebody else is singlestepping across a probe point, msr
398 * will have SE set, in which case, continue the remaining processing
399 * of do_debug, as if this is not a probe hit.
401 if (regs->msr & MSR_SE)
402 return 0;
404 return 1;
407 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
409 struct kprobe *cur = kprobe_running();
410 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411 const struct exception_table_entry *entry;
413 switch(kcb->kprobe_status) {
414 case KPROBE_HIT_SS:
415 case KPROBE_REENTER:
417 * We are here because the instruction being single
418 * stepped caused a page fault. We reset the current
419 * kprobe and the nip points back to the probe address
420 * and allow the page fault handler to continue as a
421 * normal page fault.
423 regs->nip = (unsigned long)cur->addr;
424 regs->msr &= ~MSR_SE;
425 regs->msr |= kcb->kprobe_saved_msr;
426 if (kcb->kprobe_status == KPROBE_REENTER)
427 restore_previous_kprobe(kcb);
428 else
429 reset_current_kprobe();
430 preempt_enable_no_resched();
431 break;
432 case KPROBE_HIT_ACTIVE:
433 case KPROBE_HIT_SSDONE:
435 * We increment the nmissed count for accounting,
436 * we can also use npre/npostfault count for accouting
437 * these specific fault cases.
439 kprobes_inc_nmissed_count(cur);
442 * We come here because instructions in the pre/post
443 * handler caused the page_fault, this could happen
444 * if handler tries to access user space by
445 * copy_from_user(), get_user() etc. Let the
446 * user-specified handler try to fix it first.
448 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
449 return 1;
452 * In case the user-specified fault handler returned
453 * zero, try to fix up.
455 if ((entry = search_exception_tables(regs->nip)) != NULL) {
456 regs->nip = entry->fixup;
457 return 1;
461 * fixup_exception() could not handle it,
462 * Let do_page_fault() fix it.
464 break;
465 default:
466 break;
468 return 0;
472 * Wrapper routine to for handling exceptions.
474 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
475 unsigned long val, void *data)
477 struct die_args *args = (struct die_args *)data;
478 int ret = NOTIFY_DONE;
480 if (args->regs && user_mode(args->regs))
481 return ret;
483 switch (val) {
484 case DIE_BPT:
485 if (kprobe_handler(args->regs))
486 ret = NOTIFY_STOP;
487 break;
488 case DIE_SSTEP:
489 if (post_kprobe_handler(args->regs))
490 ret = NOTIFY_STOP;
491 break;
492 default:
493 break;
495 return ret;
498 #ifdef CONFIG_PPC64
499 unsigned long arch_deref_entry_point(void *entry)
501 return (unsigned long)(((func_descr_t *)entry)->entry);
503 #endif
505 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
507 struct jprobe *jp = container_of(p, struct jprobe, kp);
508 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
510 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
512 /* setup return addr to the jprobe handler routine */
513 regs->nip = arch_deref_entry_point(jp->entry);
514 #ifdef CONFIG_PPC64
515 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
516 #endif
518 return 1;
521 void __used __kprobes jprobe_return(void)
523 asm volatile("trap" ::: "memory");
526 static void __used __kprobes jprobe_return_end(void)
530 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
532 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
535 * FIXME - we should ideally be validating that we got here 'cos
536 * of the "trap" in jprobe_return() above, before restoring the
537 * saved regs...
539 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
540 preempt_enable_no_resched();
541 return 1;
544 static struct kprobe trampoline_p = {
545 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
546 .pre_handler = trampoline_probe_handler
549 int __init arch_init_kprobes(void)
551 return register_kprobe(&trampoline_p);
554 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
556 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
557 return 1;
559 return 0;