Linux 2.6.25.3
[linux/fpc-iii.git] / arch / powerpc / platforms / cell / spu_manage.c
blobd351bdebf5f1e350c8144855b41c37e4545c6d83
1 /*
2 * spu management operations for of based platforms
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 * Copyright 2006 Sony Corp.
6 * (C) Copyright 2007 TOSHIBA CORPORATION
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28 #include <linux/mm.h>
29 #include <linux/io.h>
30 #include <linux/mutex.h>
31 #include <linux/device.h>
33 #include <asm/spu.h>
34 #include <asm/spu_priv1.h>
35 #include <asm/firmware.h>
36 #include <asm/prom.h>
38 #include "spufs/spufs.h"
39 #include "interrupt.h"
41 struct device_node *spu_devnode(struct spu *spu)
43 return spu->devnode;
46 EXPORT_SYMBOL_GPL(spu_devnode);
48 static u64 __init find_spu_unit_number(struct device_node *spe)
50 const unsigned int *prop;
51 int proplen;
53 /* new device trees should provide the physical-id attribute */
54 prop = of_get_property(spe, "physical-id", &proplen);
55 if (proplen == 4)
56 return (u64)*prop;
58 /* celleb device tree provides the unit-id */
59 prop = of_get_property(spe, "unit-id", &proplen);
60 if (proplen == 4)
61 return (u64)*prop;
63 /* legacy device trees provide the id in the reg attribute */
64 prop = of_get_property(spe, "reg", &proplen);
65 if (proplen == 4)
66 return (u64)*prop;
68 return 0;
71 static void spu_unmap(struct spu *spu)
73 if (!firmware_has_feature(FW_FEATURE_LPAR))
74 iounmap(spu->priv1);
75 iounmap(spu->priv2);
76 iounmap(spu->problem);
77 iounmap((__force u8 __iomem *)spu->local_store);
80 static int __init spu_map_interrupts_old(struct spu *spu,
81 struct device_node *np)
83 unsigned int isrc;
84 const u32 *tmp;
85 int nid;
87 /* Get the interrupt source unit from the device-tree */
88 tmp = of_get_property(np, "isrc", NULL);
89 if (!tmp)
90 return -ENODEV;
91 isrc = tmp[0];
93 tmp = of_get_property(np->parent->parent, "node-id", NULL);
94 if (!tmp) {
95 printk(KERN_WARNING "%s: can't find node-id\n", __FUNCTION__);
96 nid = spu->node;
97 } else
98 nid = tmp[0];
100 /* Add the node number */
101 isrc |= nid << IIC_IRQ_NODE_SHIFT;
103 /* Now map interrupts of all 3 classes */
104 spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
105 spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
106 spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
108 /* Right now, we only fail if class 2 failed */
109 return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
112 static void __iomem * __init spu_map_prop_old(struct spu *spu,
113 struct device_node *n,
114 const char *name)
116 const struct address_prop {
117 unsigned long address;
118 unsigned int len;
119 } __attribute__((packed)) *prop;
120 int proplen;
122 prop = of_get_property(n, name, &proplen);
123 if (prop == NULL || proplen != sizeof (struct address_prop))
124 return NULL;
126 return ioremap(prop->address, prop->len);
129 static int __init spu_map_device_old(struct spu *spu)
131 struct device_node *node = spu->devnode;
132 const char *prop;
133 int ret;
135 ret = -ENODEV;
136 spu->name = of_get_property(node, "name", NULL);
137 if (!spu->name)
138 goto out;
140 prop = of_get_property(node, "local-store", NULL);
141 if (!prop)
142 goto out;
143 spu->local_store_phys = *(unsigned long *)prop;
145 /* we use local store as ram, not io memory */
146 spu->local_store = (void __force *)
147 spu_map_prop_old(spu, node, "local-store");
148 if (!spu->local_store)
149 goto out;
151 prop = of_get_property(node, "problem", NULL);
152 if (!prop)
153 goto out_unmap;
154 spu->problem_phys = *(unsigned long *)prop;
156 spu->problem = spu_map_prop_old(spu, node, "problem");
157 if (!spu->problem)
158 goto out_unmap;
160 spu->priv2 = spu_map_prop_old(spu, node, "priv2");
161 if (!spu->priv2)
162 goto out_unmap;
164 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
165 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
166 if (!spu->priv1)
167 goto out_unmap;
170 ret = 0;
171 goto out;
173 out_unmap:
174 spu_unmap(spu);
175 out:
176 return ret;
179 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
181 struct of_irq oirq;
182 int ret;
183 int i;
185 for (i=0; i < 3; i++) {
186 ret = of_irq_map_one(np, i, &oirq);
187 if (ret) {
188 pr_debug("spu_new: failed to get irq %d\n", i);
189 goto err;
191 ret = -EINVAL;
192 pr_debug(" irq %d no 0x%x on %s\n", i, oirq.specifier[0],
193 oirq.controller->full_name);
194 spu->irqs[i] = irq_create_of_mapping(oirq.controller,
195 oirq.specifier, oirq.size);
196 if (spu->irqs[i] == NO_IRQ) {
197 pr_debug("spu_new: failed to map it !\n");
198 goto err;
201 return 0;
203 err:
204 pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier,
205 spu->name);
206 for (; i >= 0; i--) {
207 if (spu->irqs[i] != NO_IRQ)
208 irq_dispose_mapping(spu->irqs[i]);
210 return ret;
213 static int spu_map_resource(struct spu *spu, int nr,
214 void __iomem** virt, unsigned long *phys)
216 struct device_node *np = spu->devnode;
217 struct resource resource = { };
218 unsigned long len;
219 int ret;
221 ret = of_address_to_resource(np, nr, &resource);
222 if (ret)
223 return ret;
224 if (phys)
225 *phys = resource.start;
226 len = resource.end - resource.start + 1;
227 *virt = ioremap(resource.start, len);
228 if (!*virt)
229 return -EINVAL;
230 return 0;
233 static int __init spu_map_device(struct spu *spu)
235 struct device_node *np = spu->devnode;
236 int ret = -ENODEV;
238 spu->name = of_get_property(np, "name", NULL);
239 if (!spu->name)
240 goto out;
242 ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
243 &spu->local_store_phys);
244 if (ret) {
245 pr_debug("spu_new: failed to map %s resource 0\n",
246 np->full_name);
247 goto out;
249 ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
250 &spu->problem_phys);
251 if (ret) {
252 pr_debug("spu_new: failed to map %s resource 1\n",
253 np->full_name);
254 goto out_unmap;
256 ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
257 if (ret) {
258 pr_debug("spu_new: failed to map %s resource 2\n",
259 np->full_name);
260 goto out_unmap;
262 if (!firmware_has_feature(FW_FEATURE_LPAR))
263 ret = spu_map_resource(spu, 3,
264 (void __iomem**)&spu->priv1, NULL);
265 if (ret) {
266 pr_debug("spu_new: failed to map %s resource 3\n",
267 np->full_name);
268 goto out_unmap;
270 pr_debug("spu_new: %s maps:\n", np->full_name);
271 pr_debug(" local store : 0x%016lx -> 0x%p\n",
272 spu->local_store_phys, spu->local_store);
273 pr_debug(" problem state : 0x%016lx -> 0x%p\n",
274 spu->problem_phys, spu->problem);
275 pr_debug(" priv2 : 0x%p\n", spu->priv2);
276 pr_debug(" priv1 : 0x%p\n", spu->priv1);
278 return 0;
280 out_unmap:
281 spu_unmap(spu);
282 out:
283 pr_debug("failed to map spe %s: %d\n", spu->name, ret);
284 return ret;
287 static int __init of_enumerate_spus(int (*fn)(void *data))
289 int ret;
290 struct device_node *node;
291 unsigned int n = 0;
293 ret = -ENODEV;
294 for (node = of_find_node_by_type(NULL, "spe");
295 node; node = of_find_node_by_type(node, "spe")) {
296 ret = fn(node);
297 if (ret) {
298 printk(KERN_WARNING "%s: Error initializing %s\n",
299 __FUNCTION__, node->name);
300 break;
302 n++;
304 return ret ? ret : n;
307 static int __init of_create_spu(struct spu *spu, void *data)
309 int ret;
310 struct device_node *spe = (struct device_node *)data;
311 static int legacy_map = 0, legacy_irq = 0;
313 spu->devnode = of_node_get(spe);
314 spu->spe_id = find_spu_unit_number(spe);
316 spu->node = of_node_to_nid(spe);
317 if (spu->node >= MAX_NUMNODES) {
318 printk(KERN_WARNING "SPE %s on node %d ignored,"
319 " node number too big\n", spe->full_name, spu->node);
320 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
321 ret = -ENODEV;
322 goto out;
325 ret = spu_map_device(spu);
326 if (ret) {
327 if (!legacy_map) {
328 legacy_map = 1;
329 printk(KERN_WARNING "%s: Legacy device tree found, "
330 "trying to map old style\n", __FUNCTION__);
332 ret = spu_map_device_old(spu);
333 if (ret) {
334 printk(KERN_ERR "Unable to map %s\n",
335 spu->name);
336 goto out;
340 ret = spu_map_interrupts(spu, spe);
341 if (ret) {
342 if (!legacy_irq) {
343 legacy_irq = 1;
344 printk(KERN_WARNING "%s: Legacy device tree found, "
345 "trying old style irq\n", __FUNCTION__);
347 ret = spu_map_interrupts_old(spu, spe);
348 if (ret) {
349 printk(KERN_ERR "%s: could not map interrupts\n",
350 spu->name);
351 goto out_unmap;
355 pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
356 spu->local_store, spu->problem, spu->priv1,
357 spu->priv2, spu->number);
358 goto out;
360 out_unmap:
361 spu_unmap(spu);
362 out:
363 return ret;
366 static int of_destroy_spu(struct spu *spu)
368 spu_unmap(spu);
369 of_node_put(spu->devnode);
370 return 0;
373 static void enable_spu_by_master_run(struct spu_context *ctx)
375 ctx->ops->master_start(ctx);
378 static void disable_spu_by_master_run(struct spu_context *ctx)
380 ctx->ops->master_stop(ctx);
383 /* Hardcoded affinity idxs for qs20 */
384 #define QS20_SPES_PER_BE 8
385 static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 };
386 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
388 static struct spu *spu_lookup_reg(int node, u32 reg)
390 struct spu *spu;
391 const u32 *spu_reg;
393 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
394 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
395 if (*spu_reg == reg)
396 return spu;
398 return NULL;
401 static void init_affinity_qs20_harcoded(void)
403 int node, i;
404 struct spu *last_spu, *spu;
405 u32 reg;
407 for (node = 0; node < MAX_NUMNODES; node++) {
408 last_spu = NULL;
409 for (i = 0; i < QS20_SPES_PER_BE; i++) {
410 reg = qs20_reg_idxs[i];
411 spu = spu_lookup_reg(node, reg);
412 if (!spu)
413 continue;
414 spu->has_mem_affinity = qs20_reg_memory[reg];
415 if (last_spu)
416 list_add_tail(&spu->aff_list,
417 &last_spu->aff_list);
418 last_spu = spu;
423 static int of_has_vicinity(void)
425 struct device_node *dn;
427 for_each_node_by_type(dn, "spe") {
428 if (of_find_property(dn, "vicinity", NULL)) {
429 of_node_put(dn);
430 return 1;
433 return 0;
436 static struct spu *devnode_spu(int cbe, struct device_node *dn)
438 struct spu *spu;
440 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
441 if (spu_devnode(spu) == dn)
442 return spu;
443 return NULL;
446 static struct spu *
447 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
449 struct spu *spu;
450 struct device_node *spu_dn;
451 const phandle *vic_handles;
452 int lenp, i;
454 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
455 spu_dn = spu_devnode(spu);
456 if (spu_dn == avoid)
457 continue;
458 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
459 for (i=0; i < (lenp / sizeof(phandle)); i++) {
460 if (vic_handles[i] == target->linux_phandle)
461 return spu;
464 return NULL;
467 static void init_affinity_node(int cbe)
469 struct spu *spu, *last_spu;
470 struct device_node *vic_dn, *last_spu_dn;
471 phandle avoid_ph;
472 const phandle *vic_handles;
473 const char *name;
474 int lenp, i, added;
476 last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
477 cbe_list);
478 avoid_ph = 0;
479 for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
480 last_spu_dn = spu_devnode(last_spu);
481 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
484 * Walk through each phandle in vicinity property of the spu
485 * (tipically two vicinity phandles per spe node)
487 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
488 if (vic_handles[i] == avoid_ph)
489 continue;
491 vic_dn = of_find_node_by_phandle(vic_handles[i]);
492 if (!vic_dn)
493 continue;
495 /* a neighbour might be spe, mic-tm, or bif0 */
496 name = of_get_property(vic_dn, "name", NULL);
497 if (!name)
498 continue;
500 if (strcmp(name, "spe") == 0) {
501 spu = devnode_spu(cbe, vic_dn);
502 avoid_ph = last_spu_dn->linux_phandle;
503 } else {
505 * "mic-tm" and "bif0" nodes do not have
506 * vicinity property. So we need to find the
507 * spe which has vic_dn as neighbour, but
508 * skipping the one we came from (last_spu_dn)
510 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
511 if (!spu)
512 continue;
513 if (!strcmp(name, "mic-tm")) {
514 last_spu->has_mem_affinity = 1;
515 spu->has_mem_affinity = 1;
517 avoid_ph = vic_dn->linux_phandle;
520 list_add_tail(&spu->aff_list, &last_spu->aff_list);
521 last_spu = spu;
522 break;
527 static void init_affinity_fw(void)
529 int cbe;
531 for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
532 init_affinity_node(cbe);
535 static int __init init_affinity(void)
537 if (of_has_vicinity()) {
538 init_affinity_fw();
539 } else {
540 long root = of_get_flat_dt_root();
541 if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
542 init_affinity_qs20_harcoded();
543 else
544 printk("No affinity configuration found\n");
547 return 0;
550 const struct spu_management_ops spu_management_of_ops = {
551 .enumerate_spus = of_enumerate_spus,
552 .create_spu = of_create_spu,
553 .destroy_spu = of_destroy_spu,
554 .enable_spu = enable_spu_by_master_run,
555 .disable_spu = disable_spu_by_master_run,
556 .init_affinity = init_affinity,