Linux 2.6.25.3
[linux/fpc-iii.git] / arch / powerpc / platforms / cell / spufs / file.c
blobf7a7e8635fb6f98d11ab8aa5bf5cf3d2d6f49bf8
1 /*
2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
34 #include <asm/io.h>
35 #include <asm/semaphore.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
40 #include "spufs.h"
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 /* Simple attribute files */
45 struct spufs_attr {
46 int (*get)(void *, u64 *);
47 int (*set)(void *, u64);
48 char get_buf[24]; /* enough to store a u64 and "\n\0" */
49 char set_buf[24];
50 void *data;
51 const char *fmt; /* format for read operation */
52 struct mutex mutex; /* protects access to these buffers */
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 int (*get)(void *, u64 *), int (*set)(void *, u64),
57 const char *fmt)
59 struct spufs_attr *attr;
61 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
62 if (!attr)
63 return -ENOMEM;
65 attr->get = get;
66 attr->set = set;
67 attr->data = inode->i_private;
68 attr->fmt = fmt;
69 mutex_init(&attr->mutex);
70 file->private_data = attr;
72 return nonseekable_open(inode, file);
75 static int spufs_attr_release(struct inode *inode, struct file *file)
77 kfree(file->private_data);
78 return 0;
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 size_t len, loff_t *ppos)
84 struct spufs_attr *attr;
85 size_t size;
86 ssize_t ret;
88 attr = file->private_data;
89 if (!attr->get)
90 return -EACCES;
92 ret = mutex_lock_interruptible(&attr->mutex);
93 if (ret)
94 return ret;
96 if (*ppos) { /* continued read */
97 size = strlen(attr->get_buf);
98 } else { /* first read */
99 u64 val;
100 ret = attr->get(attr->data, &val);
101 if (ret)
102 goto out;
104 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 attr->fmt, (unsigned long long)val);
108 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
109 out:
110 mutex_unlock(&attr->mutex);
111 return ret;
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 size_t len, loff_t *ppos)
117 struct spufs_attr *attr;
118 u64 val;
119 size_t size;
120 ssize_t ret;
122 attr = file->private_data;
123 if (!attr->set)
124 return -EACCES;
126 ret = mutex_lock_interruptible(&attr->mutex);
127 if (ret)
128 return ret;
130 ret = -EFAULT;
131 size = min(sizeof(attr->set_buf) - 1, len);
132 if (copy_from_user(attr->set_buf, buf, size))
133 goto out;
135 ret = len; /* claim we got the whole input */
136 attr->set_buf[size] = '\0';
137 val = simple_strtol(attr->set_buf, NULL, 0);
138 attr->set(attr->data, val);
139 out:
140 mutex_unlock(&attr->mutex);
141 return ret;
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
145 static int __fops ## _open(struct inode *inode, struct file *file) \
147 __simple_attr_check_format(__fmt, 0ull); \
148 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 static struct file_operations __fops = { \
151 .owner = THIS_MODULE, \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
159 static int
160 spufs_mem_open(struct inode *inode, struct file *file)
162 struct spufs_inode_info *i = SPUFS_I(inode);
163 struct spu_context *ctx = i->i_ctx;
165 mutex_lock(&ctx->mapping_lock);
166 file->private_data = ctx;
167 if (!i->i_openers++)
168 ctx->local_store = inode->i_mapping;
169 mutex_unlock(&ctx->mapping_lock);
170 return 0;
173 static int
174 spufs_mem_release(struct inode *inode, struct file *file)
176 struct spufs_inode_info *i = SPUFS_I(inode);
177 struct spu_context *ctx = i->i_ctx;
179 mutex_lock(&ctx->mapping_lock);
180 if (!--i->i_openers)
181 ctx->local_store = NULL;
182 mutex_unlock(&ctx->mapping_lock);
183 return 0;
186 static ssize_t
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 size_t size, loff_t *pos)
190 char *local_store = ctx->ops->get_ls(ctx);
191 return simple_read_from_buffer(buffer, size, pos, local_store,
192 LS_SIZE);
195 static ssize_t
196 spufs_mem_read(struct file *file, char __user *buffer,
197 size_t size, loff_t *pos)
199 struct spu_context *ctx = file->private_data;
200 ssize_t ret;
202 ret = spu_acquire(ctx);
203 if (ret)
204 return ret;
205 ret = __spufs_mem_read(ctx, buffer, size, pos);
206 spu_release(ctx);
208 return ret;
211 static ssize_t
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 size_t size, loff_t *ppos)
215 struct spu_context *ctx = file->private_data;
216 char *local_store;
217 loff_t pos = *ppos;
218 int ret;
220 if (pos < 0)
221 return -EINVAL;
222 if (pos > LS_SIZE)
223 return -EFBIG;
224 if (size > LS_SIZE - pos)
225 size = LS_SIZE - pos;
227 ret = spu_acquire(ctx);
228 if (ret)
229 return ret;
231 local_store = ctx->ops->get_ls(ctx);
232 ret = copy_from_user(local_store + pos, buffer, size);
233 spu_release(ctx);
235 if (ret)
236 return -EFAULT;
237 *ppos = pos + size;
238 return size;
241 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
242 unsigned long address)
244 struct spu_context *ctx = vma->vm_file->private_data;
245 unsigned long pfn, offset, addr0 = address;
246 #ifdef CONFIG_SPU_FS_64K_LS
247 struct spu_state *csa = &ctx->csa;
248 int psize;
250 /* Check what page size we are using */
251 psize = get_slice_psize(vma->vm_mm, address);
253 /* Some sanity checking */
254 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
256 /* Wow, 64K, cool, we need to align the address though */
257 if (csa->use_big_pages) {
258 BUG_ON(vma->vm_start & 0xffff);
259 address &= ~0xfffful;
261 #endif /* CONFIG_SPU_FS_64K_LS */
263 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
264 if (offset >= LS_SIZE)
265 return NOPFN_SIGBUS;
267 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
268 addr0, address, offset);
270 if (spu_acquire(ctx))
271 return NOPFN_REFAULT;
273 if (ctx->state == SPU_STATE_SAVED) {
274 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
275 & ~_PAGE_NO_CACHE);
276 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
277 } else {
278 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
279 | _PAGE_NO_CACHE);
280 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
282 vm_insert_pfn(vma, address, pfn);
284 spu_release(ctx);
286 return NOPFN_REFAULT;
290 static struct vm_operations_struct spufs_mem_mmap_vmops = {
291 .nopfn = spufs_mem_mmap_nopfn,
294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
296 #ifdef CONFIG_SPU_FS_64K_LS
297 struct spu_context *ctx = file->private_data;
298 struct spu_state *csa = &ctx->csa;
300 /* Sanity check VMA alignment */
301 if (csa->use_big_pages) {
302 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
303 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
304 vma->vm_pgoff);
305 if (vma->vm_start & 0xffff)
306 return -EINVAL;
307 if (vma->vm_pgoff & 0xf)
308 return -EINVAL;
310 #endif /* CONFIG_SPU_FS_64K_LS */
312 if (!(vma->vm_flags & VM_SHARED))
313 return -EINVAL;
315 vma->vm_flags |= VM_IO | VM_PFNMAP;
316 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
317 | _PAGE_NO_CACHE);
319 vma->vm_ops = &spufs_mem_mmap_vmops;
320 return 0;
323 #ifdef CONFIG_SPU_FS_64K_LS
324 static unsigned long spufs_get_unmapped_area(struct file *file,
325 unsigned long addr, unsigned long len, unsigned long pgoff,
326 unsigned long flags)
328 struct spu_context *ctx = file->private_data;
329 struct spu_state *csa = &ctx->csa;
331 /* If not using big pages, fallback to normal MM g_u_a */
332 if (!csa->use_big_pages)
333 return current->mm->get_unmapped_area(file, addr, len,
334 pgoff, flags);
336 /* Else, try to obtain a 64K pages slice */
337 return slice_get_unmapped_area(addr, len, flags,
338 MMU_PAGE_64K, 1, 0);
340 #endif /* CONFIG_SPU_FS_64K_LS */
342 static const struct file_operations spufs_mem_fops = {
343 .open = spufs_mem_open,
344 .release = spufs_mem_release,
345 .read = spufs_mem_read,
346 .write = spufs_mem_write,
347 .llseek = generic_file_llseek,
348 .mmap = spufs_mem_mmap,
349 #ifdef CONFIG_SPU_FS_64K_LS
350 .get_unmapped_area = spufs_get_unmapped_area,
351 #endif
354 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
355 unsigned long address,
356 unsigned long ps_offs,
357 unsigned long ps_size)
359 struct spu_context *ctx = vma->vm_file->private_data;
360 unsigned long area, offset = address - vma->vm_start;
361 int ret = 0;
363 spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);
365 offset += vma->vm_pgoff << PAGE_SHIFT;
366 if (offset >= ps_size)
367 return NOPFN_SIGBUS;
370 * Because we release the mmap_sem, the context may be destroyed while
371 * we're in spu_wait. Grab an extra reference so it isn't destroyed
372 * in the meantime.
374 get_spu_context(ctx);
377 * We have to wait for context to be loaded before we have
378 * pages to hand out to the user, but we don't want to wait
379 * with the mmap_sem held.
380 * It is possible to drop the mmap_sem here, but then we need
381 * to return NOPFN_REFAULT because the mappings may have
382 * hanged.
384 if (spu_acquire(ctx))
385 goto refault;
387 if (ctx->state == SPU_STATE_SAVED) {
388 up_read(&current->mm->mmap_sem);
389 spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
390 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
391 spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
392 down_read(&current->mm->mmap_sem);
393 } else {
394 area = ctx->spu->problem_phys + ps_offs;
395 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
396 spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
399 if (!ret)
400 spu_release(ctx);
402 refault:
403 put_spu_context(ctx);
404 return NOPFN_REFAULT;
407 #if SPUFS_MMAP_4K
408 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
409 unsigned long address)
411 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
414 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
415 .nopfn = spufs_cntl_mmap_nopfn,
419 * mmap support for problem state control area [0x4000 - 0x4fff].
421 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
423 if (!(vma->vm_flags & VM_SHARED))
424 return -EINVAL;
426 vma->vm_flags |= VM_IO | VM_PFNMAP;
427 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
428 | _PAGE_NO_CACHE | _PAGE_GUARDED);
430 vma->vm_ops = &spufs_cntl_mmap_vmops;
431 return 0;
433 #else /* SPUFS_MMAP_4K */
434 #define spufs_cntl_mmap NULL
435 #endif /* !SPUFS_MMAP_4K */
437 static int spufs_cntl_get(void *data, u64 *val)
439 struct spu_context *ctx = data;
440 int ret;
442 ret = spu_acquire(ctx);
443 if (ret)
444 return ret;
445 *val = ctx->ops->status_read(ctx);
446 spu_release(ctx);
448 return 0;
451 static int spufs_cntl_set(void *data, u64 val)
453 struct spu_context *ctx = data;
454 int ret;
456 ret = spu_acquire(ctx);
457 if (ret)
458 return ret;
459 ctx->ops->runcntl_write(ctx, val);
460 spu_release(ctx);
462 return 0;
465 static int spufs_cntl_open(struct inode *inode, struct file *file)
467 struct spufs_inode_info *i = SPUFS_I(inode);
468 struct spu_context *ctx = i->i_ctx;
470 mutex_lock(&ctx->mapping_lock);
471 file->private_data = ctx;
472 if (!i->i_openers++)
473 ctx->cntl = inode->i_mapping;
474 mutex_unlock(&ctx->mapping_lock);
475 return simple_attr_open(inode, file, spufs_cntl_get,
476 spufs_cntl_set, "0x%08lx");
479 static int
480 spufs_cntl_release(struct inode *inode, struct file *file)
482 struct spufs_inode_info *i = SPUFS_I(inode);
483 struct spu_context *ctx = i->i_ctx;
485 simple_attr_release(inode, file);
487 mutex_lock(&ctx->mapping_lock);
488 if (!--i->i_openers)
489 ctx->cntl = NULL;
490 mutex_unlock(&ctx->mapping_lock);
491 return 0;
494 static const struct file_operations spufs_cntl_fops = {
495 .open = spufs_cntl_open,
496 .release = spufs_cntl_release,
497 .read = simple_attr_read,
498 .write = simple_attr_write,
499 .mmap = spufs_cntl_mmap,
502 static int
503 spufs_regs_open(struct inode *inode, struct file *file)
505 struct spufs_inode_info *i = SPUFS_I(inode);
506 file->private_data = i->i_ctx;
507 return 0;
510 static ssize_t
511 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
512 size_t size, loff_t *pos)
514 struct spu_lscsa *lscsa = ctx->csa.lscsa;
515 return simple_read_from_buffer(buffer, size, pos,
516 lscsa->gprs, sizeof lscsa->gprs);
519 static ssize_t
520 spufs_regs_read(struct file *file, char __user *buffer,
521 size_t size, loff_t *pos)
523 int ret;
524 struct spu_context *ctx = file->private_data;
526 ret = spu_acquire_saved(ctx);
527 if (ret)
528 return ret;
529 ret = __spufs_regs_read(ctx, buffer, size, pos);
530 spu_release_saved(ctx);
531 return ret;
534 static ssize_t
535 spufs_regs_write(struct file *file, const char __user *buffer,
536 size_t size, loff_t *pos)
538 struct spu_context *ctx = file->private_data;
539 struct spu_lscsa *lscsa = ctx->csa.lscsa;
540 int ret;
542 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
543 if (size <= 0)
544 return -EFBIG;
545 *pos += size;
547 ret = spu_acquire_saved(ctx);
548 if (ret)
549 return ret;
551 ret = copy_from_user(lscsa->gprs + *pos - size,
552 buffer, size) ? -EFAULT : size;
554 spu_release_saved(ctx);
555 return ret;
558 static const struct file_operations spufs_regs_fops = {
559 .open = spufs_regs_open,
560 .read = spufs_regs_read,
561 .write = spufs_regs_write,
562 .llseek = generic_file_llseek,
565 static ssize_t
566 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
567 size_t size, loff_t * pos)
569 struct spu_lscsa *lscsa = ctx->csa.lscsa;
570 return simple_read_from_buffer(buffer, size, pos,
571 &lscsa->fpcr, sizeof(lscsa->fpcr));
574 static ssize_t
575 spufs_fpcr_read(struct file *file, char __user * buffer,
576 size_t size, loff_t * pos)
578 int ret;
579 struct spu_context *ctx = file->private_data;
581 ret = spu_acquire_saved(ctx);
582 if (ret)
583 return ret;
584 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
585 spu_release_saved(ctx);
586 return ret;
589 static ssize_t
590 spufs_fpcr_write(struct file *file, const char __user * buffer,
591 size_t size, loff_t * pos)
593 struct spu_context *ctx = file->private_data;
594 struct spu_lscsa *lscsa = ctx->csa.lscsa;
595 int ret;
597 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
598 if (size <= 0)
599 return -EFBIG;
601 ret = spu_acquire_saved(ctx);
602 if (ret)
603 return ret;
605 *pos += size;
606 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
607 buffer, size) ? -EFAULT : size;
609 spu_release_saved(ctx);
610 return ret;
613 static const struct file_operations spufs_fpcr_fops = {
614 .open = spufs_regs_open,
615 .read = spufs_fpcr_read,
616 .write = spufs_fpcr_write,
617 .llseek = generic_file_llseek,
620 /* generic open function for all pipe-like files */
621 static int spufs_pipe_open(struct inode *inode, struct file *file)
623 struct spufs_inode_info *i = SPUFS_I(inode);
624 file->private_data = i->i_ctx;
626 return nonseekable_open(inode, file);
630 * Read as many bytes from the mailbox as possible, until
631 * one of the conditions becomes true:
633 * - no more data available in the mailbox
634 * - end of the user provided buffer
635 * - end of the mapped area
637 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
638 size_t len, loff_t *pos)
640 struct spu_context *ctx = file->private_data;
641 u32 mbox_data, __user *udata;
642 ssize_t count;
644 if (len < 4)
645 return -EINVAL;
647 if (!access_ok(VERIFY_WRITE, buf, len))
648 return -EFAULT;
650 udata = (void __user *)buf;
652 count = spu_acquire(ctx);
653 if (count)
654 return count;
656 for (count = 0; (count + 4) <= len; count += 4, udata++) {
657 int ret;
658 ret = ctx->ops->mbox_read(ctx, &mbox_data);
659 if (ret == 0)
660 break;
663 * at the end of the mapped area, we can fault
664 * but still need to return the data we have
665 * read successfully so far.
667 ret = __put_user(mbox_data, udata);
668 if (ret) {
669 if (!count)
670 count = -EFAULT;
671 break;
674 spu_release(ctx);
676 if (!count)
677 count = -EAGAIN;
679 return count;
682 static const struct file_operations spufs_mbox_fops = {
683 .open = spufs_pipe_open,
684 .read = spufs_mbox_read,
687 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
688 size_t len, loff_t *pos)
690 struct spu_context *ctx = file->private_data;
691 ssize_t ret;
692 u32 mbox_stat;
694 if (len < 4)
695 return -EINVAL;
697 ret = spu_acquire(ctx);
698 if (ret)
699 return ret;
701 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
703 spu_release(ctx);
705 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
706 return -EFAULT;
708 return 4;
711 static const struct file_operations spufs_mbox_stat_fops = {
712 .open = spufs_pipe_open,
713 .read = spufs_mbox_stat_read,
716 /* low-level ibox access function */
717 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
719 return ctx->ops->ibox_read(ctx, data);
722 static int spufs_ibox_fasync(int fd, struct file *file, int on)
724 struct spu_context *ctx = file->private_data;
726 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
729 /* interrupt-level ibox callback function. */
730 void spufs_ibox_callback(struct spu *spu)
732 struct spu_context *ctx = spu->ctx;
734 if (!ctx)
735 return;
737 wake_up_all(&ctx->ibox_wq);
738 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
742 * Read as many bytes from the interrupt mailbox as possible, until
743 * one of the conditions becomes true:
745 * - no more data available in the mailbox
746 * - end of the user provided buffer
747 * - end of the mapped area
749 * If the file is opened without O_NONBLOCK, we wait here until
750 * any data is available, but return when we have been able to
751 * read something.
753 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
754 size_t len, loff_t *pos)
756 struct spu_context *ctx = file->private_data;
757 u32 ibox_data, __user *udata;
758 ssize_t count;
760 if (len < 4)
761 return -EINVAL;
763 if (!access_ok(VERIFY_WRITE, buf, len))
764 return -EFAULT;
766 udata = (void __user *)buf;
768 count = spu_acquire(ctx);
769 if (count)
770 goto out;
772 /* wait only for the first element */
773 count = 0;
774 if (file->f_flags & O_NONBLOCK) {
775 if (!spu_ibox_read(ctx, &ibox_data)) {
776 count = -EAGAIN;
777 goto out_unlock;
779 } else {
780 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
781 if (count)
782 goto out;
785 /* if we can't write at all, return -EFAULT */
786 count = __put_user(ibox_data, udata);
787 if (count)
788 goto out_unlock;
790 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
791 int ret;
792 ret = ctx->ops->ibox_read(ctx, &ibox_data);
793 if (ret == 0)
794 break;
796 * at the end of the mapped area, we can fault
797 * but still need to return the data we have
798 * read successfully so far.
800 ret = __put_user(ibox_data, udata);
801 if (ret)
802 break;
805 out_unlock:
806 spu_release(ctx);
807 out:
808 return count;
811 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
813 struct spu_context *ctx = file->private_data;
814 unsigned int mask;
816 poll_wait(file, &ctx->ibox_wq, wait);
819 * For now keep this uninterruptible and also ignore the rule
820 * that poll should not sleep. Will be fixed later.
822 mutex_lock(&ctx->state_mutex);
823 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
824 spu_release(ctx);
826 return mask;
829 static const struct file_operations spufs_ibox_fops = {
830 .open = spufs_pipe_open,
831 .read = spufs_ibox_read,
832 .poll = spufs_ibox_poll,
833 .fasync = spufs_ibox_fasync,
836 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
837 size_t len, loff_t *pos)
839 struct spu_context *ctx = file->private_data;
840 ssize_t ret;
841 u32 ibox_stat;
843 if (len < 4)
844 return -EINVAL;
846 ret = spu_acquire(ctx);
847 if (ret)
848 return ret;
849 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
850 spu_release(ctx);
852 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
853 return -EFAULT;
855 return 4;
858 static const struct file_operations spufs_ibox_stat_fops = {
859 .open = spufs_pipe_open,
860 .read = spufs_ibox_stat_read,
863 /* low-level mailbox write */
864 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
866 return ctx->ops->wbox_write(ctx, data);
869 static int spufs_wbox_fasync(int fd, struct file *file, int on)
871 struct spu_context *ctx = file->private_data;
872 int ret;
874 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
876 return ret;
879 /* interrupt-level wbox callback function. */
880 void spufs_wbox_callback(struct spu *spu)
882 struct spu_context *ctx = spu->ctx;
884 if (!ctx)
885 return;
887 wake_up_all(&ctx->wbox_wq);
888 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
892 * Write as many bytes to the interrupt mailbox as possible, until
893 * one of the conditions becomes true:
895 * - the mailbox is full
896 * - end of the user provided buffer
897 * - end of the mapped area
899 * If the file is opened without O_NONBLOCK, we wait here until
900 * space is availabyl, but return when we have been able to
901 * write something.
903 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
904 size_t len, loff_t *pos)
906 struct spu_context *ctx = file->private_data;
907 u32 wbox_data, __user *udata;
908 ssize_t count;
910 if (len < 4)
911 return -EINVAL;
913 udata = (void __user *)buf;
914 if (!access_ok(VERIFY_READ, buf, len))
915 return -EFAULT;
917 if (__get_user(wbox_data, udata))
918 return -EFAULT;
920 count = spu_acquire(ctx);
921 if (count)
922 goto out;
925 * make sure we can at least write one element, by waiting
926 * in case of !O_NONBLOCK
928 count = 0;
929 if (file->f_flags & O_NONBLOCK) {
930 if (!spu_wbox_write(ctx, wbox_data)) {
931 count = -EAGAIN;
932 goto out_unlock;
934 } else {
935 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
936 if (count)
937 goto out;
941 /* write as much as possible */
942 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
943 int ret;
944 ret = __get_user(wbox_data, udata);
945 if (ret)
946 break;
948 ret = spu_wbox_write(ctx, wbox_data);
949 if (ret == 0)
950 break;
953 out_unlock:
954 spu_release(ctx);
955 out:
956 return count;
959 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
961 struct spu_context *ctx = file->private_data;
962 unsigned int mask;
964 poll_wait(file, &ctx->wbox_wq, wait);
967 * For now keep this uninterruptible and also ignore the rule
968 * that poll should not sleep. Will be fixed later.
970 mutex_lock(&ctx->state_mutex);
971 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
972 spu_release(ctx);
974 return mask;
977 static const struct file_operations spufs_wbox_fops = {
978 .open = spufs_pipe_open,
979 .write = spufs_wbox_write,
980 .poll = spufs_wbox_poll,
981 .fasync = spufs_wbox_fasync,
984 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
985 size_t len, loff_t *pos)
987 struct spu_context *ctx = file->private_data;
988 ssize_t ret;
989 u32 wbox_stat;
991 if (len < 4)
992 return -EINVAL;
994 ret = spu_acquire(ctx);
995 if (ret)
996 return ret;
997 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
998 spu_release(ctx);
1000 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1001 return -EFAULT;
1003 return 4;
1006 static const struct file_operations spufs_wbox_stat_fops = {
1007 .open = spufs_pipe_open,
1008 .read = spufs_wbox_stat_read,
1011 static int spufs_signal1_open(struct inode *inode, struct file *file)
1013 struct spufs_inode_info *i = SPUFS_I(inode);
1014 struct spu_context *ctx = i->i_ctx;
1016 mutex_lock(&ctx->mapping_lock);
1017 file->private_data = ctx;
1018 if (!i->i_openers++)
1019 ctx->signal1 = inode->i_mapping;
1020 mutex_unlock(&ctx->mapping_lock);
1021 return nonseekable_open(inode, file);
1024 static int
1025 spufs_signal1_release(struct inode *inode, struct file *file)
1027 struct spufs_inode_info *i = SPUFS_I(inode);
1028 struct spu_context *ctx = i->i_ctx;
1030 mutex_lock(&ctx->mapping_lock);
1031 if (!--i->i_openers)
1032 ctx->signal1 = NULL;
1033 mutex_unlock(&ctx->mapping_lock);
1034 return 0;
1037 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1038 size_t len, loff_t *pos)
1040 int ret = 0;
1041 u32 data;
1043 if (len < 4)
1044 return -EINVAL;
1046 if (ctx->csa.spu_chnlcnt_RW[3]) {
1047 data = ctx->csa.spu_chnldata_RW[3];
1048 ret = 4;
1051 if (!ret)
1052 goto out;
1054 if (copy_to_user(buf, &data, 4))
1055 return -EFAULT;
1057 out:
1058 return ret;
1061 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1062 size_t len, loff_t *pos)
1064 int ret;
1065 struct spu_context *ctx = file->private_data;
1067 ret = spu_acquire_saved(ctx);
1068 if (ret)
1069 return ret;
1070 ret = __spufs_signal1_read(ctx, buf, len, pos);
1071 spu_release_saved(ctx);
1073 return ret;
1076 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1077 size_t len, loff_t *pos)
1079 struct spu_context *ctx;
1080 ssize_t ret;
1081 u32 data;
1083 ctx = file->private_data;
1085 if (len < 4)
1086 return -EINVAL;
1088 if (copy_from_user(&data, buf, 4))
1089 return -EFAULT;
1091 ret = spu_acquire(ctx);
1092 if (ret)
1093 return ret;
1094 ctx->ops->signal1_write(ctx, data);
1095 spu_release(ctx);
1097 return 4;
1100 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
1101 unsigned long address)
1103 #if PAGE_SIZE == 0x1000
1104 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1105 #elif PAGE_SIZE == 0x10000
1106 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1107 * signal 1 and 2 area
1109 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1110 #else
1111 #error unsupported page size
1112 #endif
1115 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1116 .nopfn = spufs_signal1_mmap_nopfn,
1119 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1121 if (!(vma->vm_flags & VM_SHARED))
1122 return -EINVAL;
1124 vma->vm_flags |= VM_IO | VM_PFNMAP;
1125 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1126 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1128 vma->vm_ops = &spufs_signal1_mmap_vmops;
1129 return 0;
1132 static const struct file_operations spufs_signal1_fops = {
1133 .open = spufs_signal1_open,
1134 .release = spufs_signal1_release,
1135 .read = spufs_signal1_read,
1136 .write = spufs_signal1_write,
1137 .mmap = spufs_signal1_mmap,
1140 static const struct file_operations spufs_signal1_nosched_fops = {
1141 .open = spufs_signal1_open,
1142 .release = spufs_signal1_release,
1143 .write = spufs_signal1_write,
1144 .mmap = spufs_signal1_mmap,
1147 static int spufs_signal2_open(struct inode *inode, struct file *file)
1149 struct spufs_inode_info *i = SPUFS_I(inode);
1150 struct spu_context *ctx = i->i_ctx;
1152 mutex_lock(&ctx->mapping_lock);
1153 file->private_data = ctx;
1154 if (!i->i_openers++)
1155 ctx->signal2 = inode->i_mapping;
1156 mutex_unlock(&ctx->mapping_lock);
1157 return nonseekable_open(inode, file);
1160 static int
1161 spufs_signal2_release(struct inode *inode, struct file *file)
1163 struct spufs_inode_info *i = SPUFS_I(inode);
1164 struct spu_context *ctx = i->i_ctx;
1166 mutex_lock(&ctx->mapping_lock);
1167 if (!--i->i_openers)
1168 ctx->signal2 = NULL;
1169 mutex_unlock(&ctx->mapping_lock);
1170 return 0;
1173 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1174 size_t len, loff_t *pos)
1176 int ret = 0;
1177 u32 data;
1179 if (len < 4)
1180 return -EINVAL;
1182 if (ctx->csa.spu_chnlcnt_RW[4]) {
1183 data = ctx->csa.spu_chnldata_RW[4];
1184 ret = 4;
1187 if (!ret)
1188 goto out;
1190 if (copy_to_user(buf, &data, 4))
1191 return -EFAULT;
1193 out:
1194 return ret;
1197 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1198 size_t len, loff_t *pos)
1200 struct spu_context *ctx = file->private_data;
1201 int ret;
1203 ret = spu_acquire_saved(ctx);
1204 if (ret)
1205 return ret;
1206 ret = __spufs_signal2_read(ctx, buf, len, pos);
1207 spu_release_saved(ctx);
1209 return ret;
1212 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1213 size_t len, loff_t *pos)
1215 struct spu_context *ctx;
1216 ssize_t ret;
1217 u32 data;
1219 ctx = file->private_data;
1221 if (len < 4)
1222 return -EINVAL;
1224 if (copy_from_user(&data, buf, 4))
1225 return -EFAULT;
1227 ret = spu_acquire(ctx);
1228 if (ret)
1229 return ret;
1230 ctx->ops->signal2_write(ctx, data);
1231 spu_release(ctx);
1233 return 4;
1236 #if SPUFS_MMAP_4K
1237 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1238 unsigned long address)
1240 #if PAGE_SIZE == 0x1000
1241 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1242 #elif PAGE_SIZE == 0x10000
1243 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1244 * signal 1 and 2 area
1246 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1247 #else
1248 #error unsupported page size
1249 #endif
1252 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1253 .nopfn = spufs_signal2_mmap_nopfn,
1256 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1258 if (!(vma->vm_flags & VM_SHARED))
1259 return -EINVAL;
1261 vma->vm_flags |= VM_IO | VM_PFNMAP;
1262 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1263 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1265 vma->vm_ops = &spufs_signal2_mmap_vmops;
1266 return 0;
1268 #else /* SPUFS_MMAP_4K */
1269 #define spufs_signal2_mmap NULL
1270 #endif /* !SPUFS_MMAP_4K */
1272 static const struct file_operations spufs_signal2_fops = {
1273 .open = spufs_signal2_open,
1274 .release = spufs_signal2_release,
1275 .read = spufs_signal2_read,
1276 .write = spufs_signal2_write,
1277 .mmap = spufs_signal2_mmap,
1280 static const struct file_operations spufs_signal2_nosched_fops = {
1281 .open = spufs_signal2_open,
1282 .release = spufs_signal2_release,
1283 .write = spufs_signal2_write,
1284 .mmap = spufs_signal2_mmap,
1288 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1289 * work of acquiring (or not) the SPU context before calling through
1290 * to the actual get routine. The set routine is called directly.
1292 #define SPU_ATTR_NOACQUIRE 0
1293 #define SPU_ATTR_ACQUIRE 1
1294 #define SPU_ATTR_ACQUIRE_SAVED 2
1296 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1297 static int __##__get(void *data, u64 *val) \
1299 struct spu_context *ctx = data; \
1300 int ret = 0; \
1302 if (__acquire == SPU_ATTR_ACQUIRE) { \
1303 ret = spu_acquire(ctx); \
1304 if (ret) \
1305 return ret; \
1306 *val = __get(ctx); \
1307 spu_release(ctx); \
1308 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1309 ret = spu_acquire_saved(ctx); \
1310 if (ret) \
1311 return ret; \
1312 *val = __get(ctx); \
1313 spu_release_saved(ctx); \
1314 } else \
1315 *val = __get(ctx); \
1317 return 0; \
1319 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1321 static int spufs_signal1_type_set(void *data, u64 val)
1323 struct spu_context *ctx = data;
1324 int ret;
1326 ret = spu_acquire(ctx);
1327 if (ret)
1328 return ret;
1329 ctx->ops->signal1_type_set(ctx, val);
1330 spu_release(ctx);
1332 return 0;
1335 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1337 return ctx->ops->signal1_type_get(ctx);
1339 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1340 spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1343 static int spufs_signal2_type_set(void *data, u64 val)
1345 struct spu_context *ctx = data;
1346 int ret;
1348 ret = spu_acquire(ctx);
1349 if (ret)
1350 return ret;
1351 ctx->ops->signal2_type_set(ctx, val);
1352 spu_release(ctx);
1354 return 0;
1357 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1359 return ctx->ops->signal2_type_get(ctx);
1361 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1362 spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1364 #if SPUFS_MMAP_4K
1365 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1366 unsigned long address)
1368 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1371 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1372 .nopfn = spufs_mss_mmap_nopfn,
1376 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1378 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1380 if (!(vma->vm_flags & VM_SHARED))
1381 return -EINVAL;
1383 vma->vm_flags |= VM_IO | VM_PFNMAP;
1384 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1385 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1387 vma->vm_ops = &spufs_mss_mmap_vmops;
1388 return 0;
1390 #else /* SPUFS_MMAP_4K */
1391 #define spufs_mss_mmap NULL
1392 #endif /* !SPUFS_MMAP_4K */
1394 static int spufs_mss_open(struct inode *inode, struct file *file)
1396 struct spufs_inode_info *i = SPUFS_I(inode);
1397 struct spu_context *ctx = i->i_ctx;
1399 file->private_data = i->i_ctx;
1401 mutex_lock(&ctx->mapping_lock);
1402 if (!i->i_openers++)
1403 ctx->mss = inode->i_mapping;
1404 mutex_unlock(&ctx->mapping_lock);
1405 return nonseekable_open(inode, file);
1408 static int
1409 spufs_mss_release(struct inode *inode, struct file *file)
1411 struct spufs_inode_info *i = SPUFS_I(inode);
1412 struct spu_context *ctx = i->i_ctx;
1414 mutex_lock(&ctx->mapping_lock);
1415 if (!--i->i_openers)
1416 ctx->mss = NULL;
1417 mutex_unlock(&ctx->mapping_lock);
1418 return 0;
1421 static const struct file_operations spufs_mss_fops = {
1422 .open = spufs_mss_open,
1423 .release = spufs_mss_release,
1424 .mmap = spufs_mss_mmap,
1427 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1428 unsigned long address)
1430 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1433 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1434 .nopfn = spufs_psmap_mmap_nopfn,
1438 * mmap support for full problem state area [0x00000 - 0x1ffff].
1440 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1442 if (!(vma->vm_flags & VM_SHARED))
1443 return -EINVAL;
1445 vma->vm_flags |= VM_IO | VM_PFNMAP;
1446 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1447 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1449 vma->vm_ops = &spufs_psmap_mmap_vmops;
1450 return 0;
1453 static int spufs_psmap_open(struct inode *inode, struct file *file)
1455 struct spufs_inode_info *i = SPUFS_I(inode);
1456 struct spu_context *ctx = i->i_ctx;
1458 mutex_lock(&ctx->mapping_lock);
1459 file->private_data = i->i_ctx;
1460 if (!i->i_openers++)
1461 ctx->psmap = inode->i_mapping;
1462 mutex_unlock(&ctx->mapping_lock);
1463 return nonseekable_open(inode, file);
1466 static int
1467 spufs_psmap_release(struct inode *inode, struct file *file)
1469 struct spufs_inode_info *i = SPUFS_I(inode);
1470 struct spu_context *ctx = i->i_ctx;
1472 mutex_lock(&ctx->mapping_lock);
1473 if (!--i->i_openers)
1474 ctx->psmap = NULL;
1475 mutex_unlock(&ctx->mapping_lock);
1476 return 0;
1479 static const struct file_operations spufs_psmap_fops = {
1480 .open = spufs_psmap_open,
1481 .release = spufs_psmap_release,
1482 .mmap = spufs_psmap_mmap,
1486 #if SPUFS_MMAP_4K
1487 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1488 unsigned long address)
1490 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1493 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1494 .nopfn = spufs_mfc_mmap_nopfn,
1498 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1500 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1502 if (!(vma->vm_flags & VM_SHARED))
1503 return -EINVAL;
1505 vma->vm_flags |= VM_IO | VM_PFNMAP;
1506 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1507 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1509 vma->vm_ops = &spufs_mfc_mmap_vmops;
1510 return 0;
1512 #else /* SPUFS_MMAP_4K */
1513 #define spufs_mfc_mmap NULL
1514 #endif /* !SPUFS_MMAP_4K */
1516 static int spufs_mfc_open(struct inode *inode, struct file *file)
1518 struct spufs_inode_info *i = SPUFS_I(inode);
1519 struct spu_context *ctx = i->i_ctx;
1521 /* we don't want to deal with DMA into other processes */
1522 if (ctx->owner != current->mm)
1523 return -EINVAL;
1525 if (atomic_read(&inode->i_count) != 1)
1526 return -EBUSY;
1528 mutex_lock(&ctx->mapping_lock);
1529 file->private_data = ctx;
1530 if (!i->i_openers++)
1531 ctx->mfc = inode->i_mapping;
1532 mutex_unlock(&ctx->mapping_lock);
1533 return nonseekable_open(inode, file);
1536 static int
1537 spufs_mfc_release(struct inode *inode, struct file *file)
1539 struct spufs_inode_info *i = SPUFS_I(inode);
1540 struct spu_context *ctx = i->i_ctx;
1542 mutex_lock(&ctx->mapping_lock);
1543 if (!--i->i_openers)
1544 ctx->mfc = NULL;
1545 mutex_unlock(&ctx->mapping_lock);
1546 return 0;
1549 /* interrupt-level mfc callback function. */
1550 void spufs_mfc_callback(struct spu *spu)
1552 struct spu_context *ctx = spu->ctx;
1554 if (!ctx)
1555 return;
1557 wake_up_all(&ctx->mfc_wq);
1559 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1560 if (ctx->mfc_fasync) {
1561 u32 free_elements, tagstatus;
1562 unsigned int mask;
1564 /* no need for spu_acquire in interrupt context */
1565 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1566 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1568 mask = 0;
1569 if (free_elements & 0xffff)
1570 mask |= POLLOUT;
1571 if (tagstatus & ctx->tagwait)
1572 mask |= POLLIN;
1574 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1578 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1580 /* See if there is one tag group is complete */
1581 /* FIXME we need locking around tagwait */
1582 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1583 ctx->tagwait &= ~*status;
1584 if (*status)
1585 return 1;
1587 /* enable interrupt waiting for any tag group,
1588 may silently fail if interrupts are already enabled */
1589 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1590 return 0;
1593 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1594 size_t size, loff_t *pos)
1596 struct spu_context *ctx = file->private_data;
1597 int ret = -EINVAL;
1598 u32 status;
1600 if (size != 4)
1601 goto out;
1603 ret = spu_acquire(ctx);
1604 if (ret)
1605 return ret;
1607 ret = -EINVAL;
1608 if (file->f_flags & O_NONBLOCK) {
1609 status = ctx->ops->read_mfc_tagstatus(ctx);
1610 if (!(status & ctx->tagwait))
1611 ret = -EAGAIN;
1612 else
1613 /* XXX(hch): shouldn't we clear ret here? */
1614 ctx->tagwait &= ~status;
1615 } else {
1616 ret = spufs_wait(ctx->mfc_wq,
1617 spufs_read_mfc_tagstatus(ctx, &status));
1618 if (ret)
1619 goto out;
1621 spu_release(ctx);
1623 ret = 4;
1624 if (copy_to_user(buffer, &status, 4))
1625 ret = -EFAULT;
1627 out:
1628 return ret;
1631 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1633 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1634 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1636 switch (cmd->cmd) {
1637 case MFC_PUT_CMD:
1638 case MFC_PUTF_CMD:
1639 case MFC_PUTB_CMD:
1640 case MFC_GET_CMD:
1641 case MFC_GETF_CMD:
1642 case MFC_GETB_CMD:
1643 break;
1644 default:
1645 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1646 return -EIO;
1649 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1650 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1651 cmd->ea, cmd->lsa);
1652 return -EIO;
1655 switch (cmd->size & 0xf) {
1656 case 1:
1657 break;
1658 case 2:
1659 if (cmd->lsa & 1)
1660 goto error;
1661 break;
1662 case 4:
1663 if (cmd->lsa & 3)
1664 goto error;
1665 break;
1666 case 8:
1667 if (cmd->lsa & 7)
1668 goto error;
1669 break;
1670 case 0:
1671 if (cmd->lsa & 15)
1672 goto error;
1673 break;
1674 error:
1675 default:
1676 pr_debug("invalid DMA alignment %x for size %x\n",
1677 cmd->lsa & 0xf, cmd->size);
1678 return -EIO;
1681 if (cmd->size > 16 * 1024) {
1682 pr_debug("invalid DMA size %x\n", cmd->size);
1683 return -EIO;
1686 if (cmd->tag & 0xfff0) {
1687 /* we reserve the higher tag numbers for kernel use */
1688 pr_debug("invalid DMA tag\n");
1689 return -EIO;
1692 if (cmd->class) {
1693 /* not supported in this version */
1694 pr_debug("invalid DMA class\n");
1695 return -EIO;
1698 return 0;
1701 static int spu_send_mfc_command(struct spu_context *ctx,
1702 struct mfc_dma_command cmd,
1703 int *error)
1705 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1706 if (*error == -EAGAIN) {
1707 /* wait for any tag group to complete
1708 so we have space for the new command */
1709 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1710 /* try again, because the queue might be
1711 empty again */
1712 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1713 if (*error == -EAGAIN)
1714 return 0;
1716 return 1;
1719 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1720 size_t size, loff_t *pos)
1722 struct spu_context *ctx = file->private_data;
1723 struct mfc_dma_command cmd;
1724 int ret = -EINVAL;
1726 if (size != sizeof cmd)
1727 goto out;
1729 ret = -EFAULT;
1730 if (copy_from_user(&cmd, buffer, sizeof cmd))
1731 goto out;
1733 ret = spufs_check_valid_dma(&cmd);
1734 if (ret)
1735 goto out;
1737 ret = spu_acquire(ctx);
1738 if (ret)
1739 goto out;
1741 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1742 if (ret)
1743 goto out;
1745 if (file->f_flags & O_NONBLOCK) {
1746 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1747 } else {
1748 int status;
1749 ret = spufs_wait(ctx->mfc_wq,
1750 spu_send_mfc_command(ctx, cmd, &status));
1751 if (ret)
1752 goto out;
1753 if (status)
1754 ret = status;
1757 if (ret)
1758 goto out_unlock;
1760 ctx->tagwait |= 1 << cmd.tag;
1761 ret = size;
1763 out_unlock:
1764 spu_release(ctx);
1765 out:
1766 return ret;
1769 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1771 struct spu_context *ctx = file->private_data;
1772 u32 free_elements, tagstatus;
1773 unsigned int mask;
1775 poll_wait(file, &ctx->mfc_wq, wait);
1778 * For now keep this uninterruptible and also ignore the rule
1779 * that poll should not sleep. Will be fixed later.
1781 mutex_lock(&ctx->state_mutex);
1782 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1783 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1784 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1785 spu_release(ctx);
1787 mask = 0;
1788 if (free_elements & 0xffff)
1789 mask |= POLLOUT | POLLWRNORM;
1790 if (tagstatus & ctx->tagwait)
1791 mask |= POLLIN | POLLRDNORM;
1793 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1794 free_elements, tagstatus, ctx->tagwait);
1796 return mask;
1799 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1801 struct spu_context *ctx = file->private_data;
1802 int ret;
1804 ret = spu_acquire(ctx);
1805 if (ret)
1806 goto out;
1807 #if 0
1808 /* this currently hangs */
1809 ret = spufs_wait(ctx->mfc_wq,
1810 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1811 if (ret)
1812 goto out;
1813 ret = spufs_wait(ctx->mfc_wq,
1814 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1815 if (ret)
1816 goto out;
1817 #else
1818 ret = 0;
1819 #endif
1820 spu_release(ctx);
1821 out:
1822 return ret;
1825 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1826 int datasync)
1828 return spufs_mfc_flush(file, NULL);
1831 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1833 struct spu_context *ctx = file->private_data;
1835 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1838 static const struct file_operations spufs_mfc_fops = {
1839 .open = spufs_mfc_open,
1840 .release = spufs_mfc_release,
1841 .read = spufs_mfc_read,
1842 .write = spufs_mfc_write,
1843 .poll = spufs_mfc_poll,
1844 .flush = spufs_mfc_flush,
1845 .fsync = spufs_mfc_fsync,
1846 .fasync = spufs_mfc_fasync,
1847 .mmap = spufs_mfc_mmap,
1850 static int spufs_npc_set(void *data, u64 val)
1852 struct spu_context *ctx = data;
1853 int ret;
1855 ret = spu_acquire(ctx);
1856 if (ret)
1857 return ret;
1858 ctx->ops->npc_write(ctx, val);
1859 spu_release(ctx);
1861 return 0;
1864 static u64 spufs_npc_get(struct spu_context *ctx)
1866 return ctx->ops->npc_read(ctx);
1868 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1869 "0x%llx\n", SPU_ATTR_ACQUIRE);
1871 static int spufs_decr_set(void *data, u64 val)
1873 struct spu_context *ctx = data;
1874 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1875 int ret;
1877 ret = spu_acquire_saved(ctx);
1878 if (ret)
1879 return ret;
1880 lscsa->decr.slot[0] = (u32) val;
1881 spu_release_saved(ctx);
1883 return 0;
1886 static u64 spufs_decr_get(struct spu_context *ctx)
1888 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1889 return lscsa->decr.slot[0];
1891 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1892 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1894 static int spufs_decr_status_set(void *data, u64 val)
1896 struct spu_context *ctx = data;
1897 int ret;
1899 ret = spu_acquire_saved(ctx);
1900 if (ret)
1901 return ret;
1902 if (val)
1903 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1904 else
1905 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1906 spu_release_saved(ctx);
1908 return 0;
1911 static u64 spufs_decr_status_get(struct spu_context *ctx)
1913 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1914 return SPU_DECR_STATUS_RUNNING;
1915 else
1916 return 0;
1918 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1919 spufs_decr_status_set, "0x%llx\n",
1920 SPU_ATTR_ACQUIRE_SAVED);
1922 static int spufs_event_mask_set(void *data, u64 val)
1924 struct spu_context *ctx = data;
1925 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1926 int ret;
1928 ret = spu_acquire_saved(ctx);
1929 if (ret)
1930 return ret;
1931 lscsa->event_mask.slot[0] = (u32) val;
1932 spu_release_saved(ctx);
1934 return 0;
1937 static u64 spufs_event_mask_get(struct spu_context *ctx)
1939 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1940 return lscsa->event_mask.slot[0];
1943 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1944 spufs_event_mask_set, "0x%llx\n",
1945 SPU_ATTR_ACQUIRE_SAVED);
1947 static u64 spufs_event_status_get(struct spu_context *ctx)
1949 struct spu_state *state = &ctx->csa;
1950 u64 stat;
1951 stat = state->spu_chnlcnt_RW[0];
1952 if (stat)
1953 return state->spu_chnldata_RW[0];
1954 return 0;
1956 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1957 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1959 static int spufs_srr0_set(void *data, u64 val)
1961 struct spu_context *ctx = data;
1962 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1963 int ret;
1965 ret = spu_acquire_saved(ctx);
1966 if (ret)
1967 return ret;
1968 lscsa->srr0.slot[0] = (u32) val;
1969 spu_release_saved(ctx);
1971 return 0;
1974 static u64 spufs_srr0_get(struct spu_context *ctx)
1976 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1977 return lscsa->srr0.slot[0];
1979 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1980 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1982 static u64 spufs_id_get(struct spu_context *ctx)
1984 u64 num;
1986 if (ctx->state == SPU_STATE_RUNNABLE)
1987 num = ctx->spu->number;
1988 else
1989 num = (unsigned int)-1;
1991 return num;
1993 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1994 SPU_ATTR_ACQUIRE)
1996 static u64 spufs_object_id_get(struct spu_context *ctx)
1998 /* FIXME: Should there really be no locking here? */
1999 return ctx->object_id;
2002 static int spufs_object_id_set(void *data, u64 id)
2004 struct spu_context *ctx = data;
2005 ctx->object_id = id;
2007 return 0;
2010 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2011 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2013 static u64 spufs_lslr_get(struct spu_context *ctx)
2015 return ctx->csa.priv2.spu_lslr_RW;
2017 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2018 SPU_ATTR_ACQUIRE_SAVED);
2020 static int spufs_info_open(struct inode *inode, struct file *file)
2022 struct spufs_inode_info *i = SPUFS_I(inode);
2023 struct spu_context *ctx = i->i_ctx;
2024 file->private_data = ctx;
2025 return 0;
2028 static int spufs_caps_show(struct seq_file *s, void *private)
2030 struct spu_context *ctx = s->private;
2032 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2033 seq_puts(s, "sched\n");
2034 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2035 seq_puts(s, "step\n");
2036 return 0;
2039 static int spufs_caps_open(struct inode *inode, struct file *file)
2041 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2044 static const struct file_operations spufs_caps_fops = {
2045 .open = spufs_caps_open,
2046 .read = seq_read,
2047 .llseek = seq_lseek,
2048 .release = single_release,
2051 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2052 char __user *buf, size_t len, loff_t *pos)
2054 u32 data;
2056 /* EOF if there's no entry in the mbox */
2057 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2058 return 0;
2060 data = ctx->csa.prob.pu_mb_R;
2062 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2065 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2066 size_t len, loff_t *pos)
2068 int ret;
2069 struct spu_context *ctx = file->private_data;
2071 if (!access_ok(VERIFY_WRITE, buf, len))
2072 return -EFAULT;
2074 ret = spu_acquire_saved(ctx);
2075 if (ret)
2076 return ret;
2077 spin_lock(&ctx->csa.register_lock);
2078 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2079 spin_unlock(&ctx->csa.register_lock);
2080 spu_release_saved(ctx);
2082 return ret;
2085 static const struct file_operations spufs_mbox_info_fops = {
2086 .open = spufs_info_open,
2087 .read = spufs_mbox_info_read,
2088 .llseek = generic_file_llseek,
2091 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2092 char __user *buf, size_t len, loff_t *pos)
2094 u32 data;
2096 /* EOF if there's no entry in the ibox */
2097 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2098 return 0;
2100 data = ctx->csa.priv2.puint_mb_R;
2102 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2105 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2106 size_t len, loff_t *pos)
2108 struct spu_context *ctx = file->private_data;
2109 int ret;
2111 if (!access_ok(VERIFY_WRITE, buf, len))
2112 return -EFAULT;
2114 ret = spu_acquire_saved(ctx);
2115 if (ret)
2116 return ret;
2117 spin_lock(&ctx->csa.register_lock);
2118 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2119 spin_unlock(&ctx->csa.register_lock);
2120 spu_release_saved(ctx);
2122 return ret;
2125 static const struct file_operations spufs_ibox_info_fops = {
2126 .open = spufs_info_open,
2127 .read = spufs_ibox_info_read,
2128 .llseek = generic_file_llseek,
2131 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2132 char __user *buf, size_t len, loff_t *pos)
2134 int i, cnt;
2135 u32 data[4];
2136 u32 wbox_stat;
2138 wbox_stat = ctx->csa.prob.mb_stat_R;
2139 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2140 for (i = 0; i < cnt; i++) {
2141 data[i] = ctx->csa.spu_mailbox_data[i];
2144 return simple_read_from_buffer(buf, len, pos, &data,
2145 cnt * sizeof(u32));
2148 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2149 size_t len, loff_t *pos)
2151 struct spu_context *ctx = file->private_data;
2152 int ret;
2154 if (!access_ok(VERIFY_WRITE, buf, len))
2155 return -EFAULT;
2157 ret = spu_acquire_saved(ctx);
2158 if (ret)
2159 return ret;
2160 spin_lock(&ctx->csa.register_lock);
2161 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2162 spin_unlock(&ctx->csa.register_lock);
2163 spu_release_saved(ctx);
2165 return ret;
2168 static const struct file_operations spufs_wbox_info_fops = {
2169 .open = spufs_info_open,
2170 .read = spufs_wbox_info_read,
2171 .llseek = generic_file_llseek,
2174 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2175 char __user *buf, size_t len, loff_t *pos)
2177 struct spu_dma_info info;
2178 struct mfc_cq_sr *qp, *spuqp;
2179 int i;
2181 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2182 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2183 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2184 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2185 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2186 for (i = 0; i < 16; i++) {
2187 qp = &info.dma_info_command_data[i];
2188 spuqp = &ctx->csa.priv2.spuq[i];
2190 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2191 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2192 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2193 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2196 return simple_read_from_buffer(buf, len, pos, &info,
2197 sizeof info);
2200 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2201 size_t len, loff_t *pos)
2203 struct spu_context *ctx = file->private_data;
2204 int ret;
2206 if (!access_ok(VERIFY_WRITE, buf, len))
2207 return -EFAULT;
2209 ret = spu_acquire_saved(ctx);
2210 if (ret)
2211 return ret;
2212 spin_lock(&ctx->csa.register_lock);
2213 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2214 spin_unlock(&ctx->csa.register_lock);
2215 spu_release_saved(ctx);
2217 return ret;
2220 static const struct file_operations spufs_dma_info_fops = {
2221 .open = spufs_info_open,
2222 .read = spufs_dma_info_read,
2225 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2226 char __user *buf, size_t len, loff_t *pos)
2228 struct spu_proxydma_info info;
2229 struct mfc_cq_sr *qp, *puqp;
2230 int ret = sizeof info;
2231 int i;
2233 if (len < ret)
2234 return -EINVAL;
2236 if (!access_ok(VERIFY_WRITE, buf, len))
2237 return -EFAULT;
2239 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2240 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2241 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2242 for (i = 0; i < 8; i++) {
2243 qp = &info.proxydma_info_command_data[i];
2244 puqp = &ctx->csa.priv2.puq[i];
2246 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2247 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2248 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2249 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2252 return simple_read_from_buffer(buf, len, pos, &info,
2253 sizeof info);
2256 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2257 size_t len, loff_t *pos)
2259 struct spu_context *ctx = file->private_data;
2260 int ret;
2262 ret = spu_acquire_saved(ctx);
2263 if (ret)
2264 return ret;
2265 spin_lock(&ctx->csa.register_lock);
2266 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2267 spin_unlock(&ctx->csa.register_lock);
2268 spu_release_saved(ctx);
2270 return ret;
2273 static const struct file_operations spufs_proxydma_info_fops = {
2274 .open = spufs_info_open,
2275 .read = spufs_proxydma_info_read,
2278 static int spufs_show_tid(struct seq_file *s, void *private)
2280 struct spu_context *ctx = s->private;
2282 seq_printf(s, "%d\n", ctx->tid);
2283 return 0;
2286 static int spufs_tid_open(struct inode *inode, struct file *file)
2288 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2291 static const struct file_operations spufs_tid_fops = {
2292 .open = spufs_tid_open,
2293 .read = seq_read,
2294 .llseek = seq_lseek,
2295 .release = single_release,
2298 static const char *ctx_state_names[] = {
2299 "user", "system", "iowait", "loaded"
2302 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2303 enum spu_utilization_state state)
2305 struct timespec ts;
2306 unsigned long long time = ctx->stats.times[state];
2309 * In general, utilization statistics are updated by the controlling
2310 * thread as the spu context moves through various well defined
2311 * state transitions, but if the context is lazily loaded its
2312 * utilization statistics are not updated as the controlling thread
2313 * is not tightly coupled with the execution of the spu context. We
2314 * calculate and apply the time delta from the last recorded state
2315 * of the spu context.
2317 if (ctx->spu && ctx->stats.util_state == state) {
2318 ktime_get_ts(&ts);
2319 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2322 return time / NSEC_PER_MSEC;
2325 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2327 unsigned long long slb_flts = ctx->stats.slb_flt;
2329 if (ctx->state == SPU_STATE_RUNNABLE) {
2330 slb_flts += (ctx->spu->stats.slb_flt -
2331 ctx->stats.slb_flt_base);
2334 return slb_flts;
2337 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2339 unsigned long long class2_intrs = ctx->stats.class2_intr;
2341 if (ctx->state == SPU_STATE_RUNNABLE) {
2342 class2_intrs += (ctx->spu->stats.class2_intr -
2343 ctx->stats.class2_intr_base);
2346 return class2_intrs;
2350 static int spufs_show_stat(struct seq_file *s, void *private)
2352 struct spu_context *ctx = s->private;
2353 int ret;
2355 ret = spu_acquire(ctx);
2356 if (ret)
2357 return ret;
2359 seq_printf(s, "%s %llu %llu %llu %llu "
2360 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2361 ctx_state_names[ctx->stats.util_state],
2362 spufs_acct_time(ctx, SPU_UTIL_USER),
2363 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2364 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2365 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2366 ctx->stats.vol_ctx_switch,
2367 ctx->stats.invol_ctx_switch,
2368 spufs_slb_flts(ctx),
2369 ctx->stats.hash_flt,
2370 ctx->stats.min_flt,
2371 ctx->stats.maj_flt,
2372 spufs_class2_intrs(ctx),
2373 ctx->stats.libassist);
2374 spu_release(ctx);
2375 return 0;
2378 static int spufs_stat_open(struct inode *inode, struct file *file)
2380 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2383 static const struct file_operations spufs_stat_fops = {
2384 .open = spufs_stat_open,
2385 .read = seq_read,
2386 .llseek = seq_lseek,
2387 .release = single_release,
2391 struct tree_descr spufs_dir_contents[] = {
2392 { "capabilities", &spufs_caps_fops, 0444, },
2393 { "mem", &spufs_mem_fops, 0666, },
2394 { "regs", &spufs_regs_fops, 0666, },
2395 { "mbox", &spufs_mbox_fops, 0444, },
2396 { "ibox", &spufs_ibox_fops, 0444, },
2397 { "wbox", &spufs_wbox_fops, 0222, },
2398 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2399 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2400 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2401 { "signal1", &spufs_signal1_fops, 0666, },
2402 { "signal2", &spufs_signal2_fops, 0666, },
2403 { "signal1_type", &spufs_signal1_type, 0666, },
2404 { "signal2_type", &spufs_signal2_type, 0666, },
2405 { "cntl", &spufs_cntl_fops, 0666, },
2406 { "fpcr", &spufs_fpcr_fops, 0666, },
2407 { "lslr", &spufs_lslr_ops, 0444, },
2408 { "mfc", &spufs_mfc_fops, 0666, },
2409 { "mss", &spufs_mss_fops, 0666, },
2410 { "npc", &spufs_npc_ops, 0666, },
2411 { "srr0", &spufs_srr0_ops, 0666, },
2412 { "decr", &spufs_decr_ops, 0666, },
2413 { "decr_status", &spufs_decr_status_ops, 0666, },
2414 { "event_mask", &spufs_event_mask_ops, 0666, },
2415 { "event_status", &spufs_event_status_ops, 0444, },
2416 { "psmap", &spufs_psmap_fops, 0666, },
2417 { "phys-id", &spufs_id_ops, 0666, },
2418 { "object-id", &spufs_object_id_ops, 0666, },
2419 { "mbox_info", &spufs_mbox_info_fops, 0444, },
2420 { "ibox_info", &spufs_ibox_info_fops, 0444, },
2421 { "wbox_info", &spufs_wbox_info_fops, 0444, },
2422 { "dma_info", &spufs_dma_info_fops, 0444, },
2423 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2424 { "tid", &spufs_tid_fops, 0444, },
2425 { "stat", &spufs_stat_fops, 0444, },
2429 struct tree_descr spufs_dir_nosched_contents[] = {
2430 { "capabilities", &spufs_caps_fops, 0444, },
2431 { "mem", &spufs_mem_fops, 0666, },
2432 { "mbox", &spufs_mbox_fops, 0444, },
2433 { "ibox", &spufs_ibox_fops, 0444, },
2434 { "wbox", &spufs_wbox_fops, 0222, },
2435 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2436 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2437 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2438 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2439 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2440 { "signal1_type", &spufs_signal1_type, 0666, },
2441 { "signal2_type", &spufs_signal2_type, 0666, },
2442 { "mss", &spufs_mss_fops, 0666, },
2443 { "mfc", &spufs_mfc_fops, 0666, },
2444 { "cntl", &spufs_cntl_fops, 0666, },
2445 { "npc", &spufs_npc_ops, 0666, },
2446 { "psmap", &spufs_psmap_fops, 0666, },
2447 { "phys-id", &spufs_id_ops, 0666, },
2448 { "object-id", &spufs_object_id_ops, 0666, },
2449 { "tid", &spufs_tid_fops, 0444, },
2450 { "stat", &spufs_stat_fops, 0444, },
2454 struct spufs_coredump_reader spufs_coredump_read[] = {
2455 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2456 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2457 { "lslr", NULL, spufs_lslr_get, 19 },
2458 { "decr", NULL, spufs_decr_get, 19 },
2459 { "decr_status", NULL, spufs_decr_status_get, 19 },
2460 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2461 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2462 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2463 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2464 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2465 { "event_mask", NULL, spufs_event_mask_get, 19 },
2466 { "event_status", NULL, spufs_event_status_get, 19 },
2467 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2468 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2469 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2470 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2471 { "proxydma_info", __spufs_proxydma_info_read,
2472 NULL, sizeof(struct spu_proxydma_info)},
2473 { "object-id", NULL, spufs_object_id_get, 19 },
2474 { "npc", NULL, spufs_npc_get, 19 },
2475 { NULL },