Linux 2.6.25.3
[linux/fpc-iii.git] / arch / powerpc / sysdev / cpm1.c
blobdf8bd2b6479665ee9e56c8e163e20ebe912bcf7f
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/8xx_immap.h>
36 #include <asm/cpm1.h>
37 #include <asm/io.h>
38 #include <asm/tlbflush.h>
39 #include <asm/rheap.h>
40 #include <asm/prom.h>
41 #include <asm/cpm.h>
43 #include <asm/fs_pd.h>
45 #define CPM_MAP_SIZE (0x4000)
47 #ifndef CONFIG_PPC_CPM_NEW_BINDING
48 static void m8xx_cpm_dpinit(void);
49 #endif
50 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
51 immap_t __iomem *mpc8xx_immr;
52 static cpic8xx_t __iomem *cpic_reg;
54 static struct irq_host *cpm_pic_host;
56 static void cpm_mask_irq(unsigned int irq)
58 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
60 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
63 static void cpm_unmask_irq(unsigned int irq)
65 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
67 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
70 static void cpm_end_irq(unsigned int irq)
72 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
74 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
77 static struct irq_chip cpm_pic = {
78 .typename = " CPM PIC ",
79 .mask = cpm_mask_irq,
80 .unmask = cpm_unmask_irq,
81 .eoi = cpm_end_irq,
84 int cpm_get_irq(void)
86 int cpm_vec;
88 /* Get the vector by setting the ACK bit and then reading
89 * the register.
91 out_be16(&cpic_reg->cpic_civr, 1);
92 cpm_vec = in_be16(&cpic_reg->cpic_civr);
93 cpm_vec >>= 11;
95 return irq_linear_revmap(cpm_pic_host, cpm_vec);
98 static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
99 irq_hw_number_t hw)
101 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
103 get_irq_desc(virq)->status |= IRQ_LEVEL;
104 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
105 return 0;
108 /* The CPM can generate the error interrupt when there is a race condition
109 * between generating and masking interrupts. All we have to do is ACK it
110 * and return. This is a no-op function so we don't need any special
111 * tests in the interrupt handler.
113 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
115 return IRQ_HANDLED;
118 static struct irqaction cpm_error_irqaction = {
119 .handler = cpm_error_interrupt,
120 .mask = CPU_MASK_NONE,
121 .name = "error",
124 static struct irq_host_ops cpm_pic_host_ops = {
125 .map = cpm_pic_host_map,
128 unsigned int cpm_pic_init(void)
130 struct device_node *np = NULL;
131 struct resource res;
132 unsigned int sirq = NO_IRQ, hwirq, eirq;
133 int ret;
135 pr_debug("cpm_pic_init\n");
137 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
138 if (np == NULL)
139 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
140 if (np == NULL) {
141 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
142 return sirq;
145 ret = of_address_to_resource(np, 0, &res);
146 if (ret)
147 goto end;
149 cpic_reg = ioremap(res.start, res.end - res.start + 1);
150 if (cpic_reg == NULL)
151 goto end;
153 sirq = irq_of_parse_and_map(np, 0);
154 if (sirq == NO_IRQ)
155 goto end;
157 /* Initialize the CPM interrupt controller. */
158 hwirq = (unsigned int)irq_map[sirq].hwirq;
159 out_be32(&cpic_reg->cpic_cicr,
160 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
161 ((hwirq/2) << 13) | CICR_HP_MASK);
163 out_be32(&cpic_reg->cpic_cimr, 0);
165 cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
166 64, &cpm_pic_host_ops, 64);
167 if (cpm_pic_host == NULL) {
168 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
169 sirq = NO_IRQ;
170 goto end;
173 /* Install our own error handler. */
174 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
175 if (np == NULL)
176 np = of_find_node_by_type(NULL, "cpm");
177 if (np == NULL) {
178 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
179 goto end;
182 eirq = irq_of_parse_and_map(np, 0);
183 if (eirq == NO_IRQ)
184 goto end;
186 if (setup_irq(eirq, &cpm_error_irqaction))
187 printk(KERN_ERR "Could not allocate CPM error IRQ!");
189 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
191 end:
192 of_node_put(np);
193 return sirq;
196 void __init cpm_reset(void)
198 sysconf8xx_t __iomem *siu_conf;
200 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
201 if (!mpc8xx_immr) {
202 printk(KERN_CRIT "Could not map IMMR\n");
203 return;
206 cpmp = &mpc8xx_immr->im_cpm;
208 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
209 /* Perform a reset.
211 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
213 /* Wait for it.
215 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
216 #endif
218 #ifdef CONFIG_UCODE_PATCH
219 cpm_load_patch(cpmp);
220 #endif
222 /* Set SDMA Bus Request priority 5.
223 * On 860T, this also enables FEC priority 6. I am not sure
224 * this is what we realy want for some applications, but the
225 * manual recommends it.
226 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
228 siu_conf = immr_map(im_siu_conf);
229 out_be32(&siu_conf->sc_sdcr, 1);
230 immr_unmap(siu_conf);
232 #ifdef CONFIG_PPC_CPM_NEW_BINDING
233 cpm_muram_init();
234 #else
235 /* Reclaim the DP memory for our use. */
236 m8xx_cpm_dpinit();
237 #endif
240 static DEFINE_SPINLOCK(cmd_lock);
242 #define MAX_CR_CMD_LOOPS 10000
244 int cpm_command(u32 command, u8 opcode)
246 int i, ret;
247 unsigned long flags;
249 if (command & 0xffffff0f)
250 return -EINVAL;
252 spin_lock_irqsave(&cmd_lock, flags);
254 ret = 0;
255 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
256 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
257 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
258 goto out;
260 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __FUNCTION__);
261 ret = -EIO;
262 out:
263 spin_unlock_irqrestore(&cmd_lock, flags);
264 return ret;
266 EXPORT_SYMBOL(cpm_command);
268 /* Set a baud rate generator. This needs lots of work. There are
269 * four BRGs, any of which can be wired to any channel.
270 * The internal baud rate clock is the system clock divided by 16.
271 * This assumes the baudrate is 16x oversampled by the uart.
273 #define BRG_INT_CLK (get_brgfreq())
274 #define BRG_UART_CLK (BRG_INT_CLK/16)
275 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
277 void
278 cpm_setbrg(uint brg, uint rate)
280 u32 __iomem *bp;
282 /* This is good enough to get SMCs running.....
284 bp = &cpmp->cp_brgc1;
285 bp += brg;
286 /* The BRG has a 12-bit counter. For really slow baud rates (or
287 * really fast processors), we may have to further divide by 16.
289 if (((BRG_UART_CLK / rate) - 1) < 4096)
290 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
291 else
292 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
293 CPM_BRG_EN | CPM_BRG_DIV16);
296 #ifndef CONFIG_PPC_CPM_NEW_BINDING
298 * dpalloc / dpfree bits.
300 static spinlock_t cpm_dpmem_lock;
302 * 16 blocks should be enough to satisfy all requests
303 * until the memory subsystem goes up...
305 static rh_block_t cpm_boot_dpmem_rh_block[16];
306 static rh_info_t cpm_dpmem_info;
308 #define CPM_DPMEM_ALIGNMENT 8
309 static u8 __iomem *dpram_vbase;
310 static phys_addr_t dpram_pbase;
312 static void m8xx_cpm_dpinit(void)
314 spin_lock_init(&cpm_dpmem_lock);
316 dpram_vbase = cpmp->cp_dpmem;
317 dpram_pbase = get_immrbase() + offsetof(immap_t, im_cpm.cp_dpmem);
319 /* Initialize the info header */
320 rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
321 sizeof(cpm_boot_dpmem_rh_block) /
322 sizeof(cpm_boot_dpmem_rh_block[0]),
323 cpm_boot_dpmem_rh_block);
326 * Attach the usable dpmem area.
327 * XXX: This is actually crap. CPM_DATAONLY_BASE and
328 * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
329 * with the processor and the microcode patches applied / activated.
330 * But the following should be at least safe.
332 rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
336 * Allocate the requested size worth of DP memory.
337 * This function returns an offset into the DPRAM area.
338 * Use cpm_dpram_addr() to get the virtual address of the area.
340 unsigned long cpm_dpalloc(uint size, uint align)
342 unsigned long start;
343 unsigned long flags;
345 spin_lock_irqsave(&cpm_dpmem_lock, flags);
346 cpm_dpmem_info.alignment = align;
347 start = rh_alloc(&cpm_dpmem_info, size, "commproc");
348 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
350 return (uint)start;
352 EXPORT_SYMBOL(cpm_dpalloc);
354 int cpm_dpfree(unsigned long offset)
356 int ret;
357 unsigned long flags;
359 spin_lock_irqsave(&cpm_dpmem_lock, flags);
360 ret = rh_free(&cpm_dpmem_info, offset);
361 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
363 return ret;
365 EXPORT_SYMBOL(cpm_dpfree);
367 unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
369 unsigned long start;
370 unsigned long flags;
372 spin_lock_irqsave(&cpm_dpmem_lock, flags);
373 cpm_dpmem_info.alignment = align;
374 start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
375 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
377 return start;
379 EXPORT_SYMBOL(cpm_dpalloc_fixed);
381 void cpm_dpdump(void)
383 rh_dump(&cpm_dpmem_info);
385 EXPORT_SYMBOL(cpm_dpdump);
387 void *cpm_dpram_addr(unsigned long offset)
389 return (void *)(dpram_vbase + offset);
391 EXPORT_SYMBOL(cpm_dpram_addr);
393 uint cpm_dpram_phys(u8 *addr)
395 return (dpram_pbase + (uint)(addr - dpram_vbase));
397 EXPORT_SYMBOL(cpm_dpram_phys);
398 #endif /* !CONFIG_PPC_CPM_NEW_BINDING */
400 struct cpm_ioport16 {
401 __be16 dir, par, odr_sor, dat, intr;
402 __be16 res[3];
405 struct cpm_ioport32 {
406 __be32 dir, par, sor;
409 static void cpm1_set_pin32(int port, int pin, int flags)
411 struct cpm_ioport32 __iomem *iop;
412 pin = 1 << (31 - pin);
414 if (port == CPM_PORTB)
415 iop = (struct cpm_ioport32 __iomem *)
416 &mpc8xx_immr->im_cpm.cp_pbdir;
417 else
418 iop = (struct cpm_ioport32 __iomem *)
419 &mpc8xx_immr->im_cpm.cp_pedir;
421 if (flags & CPM_PIN_OUTPUT)
422 setbits32(&iop->dir, pin);
423 else
424 clrbits32(&iop->dir, pin);
426 if (!(flags & CPM_PIN_GPIO))
427 setbits32(&iop->par, pin);
428 else
429 clrbits32(&iop->par, pin);
431 if (port == CPM_PORTB) {
432 if (flags & CPM_PIN_OPENDRAIN)
433 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
434 else
435 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
438 if (port == CPM_PORTE) {
439 if (flags & CPM_PIN_SECONDARY)
440 setbits32(&iop->sor, pin);
441 else
442 clrbits32(&iop->sor, pin);
444 if (flags & CPM_PIN_OPENDRAIN)
445 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
446 else
447 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
451 static void cpm1_set_pin16(int port, int pin, int flags)
453 struct cpm_ioport16 __iomem *iop =
454 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
456 pin = 1 << (15 - pin);
458 if (port != 0)
459 iop += port - 1;
461 if (flags & CPM_PIN_OUTPUT)
462 setbits16(&iop->dir, pin);
463 else
464 clrbits16(&iop->dir, pin);
466 if (!(flags & CPM_PIN_GPIO))
467 setbits16(&iop->par, pin);
468 else
469 clrbits16(&iop->par, pin);
471 if (port == CPM_PORTA) {
472 if (flags & CPM_PIN_OPENDRAIN)
473 setbits16(&iop->odr_sor, pin);
474 else
475 clrbits16(&iop->odr_sor, pin);
477 if (port == CPM_PORTC) {
478 if (flags & CPM_PIN_SECONDARY)
479 setbits16(&iop->odr_sor, pin);
480 else
481 clrbits16(&iop->odr_sor, pin);
485 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
487 if (port == CPM_PORTB || port == CPM_PORTE)
488 cpm1_set_pin32(port, pin, flags);
489 else
490 cpm1_set_pin16(port, pin, flags);
493 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
495 int shift;
496 int i, bits = 0;
497 u32 __iomem *reg;
498 u32 mask = 7;
500 u8 clk_map[][3] = {
501 {CPM_CLK_SCC1, CPM_BRG1, 0},
502 {CPM_CLK_SCC1, CPM_BRG2, 1},
503 {CPM_CLK_SCC1, CPM_BRG3, 2},
504 {CPM_CLK_SCC1, CPM_BRG4, 3},
505 {CPM_CLK_SCC1, CPM_CLK1, 4},
506 {CPM_CLK_SCC1, CPM_CLK2, 5},
507 {CPM_CLK_SCC1, CPM_CLK3, 6},
508 {CPM_CLK_SCC1, CPM_CLK4, 7},
510 {CPM_CLK_SCC2, CPM_BRG1, 0},
511 {CPM_CLK_SCC2, CPM_BRG2, 1},
512 {CPM_CLK_SCC2, CPM_BRG3, 2},
513 {CPM_CLK_SCC2, CPM_BRG4, 3},
514 {CPM_CLK_SCC2, CPM_CLK1, 4},
515 {CPM_CLK_SCC2, CPM_CLK2, 5},
516 {CPM_CLK_SCC2, CPM_CLK3, 6},
517 {CPM_CLK_SCC2, CPM_CLK4, 7},
519 {CPM_CLK_SCC3, CPM_BRG1, 0},
520 {CPM_CLK_SCC3, CPM_BRG2, 1},
521 {CPM_CLK_SCC3, CPM_BRG3, 2},
522 {CPM_CLK_SCC3, CPM_BRG4, 3},
523 {CPM_CLK_SCC3, CPM_CLK5, 4},
524 {CPM_CLK_SCC3, CPM_CLK6, 5},
525 {CPM_CLK_SCC3, CPM_CLK7, 6},
526 {CPM_CLK_SCC3, CPM_CLK8, 7},
528 {CPM_CLK_SCC4, CPM_BRG1, 0},
529 {CPM_CLK_SCC4, CPM_BRG2, 1},
530 {CPM_CLK_SCC4, CPM_BRG3, 2},
531 {CPM_CLK_SCC4, CPM_BRG4, 3},
532 {CPM_CLK_SCC4, CPM_CLK5, 4},
533 {CPM_CLK_SCC4, CPM_CLK6, 5},
534 {CPM_CLK_SCC4, CPM_CLK7, 6},
535 {CPM_CLK_SCC4, CPM_CLK8, 7},
537 {CPM_CLK_SMC1, CPM_BRG1, 0},
538 {CPM_CLK_SMC1, CPM_BRG2, 1},
539 {CPM_CLK_SMC1, CPM_BRG3, 2},
540 {CPM_CLK_SMC1, CPM_BRG4, 3},
541 {CPM_CLK_SMC1, CPM_CLK1, 4},
542 {CPM_CLK_SMC1, CPM_CLK2, 5},
543 {CPM_CLK_SMC1, CPM_CLK3, 6},
544 {CPM_CLK_SMC1, CPM_CLK4, 7},
546 {CPM_CLK_SMC2, CPM_BRG1, 0},
547 {CPM_CLK_SMC2, CPM_BRG2, 1},
548 {CPM_CLK_SMC2, CPM_BRG3, 2},
549 {CPM_CLK_SMC2, CPM_BRG4, 3},
550 {CPM_CLK_SMC2, CPM_CLK5, 4},
551 {CPM_CLK_SMC2, CPM_CLK6, 5},
552 {CPM_CLK_SMC2, CPM_CLK7, 6},
553 {CPM_CLK_SMC2, CPM_CLK8, 7},
556 switch (target) {
557 case CPM_CLK_SCC1:
558 reg = &mpc8xx_immr->im_cpm.cp_sicr;
559 shift = 0;
560 break;
562 case CPM_CLK_SCC2:
563 reg = &mpc8xx_immr->im_cpm.cp_sicr;
564 shift = 8;
565 break;
567 case CPM_CLK_SCC3:
568 reg = &mpc8xx_immr->im_cpm.cp_sicr;
569 shift = 16;
570 break;
572 case CPM_CLK_SCC4:
573 reg = &mpc8xx_immr->im_cpm.cp_sicr;
574 shift = 24;
575 break;
577 case CPM_CLK_SMC1:
578 reg = &mpc8xx_immr->im_cpm.cp_simode;
579 shift = 12;
580 break;
582 case CPM_CLK_SMC2:
583 reg = &mpc8xx_immr->im_cpm.cp_simode;
584 shift = 28;
585 break;
587 default:
588 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
589 return -EINVAL;
592 if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
593 shift += 3;
595 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
596 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
597 bits = clk_map[i][2];
598 break;
602 if (i == ARRAY_SIZE(clk_map)) {
603 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
604 return -EINVAL;
607 bits <<= shift;
608 mask <<= shift;
609 out_be32(reg, (in_be32(reg) & ~mask) | bits);
611 return 0;